1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6 * Copyright 1995 Linus Torvalds
7 */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18
19 struct folio_batch;
20
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 pgoff_t start, pgoff_t end);
23
invalidate_remote_inode(struct inode * inode)24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 S_ISLNK(inode->i_mode))
28 invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 pgoff_t start, pgoff_t end);
33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35 int filemap_invalidate_pages(struct address_space *mapping,
36 loff_t pos, loff_t end, bool nowait);
37
38 int write_inode_now(struct inode *, int sync);
39 int filemap_fdatawrite(struct address_space *);
40 int filemap_flush(struct address_space *);
41 int filemap_fdatawait_keep_errors(struct address_space *mapping);
42 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
43 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
44 loff_t start_byte, loff_t end_byte);
45 int filemap_invalidate_inode(struct inode *inode, bool flush,
46 loff_t start, loff_t end);
47
filemap_fdatawait(struct address_space * mapping)48 static inline int filemap_fdatawait(struct address_space *mapping)
49 {
50 return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
51 }
52
53 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
54 int filemap_write_and_wait_range(struct address_space *mapping,
55 loff_t lstart, loff_t lend);
56 int __filemap_fdatawrite_range(struct address_space *mapping,
57 loff_t start, loff_t end, int sync_mode);
58 int filemap_fdatawrite_range(struct address_space *mapping,
59 loff_t start, loff_t end);
60 int filemap_check_errors(struct address_space *mapping);
61 void __filemap_set_wb_err(struct address_space *mapping, int err);
62 int filemap_fdatawrite_wbc(struct address_space *mapping,
63 struct writeback_control *wbc);
64 int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
65
filemap_write_and_wait(struct address_space * mapping)66 static inline int filemap_write_and_wait(struct address_space *mapping)
67 {
68 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
69 }
70
71 /**
72 * filemap_set_wb_err - set a writeback error on an address_space
73 * @mapping: mapping in which to set writeback error
74 * @err: error to be set in mapping
75 *
76 * When writeback fails in some way, we must record that error so that
77 * userspace can be informed when fsync and the like are called. We endeavor
78 * to report errors on any file that was open at the time of the error. Some
79 * internal callers also need to know when writeback errors have occurred.
80 *
81 * When a writeback error occurs, most filesystems will want to call
82 * filemap_set_wb_err to record the error in the mapping so that it will be
83 * automatically reported whenever fsync is called on the file.
84 */
filemap_set_wb_err(struct address_space * mapping,int err)85 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
86 {
87 /* Fastpath for common case of no error */
88 if (unlikely(err))
89 __filemap_set_wb_err(mapping, err);
90 }
91
92 /**
93 * filemap_check_wb_err - has an error occurred since the mark was sampled?
94 * @mapping: mapping to check for writeback errors
95 * @since: previously-sampled errseq_t
96 *
97 * Grab the errseq_t value from the mapping, and see if it has changed "since"
98 * the given value was sampled.
99 *
100 * If it has then report the latest error set, otherwise return 0.
101 */
filemap_check_wb_err(struct address_space * mapping,errseq_t since)102 static inline int filemap_check_wb_err(struct address_space *mapping,
103 errseq_t since)
104 {
105 return errseq_check(&mapping->wb_err, since);
106 }
107
108 /**
109 * filemap_sample_wb_err - sample the current errseq_t to test for later errors
110 * @mapping: mapping to be sampled
111 *
112 * Writeback errors are always reported relative to a particular sample point
113 * in the past. This function provides those sample points.
114 */
filemap_sample_wb_err(struct address_space * mapping)115 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
116 {
117 return errseq_sample(&mapping->wb_err);
118 }
119
120 /**
121 * file_sample_sb_err - sample the current errseq_t to test for later errors
122 * @file: file pointer to be sampled
123 *
124 * Grab the most current superblock-level errseq_t value for the given
125 * struct file.
126 */
file_sample_sb_err(struct file * file)127 static inline errseq_t file_sample_sb_err(struct file *file)
128 {
129 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
130 }
131
132 /*
133 * Flush file data before changing attributes. Caller must hold any locks
134 * required to prevent further writes to this file until we're done setting
135 * flags.
136 */
inode_drain_writes(struct inode * inode)137 static inline int inode_drain_writes(struct inode *inode)
138 {
139 inode_dio_wait(inode);
140 return filemap_write_and_wait(inode->i_mapping);
141 }
142
mapping_empty(struct address_space * mapping)143 static inline bool mapping_empty(struct address_space *mapping)
144 {
145 return xa_empty(&mapping->i_pages);
146 }
147
148 extern void _trace_android_rvh_mapping_shrinkable(bool *shrinkable);
149
150 /*
151 * mapping_shrinkable - test if page cache state allows inode reclaim
152 * @mapping: the page cache mapping
153 *
154 * This checks the mapping's cache state for the pupose of inode
155 * reclaim and LRU management.
156 *
157 * The caller is expected to hold the i_lock, but is not required to
158 * hold the i_pages lock, which usually protects cache state. That's
159 * because the i_lock and the list_lru lock that protect the inode and
160 * its LRU state don't nest inside the irq-safe i_pages lock.
161 *
162 * Cache deletions are performed under the i_lock, which ensures that
163 * when an inode goes empty, it will reliably get queued on the LRU.
164 *
165 * Cache additions do not acquire the i_lock and may race with this
166 * check, in which case we'll report the inode as shrinkable when it
167 * has cache pages. This is okay: the shrinker also checks the
168 * refcount and the referenced bit, which will be elevated or set in
169 * the process of adding new cache pages to an inode.
170 */
mapping_shrinkable(struct address_space * mapping)171 static inline bool mapping_shrinkable(struct address_space *mapping)
172 {
173 void *head;
174 bool shrinkable = false;
175
176 _trace_android_rvh_mapping_shrinkable(&shrinkable);
177 if (shrinkable)
178 return true;
179 /*
180 * On highmem systems, there could be lowmem pressure from the
181 * inodes before there is highmem pressure from the page
182 * cache. Make inodes shrinkable regardless of cache state.
183 */
184 if (IS_ENABLED(CONFIG_HIGHMEM))
185 return true;
186
187 /* Cache completely empty? Shrink away. */
188 head = rcu_access_pointer(mapping->i_pages.xa_head);
189 if (!head)
190 return true;
191
192 /*
193 * The xarray stores single offset-0 entries directly in the
194 * head pointer, which allows non-resident page cache entries
195 * to escape the shadow shrinker's list of xarray nodes. The
196 * inode shrinker needs to pick them up under memory pressure.
197 */
198 if (!xa_is_node(head) && xa_is_value(head))
199 return true;
200
201 return false;
202 }
203
204 /*
205 * Bits in mapping->flags.
