• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/acpi.h>
10 #include <linux/bits.h>
11 #include <linux/completion.h>
12 #include <linux/device.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/kthread.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/overflow.h>
17 #include <linux/scatterlist.h>
18 #include <linux/slab.h>
19 #include <linux/u64_stats_sync.h>
20 #include <linux/android_kabi.h>
21 
22 #include <uapi/linux/spi/spi.h>
23 
24 /* Max no. of CS supported per spi device */
25 #define SPI_CS_CNT_MAX 16
26 
27 struct dma_chan;
28 struct software_node;
29 struct ptp_system_timestamp;
30 struct spi_controller;
31 struct spi_transfer;
32 struct spi_controller_mem_ops;
33 struct spi_controller_mem_caps;
34 struct spi_message;
35 
36 /*
37  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
38  * and SPI infrastructure.
39  */
40 extern const struct bus_type spi_bus_type;
41 
42 /**
43  * struct spi_statistics - statistics for spi transfers
44  * @syncp:         seqcount to protect members in this struct for per-cpu update
45  *                 on 32-bit systems
46  *
47  * @messages:      number of spi-messages handled
48  * @transfers:     number of spi_transfers handled
49  * @errors:        number of errors during spi_transfer
50  * @timedout:      number of timeouts during spi_transfer
51  *
52  * @spi_sync:      number of times spi_sync is used
53  * @spi_sync_immediate:
54  *                 number of times spi_sync is executed immediately
55  *                 in calling context without queuing and scheduling
56  * @spi_async:     number of times spi_async is used
57  *
58  * @bytes:         number of bytes transferred to/from device
59  * @bytes_tx:      number of bytes sent to device
60  * @bytes_rx:      number of bytes received from device
61  *
62  * @transfer_bytes_histo:
63  *                 transfer bytes histogram
64  *
65  * @transfers_split_maxsize:
66  *                 number of transfers that have been split because of
67  *                 maxsize limit
68  */
69 struct spi_statistics {
70 	struct u64_stats_sync	syncp;
71 
72 	u64_stats_t		messages;
73 	u64_stats_t		transfers;
74 	u64_stats_t		errors;
75 	u64_stats_t		timedout;
76 
77 	u64_stats_t		spi_sync;
78 	u64_stats_t		spi_sync_immediate;
79 	u64_stats_t		spi_async;
80 
81 	u64_stats_t		bytes;
82 	u64_stats_t		bytes_rx;
83 	u64_stats_t		bytes_tx;
84 
85 #define SPI_STATISTICS_HISTO_SIZE 17
86 	u64_stats_t	transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
87 
88 	u64_stats_t	transfers_split_maxsize;
89 };
90 
91 #define SPI_STATISTICS_ADD_TO_FIELD(pcpu_stats, field, count)		\
92 	do {								\
93 		struct spi_statistics *__lstats;			\
94 		get_cpu();						\
95 		__lstats = this_cpu_ptr(pcpu_stats);			\
96 		u64_stats_update_begin(&__lstats->syncp);		\
97 		u64_stats_add(&__lstats->field, count);			\
98 		u64_stats_update_end(&__lstats->syncp);			\
99 		put_cpu();						\
100 	} while (0)
101 
102 #define SPI_STATISTICS_INCREMENT_FIELD(pcpu_stats, field)		\
103 	do {								\
104 		struct spi_statistics *__lstats;			\
105 		get_cpu();						\
106 		__lstats = this_cpu_ptr(pcpu_stats);			\
107 		u64_stats_update_begin(&__lstats->syncp);		\
108 		u64_stats_inc(&__lstats->field);			\
109 		u64_stats_update_end(&__lstats->syncp);			\
110 		put_cpu();						\
111 	} while (0)
112 
113 /**
114  * struct spi_delay - SPI delay information
115  * @value: Value for the delay
116  * @unit: Unit for the delay
117  */
118 struct spi_delay {
119 #define SPI_DELAY_UNIT_USECS	0
120 #define SPI_DELAY_UNIT_NSECS	1
121 #define SPI_DELAY_UNIT_SCK	2
122 	u16	value;
123 	u8	unit;
124 };
125 
126 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
127 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
128 extern void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
129 						  struct spi_transfer *xfer);
130 
131 /**
132  * struct spi_device - Controller side proxy for an SPI slave device
133  * @dev: Driver model representation of the device.
134  * @controller: SPI controller used with the device.
135  * @max_speed_hz: Maximum clock rate to be used with this chip
136  *	(on this board); may be changed by the device's driver.
137  *	The spi_transfer.speed_hz can override this for each transfer.
138  * @chip_select: Array of physical chipselect, spi->chipselect[i] gives
139  *	the corresponding physical CS for logical CS i.
140  * @mode: The spi mode defines how data is clocked out and in.
141  *	This may be changed by the device's driver.
142  *	The "active low" default for chipselect mode can be overridden
143  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
144  *	each word in a transfer (by specifying SPI_LSB_FIRST).
145  * @bits_per_word: Data transfers involve one or more words; word sizes
146  *	like eight or 12 bits are common.  In-memory wordsizes are
147  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
148  *	This may be changed by the device's driver, or left at the
149  *	default (0) indicating protocol words are eight bit bytes.
150  *	The spi_transfer.bits_per_word can override this for each transfer.
151  * @rt: Make the pump thread real time priority.
152  * @irq: Negative, or the number passed to request_irq() to receive
153  *	interrupts from this device.
154  * @controller_state: Controller's runtime state
155  * @controller_data: Board-specific definitions for controller, such as
156  *	FIFO initialization parameters; from board_info.controller_data
157  * @modalias: Name of the driver to use with this device, or an alias
158  *	for that name.  This appears in the sysfs "modalias" attribute
159  *	for driver coldplugging, and in uevents used for hotplugging
160  * @driver_override: If the name of a driver is written to this attribute, then
161  *	the device will bind to the named driver and only the named driver.
162  *	Do not set directly, because core frees it; use driver_set_override() to
163  *	set or clear it.
164  * @cs_gpiod: Array of GPIO descriptors of the corresponding chipselect lines
165  *	(optional, NULL when not using a GPIO line)
166  * @word_delay: delay to be inserted between consecutive
167  *	words of a transfer
168  * @cs_setup: delay to be introduced by the controller after CS is asserted
169  * @cs_hold: delay to be introduced by the controller before CS is deasserted
170  * @cs_inactive: delay to be introduced by the controller after CS is
171  *	deasserted. If @cs_change_delay is used from @spi_transfer, then the
172  *	two delays will be added up.
173  * @pcpu_statistics: statistics for the spi_device
174  * @cs_index_mask: Bit mask of the active chipselect(s) in the chipselect array
175  *
176  * A @spi_device is used to interchange data between an SPI slave
177  * (usually a discrete chip) and CPU memory.
178  *
179  * In @dev, the platform_data is used to hold information about this
180  * device that's meaningful to the device's protocol driver, but not
181  * to its controller.  One example might be an identifier for a chip
182  * variant with slightly different functionality; another might be
183  * information about how this particular board wires the chip's pins.
184  */
185 struct spi_device {
186 	struct device		dev;
187 	struct spi_controller	*controller;
188 	u32			max_speed_hz;
189 	u8			chip_select[SPI_CS_CNT_MAX];
190 	u8			bits_per_word;
191 	bool			rt;
192 #define SPI_NO_TX		BIT(31)		/* No transmit wire */
193 #define SPI_NO_RX		BIT(30)		/* No receive wire */
194 	/*
195 	 * TPM specification defines flow control over SPI. Client device
196 	 * can insert a wait state on MISO when address is transmitted by
197 	 * controller on MOSI. Detecting the wait state in software is only
198 	 * possible for full duplex controllers. For controllers that support
199 	 * only half-duplex, the wait state detection needs to be implemented
200 	 * in hardware. TPM devices would set this flag when hardware flow
201 	 * control is expected from SPI controller.
202 	 */
203 #define SPI_TPM_HW_FLOW		BIT(29)		/* TPM HW flow control */
204 	/*
205 	 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
206 	 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
207 	 * which is defined in 'include/uapi/linux/spi/spi.h'.
208 	 * The bits defined here are from bit 31 downwards, while in
209 	 * SPI_MODE_USER_MASK are from 0 upwards.
210 	 * These bits must not overlap. A static assert check should make sure of that.
211 	 * If adding extra bits, make sure to decrease the bit index below as well.
