1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 *
5 * started by Ingo Molnar and Thomas Gleixner.
6 *
7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10 * Copyright (C) 2006 Esben Nielsen
11 * Adaptive Spinlocks:
12 * Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
13 * and Peter Morreale,
14 * Adaptive Spinlocks simplification:
15 * Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
16 *
17 * See Documentation/locking/rt-mutex-design.rst for details.
18 */
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/deadline.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/ww_mutex.h>
26
27 #include <trace/events/lock.h>
28 #include <trace/hooks/dtask.h>
29
30 #include "rtmutex_common.h"
31
32 #ifndef WW_RT
33 # define build_ww_mutex() (false)
34 # define ww_container_of(rtm) NULL
35
__ww_mutex_add_waiter(struct rt_mutex_waiter * waiter,struct rt_mutex * lock,struct ww_acquire_ctx * ww_ctx,struct wake_q_head * wake_q)36 static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
37 struct rt_mutex *lock,
38 struct ww_acquire_ctx *ww_ctx,
39 struct wake_q_head *wake_q)
40 {
41 return 0;
42 }
43
__ww_mutex_check_waiters(struct rt_mutex * lock,struct ww_acquire_ctx * ww_ctx,struct wake_q_head * wake_q)44 static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
45 struct ww_acquire_ctx *ww_ctx,
46 struct wake_q_head *wake_q)
47 {
48 }
49
ww_mutex_lock_acquired(struct ww_mutex * lock,struct ww_acquire_ctx * ww_ctx)50 static inline void ww_mutex_lock_acquired(struct ww_mutex *lock,
51 struct ww_acquire_ctx *ww_ctx)
52 {
53 }
54
__ww_mutex_check_kill(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct ww_acquire_ctx * ww_ctx)55 static inline int __ww_mutex_check_kill(struct rt_mutex *lock,
56 struct rt_mutex_waiter *waiter,
57 struct ww_acquire_ctx *ww_ctx)
58 {
59 return 0;
60 }
61
62 #else
63 # define build_ww_mutex() (true)
64 # define ww_container_of(rtm) container_of(rtm, struct ww_mutex, base)
65 # include "ww_mutex.h"
66 #endif
67
68 /*
69 * lock->owner state tracking:
70 *
71 * lock->owner holds the task_struct pointer of the owner. Bit 0
72 * is used to keep track of the "lock has waiters" state.
73 *
74 * owner bit0
75 * NULL 0 lock is free (fast acquire possible)
76 * NULL 1 lock is free and has waiters and the top waiter
77 * is going to take the lock*
78 * taskpointer 0 lock is held (fast release possible)
79 * taskpointer 1 lock is held and has waiters**
80 *
81 * The fast atomic compare exchange based acquire and release is only
82 * possible when bit 0 of lock->owner is 0.
83 *
84 * (*) It also can be a transitional state when grabbing the lock
85 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
86 * we need to set the bit0 before looking at the lock, and the owner may be
87 * NULL in this small time, hence this can be a transitional state.
88 *
89 * (**) There is a small time when bit 0 is set but there are no
90 * waiters. This can happen when grabbing the lock in the slow path.
91 * To prevent a cmpxchg of the owner releasing the lock, we need to
92 * set this bit before looking at the lock.
93 */
94
95 static __always_inline struct task_struct *
rt_mutex_owner_encode(struct rt_mutex_base * lock,struct task_struct * owner)96 rt_mutex_owner_encode(struct rt_mutex_base *lock, struct task_struct *owner)
97 {
98 unsigned long val = (unsigned long)owner;
99
100 if (rt_mutex_has_waiters(lock))
101 val |= RT_MUTEX_HAS_WAITERS;
102
103 return (struct task_struct *)val;
104 }
105
106 static __always_inline void
rt_mutex_set_owner(struct rt_mutex_base * lock,struct task_struct * owner)107 rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner)
108 {
109 /*
110 * lock->wait_lock is held but explicit acquire semantics are needed
111 * for a new lock owner so WRITE_ONCE is insufficient.
112 */
113 xchg_acquire(&lock->owner, rt_mutex_owner_encode(lock, owner));
114 }
115
rt_mutex_clear_owner(struct rt_mutex_base * lock)116 static __always_inline void rt_mutex_clear_owner(struct rt_mutex_base *lock)
117 {
118 /* lock->wait_lock is held so the unlock provides release semantics. */
119 WRITE_ONCE(lock->owner, rt_mutex_owner_encode(lock, NULL));
120 }
121
clear_rt_mutex_waiters(struct rt_mutex_base * lock)122 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock)
123 {
124 lock->owner = (struct task_struct *)
125 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
126 }
127
128 static __always_inline void
fixup_rt_mutex_waiters(struct rt_mutex_base * lock,bool acquire_lock)129 fixup_rt_mutex_waiters(struct rt_mutex_base *lock, bool acquire_lock)
130 {
131 unsigned long owner, *p = (unsigned long *) &lock->owner;
132
133 if (rt_mutex_has_waiters(lock))
134 return;
135
136 /*
137 * The rbtree has no waiters enqueued, now make sure that the
138 * lock->owner still has the waiters bit set, otherwise the
139 * following can happen:
140 *
141 * CPU 0 CPU 1 CPU2
142 * l->owner=T1
143 * rt_mutex_lock(l)
144 * lock(l->lock)
145 * l->owner = T1 | HAS_WAITERS;
146 * enqueue(T2)
147 * boost()
148 * unlock(l->lock)
149 * block()
150 *
151 * rt_mutex_lock(l)
152 * lock(l->lock)
153 * l->owner = T1 | HAS_WAITERS;
154 * enqueue(T3)
155 * boost()
156 * unlock(l->lock)
157 * block()
158 * signal(->T2) signal(->T3)
159 * lock(l->lock)
160 * dequeue(T2)
161 * deboost()
162 * unlock(l->lock)
163 * lock(l->lock)
164 * dequeue(T3)
165 * ==> wait list is empty
166 * deboost()
167 * unlock(l->lock)
168 * lock(l->lock)
169 * fixup_rt_mutex_waiters()
170 * if (wait_list_empty(l) {
171 * l->owner = owner
172 * owner = l->owner & ~HAS_WAITERS;
173 * ==> l->owner = T1
174 * }
175 * lock(l->lock)
176 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
177 * if (wait_list_empty(l) {
178 * owner = l->owner & ~HAS_WAITERS;
179 * cmpxchg(l->owner, T1, NULL)
180 * ===> Success (l->owner = NULL)
181 *
182 * l->owner = owner
183 * ==> l->owner = T1
184 * }
185 *
186 * With the check for the waiter bit in place T3 on CPU2 will not
187 * overwrite. All tasks fiddling with the waiters bit are
188 * serialized by l->lock, so nothing else can modify the waiters
189 * bit. If the bit is set then nothing can change l->owner either
190 * so the simple RMW is safe. The cmpxchg() will simply fail if it
191 * happens in the middle of the RMW because the waiters bit is
192 * still set.