206 */
207 enum mapping_flags {
208 AS_EIO = 0, /* IO error on async write */
209 AS_ENOSPC = 1, /* ENOSPC on async write */
210 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
211 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
212 AS_EXITING = 4, /* final truncate in progress */
213 /* writeback related tags are not used */
214 AS_NO_WRITEBACK_TAGS = 5,
215 AS_RELEASE_ALWAYS = 6, /* Call ->release_folio(), even if no private data */
216 AS_STABLE_WRITES = 7, /* must wait for writeback before modifying
217 folio contents */
218 AS_INACCESSIBLE = 8, /* Do not attempt direct R/W access to the mapping */
219 /* Bits 16-25 are used for FOLIO_ORDER */
220 AS_FOLIO_ORDER_BITS = 5,
221 AS_FOLIO_ORDER_MIN = 16,
222 AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS,
223 };
224
225 #define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1)
226 #define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN)
227 #define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX)
228 #define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK)
229
230 /**
231 * mapping_set_error - record a writeback error in the address_space
232 * @mapping: the mapping in which an error should be set
233 * @error: the error to set in the mapping
234 *
235 * When writeback fails in some way, we must record that error so that
236 * userspace can be informed when fsync and the like are called. We endeavor
237 * to report errors on any file that was open at the time of the error. Some
238 * internal callers also need to know when writeback errors have occurred.
239 *
240 * When a writeback error occurs, most filesystems will want to call
241 * mapping_set_error to record the error in the mapping so that it can be
242 * reported when the application calls fsync(2).
243 */
mapping_set_error(struct address_space * mapping,int error)244 static inline void mapping_set_error(struct address_space *mapping, int error)
245 {
246 if (likely(!error))
247 return;
248
249 /* Record in wb_err for checkers using errseq_t based tracking */
250 __filemap_set_wb_err(mapping, error);
251
252 /* Record it in superblock */
253 if (mapping->host)
254 errseq_set(&mapping->host->i_sb->s_wb_err, error);
255
256 /* Record it in flags for now, for legacy callers */
257 if (error == -ENOSPC)
258 set_bit(AS_ENOSPC, &mapping->flags);
259 else
260 set_bit(AS_EIO, &mapping->flags);
261 }
262
mapping_set_unevictable(struct address_space * mapping)263 static inline void mapping_set_unevictable(struct address_space *mapping)
264 {
265 set_bit(AS_UNEVICTABLE, &mapping->flags);
266 }
267
mapping_clear_unevictable(struct address_space * mapping)268 static inline void mapping_clear_unevictable(struct address_space *mapping)
269 {
270 clear_bit(AS_UNEVICTABLE, &mapping->flags);
271 }
272
mapping_unevictable(struct address_space * mapping)273 static inline bool mapping_unevictable(struct address_space *mapping)
274 {
275 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
276 }
277
mapping_set_exiting(struct address_space * mapping)278 static inline void mapping_set_exiting(struct address_space *mapping)
279 {
280 set_bit(AS_EXITING, &mapping->flags);
281 }
282
mapping_exiting(struct address_space * mapping)283 static inline int mapping_exiting(struct address_space *mapping)
284 {
285 return test_bit(AS_EXITING, &mapping->flags);
286 }
287
mapping_set_no_writeback_tags(struct address_space * mapping)288 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
289 {
290 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
291 }
292
mapping_use_writeback_tags(struct address_space * mapping)293 static inline int mapping_use_writeback_tags(struct address_space *mapping)
294 {
295 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
296 }
297
mapping_release_always(const struct address_space * mapping)298 static inline bool mapping_release_always(const struct address_space *mapping)
299 {
300 return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
301 }
302
mapping_set_release_always(struct address_space * mapping)303 static inline void mapping_set_release_always(struct address_space *mapping)
304 {
305 set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
306 }
307
mapping_clear_release_always(struct address_space * mapping)308 static inline void mapping_clear_release_always(struct address_space *mapping)
309 {
310 clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
311 }
312
mapping_stable_writes(const struct address_space * mapping)313 static inline bool mapping_stable_writes(const struct address_space *mapping)
314 {
315 return test_bit(AS_STABLE_WRITES, &mapping->flags);
316 }
317
mapping_set_stable_writes(struct address_space * mapping)318 static inline void mapping_set_stable_writes(struct address_space *mapping)
319 {
320 set_bit(AS_STABLE_WRITES, &mapping->flags);
321 }
322
mapping_clear_stable_writes(struct address_space * mapping)323 static inline void mapping_clear_stable_writes(struct address_space *mapping)
324 {
325 clear_bit(AS_STABLE_WRITES, &mapping->flags);
326 }
327
mapping_set_inaccessible(struct address_space * mapping)328 static inline void mapping_set_inaccessible(struct address_space *mapping)
329 {
330 /*
331 * It's expected inaccessible mappings are also unevictable. Compaction
332 * migrate scanner (isolate_migratepages_block()) relies on this to
333 * reduce page locking.
334 */
335 set_bit(AS_UNEVICTABLE, &mapping->flags);
336 set_bit(AS_INACCESSIBLE, &mapping->flags);
337 }
338
mapping_inaccessible(struct address_space * mapping)339 static inline bool mapping_inaccessible(struct address_space *mapping)
340 {
341 return test_bit(AS_INACCESSIBLE, &mapping->flags);
342 }
343
mapping_gfp_mask(struct address_space * mapping)344 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
345 {
346 return mapping->gfp_mask;
347 }
348
349 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)350 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
351 gfp_t gfp_mask)
352 {
353 return mapping_gfp_mask(mapping) & gfp_mask;
354 }
355
356 /*
357 * This is non-atomic. Only to be used before the mapping is activated.
358 * Probably needs a barrier...
359 */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)360 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
361 {
362 m->gfp_mask = mask;
363 }
364
365 /*
366 * There are some parts of the kernel which assume that PMD entries
367 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then,
368 * limit the maximum allocation order to PMD size. I'm not aware of any
369 * assumptions about maximum order if THP are disabled, but 8 seems like
370 * a good order (that's 1MB if you're using 4kB pages)
371 */
372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
373 #define PREFERRED_MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER
374 #else
375 #define PREFERRED_MAX_PAGECACHE_ORDER 8
376 #endif
377
378 /*
379 * xas_split_alloc() does not support arbitrary orders. This implies no
380 * 512MB THP on ARM64 with 64KB base page size.
381 */
382 #define MAX_XAS_ORDER (XA_CHUNK_SHIFT * 2 - 1)
383 #define MAX_PAGECACHE_ORDER min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER)
384
385 /*
386 * mapping_max_folio_size_supported() - Check the max folio size supported
387 *
388 * The filesystem should call this function at mount time if there is a
389 * requirement on the folio mapping size in the page cache.
390 */
mapping_max_folio_size_supported(void)391 static inline size_t mapping_max_folio_size_supported(void)
392 {
393 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
394 return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER);
395 return PAGE_SIZE;
396 }
397
398 /*
399 * mapping_set_folio_order_range() - Set the orders supported by a file.
400 * @mapping: The address space of the file.
401 * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive).
402 * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive).
403 *
404 * The filesystem should call this function in its inode constructor to
405 * indicate which base size (min) and maximum size (max) of folio the VFS
406 * can use to cache the contents of the file. This should only be used
407 * if the filesystem needs special handling of folio sizes (ie there is
408 * something the core cannot know).
409 * Do not tune it based on, eg, i_size.
410 *
411 * Context: This should not be called while the inode is active as it
412 * is non-atomic.