212 	 */
213 #define SPI_MODE_KERNEL_MASK	(~(BIT(29) - 1))
214 	u32			mode;
215 	int			irq;
216 	void			*controller_state;
217 	void			*controller_data;
218 	char			modalias[SPI_NAME_SIZE];
219 	const char		*driver_override;
220 	struct gpio_desc	*cs_gpiod[SPI_CS_CNT_MAX];	/* Chip select gpio desc */
221 	struct spi_delay	word_delay; /* Inter-word delay */
222 	/* CS delays */
223 	struct spi_delay	cs_setup;
224 	struct spi_delay	cs_hold;
225 	struct spi_delay	cs_inactive;
226 
227 	/* The statistics */
228 	struct spi_statistics __percpu	*pcpu_statistics;
229 
230 	/* Bit mask of the chipselect(s) that the driver need to use from
231 	 * the chipselect array.When the controller is capable to handle
232 	 * multiple chip selects & memories are connected in parallel
233 	 * then more than one bit need to be set in cs_index_mask.
234 	 */
235 	u32			cs_index_mask : SPI_CS_CNT_MAX;
236 	ANDROID_KABI_RESERVE(1);
237 	ANDROID_KABI_RESERVE(2);
238 
239 	/*
240 	 * Likely need more hooks for more protocol options affecting how
241 	 * the controller talks to each chip, like:
242 	 *  - memory packing (12 bit samples into low bits, others zeroed)
243 	 *  - priority
244 	 *  - chipselect delays
245 	 *  - ...
246 	 */
247 };
248 
249 /* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
250 static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
251 	      "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
252 
253 #define to_spi_device(__dev)	container_of_const(__dev, struct spi_device, dev)
254 
255 /* Most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)256 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
257 {
258 	return (spi && get_device(&spi->dev)) ? spi : NULL;
259 }
260 
spi_dev_put(struct spi_device * spi)261 static inline void spi_dev_put(struct spi_device *spi)
262 {
263 	if (spi)
264 		put_device(&spi->dev);
265 }
266 
267 /* ctldata is for the bus_controller driver's runtime state */
spi_get_ctldata(const struct spi_device * spi)268 static inline void *spi_get_ctldata(const struct spi_device *spi)
269 {
270 	return spi->controller_state;
271 }
272 
spi_set_ctldata(struct spi_device * spi,void * state)273 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
274 {
275 	spi->controller_state = state;
276 }
277 
278 /* Device driver data */
279 
spi_set_drvdata(struct spi_device * spi,void * data)280 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
281 {
282 	dev_set_drvdata(&spi->dev, data);
283 }
284 
spi_get_drvdata(const struct spi_device * spi)285 static inline void *spi_get_drvdata(const struct spi_device *spi)
286 {
287 	return dev_get_drvdata(&spi->dev);
288 }
289 
spi_get_chipselect(const struct spi_device * spi,u8 idx)290 static inline u8 spi_get_chipselect(const struct spi_device *spi, u8 idx)
291 {
292 	return spi->chip_select[idx];
293 }
294 
spi_set_chipselect(struct spi_device * spi,u8 idx,u8 chipselect)295 static inline void spi_set_chipselect(struct spi_device *spi, u8 idx, u8 chipselect)
296 {
297 	spi->chip_select[idx] = chipselect;
298 }
299 
spi_get_csgpiod(const struct spi_device * spi,u8 idx)300 static inline struct gpio_desc *spi_get_csgpiod(const struct spi_device *spi, u8 idx)
301 {
302 	return spi->cs_gpiod[idx];
303 }
304 
spi_set_csgpiod(struct spi_device * spi,u8 idx,struct gpio_desc * csgpiod)305 static inline void spi_set_csgpiod(struct spi_device *spi, u8 idx, struct gpio_desc *csgpiod)
306 {
307 	spi->cs_gpiod[idx] = csgpiod;
308 }
309 
spi_is_csgpiod(struct spi_device * spi)310 static inline bool spi_is_csgpiod(struct spi_device *spi)
311 {
312 	u8 idx;
313 
314 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
315 		if (spi_get_csgpiod(spi, idx))
316 			return true;
317 	}
318 	return false;
319 }
320 
321 /**
322  * struct spi_driver - Host side "protocol" driver
323  * @id_table: List of SPI devices supported by this driver
324  * @probe: Binds this driver to the SPI device.  Drivers can verify
325  *	that the device is actually present, and may need to configure
326  *	characteristics (such as bits_per_word) which weren't needed for
327  *	the initial configuration done during system setup.
328  * @remove: Unbinds this driver from the SPI device
329  * @shutdown: Standard shutdown callback used during system state
330  *	transitions such as powerdown/halt and kexec
331  * @driver: SPI device drivers should initialize the name and owner
332  *	field of this structure.
333  *
334  * This represents the kind of device driver that uses SPI messages to
335  * interact with the hardware at the other end of a SPI link.  It's called
336  * a "protocol" driver because it works through messages rather than talking
337  * directly to SPI hardware (which is what the underlying SPI controller
338  * driver does to pass those messages).  These protocols are defined in the
339  * specification for the device(s) supported by the driver.
340  *
341  * As a rule, those device protocols represent the lowest level interface
342  * supported by a driver, and it will support upper level interfaces too.
343  * Examples of such upper levels include frameworks like MTD, networking,
344  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
345  */
346 struct spi_driver {
347 	const struct spi_device_id *id_table;
348 	int			(*probe)(struct spi_device *spi);
349 	void			(*remove)(struct spi_device *spi);
350 	void			(*shutdown)(struct spi_device *spi);
351 	struct device_driver	driver;
352 
353 	ANDROID_KABI_RESERVE(1);
354 };
355 
356 #define to_spi_driver(__drv)   \
357 	( __drv ? container_of_const(__drv, struct spi_driver, driver) : NULL )
358 
359 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
360 
361 /**
362  * spi_unregister_driver - reverse effect of spi_register_driver
363  * @sdrv: the driver to unregister
364  * Context: can sleep
365  */
spi_unregister_driver(struct spi_driver * sdrv)366 static inline void spi_unregister_driver(struct spi_driver *sdrv)
367 {
368 	if (sdrv)
369 		driver_unregister(&sdrv->driver);
370 }
371 
372 extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 chip_select);
373 
374 /* Use a define to avoid include chaining to get THIS_MODULE */
375 #define spi_register_driver(driver) \
376 	__spi_register_driver(THIS_MODULE, driver)
377 
378 /**
379  * module_spi_driver() - Helper macro for registering a SPI driver
380  * @__spi_driver: spi_driver struct
381  *
382  * Helper macro for SPI drivers which do not do anything special in module
383  * init/exit. This eliminates a lot of boilerplate. Each module may only
384  * use this macro once, and calling it replaces module_init() and module_exit()
385  */
386 #define module_spi_driver(__spi_driver) \
387 	module_driver(__spi_driver, spi_register_driver, \
388 			spi_unregister_driver)
389 
390 /**
391  * struct spi_controller - interface to SPI master or slave controller
392  * @dev: device interface to this driver
393  * @list: link with the global spi_controller list
394  * @bus_num: board-specific (and often SOC-specific) identifier for a
395  *	given SPI controller.
396  * @num_chipselect: chipselects are used to distinguish individual
397  *	SPI slaves, and are numbered from zero to num_chipselects.
398  *	each slave has a chipselect signal, but it's common that not
399  *	every chipselect is connected to a slave.
400  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
401  * @mode_bits: flags understood by this controller driver
402  * @buswidth_override_bits: flags to override for this controller driver
403  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
404  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
405  *	supported. If set, the SPI core will reject any transfer with an
406  *	unsupported bits_per_word. If not set, this value is simply ignored,
407  *	and it's up to the individual driver to perform any validation.
408  * @min_speed_hz: Lowest supported transfer speed
409  * @max_speed_hz: Highest supported transfer speed
410  * @flags: other constraints relevant to this driver
411  * @slave: indicates that this is an SPI slave controller
412  * @target: indicates that this is an SPI target controller
413  * @devm_allocated: whether the allocation of this struct is devres-managed
414  * @max_transfer_size: function that returns the max transfer size for
415  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
416  * @max_message_size: function that returns the max message size for
417  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
418  * @io_mutex: mutex for physical bus access
419  * @add_lock: mutex to avoid adding devices to the same chipselect
420  * @bus_lock_spinlock: spinlock for SPI bus locking
421  * @bus_lock_mutex: mutex for exclusion of multiple callers
422  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
423  * @setup: updates the device mode and clocking records used by a
424  *	device's SPI controller; protocol code may call this.  This
425  *	must fail if an unrecognized or unsupported mode is requested.