413 */
mapping_set_folio_order_range(struct address_space * mapping,unsigned int min,unsigned int max)414 static inline void mapping_set_folio_order_range(struct address_space *mapping,
415 unsigned int min,
416 unsigned int max)
417 {
418 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
419 return;
420
421 if (min > MAX_PAGECACHE_ORDER)
422 min = MAX_PAGECACHE_ORDER;
423
424 if (max > MAX_PAGECACHE_ORDER)
425 max = MAX_PAGECACHE_ORDER;
426
427 if (max < min)
428 max = min;
429
430 mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) |
431 (min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX);
432 }
433
mapping_set_folio_min_order(struct address_space * mapping,unsigned int min)434 static inline void mapping_set_folio_min_order(struct address_space *mapping,
435 unsigned int min)
436 {
437 mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER);
438 }
439
440 /**
441 * mapping_set_large_folios() - Indicate the file supports large folios.
442 * @mapping: The address space of the file.
443 *
444 * The filesystem should call this function in its inode constructor to
445 * indicate that the VFS can use large folios to cache the contents of
446 * the file.
447 *
448 * Context: This should not be called while the inode is active as it
449 * is non-atomic.
450 */
mapping_set_large_folios(struct address_space * mapping)451 static inline void mapping_set_large_folios(struct address_space *mapping)
452 {
453 mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER);
454 }
455
456 static inline unsigned int
mapping_max_folio_order(const struct address_space * mapping)457 mapping_max_folio_order(const struct address_space *mapping)
458 {
459 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
460 return 0;
461 return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX;
462 }
463
464 static inline unsigned int
mapping_min_folio_order(const struct address_space * mapping)465 mapping_min_folio_order(const struct address_space *mapping)
466 {
467 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
468 return 0;
469 return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN;
470 }
471
472 static inline unsigned long
mapping_min_folio_nrpages(struct address_space * mapping)473 mapping_min_folio_nrpages(struct address_space *mapping)
474 {
475 return 1UL << mapping_min_folio_order(mapping);
476 }
477
478 /**
479 * mapping_align_index() - Align index for this mapping.
480 * @mapping: The address_space.
481 * @index: The page index.
482 *
483 * The index of a folio must be naturally aligned. If you are adding a
484 * new folio to the page cache and need to know what index to give it,
485 * call this function.
486 */
mapping_align_index(struct address_space * mapping,pgoff_t index)487 static inline pgoff_t mapping_align_index(struct address_space *mapping,
488 pgoff_t index)
489 {
490 return round_down(index, mapping_min_folio_nrpages(mapping));
491 }
492
493 /*
494 * Large folio support currently depends on THP. These dependencies are
495 * being worked on but are not yet fixed.
496 */
mapping_large_folio_support(struct address_space * mapping)497 static inline bool mapping_large_folio_support(struct address_space *mapping)
498 {
499 /* AS_FOLIO_ORDER is only reasonable for pagecache folios */
500 VM_WARN_ONCE((unsigned long)mapping & PAGE_MAPPING_ANON,
501 "Anonymous mapping always supports large folio");
502
503 return mapping_max_folio_order(mapping) > 0;
504 }
505
506 /* Return the maximum folio size for this pagecache mapping, in bytes. */
mapping_max_folio_size(const struct address_space * mapping)507 static inline size_t mapping_max_folio_size(const struct address_space *mapping)
508 {
509 return PAGE_SIZE << mapping_max_folio_order(mapping);
510 }
511
filemap_nr_thps(struct address_space * mapping)512 static inline int filemap_nr_thps(struct address_space *mapping)
513 {
514 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
515 return atomic_read(&mapping->nr_thps);
516 #else
517 return 0;
518 #endif
519 }
520
filemap_nr_thps_inc(struct address_space * mapping)521 static inline void filemap_nr_thps_inc(struct address_space *mapping)
522 {
523 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
524 if (!mapping_large_folio_support(mapping))
525 atomic_inc(&mapping->nr_thps);
526 #else
527 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
528 #endif
529 }
530
filemap_nr_thps_dec(struct address_space * mapping)531 static inline void filemap_nr_thps_dec(struct address_space *mapping)
532 {
533 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
534 if (!mapping_large_folio_support(mapping))
535 atomic_dec(&mapping->nr_thps);
536 #else
537 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
538 #endif
539 }
540
541 struct address_space *folio_mapping(struct folio *);
542 struct address_space *swapcache_mapping(struct folio *);
543
544 /**
545 * folio_file_mapping - Find the mapping this folio belongs to.
546 * @folio: The folio.
547 *
548 * For folios which are in the page cache, return the mapping that this
549 * page belongs to. Folios in the swap cache return the mapping of the
550 * swap file or swap device where the data is stored. This is different
551 * from the mapping returned by folio_mapping(). The only reason to
552 * use it is if, like NFS, you return 0 from ->activate_swapfile.
553 *
554 * Do not call this for folios which aren't in the page cache or swap cache.
555 */
folio_file_mapping(struct folio * folio)556 static inline struct address_space *folio_file_mapping(struct folio *folio)
557 {
558 if (unlikely(folio_test_swapcache(folio)))
559 return swapcache_mapping(folio);
560
561 return folio->mapping;
562 }
563
564 /**
565 * folio_flush_mapping - Find the file mapping this folio belongs to.
566 * @folio: The folio.
567 *
568 * For folios which are in the page cache, return the mapping that this
569 * page belongs to. Anonymous folios return NULL, even if they're in
570 * the swap cache. Other kinds of folio also return NULL.
571 *
572 * This is ONLY used by architecture cache flushing code. If you aren't
573 * writing cache flushing code, you want either folio_mapping() or
574 * folio_file_mapping().
575 */
folio_flush_mapping(struct folio * folio)576 static inline struct address_space *folio_flush_mapping(struct folio *folio)
577 {
578 if (unlikely(folio_test_swapcache(folio)))
579 return NULL;
580
581 return folio_mapping(folio);
582 }
583
page_file_mapping(struct page * page)584 static inline struct address_space *page_file_mapping(struct page *page)
585 {
586 return folio_file_mapping(page_folio(page));
587 }
588
589 /**
590 * folio_inode - Get the host inode for this folio.
591 * @folio: The folio.
592 *
593 * For folios which are in the page cache, return the inode that this folio
594 * belongs to.
595 *
596 * Do not call this for folios which aren't in the page cache.
597 */
folio_inode(struct folio * folio)598 static inline struct inode *folio_inode(struct folio *folio)
599 {
600 return folio->mapping->host;
601 }
602
603 /**
604 * folio_attach_private - Attach private data to a folio.
605 * @folio: Folio to attach data to.
606 * @data: Data to attach to folio.
607 *
608 * Attaching private data to a folio increments the page's reference count.
609 * The data must be detached before the folio will be freed.
610 */
folio_attach_private(struct folio * folio,void * data)611 static inline void folio_attach_private(struct folio *folio, void *data)
612 {
613 folio_get(folio);
614 folio->private = data;
615 folio_set_private(folio);
616 }
617
618 /**
619 * folio_change_private - Change private data on a folio.
620 * @folio: Folio to change the data on.
621 * @data: Data to set on the folio.
622 *
623 * Change the private data attached to a folio and return the old
624 * data. The page must previously have had data attached and the data
625 * must be detached before the folio will be freed.
626 *
627 * Return: Data that was previously attached to the folio.
628 */
folio_change_private(struct folio * folio,void * data)629 static inline void *folio_change_private(struct folio *folio, void *data)
630 {
631 void *old = folio_get_private(folio);
632
633 folio->private = data;
634 return old;
635 }
636
637 /**
638 * folio_detach_private - Detach private data from a folio.
639 * @folio: Folio to detach data from.
640 *
641 * Removes the data that was previously attached to the folio and decrements
642 * the refcount on the page.
643 *
644 * Return: Data that was attached to the folio.
645 */
folio_detach_private(struct folio * folio)646 static inline void *folio_detach_private(struct folio *folio)
647 {
648 void *data = folio_get_private(folio);
649
650 if (!folio_test_private(folio))
651 return NULL;
652 folio_clear_private(folio);
653 folio->private = NULL;
654 folio_put(folio);
655
656 return data;
657 }
658
attach_page_private(struct page * page,void * data)659 static inline void attach_page_private(struct page *page, void *data)
660 {
661 folio_attach_private(page_folio(page), data);
662 }
663
detach_page_private(struct page * page)664 static inline void *detach_page_private(struct page *page)
665 {
666 return folio_detach_private(page_folio(page));
667 }
668
669 #ifdef CONFIG_NUMA
670 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order);
671 #else
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)672 static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
673 {
674 return folio_alloc_noprof(gfp, order);
675 }
676 #endif
677
678 #define filemap_alloc_folio(...) \
679 alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__))
680
__page_cache_alloc(gfp_t gfp)681 static inline struct page *__page_cache_alloc(gfp_t gfp)
682 {
683 return &filemap_alloc_folio(gfp, 0)->page;
684 }
685
__readahead_gfp_mask(struct address_space * x)686 static inline gfp_t __readahead_gfp_mask(struct address_space *x)
687 {
688 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
689 }
690
691 gfp_t readahead_gfp_mask(struct address_space *x);
692
693 typedef int filler_t(struct file *, struct folio *);
694
695 pgoff_t page_cache_next_miss(struct address_space *mapping,
696 pgoff_t index, unsigned long max_scan);
697 pgoff_t page_cache_prev_miss(struct address_space *mapping,
698 pgoff_t index, unsigned long max_scan);
699
700 /**
701 * typedef fgf_t - Flags for getting folios from the page cache.
702 *
703 * Most users of the page cache will not need to use these flags;
704 * there are convenience functions such as filemap_get_folio() and
705 * filemap_lock_folio(). For users which need more control over exactly
706 * what is done with the folios, these flags to __filemap_get_folio()
707 * are available.
708 *
709 * * %FGP_ACCESSED - The folio will be marked accessed.
710 * * %FGP_LOCK - The folio is returned locked.
711 * * %FGP_CREAT - If no folio is present then a new folio is allocated,
712 * added to the page cache and the VM's LRU list. The folio is
713 * returned locked.
714 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
715 * folio is already in cache. If the folio was allocated, unlock it
716 * before returning so the caller can do the same dance.
717 * * %FGP_WRITE - The folio will be written to by the caller.
718 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
719 * * %FGP_NOWAIT - Don't block on the folio lock.
720 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
721 * * %FGP_DONTCACHE - Uncached buffered IO
722 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
723 * implementation.
724 */
725 typedef unsigned int __bitwise fgf_t;
726
727 #define FGP_ACCESSED ((__force fgf_t)0x00000001)
728 #define FGP_LOCK ((__force fgf_t)0x00000002)
729 #define FGP_CREAT ((__force fgf_t)0x00000004)
730 #define FGP_WRITE ((__force fgf_t)0x00000008)
731 #define FGP_NOFS ((__force fgf_t)0x00000010)
732 #define FGP_NOWAIT ((__force fgf_t)0x00000020)
733 #define FGP_FOR_MMAP ((__force fgf_t)0x00000040)
734 #define FGP_STABLE ((__force fgf_t)0x00000080)
735 #define FGP_DONTCACHE ((__force fgf_t)0x00000100)
736 #define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */
737
738 #define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
739
740 /**
741 * fgf_set_order - Encode a length in the fgf_t flags.
742 * @size: The suggested size of the folio to create.
743 *
744 * The caller of __filemap_get_folio() can use this to suggest a preferred
745 * size for the folio that is created. If there is already a folio at
746 * the index, it will be returned, no matter what its size. If a folio
747 * is freshly created, it may be of a different size than requested
748 * due to alignment constraints, memory pressure, or the presence of
749 * other folios at nearby indices.
750 */
fgf_set_order(size_t size)751 static inline fgf_t fgf_set_order(size_t size)
752 {
753 unsigned int shift = ilog2(size);
754
755 if (shift <= PAGE_SHIFT)
756 return 0;
757 return (__force fgf_t)((shift - PAGE_SHIFT) << 26);
758 }
759
760 void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
761 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
762 fgf_t fgp_flags, gfp_t gfp);
763 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
764 fgf_t fgp_flags, gfp_t gfp);
765
766 /**
767 * filemap_get_folio - Find and get a folio.
768 * @mapping: The address_space to search.
769 * @index: The page index.
770 *
771 * Looks up the page cache entry at @mapping & @index. If a folio is
772 * present, it is returned with an increased refcount.
773 *
774 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
775 * this index. Will not return a shadow, swap or DAX entry.
776 */
filemap_get_folio(struct address_space * mapping,pgoff_t index)777 static inline struct folio *filemap_get_folio(struct address_space *mapping,
778 pgoff_t index)
779 {
780 return __filemap_get_folio(mapping, index, 0, 0);
781 }
782
783 /**
784 * filemap_lock_folio - Find and lock a folio.
785 * @mapping: The address_space to search.
786 * @index: The page index.
787 *
788 * Looks up the page cache entry at @mapping & @index. If a folio is
789 * present, it is returned locked with an increased refcount.
790 *
791 * Context: May sleep.
792 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
793 * this index. Will not return a shadow, swap or DAX entry.
794 */
filemap_lock_folio(struct address_space * mapping,pgoff_t index)795 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
796 pgoff_t index)
797 {
798 return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
799 }
800
801 /**
802 * filemap_grab_folio - grab a folio from the page cache
803 * @mapping: The address space to search
804 * @index: The page index
805 *
806 * Looks up the page cache entry at @mapping & @index. If no folio is found,
807 * a new folio is created. The folio is locked, marked as accessed, and
808 * returned.
809 *
810 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
811 * and failed to create a folio.
812 */
filemap_grab_folio(struct address_space * mapping,pgoff_t index)813 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
814 pgoff_t index)
815 {
816 return __filemap_get_folio(mapping, index,
817 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
818 mapping_gfp_mask(mapping));
819 }
820
821 /**
822 * find_get_page - find and get a page reference
823 * @mapping: the address_space to search
824 * @offset: the page index
825 *
826 * Looks up the page cache slot at @mapping & @offset. If there is a
827 * page cache page, it is returned with an increased refcount.
828 *
829 * Otherwise, %NULL is returned.