426  *	It's always safe to call this unless transfers are pending on
427  *	the device whose settings are being modified.
428  * @set_cs_timing: optional hook for SPI devices to request SPI master
429  * controller for configuring specific CS setup time, hold time and inactive
430  * delay interms of clock counts
431  * @transfer: adds a message to the controller's transfer queue.
432  * @cleanup: frees controller-specific state
433  * @can_dma: determine whether this controller supports DMA
434  * @dma_map_dev: device which can be used for DMA mapping
435  * @cur_rx_dma_dev: device which is currently used for RX DMA mapping
436  * @cur_tx_dma_dev: device which is currently used for TX DMA mapping
437  * @queued: whether this controller is providing an internal message queue
438  * @kworker: pointer to thread struct for message pump
439  * @pump_messages: work struct for scheduling work to the message pump
440  * @queue_lock: spinlock to synchronise access to message queue
441  * @queue: message queue
442  * @cur_msg: the currently in-flight message
443  * @cur_msg_completion: a completion for the current in-flight message
444  * @cur_msg_incomplete: Flag used internally to opportunistically skip
445  *	the @cur_msg_completion. This flag is used to check if the driver has
446  *	already called spi_finalize_current_message().
447  * @cur_msg_need_completion: Flag used internally to opportunistically skip
448  *	the @cur_msg_completion. This flag is used to signal the context that
449  *	is running spi_finalize_current_message() that it needs to complete()
450  * @fallback: fallback to PIO if DMA transfer return failure with
451  *	SPI_TRANS_FAIL_NO_START.
452  * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
453  * @last_cs: the last chip_select that is recorded by set_cs, -1 on non chip
454  *           selected
455  * @last_cs_index_mask: bit mask the last chip selects that were used
456  * @xfer_completion: used by core transfer_one_message()
457  * @busy: message pump is busy
458  * @running: message pump is running
459  * @rt: whether this queue is set to run as a realtime task
460  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
461  *                   while the hardware is prepared, using the parent
462  *                   device for the spidev
463  * @max_dma_len: Maximum length of a DMA transfer for the device.
464  * @prepare_transfer_hardware: a message will soon arrive from the queue
465  *	so the subsystem requests the driver to prepare the transfer hardware
466  *	by issuing this call
467  * @transfer_one_message: the subsystem calls the driver to transfer a single
468  *	message while queuing transfers that arrive in the meantime. When the
469  *	driver is finished with this message, it must call
470  *	spi_finalize_current_message() so the subsystem can issue the next
471  *	message
472  * @unprepare_transfer_hardware: there are currently no more messages on the
473  *	queue so the subsystem notifies the driver that it may relax the
474  *	hardware by issuing this call
475  *
476  * @set_cs: set the logic level of the chip select line.  May be called
477  *          from interrupt context.
478  * @optimize_message: optimize the message for reuse
479  * @unoptimize_message: release resources allocated by optimize_message
480  * @prepare_message: set up the controller to transfer a single message,
481  *                   for example doing DMA mapping.  Called from threaded
482  *                   context.
483  * @transfer_one: transfer a single spi_transfer.
484  *
485  *                  - return 0 if the transfer is finished,
486  *                  - return 1 if the transfer is still in progress. When
487  *                    the driver is finished with this transfer it must
488  *                    call spi_finalize_current_transfer() so the subsystem
489  *                    can issue the next transfer. If the transfer fails, the
490  *                    driver must set the flag SPI_TRANS_FAIL_IO to
491  *                    spi_transfer->error first, before calling
492  *                    spi_finalize_current_transfer().
493  *                    Note: transfer_one and transfer_one_message are mutually
494  *                    exclusive; when both are set, the generic subsystem does
495  *                    not call your transfer_one callback.
496  * @handle_err: the subsystem calls the driver to handle an error that occurs
497  *		in the generic implementation of transfer_one_message().
498  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
499  *	     This field is optional and should only be implemented if the
500  *	     controller has native support for memory like operations.
501  * @mem_caps: controller capabilities for the handling of memory operations.
502  * @unprepare_message: undo any work done by prepare_message().
503  * @target_abort: abort the ongoing transfer request on an SPI target controller
504  * @cs_gpiods: Array of GPIO descriptors to use as chip select lines; one per CS
505  *	number. Any individual value may be NULL for CS lines that
506  *	are not GPIOs (driven by the SPI controller itself).
507  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
508  *	GPIO descriptors. This will fill in @cs_gpiods and SPI devices will have
509  *	the cs_gpiod assigned if a GPIO line is found for the chipselect.
510  * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
511  *	fill in this field with the first unused native CS, to be used by SPI
512  *	controller drivers that need to drive a native CS when using GPIO CS.
513  * @max_native_cs: When cs_gpiods is used, and this field is filled in,
514  *	spi_register_controller() will validate all native CS (including the
515  *	unused native CS) against this value.
516  * @pcpu_statistics: statistics for the spi_controller
517  * @dma_tx: DMA transmit channel
518  * @dma_rx: DMA receive channel
519  * @dummy_rx: dummy receive buffer for full-duplex devices
520  * @dummy_tx: dummy transmit buffer for full-duplex devices
521  * @fw_translate_cs: If the boot firmware uses different numbering scheme
522  *	what Linux expects, this optional hook can be used to translate
523  *	between the two.
524  * @ptp_sts_supported: If the driver sets this to true, it must provide a
525  *	time snapshot in @spi_transfer->ptp_sts as close as possible to the
526  *	moment in time when @spi_transfer->ptp_sts_word_pre and
527  *	@spi_transfer->ptp_sts_word_post were transmitted.
528  *	If the driver does not set this, the SPI core takes the snapshot as
529  *	close to the driver hand-over as possible.
530  * @irq_flags: Interrupt enable state during PTP system timestamping
531  * @queue_empty: signal green light for opportunistically skipping the queue
532  *	for spi_sync transfers.
533  * @must_async: disable all fast paths in the core
534  * @defer_optimize_message: set to true if controller cannot pre-optimize messages
535  *	and needs to defer the optimization step until the message is actually
536  *	being transferred
537  *
538  * Each SPI controller can communicate with one or more @spi_device
539  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
540  * but not chip select signals.  Each device may be configured to use a
541  * different clock rate, since those shared signals are ignored unless
542  * the chip is selected.
543  *
544  * The driver for an SPI controller manages access to those devices through
545  * a queue of spi_message transactions, copying data between CPU memory and
546  * an SPI slave device.  For each such message it queues, it calls the
547  * message's completion function when the transaction completes.
548  */
549 struct spi_controller {
550 	struct device	dev;
551 
552 	struct list_head list;
553 
554 	/*
555 	 * Other than negative (== assign one dynamically), bus_num is fully
556 	 * board-specific. Usually that simplifies to being SoC-specific.
557 	 * example: one SoC has three SPI controllers, numbered 0..2,
558 	 * and one board's schematics might show it using SPI-2. Software
559 	 * would normally use bus_num=2 for that controller.
560 	 */
561 	s16			bus_num;
562 
563 	/*
564 	 * Chipselects will be integral to many controllers; some others
565 	 * might use board-specific GPIOs.
566 	 */
567 	u16			num_chipselect;
568 
569 	/* Some SPI controllers pose alignment requirements on DMAable
570 	 * buffers; let protocol drivers know about these requirements.
571 	 */
572 	u16			dma_alignment;
573 
574 	/* spi_device.mode flags understood by this controller driver */
575 	u32			mode_bits;
576 
577 	/* spi_device.mode flags override flags for this controller */
578 	u32			buswidth_override_bits;
579 
580 	/* Bitmask of supported bits_per_word for transfers */
581 	u32			bits_per_word_mask;
582 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
583 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
584 
585 	/* Limits on transfer speed */
586 	u32			min_speed_hz;
587 	u32			max_speed_hz;
588 
589 	/* Other constraints relevant to this driver */
590 	u16			flags;
591 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* Can't do full duplex */
592 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* Can't do buffer read */
593 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* Can't do buffer write */
594 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* Requires rx */
595 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* Requires tx */
596 #define SPI_CONTROLLER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
597 #define SPI_CONTROLLER_SUSPENDED	BIT(6)	/* Currently suspended */
598 	/*
599 	 * The spi-controller has multi chip select capability and can
600 	 * assert/de-assert more than one chip select at once.