830 */
find_get_page(struct address_space * mapping,pgoff_t offset)831 static inline struct page *find_get_page(struct address_space *mapping,
832 pgoff_t offset)
833 {
834 return pagecache_get_page(mapping, offset, 0, 0);
835 }
836
find_get_page_flags(struct address_space * mapping,pgoff_t offset,fgf_t fgp_flags)837 static inline struct page *find_get_page_flags(struct address_space *mapping,
838 pgoff_t offset, fgf_t fgp_flags)
839 {
840 return pagecache_get_page(mapping, offset, fgp_flags, 0);
841 }
842
843 /**
844 * find_lock_page - locate, pin and lock a pagecache page
845 * @mapping: the address_space to search
846 * @index: the page index
847 *
848 * Looks up the page cache entry at @mapping & @index. If there is a
849 * page cache page, it is returned locked and with an increased
850 * refcount.
851 *
852 * Context: May sleep.
853 * Return: A struct page or %NULL if there is no page in the cache for this
854 * index.
855 */
find_lock_page(struct address_space * mapping,pgoff_t index)856 static inline struct page *find_lock_page(struct address_space *mapping,
857 pgoff_t index)
858 {
859 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
860 }
861
862 /**
863 * find_or_create_page - locate or add a pagecache page
864 * @mapping: the page's address_space
865 * @index: the page's index into the mapping
866 * @gfp_mask: page allocation mode
867 *
868 * Looks up the page cache slot at @mapping & @offset. If there is a
869 * page cache page, it is returned locked and with an increased
870 * refcount.
871 *
872 * If the page is not present, a new page is allocated using @gfp_mask
873 * and added to the page cache and the VM's LRU list. The page is
874 * returned locked and with an increased refcount.
875 *
876 * On memory exhaustion, %NULL is returned.
877 *
878 * find_or_create_page() may sleep, even if @gfp_flags specifies an
879 * atomic allocation!
880 */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)881 static inline struct page *find_or_create_page(struct address_space *mapping,
882 pgoff_t index, gfp_t gfp_mask)
883 {
884 return pagecache_get_page(mapping, index,
885 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
886 gfp_mask);
887 }
888
889 /**
890 * grab_cache_page_nowait - returns locked page at given index in given cache
891 * @mapping: target address_space
892 * @index: the page index
893 *
894 * Same as grab_cache_page(), but do not wait if the page is unavailable.
895 * This is intended for speculative data generators, where the data can
896 * be regenerated if the page couldn't be grabbed. This routine should
897 * be safe to call while holding the lock for another page.
898 *
899 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
900 * and deadlock against the caller's locked page.
901 */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)902 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
903 pgoff_t index)
904 {
905 return pagecache_get_page(mapping, index,
906 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
907 mapping_gfp_mask(mapping));
908 }
909
910 extern pgoff_t __folio_swap_cache_index(struct folio *folio);
911
912 /**
913 * folio_index - File index of a folio.
914 * @folio: The folio.
915 *
916 * For a folio which is either in the page cache or the swap cache,
917 * return its index within the address_space it belongs to. If you know
918 * the page is definitely in the page cache, you can look at the folio's
919 * index directly.
920 *
921 * Return: The index (offset in units of pages) of a folio in its file.
922 */
folio_index(struct folio * folio)923 static inline pgoff_t folio_index(struct folio *folio)
924 {
925 if (unlikely(folio_test_swapcache(folio)))
926 return __folio_swap_cache_index(folio);
927 return folio->index;
928 }
929
930 /**
931 * folio_next_index - Get the index of the next folio.
932 * @folio: The current folio.
933 *
934 * Return: The index of the folio which follows this folio in the file.
935 */
folio_next_index(struct folio * folio)936 static inline pgoff_t folio_next_index(struct folio *folio)
937 {
938 return folio->index + folio_nr_pages(folio);
939 }
940
941 /**
942 * folio_file_page - The page for a particular index.
943 * @folio: The folio which contains this index.
944 * @index: The index we want to look up.
945 *
946 * Sometimes after looking up a folio in the page cache, we need to
947 * obtain the specific page for an index (eg a page fault).
948 *
949 * Return: The page containing the file data for this index.
950 */
folio_file_page(struct folio * folio,pgoff_t index)951 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
952 {
953 return folio_page(folio, index & (folio_nr_pages(folio) - 1));
954 }
955
956 /**
957 * folio_contains - Does this folio contain this index?
958 * @folio: The folio.
959 * @index: The page index within the file.
960 *
961 * Context: The caller should have the page locked in order to prevent
962 * (eg) shmem from moving the page between the page cache and swap cache
963 * and changing its index in the middle of the operation.
964 * Return: true or false.
965 */
folio_contains(struct folio * folio,pgoff_t index)966 static inline bool folio_contains(struct folio *folio, pgoff_t index)
967 {
968 return index - folio_index(folio) < folio_nr_pages(folio);
969 }
970
971 /*
972 * Given the page we found in the page cache, return the page corresponding
973 * to this index in the file
974 */
find_subpage(struct page * head,pgoff_t index)975 static inline struct page *find_subpage(struct page *head, pgoff_t index)
976 {
977 /* HugeTLBfs wants the head page regardless */
978 if (PageHuge(head))
979 return head;
980
981 return head + (index & (thp_nr_pages(head) - 1));
982 }
983
984 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
985 pgoff_t end, struct folio_batch *fbatch);
986 unsigned filemap_get_folios_contig(struct address_space *mapping,
987 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
988 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
989 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
990
991 struct page *grab_cache_page_write_begin(struct address_space *mapping,
992 pgoff_t index);
993
994 /*
995 * Returns locked page at given index in given cache, creating it if needed.
996 */
grab_cache_page(struct address_space * mapping,pgoff_t index)997 static inline struct page *grab_cache_page(struct address_space *mapping,
998 pgoff_t index)
999 {
1000 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
1001 }
1002
1003 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
1004 filler_t *filler, struct file *file);
1005 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
1006 gfp_t flags);
1007 struct page *read_cache_page(struct address_space *, pgoff_t index,
1008 filler_t *filler, struct file *file);
1009 extern struct page * read_cache_page_gfp(struct address_space *mapping,
1010 pgoff_t index, gfp_t gfp_mask);
1011
read_mapping_page(struct address_space * mapping,pgoff_t index,struct file * file)1012 static inline struct page *read_mapping_page(struct address_space *mapping,
1013 pgoff_t index, struct file *file)
1014 {
1015 return read_cache_page(mapping, index, NULL, file);
1016 }
1017
read_mapping_folio(struct address_space * mapping,pgoff_t index,struct file * file)1018 static inline struct folio *read_mapping_folio(struct address_space *mapping,
1019 pgoff_t index, struct file *file)
1020 {
1021 return read_cache_folio(mapping, index, NULL, file);
1022 }
1023
1024 /*
1025 * Get the offset in PAGE_SIZE (even for hugetlb pages).
1026 */
page_to_pgoff(struct page * page)1027 static inline pgoff_t page_to_pgoff(struct page *page)
1028 {
1029 struct page *head;
1030
1031 if (likely(!PageTransTail(page)))
1032 return page->index;
1033
1034 head = compound_head(page);
1035 /*
1036 * We don't initialize ->index for tail pages: calculate based on
1037 * head page
1038 */
1039 return head->index + page - head;
1040 }
1041
1042 /*
1043 * Return byte-offset into filesystem object for page.
1044 */
page_offset(struct page * page)1045 static inline loff_t page_offset(struct page *page)
1046 {
1047 return ((loff_t)page->index) << PAGE_SHIFT;
1048 }
1049
1050 /**
1051 * folio_pos - Returns the byte position of this folio in its file.
1052 * @folio: The folio.
1053 */
folio_pos(struct folio * folio)1054 static inline loff_t folio_pos(struct folio *folio)
1055 {
1056 return page_offset(&folio->page);
1057 }
1058
1059 /*
1060 * Get the offset in PAGE_SIZE (even for hugetlb folios).
1061 */
folio_pgoff(struct folio * folio)1062 static inline pgoff_t folio_pgoff(struct folio *folio)
1063 {
1064 return folio->index;
1065 }
1066
linear_page_index(struct vm_area_struct * vma,unsigned long address)1067 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
1068 unsigned long address)
1069 {
1070 pgoff_t pgoff;
1071 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1072 pgoff += vma->vm_pgoff;
1073 return pgoff;
1074 }
1075
1076 struct wait_page_key {
1077 struct folio *folio;
1078 int bit_nr;
1079 int page_match;
1080 };
1081
1082 struct wait_page_queue {
1083 struct folio *folio;
1084 int bit_nr;
1085 wait_queue_entry_t wait;
1086 };
1087
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)1088 static inline bool wake_page_match(struct wait_page_queue *wait_page,
1089 struct wait_page_key *key)
1090 {
1091 if (wait_page->folio != key->folio)
1092 return false;
1093 key->page_match = 1;
1094
1095 if (wait_page->bit_nr != key->bit_nr)
1096 return false;
1097
1098 return true;
1099 }
1100
1101 void __folio_lock(struct folio *folio);
1102 int __folio_lock_killable(struct folio *folio);
1103 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
1104 void unlock_page(struct page *page);
1105 void folio_unlock(struct folio *folio);
1106
1107 /**
1108 * folio_trylock() - Attempt to lock a folio.
1109 * @folio: The folio to attempt to lock.
1110 *
1111 * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1112 * when the locks are being taken in the wrong order, or if making
1113 * progress through a batch of folios is more important than processing
1114 * them in order). Usually folio_lock() is the correct function to call.
1115 *
1116 * Context: Any context.
1117 * Return: Whether the lock was successfully acquired.
1118 */
folio_trylock(struct folio * folio)1119 static inline bool folio_trylock(struct folio *folio)
1120 {
1121 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1122 }
1123
1124 /*
1125 * Return true if the page was successfully locked
1126 */
trylock_page(struct page * page)1127 static inline bool trylock_page(struct page *page)
1128 {
1129 return folio_trylock(page_folio(page));
1130 }
1131
1132 /**
1133 * folio_lock() - Lock this folio.
1134 * @folio: The folio to lock.
1135 *
1136 * The folio lock protects against many things, probably more than it
1137 * should. It is primarily held while a folio is being brought uptodate,
1138 * either from its backing file or from swap. It is also held while a
1139 * folio is being truncated from its address_space, so holding the lock
1140 * is sufficient to keep folio->mapping stable.
1141 *
1142 * The folio lock is also held while write() is modifying the page to
1143 * provide POSIX atomicity guarantees (as long as the write does not
1144 * cross a page boundary). Other modifications to the data in the folio
1145 * do not hold the folio lock and can race with writes, eg DMA and stores
1146 * to mapped pages.
1147 *
1148 * Context: May sleep. If you need to acquire the locks of two or
1149 * more folios, they must be in order of ascending index, if they are
1150 * in the same address_space. If they are in different address_spaces,
1151 * acquire the lock of the folio which belongs to the address_space which
1152 * has the lowest address in memory first.
1153 */
folio_lock(struct folio * folio)1154 static inline void folio_lock(struct folio *folio)
1155 {
1156 might_sleep();
1157 if (!folio_trylock(folio))
1158 __folio_lock(folio);
1159 }
1160
1161 /**
1162 * lock_page() - Lock the folio containing this page.
1163 * @page: The page to lock.
1164 *
1165 * See folio_lock() for a description of what the lock protects.
1166 * This is a legacy function and new code should probably use folio_lock()
1167 * instead.
1168 *
1169 * Context: May sleep. Pages in the same folio share a lock, so do not
1170 * attempt to lock two pages which share a folio.
1171 */
lock_page(struct page * page)1172 static inline void lock_page(struct page *page)
1173 {
1174 struct folio *folio;
1175 might_sleep();
1176
1177 folio = page_folio(page);
1178 if (!folio_trylock(folio))
1179 __folio_lock(folio);
1180 }
1181
1182 /**
1183 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1184 * @folio: The folio to lock.
1185 *
1186 * Attempts to lock the folio, like folio_lock(), except that the sleep
1187 * to acquire the lock is interruptible by a fatal signal.
1188 *
1189 * Context: May sleep; see folio_lock().
1190 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1191 */
folio_lock_killable(struct folio * folio)1192 static inline int folio_lock_killable(struct folio *folio)
1193 {
1194 might_sleep();
1195 if (!folio_trylock(folio))
1196 return __folio_lock_killable(folio);
1197 return 0;
1198 }
1199
1200 /*
1201 * folio_lock_or_retry - Lock the folio, unless this would block and the
1202 * caller indicated that it can handle a retry.
1203 *
1204 * Return value and mmap_lock implications depend on flags; see
1205 * __folio_lock_or_retry().
1206 */
folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1207 static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1208 struct vm_fault *vmf)
1209 {
1210 might_sleep();
1211 if (!folio_trylock(folio))
1212 return __folio_lock_or_retry(folio, vmf);
1213 return 0;
1214 }
1215
1216 /*
1217 * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1218 * and should not be used directly.
1219 */
1220 void folio_wait_bit(struct folio *folio, int bit_nr);
1221 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1222
1223 /*
1224 * Wait for a folio to be unlocked.
1225 *
1226 * This must be called with the caller "holding" the folio,
1227 * ie with increased folio reference count so that the folio won't
1228 * go away during the wait.
1229 */
folio_wait_locked(struct folio * folio)1230 static inline void folio_wait_locked(struct folio *folio)
1231 {
1232 if (folio_test_locked(folio))
1233 folio_wait_bit(folio, PG_locked);
1234 }
1235
folio_wait_locked_killable(struct folio * folio)1236 static inline int folio_wait_locked_killable(struct folio *folio)
1237 {
1238 if (!folio_test_locked(folio))
1239 return 0;
1240 return folio_wait_bit_killable(folio, PG_locked);
1241 }
1242
wait_on_page_locked(struct page * page)1243 static inline void wait_on_page_locked(struct page *page)
1244 {
1245 folio_wait_locked(page_folio(page));
1246 }
1247
1248 void folio_end_read(struct folio *folio, bool success);
1249 void wait_on_page_writeback(struct page *page);
1250 void folio_wait_writeback(struct folio *folio);
1251 int folio_wait_writeback_killable(struct folio *folio);
1252 void end_page_writeback(struct page *page);
1253 void folio_end_writeback(struct folio *folio);
1254 void wait_for_stable_page(struct page *page);
1255 void folio_wait_stable(struct folio *folio);
1256 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1257 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1258 void __folio_cancel_dirty(struct folio *folio);
folio_cancel_dirty(struct folio * folio)1259 static inline void folio_cancel_dirty(struct folio *folio)
1260 {
1261 /* Avoid atomic ops, locking, etc. when not actually needed. */
1262 if (folio_test_dirty(folio))
1263 __folio_cancel_dirty(folio);
1264 }
1265 bool folio_clear_dirty_for_io(struct folio *folio);
1266 bool clear_page_dirty_for_io(struct page *page);
1267 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1268 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1269
1270 #ifdef CONFIG_MIGRATION
1271 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1272 struct folio *src, enum migrate_mode mode);
1273 #else
1274 #define filemap_migrate_folio NULL
1275 #endif
1276 void folio_end_private_2(struct folio *folio);
1277 void folio_wait_private_2(struct folio *folio);
1278 int folio_wait_private_2_killable(struct folio *folio);
1279
1280 /*
1281 * Add an arbitrary waiter to a page's wait queue
1282 */
1283 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1284
1285 /*
1286 * Fault in userspace address range.