601 	 */
602 #define SPI_CONTROLLER_MULTI_CS		BIT(7)
603 
604 	/* Flag indicating if the allocation of this struct is devres-managed */
605 	bool			devm_allocated;
606 
607 	union {
608 		/* Flag indicating this is an SPI slave controller */
609 		bool			slave;
610 		/* Flag indicating this is an SPI target controller */
611 		bool			target;
612 	};
613 
614 	/*
615 	 * On some hardware transfer / message size may be constrained
616 	 * the limit may depend on device transfer settings.
617 	 */
618 	size_t (*max_transfer_size)(struct spi_device *spi);
619 	size_t (*max_message_size)(struct spi_device *spi);
620 
621 	/* I/O mutex */
622 	struct mutex		io_mutex;
623 
624 	/* Used to avoid adding the same CS twice */
625 	struct mutex		add_lock;
626 
627 	/* Lock and mutex for SPI bus locking */
628 	spinlock_t		bus_lock_spinlock;
629 	struct mutex		bus_lock_mutex;
630 
631 	/* Flag indicating that the SPI bus is locked for exclusive use */
632 	bool			bus_lock_flag;
633 
634 	/*
635 	 * Setup mode and clock, etc (SPI driver may call many times).
636 	 *
637 	 * IMPORTANT:  this may be called when transfers to another
638 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
639 	 * which could break those transfers.
640 	 */
641 	int			(*setup)(struct spi_device *spi);
642 
643 	/*
644 	 * set_cs_timing() method is for SPI controllers that supports
645 	 * configuring CS timing.
646 	 *
647 	 * This hook allows SPI client drivers to request SPI controllers
648 	 * to configure specific CS timing through spi_set_cs_timing() after
649 	 * spi_setup().
650 	 */
651 	int (*set_cs_timing)(struct spi_device *spi);
652 
653 	/*
654 	 * Bidirectional bulk transfers
655 	 *
656 	 * + The transfer() method may not sleep; its main role is
657 	 *   just to add the message to the queue.
658 	 * + For now there's no remove-from-queue operation, or
659 	 *   any other request management
660 	 * + To a given spi_device, message queueing is pure FIFO
661 	 *
662 	 * + The controller's main job is to process its message queue,
663 	 *   selecting a chip (for masters), then transferring data
664 	 * + If there are multiple spi_device children, the i/o queue
665 	 *   arbitration algorithm is unspecified (round robin, FIFO,
666 	 *   priority, reservations, preemption, etc)
667 	 *
668 	 * + Chipselect stays active during the entire message
669 	 *   (unless modified by spi_transfer.cs_change != 0).
670 	 * + The message transfers use clock and SPI mode parameters
671 	 *   previously established by setup() for this device
672 	 */
673 	int			(*transfer)(struct spi_device *spi,
674 						struct spi_message *mesg);
675 
676 	/* Called on release() to free memory provided by spi_controller */
677 	void			(*cleanup)(struct spi_device *spi);
678 
679 	/*
680 	 * Used to enable core support for DMA handling, if can_dma()
681 	 * exists and returns true then the transfer will be mapped
682 	 * prior to transfer_one() being called.  The driver should
683 	 * not modify or store xfer and dma_tx and dma_rx must be set
684 	 * while the device is prepared.
685 	 */
686 	bool			(*can_dma)(struct spi_controller *ctlr,
687 					   struct spi_device *spi,
688 					   struct spi_transfer *xfer);
689 	struct device *dma_map_dev;
690 	struct device *cur_rx_dma_dev;
691 	struct device *cur_tx_dma_dev;
692 
693 	/*
694 	 * These hooks are for drivers that want to use the generic
695 	 * controller transfer queueing mechanism. If these are used, the
696 	 * transfer() function above must NOT be specified by the driver.
697 	 * Over time we expect SPI drivers to be phased over to this API.
698 	 */
699 	bool				queued;
700 	struct kthread_worker		*kworker;
701 	struct kthread_work		pump_messages;
702 	spinlock_t			queue_lock;
703 	struct list_head		queue;
704 	struct spi_message		*cur_msg;
705 	struct completion               cur_msg_completion;
706 	bool				cur_msg_incomplete;
707 	bool				cur_msg_need_completion;
708 	bool				busy;
709 	bool				running;
710 	bool				rt;
711 	bool				auto_runtime_pm;
712 	bool                            fallback;
713 	bool				last_cs_mode_high;
714 	s8				last_cs[SPI_CS_CNT_MAX];
715 	u32				last_cs_index_mask : SPI_CS_CNT_MAX;
716 	struct completion               xfer_completion;
717 	size_t				max_dma_len;
718 
719 	int (*optimize_message)(struct spi_message *msg);
720 	int (*unoptimize_message)(struct spi_message *msg);
721 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
722 	int (*transfer_one_message)(struct spi_controller *ctlr,
723 				    struct spi_message *mesg);
724 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
725 	int (*prepare_message)(struct spi_controller *ctlr,
726 			       struct spi_message *message);
727 	int (*unprepare_message)(struct spi_controller *ctlr,
728 				 struct spi_message *message);
729 	int (*target_abort)(struct spi_controller *ctlr);
730 
731 	/*
732 	 * These hooks are for drivers that use a generic implementation
733 	 * of transfer_one_message() provided by the core.
734 	 */
735 	void (*set_cs)(struct spi_device *spi, bool enable);
736 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
737 			    struct spi_transfer *transfer);
738 	void (*handle_err)(struct spi_controller *ctlr,
739 			   struct spi_message *message);
740 
741 	/* Optimized handlers for SPI memory-like operations. */
742 	const struct spi_controller_mem_ops *mem_ops;
743 	const struct spi_controller_mem_caps *mem_caps;
744 
745 	/* GPIO chip select */
746 	struct gpio_desc	**cs_gpiods;
747 	bool			use_gpio_descriptors;
748 	s8			unused_native_cs;
749 	s8			max_native_cs;
750 
751 	/* Statistics */
752 	struct spi_statistics __percpu	*pcpu_statistics;
753 
754 	/* DMA channels for use with core dmaengine helpers */
755 	struct dma_chan		*dma_tx;
756 	struct dma_chan		*dma_rx;
757 
758 	/* Dummy data for full duplex devices */
759 	void			*dummy_rx;
760 	void			*dummy_tx;
761 
762 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
763 
764 	/*
765 	 * Driver sets this field to indicate it is able to snapshot SPI
766 	 * transfers (needed e.g. for reading the time of POSIX clocks)
767 	 */
768 	bool			ptp_sts_supported;
769 
770 	/* Interrupt enable state during PTP system timestamping */
771 	unsigned long		irq_flags;
772 
773 	/* Flag for enabling opportunistic skipping of the queue in spi_sync */
774 	bool			queue_empty;
775 	bool			must_async;
776 	bool			defer_optimize_message;
777 
778 	ANDROID_KABI_RESERVE(1);
779 	ANDROID_KABI_RESERVE(2);
780 };
781 
spi_controller_get_devdata(struct spi_controller * ctlr)782 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
783 {
784 	return dev_get_drvdata(&ctlr->dev);
785 }
786 
spi_controller_set_devdata(struct spi_controller * ctlr,void * data)787 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
788 					      void *data)
789 {
790 	dev_set_drvdata(&ctlr->dev, data);
791 }
792 
spi_controller_get(struct spi_controller * ctlr)793 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
794 {
795 	if (!ctlr || !get_device(&ctlr->dev))
796 		return NULL;
797 	return ctlr;
798 }
799 
spi_controller_put(struct spi_controller * ctlr)800 static inline void spi_controller_put(struct spi_controller *ctlr)
801 {
802 	if (ctlr)
803 		put_device(&ctlr->dev);
804 }
805 
spi_controller_is_target(struct spi_controller * ctlr)806 static inline bool spi_controller_is_target(struct spi_controller *ctlr)
807 {
808 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->target;
809 }
810 
811 /* PM calls that need to be issued by the driver */
812 extern int spi_controller_suspend(struct spi_controller *ctlr);
813 extern int spi_controller_resume(struct spi_controller *ctlr);
814 
815 /* Calls the driver make to interact with the message queue */
816 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
817 extern void spi_finalize_current_message(struct spi_controller *ctlr);
818 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
819 
820 /* Helper calls for driver to timestamp transfer */
821 void spi_take_timestamp_pre(struct spi_controller *ctlr,
822 			    struct spi_transfer *xfer,
823 			    size_t progress, bool irqs_off);
824 void spi_take_timestamp_post(struct spi_controller *ctlr,
825 			     struct spi_transfer *xfer,
826 			     size_t progress, bool irqs_off);
827 
828 /* The SPI driver core manages memory for the spi_controller classdev */
829 extern struct spi_controller *__spi_alloc_controller(struct device *host,
830 						unsigned int size, bool slave);
831 
spi_alloc_master(struct device * host,unsigned int size)832 static inline struct spi_controller *spi_alloc_master(struct device *host,
833 						      unsigned int size)
834 {
835 	return __spi_alloc_controller(host, size, false);
836 }
837 