1287 */
1288 size_t fault_in_writeable(char __user *uaddr, size_t size);
1289 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1290 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1291 size_t fault_in_readable(const char __user *uaddr, size_t size);
1292
1293 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1294 pgoff_t index, gfp_t gfp);
1295 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1296 pgoff_t index, gfp_t gfp);
1297 void filemap_remove_folio(struct folio *folio);
1298 void __filemap_remove_folio(struct folio *folio, void *shadow);
1299 void replace_page_cache_folio(struct folio *old, struct folio *new);
1300 void delete_from_page_cache_batch(struct address_space *mapping,
1301 struct folio_batch *fbatch);
1302 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1303 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1304 int whence);
1305
1306 /* Must be non-static for BPF error injection */
1307 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1308 pgoff_t index, gfp_t gfp, void **shadowp);
1309
1310 bool filemap_range_has_writeback(struct address_space *mapping,
1311 loff_t start_byte, loff_t end_byte);
1312
1313 /**
1314 * filemap_range_needs_writeback - check if range potentially needs writeback
1315 * @mapping: address space within which to check
1316 * @start_byte: offset in bytes where the range starts
1317 * @end_byte: offset in bytes where the range ends (inclusive)
1318 *
1319 * Find at least one page in the range supplied, usually used to check if
1320 * direct writing in this range will trigger a writeback. Used by O_DIRECT
1321 * read/write with IOCB_NOWAIT, to see if the caller needs to do
1322 * filemap_write_and_wait_range() before proceeding.
1323 *
1324 * Return: %true if the caller should do filemap_write_and_wait_range() before
1325 * doing O_DIRECT to a page in this range, %false otherwise.
1326 */
filemap_range_needs_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)1327 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1328 loff_t start_byte,
1329 loff_t end_byte)
1330 {
1331 if (!mapping->nrpages)
1332 return false;
1333 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1334 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1335 return false;
1336 return filemap_range_has_writeback(mapping, start_byte, end_byte);
1337 }
1338
1339 /**
1340 * struct readahead_control - Describes a readahead request.
1341 *
1342 * A readahead request is for consecutive pages. Filesystems which
1343 * implement the ->readahead method should call readahead_page() or
1344 * readahead_page_batch() in a loop and attempt to start I/O against
1345 * each page in the request.
1346 *
1347 * Most of the fields in this struct are private and should be accessed
1348 * by the functions below.
1349 *
1350 * @file: The file, used primarily by network filesystems for authentication.
1351 * May be NULL if invoked internally by the filesystem.
1352 * @mapping: Readahead this filesystem object.
1353 * @ra: File readahead state. May be NULL.
1354 */
1355 struct readahead_control {
1356 struct file *file;
1357 struct address_space *mapping;
1358 struct file_ra_state *ra;
1359 /* private: use the readahead_* accessors instead */
1360 pgoff_t _index;
1361 unsigned int _nr_pages;
1362 unsigned int _batch_count;
1363 bool _workingset;
1364 ANDROID_KABI_IGNORE(1, bool dropbehind);
1365 unsigned long _pflags;
1366 ANDROID_OEM_DATA(1);
1367 };
1368
1369 #define DEFINE_READAHEAD(ractl, f, r, m, i) \
1370 struct readahead_control ractl = { \
1371 .file = f, \
1372 .mapping = m, \
1373 .ra = r, \
1374 ._index = i, \
1375 }
1376
1377 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1378
1379 void page_cache_ra_unbounded(struct readahead_control *,
1380 unsigned long nr_to_read, unsigned long lookahead_count);
1381 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1382 void page_cache_async_ra(struct readahead_control *, struct folio *,
1383 unsigned long req_count);
1384 void readahead_expand(struct readahead_control *ractl,
1385 loff_t new_start, size_t new_len);
1386
1387 /**
1388 * page_cache_sync_readahead - generic file readahead
1389 * @mapping: address_space which holds the pagecache and I/O vectors
1390 * @ra: file_ra_state which holds the readahead state
1391 * @file: Used by the filesystem for authentication.
1392 * @index: Index of first page to be read.
1393 * @req_count: Total number of pages being read by the caller.
1394 *
1395 * page_cache_sync_readahead() should be called when a cache miss happened:
1396 * it will submit the read. The readahead logic may decide to piggyback more
1397 * pages onto the read request if access patterns suggest it will improve
1398 * performance.
1399 */
1400 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)1401 void page_cache_sync_readahead(struct address_space *mapping,
1402 struct file_ra_state *ra, struct file *file, pgoff_t index,
1403 unsigned long req_count)
1404 {
1405 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1406 page_cache_sync_ra(&ractl, req_count);
1407 }
1408
1409 /**
1410 * page_cache_async_readahead - file readahead for marked pages
1411 * @mapping: address_space which holds the pagecache and I/O vectors
1412 * @ra: file_ra_state which holds the readahead state
1413 * @file: Used by the filesystem for authentication.
1414 * @folio: The folio which triggered the readahead call.
1415 * @req_count: Total number of pages being read by the caller.
1416 *
1417 * page_cache_async_readahead() should be called when a page is used which
1418 * is marked as PageReadahead; this is a marker to suggest that the application
1419 * has used up enough of the readahead window that we should start pulling in
1420 * more pages.
1421 */
1422 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct folio * folio,unsigned long req_count)1423 void page_cache_async_readahead(struct address_space *mapping,
1424 struct file_ra_state *ra, struct file *file,
1425 struct folio *folio, unsigned long req_count)
1426 {
1427 DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index);
1428 page_cache_async_ra(&ractl, folio, req_count);
1429 }
1430
__readahead_folio(struct readahead_control * ractl)1431 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1432 {
1433 struct folio *folio;
1434
1435 BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1436 ractl->_nr_pages -= ractl->_batch_count;
1437 ractl->_index += ractl->_batch_count;
1438
1439 if (!ractl->_nr_pages) {
1440 ractl->_batch_count = 0;
1441 return NULL;
1442 }
1443
1444 folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1445 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1446 ractl->_batch_count = folio_nr_pages(folio);
1447
1448 return folio;
1449 }
1450
1451 /**
1452 * readahead_page - Get the next page to read.
1453 * @ractl: The current readahead request.
1454 *
1455 * Context: The page is locked and has an elevated refcount. The caller
1456 * should decreases the refcount once the page has been submitted for I/O
1457 * and unlock the page once all I/O to that page has completed.
1458 * Return: A pointer to the next page, or %NULL if we are done.
1459 */
readahead_page(struct readahead_control * ractl)1460 static inline struct page *readahead_page(struct readahead_control *ractl)
1461 {
1462 struct folio *folio = __readahead_folio(ractl);
1463
1464 return &folio->page;
1465 }
1466
1467 /**
1468 * readahead_folio - Get the next folio to read.
1469 * @ractl: The current readahead request.
1470 *
1471 * Context: The folio is locked. The caller should unlock the folio once
1472 * all I/O to that folio has completed.
1473 * Return: A pointer to the next folio, or %NULL if we are done.
1474 */
readahead_folio(struct readahead_control * ractl)1475 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1476 {
1477 struct folio *folio = __readahead_folio(ractl);
1478
1479 if (folio)
1480 folio_put(folio);
1481 return folio;
1482 }
1483
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)1484 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1485 struct page **array, unsigned int array_sz)
1486 {
1487 unsigned int i = 0;
1488 XA_STATE(xas, &rac->mapping->i_pages, 0);
1489 struct page *page;
1490
1491 BUG_ON(rac->_batch_count > rac->_nr_pages);
1492 rac->_nr_pages -= rac->_batch_count;
1493 rac->_index += rac->_batch_count;
1494 rac->_batch_count = 0;
1495
1496 xas_set(&xas, rac->_index);
1497 rcu_read_lock();
1498 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1499 if (xas_retry(&xas, page))
1500 continue;
1501 VM_BUG_ON_PAGE(!PageLocked(page), page);
1502 VM_BUG_ON_PAGE(PageTail(page), page);
1503 array[i++] = page;
1504 rac->_batch_count += thp_nr_pages(page);
1505 if (i == array_sz)
1506 break;
1507 }
1508 rcu_read_unlock();
1509
1510 return i;
1511 }
1512
1513 /**
1514 * readahead_page_batch - Get a batch of pages to read.
1515 * @rac: The current readahead request.
1516 * @array: An array of pointers to struct page.
1517 *
1518 * Context: The pages are locked and have an elevated refcount. The caller
1519 * should decreases the refcount once the page has been submitted for I/O
1520 * and unlock the page once all I/O to that page has completed.
1521 * Return: The number of pages placed in the array. 0 indicates the request
1522 * is complete.
1523 */
1524 #define readahead_page_batch(rac, array) \
1525 __readahead_batch(rac, array, ARRAY_SIZE(array))
1526
1527 /**
1528 * readahead_pos - The byte offset into the file of this readahead request.
1529 * @rac: The readahead request.
1530 */
readahead_pos(struct readahead_control * rac)1531 static inline loff_t readahead_pos(struct readahead_control *rac)
1532 {
1533 return (loff_t)rac->_index * PAGE_SIZE;
1534 }
1535
1536 /**
1537 * readahead_length - The number of bytes in this readahead request.
1538 * @rac: The readahead request.
1539 */
readahead_length(struct readahead_control * rac)1540 static inline size_t readahead_length(struct readahead_control *rac)
1541 {
1542 return rac->_nr_pages * PAGE_SIZE;
1543 }
1544
1545 /**
1546 * readahead_index - The index of the first page in this readahead request.
1547 * @rac: The readahead request.
1548 */
readahead_index(struct readahead_control * rac)1549 static inline pgoff_t readahead_index(struct readahead_control *rac)
1550 {
1551 return rac->_index;
1552 }
1553
1554 /**
1555 * readahead_count - The number of pages in this readahead request.
1556 * @rac: The readahead request.
1557 */
readahead_count(struct readahead_control * rac)1558 static inline unsigned int readahead_count(struct readahead_control *rac)
1559 {
1560 return rac->_nr_pages;
1561 }
1562
1563 /**
1564 * readahead_batch_length - The number of bytes in the current batch.
1565 * @rac: The readahead request.
1566 */
readahead_batch_length(struct readahead_control * rac)1567 static inline size_t readahead_batch_length(struct readahead_control *rac)
1568 {
1569 return rac->_batch_count * PAGE_SIZE;
1570 }
1571
dir_pages(struct inode * inode)1572 static inline unsigned long dir_pages(struct inode *inode)
1573 {
1574 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1575 PAGE_SHIFT;
1576 }
1577
1578 /**
1579 * folio_mkwrite_check_truncate - check if folio was truncated
1580 * @folio: the folio to check
1581 * @inode: the inode to check the folio against
1582 *
1583 * Return: the number of bytes in the folio up to EOF,
1584 * or -EFAULT if the folio was truncated.
1585 */
folio_mkwrite_check_truncate(struct folio * folio,struct inode * inode)1586 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1587 struct inode *inode)
1588 {
1589 loff_t size = i_size_read(inode);
1590 pgoff_t index = size >> PAGE_SHIFT;
1591 size_t offset = offset_in_folio(folio, size);
1592
1593 if (!folio->mapping)
1594 return -EFAULT;
1595
1596 /* folio is wholly inside EOF */
1597 if (folio_next_index(folio) - 1 < index)
1598 return folio_size(folio);
1599 /* folio is wholly past EOF */
1600 if (folio->index > index || !offset)
1601 return -EFAULT;
1602 /* folio is partially inside EOF */
1603 return offset;
1604 }
1605
1606 /**
1607 * page_mkwrite_check_truncate - check if page was truncated
1608 * @page: the page to check
1609 * @inode: the inode to check the page against
1610 *
1611 * Returns the number of bytes in the page up to EOF,
1612 * or -EFAULT if the page was truncated.
1613 */
page_mkwrite_check_truncate(struct page * page,struct inode * inode)1614 static inline int page_mkwrite_check_truncate(struct page *page,
1615 struct inode *inode)
1616 {
1617 loff_t size = i_size_read(inode);
1618 pgoff_t index = size >> PAGE_SHIFT;
1619 int offset = offset_in_page(size);
1620
1621 if (page->mapping != inode->i_mapping)
1622 return -EFAULT;
1623
1624 /* page is wholly inside EOF */
1625 if (page->index < index)
1626 return PAGE_SIZE;
1627 /* page is wholly past EOF */
1628 if (page->index > index || !offset)
1629 return -EFAULT;
1630 /* page is partially inside EOF */
1631 return offset;
1632 }
1633
1634 /**
1635 * i_blocks_per_folio - How many blocks fit in this folio.
1636 * @inode: The inode which contains the blocks.
1637 * @folio: The folio.
1638 *
1639 * If the block size is larger than the size of this folio, return zero.
1640 *
1641 * Context: The caller should hold a refcount on the folio to prevent it
1642 * from being split.
1643 * Return: The number of filesystem blocks covered by this folio.
1644 */
1645 static inline
i_blocks_per_folio(struct inode * inode,struct folio * folio)1646 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1647 {
1648 return folio_size(folio) >> inode->i_blkbits;
1649 }
1650 #endif /* _LINUX_PAGEMAP_H */
1651