spi_alloc_slave(struct device * host,unsigned int size)838 static inline struct spi_controller *spi_alloc_slave(struct device *host,
839 						     unsigned int size)
840 {
841 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
842 		return NULL;
843 
844 	return __spi_alloc_controller(host, size, true);
845 }
846 
spi_alloc_host(struct device * dev,unsigned int size)847 static inline struct spi_controller *spi_alloc_host(struct device *dev,
848 						    unsigned int size)
849 {
850 	return __spi_alloc_controller(dev, size, false);
851 }
852 
spi_alloc_target(struct device * dev,unsigned int size)853 static inline struct spi_controller *spi_alloc_target(struct device *dev,
854 						      unsigned int size)
855 {
856 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
857 		return NULL;
858 
859 	return __spi_alloc_controller(dev, size, true);
860 }
861 
862 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
863 						   unsigned int size,
864 						   bool slave);
865 
devm_spi_alloc_master(struct device * dev,unsigned int size)866 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev,
867 							   unsigned int size)
868 {
869 	return __devm_spi_alloc_controller(dev, size, false);
870 }
871 
devm_spi_alloc_slave(struct device * dev,unsigned int size)872 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev,
873 							  unsigned int size)
874 {
875 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
876 		return NULL;
877 
878 	return __devm_spi_alloc_controller(dev, size, true);
879 }
880 
devm_spi_alloc_host(struct device * dev,unsigned int size)881 static inline struct spi_controller *devm_spi_alloc_host(struct device *dev,
882 							 unsigned int size)
883 {
884 	return __devm_spi_alloc_controller(dev, size, false);
885 }
886 
devm_spi_alloc_target(struct device * dev,unsigned int size)887 static inline struct spi_controller *devm_spi_alloc_target(struct device *dev,
888 							   unsigned int size)
889 {
890 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
891 		return NULL;
892 
893 	return __devm_spi_alloc_controller(dev, size, true);
894 }
895 
896 extern int spi_register_controller(struct spi_controller *ctlr);
897 extern int devm_spi_register_controller(struct device *dev,
898 					struct spi_controller *ctlr);
899 extern void spi_unregister_controller(struct spi_controller *ctlr);
900 
901 #if IS_ENABLED(CONFIG_ACPI) && IS_ENABLED(CONFIG_SPI_MASTER)
902 extern struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
903 extern struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
904 						struct acpi_device *adev,
905 						int index);
906 int acpi_spi_count_resources(struct acpi_device *adev);
907 #else
acpi_spi_find_controller_by_adev(struct acpi_device * adev)908 static inline struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
909 {
910 	return NULL;
911 }
912 
acpi_spi_device_alloc(struct spi_controller * ctlr,struct acpi_device * adev,int index)913 static inline struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
914 						       struct acpi_device *adev,
915 						       int index)
916 {
917 	return ERR_PTR(-ENODEV);
918 }
919 
acpi_spi_count_resources(struct acpi_device * adev)920 static inline int acpi_spi_count_resources(struct acpi_device *adev)
921 {
922 	return 0;
923 }
924 #endif
925 
926 /*
927  * SPI resource management while processing a SPI message
928  */
929 
930 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
931 				  struct spi_message *msg,
932 				  void *res);
933 
934 /**
935  * struct spi_res - SPI resource management structure
936  * @entry:   list entry
937  * @release: release code called prior to freeing this resource
938  * @data:    extra data allocated for the specific use-case
939  *
940  * This is based on ideas from devres, but focused on life-cycle
941  * management during spi_message processing.
942  */
943 struct spi_res {
944 	struct list_head        entry;
945 	spi_res_release_t       release;
946 	unsigned long long      data[]; /* Guarantee ull alignment */
947 };
948 
949 /*---------------------------------------------------------------------------*/
950 
951 /*
952  * I/O INTERFACE between SPI controller and protocol drivers
953  *
954  * Protocol drivers use a queue of spi_messages, each transferring data
955  * between the controller and memory buffers.
956  *
957  * The spi_messages themselves consist of a series of read+write transfer
958  * segments.  Those segments always read the same number of bits as they
959  * write; but one or the other is easily ignored by passing a NULL buffer
960  * pointer.  (This is unlike most types of I/O API, because SPI hardware
961  * is full duplex.)
962  *
963  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
964  * up to the protocol driver, which guarantees the integrity of both (as
965  * well as the data buffers) for as long as the message is queued.
966  */
967 
968 /**
969  * struct spi_transfer - a read/write buffer pair
970  * @tx_buf: data to be written (DMA-safe memory), or NULL
971  * @rx_buf: data to be read (DMA-safe memory), or NULL
972  * @tx_dma: DMA address of tx_buf, currently not for client use
973  * @rx_dma: DMA address of rx_buf, currently not for client use
974  * @tx_nbits: number of bits used for writing. If 0 the default
975  *      (SPI_NBITS_SINGLE) is used.
976  * @rx_nbits: number of bits used for reading. If 0 the default
977  *      (SPI_NBITS_SINGLE) is used.
978  * @len: size of rx and tx buffers (in bytes)
979  * @speed_hz: Select a speed other than the device default for this
980  *      transfer. If 0 the default (from @spi_device) is used.
981  * @bits_per_word: select a bits_per_word other than the device default
982  *      for this transfer. If 0 the default (from @spi_device) is used.
983  * @dummy_data: indicates transfer is dummy bytes transfer.
984  * @cs_off: performs the transfer with chipselect off.
985  * @cs_change: affects chipselect after this transfer completes
986  * @cs_change_delay: delay between cs deassert and assert when
987  *      @cs_change is set and @spi_transfer is not the last in @spi_message
988  * @delay: delay to be introduced after this transfer before
989  *	(optionally) changing the chipselect status, then starting
990  *	the next transfer or completing this @spi_message.
991  * @word_delay: inter word delay to be introduced after each word size
992  *	(set by bits_per_word) transmission.
993  * @effective_speed_hz: the effective SCK-speed that was used to
994  *      transfer this transfer. Set to 0 if the SPI bus driver does
995  *      not support it.
996  * @transfer_list: transfers are sequenced through @spi_message.transfers
997  * @tx_sg_mapped: If true, the @tx_sg is mapped for DMA
998  * @rx_sg_mapped: If true, the @rx_sg is mapped for DMA
999  * @tx_sg: Scatterlist for transmit, currently not for client use
1000  * @rx_sg: Scatterlist for receive, currently not for client use
1001  * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
1002  *	within @tx_buf for which the SPI device is requesting that the time
1003  *	snapshot for this transfer begins. Upon completing the SPI transfer,
1004  *	this value may have changed compared to what was requested, depending
1005  *	on the available snapshotting resolution (DMA transfer,
1006  *	@ptp_sts_supported is false, etc).
1007  * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
1008  *	that a single byte should be snapshotted).
1009  *	If the core takes care of the timestamp (if @ptp_sts_supported is false
1010  *	for this controller), it will set @ptp_sts_word_pre to 0, and
1011  *	@ptp_sts_word_post to the length of the transfer. This is done
1012  *	purposefully (instead of setting to spi_transfer->len - 1) to denote
1013  *	that a transfer-level snapshot taken from within the driver may still
1014  *	be of higher quality.
1015  * @ptp_sts: Pointer to a memory location held by the SPI slave device where a
1016  *	PTP system timestamp structure may lie. If drivers use PIO or their
1017  *	hardware has some sort of assist for retrieving exact transfer timing,
1018  *	they can (and should) assert @ptp_sts_supported and populate this
1019  *	structure using the ptp_read_system_*ts helper functions.
1020  *	The timestamp must represent the time at which the SPI slave device has
1021  *	processed the word, i.e. the "pre" timestamp should be taken before
1022  *	transmitting the "pre" word, and the "post" timestamp after receiving
1023  *	transmit confirmation from the controller for the "post" word.
1024  * @timestamped: true if the transfer has been timestamped
1025  * @error: Error status logged by SPI controller driver.
1026  *
1027  * SPI transfers always write the same number of bytes as they read.
1028  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
1029  * In some cases, they may also want to provide DMA addresses for
1030  * the data being transferred; that may reduce overhead, when the
1031  * underlying driver uses DMA.
1032  *
1033  * If the transmit buffer is NULL, zeroes will be shifted out
1034  * while filling @rx_buf.  If the receive buffer is NULL, the data
1035  * shifted in will be discarded.  Only "len" bytes shift out (or in).
1036  * It's an error to try to shift out a partial word.  (For example, by
1037  * shifting out three bytes with word size of sixteen or twenty bits;
1038  * the former uses two bytes per word, the latter uses four bytes.)
1039  *
1040  * In-memory data values are always in native CPU byte order, translated
1041  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
1042  * for example when bits_per_word is sixteen, buffers are 2N bytes long
1043  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
1044  *
1045  * When the word size of the SPI transfer is not a power-of-two multiple
1046  * of eight bits, those in-memory words include extra bits.  In-memory
1047  * words are always seen by protocol drivers as right-justified, so the
1048  * undefined (rx) or unused (tx) bits are always the most significant bits.
1049  *
1050  * All SPI transfers start with the relevant chipselect active.  Normally
1051  * it stays selected until after the last transfer in a message.  Drivers
1052  * can affect the chipselect signal using cs_change.
1053  *
1054  * (i) If the transfer isn't the last one in the message, this flag is
1055  * used to make the chipselect briefly go inactive in the middle of the
1056  * message.  Toggling chipselect in this way may be needed to terminate
1057  * a chip command, letting a single spi_message perform all of group of
1058  * chip transactions together.
1059  *
1060  * (ii) When the transfer is the last one in the message, the chip may
1061  * stay selected until the next transfer.  On multi-device SPI busses
1062  * with nothing blocking messages going to other devices, this is just
1063  * a performance hint; starting a message to another device deselects
1064  * this one.  But in other cases, this can be used to ensure correctness.
1065  * Some devices need protocol transactions to be built from a series of
1066  * spi_message submissions, where the content of one message is determined
1067  * by the results of previous messages and where the whole transaction
1068  * ends when the chipselect goes inactive.
1069  *
1070  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
1071  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
1072  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
1073  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
1074  *
1075  * The code that submits an spi_message (and its spi_transfers)
1076  * to the lower layers is responsible for managing its memory.
1077  * Zero-initialize every field you don't set up explicitly, to
1078  * insulate against future API updates.  After you submit a message
1079  * and its transfers, ignore them until its completion callback.
1080  */
1081 struct spi_transfer {
1082 	/*
1083 	 * It's okay if tx_buf == rx_buf (right?).
1084 	 * For MicroWire, one buffer must be NULL.
1085 	 * Buffers must work with dma_*map_single() calls.
1086 	 */
1087 	const void	*tx_buf;
1088 	void		*rx_buf;
1089 	unsigned	len;
1090 
1091 #define SPI_TRANS_FAIL_NO_START	BIT(0)
1092 #define SPI_TRANS_FAIL_IO	BIT(1)
1093 	u16		error;
1094 
1095 	bool		tx_sg_mapped;
1096 	bool		rx_sg_mapped;
1097 
1098 	struct sg_table tx_sg;
1099 	struct sg_table rx_sg;
1100 	dma_addr_t	tx_dma;
1101 	dma_addr_t	rx_dma;
1102 
1103 	unsigned	dummy_data:1;
1104 	unsigned	cs_off:1;
1105 	unsigned	cs_change:1;
1106 	unsigned	tx_nbits:4;
1107 	unsigned	rx_nbits:4;
1108 	unsigned	timestamped:1;
1109 #define	SPI_NBITS_SINGLE	0x01 /* 1-bit transfer */
1110 #define	SPI_NBITS_DUAL		0x02 /* 2-bit transfer */
1111 #define	SPI_NBITS_QUAD		0x04 /* 4-bit transfer */
1112 #define	SPI_NBITS_OCTAL	0x08 /* 8-bit transfer */
1113 	u8		bits_per_word;
1114 	struct spi_delay	delay;
1115 	struct spi_delay	cs_change_delay;
1116 	struct spi_delay	word_delay;
1117 	u32		speed_hz;
1118 
1119 	u32		effective_speed_hz;
1120 
1121 	unsigned int	ptp_sts_word_pre;
1122 	unsigned int	ptp_sts_word_post;
1123 
1124 	struct ptp_system_timestamp *ptp_sts;
1125 
1126 	struct list_head transfer_list;
1127 
1128 	ANDROID_KABI_RESERVE(1);
1129 };
1130 
1131 /**
1132  * struct spi_message - one multi-segment SPI transaction
1133  * @transfers: list of transfer segments in this transaction
1134  * @spi: SPI device to which the transaction is queued
1135  * @pre_optimized: peripheral driver pre-optimized the message
1136  * @optimized: the message is in the optimized state
1137  * @prepared: spi_prepare_message was called for the this message
1138  * @status: zero for success, else negative errno
1139  * @complete: called to report transaction completions
1140  * @context: the argument to complete() when it's called
1141  * @frame_length: the total number of bytes in the message
1142  * @actual_length: the total number of bytes that were transferred in all
1143  *	successful segments
1144  * @queue: for use by whichever driver currently owns the message
1145  * @state: for use by whichever driver currently owns the message
1146  * @opt_state: for use by whichever driver currently owns the message
1147  * @resources: for resource management when the SPI message is processed
1148  *
1149  * A @spi_message is used to execute an atomic sequence of data transfers,
1150  * each represented by a struct spi_transfer.  The sequence is "atomic"
1151  * in the sense that no other spi_message may use that SPI bus until that
1152  * sequence completes.  On some systems, many such sequences can execute as
1153  * a single programmed DMA transfer.  On all systems, these messages are
1154  * queued, and might complete after transactions to other devices.  Messages
1155  * sent to a given spi_device are always executed in FIFO order.
1156  *
1157  * The code that submits an spi_message (and its spi_transfers)
1158  * to the lower layers is responsible for managing its memory.
1159  * Zero-initialize every field you don't set up explicitly, to
1160  * insulate against future API updates.  After you submit a message
1161  * and its transfers, ignore them until its completion callback.
1162  */
1163 struct spi_message {
1164 	struct list_head	transfers;
1165 
1166 	struct spi_device	*spi;
1167 
1168 	/* spi_optimize_message() was called for this message */
1169 	bool			pre_optimized;
1170 	/* __spi_optimize_message() was called for this message */
1171 	bool			optimized;
1172 
1173 	/* spi_prepare_message() was called for this message */
1174 	bool			prepared;
1175 
1176 	/*
1177 	 * REVISIT: we might want a flag affecting the behavior of the
1178 	 * last transfer ... allowing things like "read 16 bit length L"
1179 	 * immediately followed by "read L bytes".  Basically imposing
1180 	 * a specific message scheduling algorithm.
1181 	 *
1182 	 * Some controller drivers (message-at-a-time queue processing)
1183 	 * could provide that as their default scheduling algorithm.  But
1184 	 * others (with multi-message pipelines) could need a flag to
1185 	 * tell them about such special cases.
1186 	 */
1187 
1188 	/* Completion is reported through a callback */
1189 	int			status;
1190 	void			(*complete)(void *context);
1191 	void			*context;
1192 	unsigned		frame_length;
1193 	unsigned		actual_length;
1194 
1195 	/*
1196 	 * For optional use by whatever driver currently owns the
1197 	 * spi_message ...  between calls to spi_async and then later
1198 	 * complete(), that's the spi_controller controller driver.
1199 	 */
1200 	struct list_head	queue;
1201 	void			*state;
1202 	/*
1203 	 * Optional state for use by controller driver between calls to
1204 	 * __spi_optimize_message() and __spi_unoptimize_message().
1205 	 */
1206 	void			*opt_state;
1207 
1208 	/* List of spi_res resources when the SPI message is processed */
1209 	struct list_head        resources;
1210 
1211 	ANDROID_KABI_RESERVE(1);
1212 };
1213 
spi_message_init_no_memset(struct spi_message * m)1214 static inline void spi_message_init_no_memset(struct spi_message *m)
1215 {
1216 	INIT_LIST_HEAD(&m->transfers);
1217 	INIT_LIST_HEAD(&m->resources);
1218 }
1219 
spi_message_init(struct spi_message * m)1220 static inline void spi_message_init(struct spi_message *m)
1221 {
1222 	memset(m, 0, sizeof *m);
1223 	spi_message_init_no_memset(m);
1224 }
1225 
1226 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)1227 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1228 {
1229 	list_add_tail(&t->transfer_list, &m->transfers);
1230 }
1231 
1232 static inline void
spi_transfer_del(struct spi_transfer * t)1233 spi_transfer_del(struct spi_transfer *t)
1234 {
1235 	list_del(&t->transfer_list);
1236 }
1237 
1238 static inline int
spi_transfer_delay_exec(struct spi_transfer * t)1239 spi_transfer_delay_exec(struct spi_transfer *t)
1240 {
1241 	return spi_delay_exec(&t->delay, t);
1242 }
1243 
1244 /**
1245  * spi_message_init_with_transfers - Initialize spi_message and append transfers
1246  * @m: spi_message to be initialized
1247  * @xfers: An array of SPI transfers
1248  * @num_xfers: Number of items in the xfer array
1249  *
1250  * This function initializes the given spi_message and adds each spi_transfer in
1251  * the given array to the message.
1252  */
1253 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)1254 spi_message_init_with_transfers(struct spi_message *m,
1255 struct spi_transfer *xfers, unsigned int num_xfers)
1256 {
1257 	unsigned int i;
1258 
1259 	spi_message_init(m);
1260 	for (i = 0; i < num_xfers; ++i)
1261 		spi_message_add_tail(&xfers[i], m);
1262 }
1263 
1264 /*
1265  * It's fine to embed message and transaction structures in other data
1266  * structures so long as you don't free them while they're in use.
1267  */
spi_message_alloc(unsigned ntrans,gfp_t flags)1268 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1269 {
1270 	struct spi_message_with_transfers {
1271 		struct spi_message m;
1272 		struct spi_transfer t[];
1273 	} *mwt;
1274 	unsigned i;
1275 
1276 	mwt = kzalloc(struct_size(mwt, t, ntrans), flags);
1277 	if (!mwt)
1278 		return NULL;
1279 
1280 	spi_message_init_no_memset(&mwt->m);
1281 	for (i = 0; i < ntrans; i++)
1282 		spi_message_add_tail(&mwt->t[i], &mwt->m);
1283 
1284 	return &mwt->m;
1285 }
1286 
spi_message_free(struct spi_message * m)1287 static inline void spi_message_free(struct spi_message *m)
1288 {
1289 	kfree(m);
1290 }
1291 
1292 extern int spi_optimize_message(struct spi_device *spi, struct spi_message *msg);
1293 extern void spi_unoptimize_message(struct spi_message *msg);
1294 extern int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
1295 				     struct spi_message *msg);
1296 
1297 extern int spi_setup(struct spi_device *spi);
1298 extern int spi_async(struct spi_device *spi, struct spi_message *message);
1299 extern int spi_target_abort(struct spi_device *spi);
1300 
1301 static inline size_t
spi_max_message_size(struct spi_device * spi)1302 spi_max_message_size(struct spi_device *spi)
1303 {
1304 	struct spi_controller *ctlr = spi->controller;
1305 
1306 	if (!ctlr->max_message_size)
1307 		return SIZE_MAX;
1308 	return ctlr->max_message_size(spi);
1309 }
1310 
1311 static inline size_t
spi_max_transfer_size(struct spi_device * spi)1312 spi_max_transfer_size(struct spi_device *spi)
1313 {
1314 	struct spi_controller *ctlr = spi->controller;
1315 	size_t tr_max = SIZE_MAX;
1316 	size_t msg_max = spi_max_message_size(spi);
1317 
1318 	if (ctlr->max_transfer_size)
1319 		tr_max = ctlr->max_transfer_size(spi);
1320 
1321 	/* Transfer size limit must not be greater than message size limit */
1322 	return min(tr_max, msg_max);
1323 }
1324 
1325 /**
1326  * spi_is_bpw_supported - Check if bits per word is supported
1327  * @spi: SPI device
1328  * @bpw: Bits per word
1329  *
1330  * This function checks to see if the SPI controller supports @bpw.
1331  *
1332  * Returns:
1333  * True if @bpw is supported, false otherwise.
1334  */
spi_is_bpw_supported(struct spi_device * spi,u32 bpw)1335 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1336 {
1337 	u32 bpw_mask = spi->controller->bits_per_word_mask;
1338 
1339 	if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1340 		return true;
1341 
1342 	return false;
1343 }
1344 
1345 /**
1346  * spi_controller_xfer_timeout - Compute a suitable timeout value
1347  * @ctlr: SPI device
1348  * @xfer: Transfer descriptor
1349  *
1350  * Compute a relevant timeout value for the given transfer. We derive the time
1351  * that it would take on a single data line and take twice this amount of time
1352  * with a minimum of 500ms to avoid false positives on loaded systems.
1353  *
1354  * Returns: Transfer timeout value in milliseconds.
1355  */
spi_controller_xfer_timeout(struct spi_controller * ctlr,struct spi_transfer * xfer)1356 static inline unsigned int spi_controller_xfer_timeout(struct spi_controller *ctlr,
1357 						       struct spi_transfer *xfer)
1358 {
1359 	return max(xfer->len * 8 * 2 / (xfer->speed_hz / 1000), 500U);
1360 }
1361 
1362 /*---------------------------------------------------------------------------*/
1363 
1364 /* SPI transfer replacement methods which make use of spi_res */
1365 
1366 struct spi_replaced_transfers;
1367 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1368 				       struct spi_message *msg,
1369 				       struct spi_replaced_transfers *res);
1370 /**
1371  * struct spi_replaced_transfers - structure describing the spi_transfer
1372  *                                 replacements that have occurred
1373  *                                 so that they can get reverted
1374  * @release:            some extra release code to get executed prior to
1375  *                      releasing this structure
1376  * @extradata:          pointer to some extra data if requested or NULL
1377  * @replaced_transfers: transfers that have been replaced and which need
1378  *                      to get restored
1379  * @replaced_after:     the transfer after which the @replaced_transfers
1380  *                      are to get re-inserted
1381  * @inserted:           number of transfers inserted
1382  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1383  *                      that have been replacing replaced_transfers
1384  *
1385  * Note: that @extradata will point to @inserted_transfers[@inserted]
1386  * if some extra allocation is requested, so alignment will be the same
1387  * as for spi_transfers.
1388  */
1389 struct spi_replaced_transfers {
1390 	spi_replaced_release_t release;
1391 	void *extradata;
1392 	struct list_head replaced_transfers;
1393 	struct list_head *replaced_after;
1394 	size_t inserted;
1395 	struct spi_transfer inserted_transfers[];
1396 };
1397 
1398 /*---------------------------------------------------------------------------*/
1399 
1400 /* SPI transfer transformation methods */
1401 
1402 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1403 				       struct spi_message *msg,
1404 				       size_t maxsize);
1405 extern int spi_split_transfers_maxwords(struct spi_controller *ctlr,
1406 					struct spi_message *msg,
1407 					size_t maxwords);
1408 
1409 /*---------------------------------------------------------------------------*/
1410 
1411 /*
1412  * All these synchronous SPI transfer routines are utilities layered
1413  * over the core async transfer primitive.  Here, "synchronous" means
1414  * they will sleep uninterruptibly until the async transfer completes.
1415  */
1416 
1417 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1418 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1419 extern int spi_bus_lock(struct spi_controller *ctlr);
1420 extern int spi_bus_unlock(struct spi_controller *ctlr);
1421 
1422 /**
1423  * spi_sync_transfer - synchronous SPI data transfer
1424  * @spi: device with which data will be exchanged
1425  * @xfers: An array of spi_transfers
1426  * @num_xfers: Number of items in the xfer array
1427  * Context: can sleep
1428  *
1429  * Does a synchronous SPI data transfer of the given spi_transfer array.
1430  *
1431  * For more specific semantics see spi_sync().
1432  *
1433  * Return: zero on success, else a negative error code.
1434  */
1435 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)1436 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1437 	unsigned int num_xfers)
1438 {
1439 	struct spi_message msg;
1440 
1441 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1442 
1443 	return spi_sync(spi, &msg);
1444 }
1445 
1446 /**
1447  * spi_write - SPI synchronous write
1448  * @spi: device to which data will be written
1449  * @buf: data buffer
1450  * @len: data buffer size
1451  * Context: can sleep
1452  *
1453  * This function writes the buffer @buf.
1454  * Callable only from contexts that can sleep.
1455  *
1456  * Return: zero on success, else a negative error code.
1457  */
1458 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)1459 spi_write(struct spi_device *spi, const void *buf, size_t len)
1460 {
1461 	struct spi_transfer	t = {
1462 			.tx_buf		= buf,
1463 			.len		= len,
1464 		};
1465 
1466 	return spi_sync_transfer(spi, &t, 1);
1467 }
1468 
1469 /**
1470  * spi_read - SPI synchronous read
1471  * @spi: device from which data will be read
1472  * @buf: data buffer
1473  * @len: data buffer size
1474  * Context: can sleep
1475  *
1476  * This function reads the buffer @buf.
1477  * Callable only from contexts that can sleep.
1478  *
1479  * Return: zero on success, else a negative error code.
1480  */
1481 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)1482 spi_read(struct spi_device *spi, void *buf, size_t len)
1483 {
1484 	struct spi_transfer	t = {
1485 			.rx_buf		= buf,
1486 			.len		= len,
1487 		};
1488 
1489 	return spi_sync_transfer(spi, &t, 1);
1490 }
1491 
1492 /* This copies txbuf and rxbuf data; for small transfers only! */
1493 extern int spi_write_then_read(struct spi_device *spi,
1494 		const void *txbuf, unsigned n_tx,
1495 		void *rxbuf, unsigned n_rx);
1496 
1497 /**
1498  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1499  * @spi: device with which data will be exchanged
1500  * @cmd: command to be written before data is read back
1501  * Context: can sleep
1502  *
1503  * Callable only from contexts that can sleep.
1504  *
1505  * Return: the (unsigned) eight bit number returned by the
1506  * device, or else a negative error code.
1507  */
spi_w8r8(struct spi_device * spi,u8 cmd)1508 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1509 {
1510 	ssize_t			status;
1511 	u8			result;
1512 
1513 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1514 
1515 	/* Return negative errno or unsigned value */
1516 	return (status < 0) ? status : result;
1517 }
1518 
1519 /**
1520  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1521  * @spi: device with which data will be exchanged
1522  * @cmd: command to be written before data is read back
1523  * Context: can sleep
1524  *
1525  * The number is returned in wire-order, which is at least sometimes
1526  * big-endian.
1527  *
1528  * Callable only from contexts that can sleep.
1529  *
1530  * Return: the (unsigned) sixteen bit number returned by the
1531  * device, or else a negative error code.
1532  */
spi_w8r16(struct spi_device * spi,u8 cmd)1533 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1534 {
1535 	ssize_t			status;
1536 	u16			result;
1537 
1538 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1539 
1540 	/* Return negative errno or unsigned value */
1541 	return (status < 0) ? status : result;
1542 }
1543 
1544 /**
1545  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1546  * @spi: device with which data will be exchanged
1547  * @cmd: command to be written before data is read back
1548  * Context: can sleep
1549  *
1550  * This function is similar to spi_w8r16, with the exception that it will
1551  * convert the read 16 bit data word from big-endian to native endianness.
1552  *
1553  * Callable only from contexts that can sleep.
1554  *
1555  * Return: the (unsigned) sixteen bit number returned by the device in CPU
1556  * endianness, or else a negative error code.
1557  */
spi_w8r16be(struct spi_device * spi,u8 cmd)1558 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1559 
1560 {
1561 	ssize_t status;
1562 	__be16 result;
1563 
1564 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1565 	if (status < 0)
1566 		return status;
1567 
1568 	return be16_to_cpu(result);
1569 }
1570 
1571 /*---------------------------------------------------------------------------*/
1572 
1573 /*
1574  * INTERFACE between board init code and SPI infrastructure.
1575  *
1576  * No SPI driver ever sees these SPI device table segments, but
1577  * it's how the SPI core (or adapters that get hotplugged) grows
1578  * the driver model tree.
1579  *
1580  * As a rule, SPI devices can't be probed.  Instead, board init code
1581  * provides a table listing the devices which are present, with enough
1582  * information to bind and set up the device's driver.  There's basic
1583  * support for non-static configurations too; enough to handle adding
1584  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1585  */
1586 
1587 /**
1588  * struct spi_board_info - board-specific template for a SPI device
1589  * @modalias: Initializes spi_device.modalias; identifies the driver.
1590  * @platform_data: Initializes spi_device.platform_data; the particular
1591  *	data stored there is driver-specific.
1592  * @swnode: Software node for the device.
1593  * @controller_data: Initializes spi_device.controller_data; some
1594  *	controllers need hints about hardware setup, e.g. for DMA.
1595  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1596  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1597  *	from the chip datasheet and board-specific signal quality issues.
1598  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1599  *	by spi_new_device(), and otherwise depends on board wiring.
1600  * @chip_select: Initializes spi_device.chip_select; depends on how
1601  *	the board is wired.
1602  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1603  *	wiring (some devices support both 3WIRE and standard modes), and
1604  *	possibly presence of an inverter in the chipselect path.
1605  *
1606  * When adding new SPI devices to the device tree, these structures serve
1607  * as a partial device template.  They hold information which can't always
1608  * be determined by drivers.  Information that probe() can establish (such
1609  * as the default transfer wordsize) is not included here.
1610  *
1611  * These structures are used in two places.  Their primary role is to
1612  * be stored in tables of board-specific device descriptors, which are
1613  * declared early in board initialization and then used (much later) to
1614  * populate a controller's device tree after the that controller's driver
1615  * initializes.  A secondary (and atypical) role is as a parameter to
1616  * spi_new_device() call, which happens after those controller drivers
1617  * are active in some dynamic board configuration models.
1618  */
1619 struct spi_board_info {
1620 	/*
1621 	 * The device name and module name are coupled, like platform_bus;
1622 	 * "modalias" is normally the driver name.
1623 	 *
1624 	 * platform_data goes to spi_device.dev.platform_data,
1625 	 * controller_data goes to spi_device.controller_data,
1626 	 * IRQ is copied too.
1627 	 */
1628 	char		modalias[SPI_NAME_SIZE];
1629 	const void	*platform_data;
1630 	const struct software_node *swnode;
1631 	void		*controller_data;
1632 	int		irq;
1633 
1634 	/* Slower signaling on noisy or low voltage boards */
1635 	u32		max_speed_hz;
1636 
1637 
1638 	/*
1639 	 * bus_num is board specific and matches the bus_num of some
1640 	 * spi_controller that will probably be registered later.
1641 	 *
1642 	 * chip_select reflects how this chip is wired to that master;
1643 	 * it's less than num_chipselect.
1644 	 */
1645 	u16		bus_num;
1646 	u16		chip_select;
1647 
1648 	/*
1649 	 * mode becomes spi_device.mode, and is essential for chips
1650 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1651 	 */
1652 	u32		mode;
1653 
1654 	/*
1655 	 * ... may need additional spi_device chip config data here.
1656 	 * avoid stuff protocol drivers can set; but include stuff
1657 	 * needed to behave without being bound to a driver:
1658 	 *  - quirks like clock rate mattering when not selected
1659 	 */
1660 
1661 	ANDROID_KABI_RESERVE(1);
1662 };
1663 
1664 #ifdef	CONFIG_SPI
1665 extern int
1666 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1667 #else
1668 /* Board init code may ignore whether SPI is configured or not */
1669 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1670 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1671 	{ return 0; }
1672 #endif
1673 
1674 /*
1675  * If you're hotplugging an adapter with devices (parport, USB, etc)
1676  * use spi_new_device() to describe each device.  You can also call
1677  * spi_unregister_device() to start making that device vanish, but
1678  * normally that would be handled by spi_unregister_controller().
1679  *
1680  * You can also use spi_alloc_device() and spi_add_device() to use a two
1681  * stage registration sequence for each spi_device. This gives the caller
1682  * some more control over the spi_device structure before it is registered,
1683  * but requires that caller to initialize fields that would otherwise
1684  * be defined using the board info.
1685  */
1686 extern struct spi_device *
1687 spi_alloc_device(struct spi_controller *ctlr);
1688 
1689 extern int
1690 spi_add_device(struct spi_device *spi);
1691 
1692 extern struct spi_device *
1693 spi_new_device(struct spi_controller *, struct spi_board_info *);
1694 
1695 extern void spi_unregister_device(struct spi_device *spi);
1696 
1697 extern const struct spi_device_id *
1698 spi_get_device_id(const struct spi_device *sdev);
1699 
1700 extern const void *
1701 spi_get_device_match_data(const struct spi_device *sdev);
1702 
1703 static inline bool
spi_transfer_is_last(struct spi_controller * ctlr,struct spi_transfer * xfer)1704 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1705 {
1706 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1707 }
1708 
1709 #endif /* __LINUX_SPI_H */
1710