193 */
194 owner = READ_ONCE(*p);
195 if (owner & RT_MUTEX_HAS_WAITERS) {
196 /*
197 * See rt_mutex_set_owner() and rt_mutex_clear_owner() on
198 * why xchg_acquire() is used for updating owner for
199 * locking and WRITE_ONCE() for unlocking.
200 *
201 * WRITE_ONCE() would work for the acquire case too, but
202 * in case that the lock acquisition failed it might
203 * force other lockers into the slow path unnecessarily.
204 */
205 if (acquire_lock)
206 xchg_acquire(p, owner & ~RT_MUTEX_HAS_WAITERS);
207 else
208 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
209 }
210 }
211
212 /*
213 * We can speed up the acquire/release, if there's no debugging state to be
214 * set up.
215 */
216 #ifndef CONFIG_DEBUG_RT_MUTEXES
rt_mutex_cmpxchg_acquire(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)217 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
218 struct task_struct *old,
219 struct task_struct *new)
220 {
221 return try_cmpxchg_acquire(&lock->owner, &old, new);
222 }
223
rt_mutex_try_acquire(struct rt_mutex_base * lock)224 static __always_inline bool rt_mutex_try_acquire(struct rt_mutex_base *lock)
225 {
226 return rt_mutex_cmpxchg_acquire(lock, NULL, current);
227 }
228
rt_mutex_cmpxchg_release(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)229 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
230 struct task_struct *old,
231 struct task_struct *new)
232 {
233 return try_cmpxchg_release(&lock->owner, &old, new);
234 }
235
236 /*
237 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
238 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
239 * relaxed semantics suffice.
240 */
mark_rt_mutex_waiters(struct rt_mutex_base * lock)241 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
242 {
243 unsigned long *p = (unsigned long *) &lock->owner;
244 unsigned long owner, new;
245
246 owner = READ_ONCE(*p);
247 do {
248 new = owner | RT_MUTEX_HAS_WAITERS;
249 } while (!try_cmpxchg_relaxed(p, &owner, new));
250
251 /*
252 * The cmpxchg loop above is relaxed to avoid back-to-back ACQUIRE
253 * operations in the event of contention. Ensure the successful
254 * cmpxchg is visible.
255 */
256 smp_mb__after_atomic();
257 }
258
259 /*
260 * Safe fastpath aware unlock:
261 * 1) Clear the waiters bit
262 * 2) Drop lock->wait_lock
263 * 3) Try to unlock the lock with cmpxchg
264 */
unlock_rt_mutex_safe(struct rt_mutex_base * lock,unsigned long flags)265 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
266 unsigned long flags)
267 __releases(lock->wait_lock)
268 {
269 struct task_struct *owner = rt_mutex_owner(lock);
270
271 clear_rt_mutex_waiters(lock);
272 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
273 /*
274 * If a new waiter comes in between the unlock and the cmpxchg
275 * we have two situations:
276 *
277 * unlock(wait_lock);
278 * lock(wait_lock);
279 * cmpxchg(p, owner, 0) == owner
280 * mark_rt_mutex_waiters(lock);
281 * acquire(lock);
282 * or:
283 *
284 * unlock(wait_lock);
285 * lock(wait_lock);
286 * mark_rt_mutex_waiters(lock);
287 *
288 * cmpxchg(p, owner, 0) != owner
289 * enqueue_waiter();
290 * unlock(wait_lock);
291 * lock(wait_lock);
292 * wake waiter();
293 * unlock(wait_lock);
294 * lock(wait_lock);
295 * acquire(lock);
296 */
297 return rt_mutex_cmpxchg_release(lock, owner, NULL);
298 }
299
300 #else
rt_mutex_cmpxchg_acquire(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)301 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
302 struct task_struct *old,
303 struct task_struct *new)
304 {
305 return false;
306
307 }
308
309 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock);
310
rt_mutex_try_acquire(struct rt_mutex_base * lock)311 static __always_inline bool rt_mutex_try_acquire(struct rt_mutex_base *lock)
312 {
313 /*
314 * With debug enabled rt_mutex_cmpxchg trylock() will always fail.
315 *
316 * Avoid unconditionally taking the slow path by using
317 * rt_mutex_slow_trylock() which is covered by the debug code and can
318 * acquire a non-contended rtmutex.
319 */
320 return rt_mutex_slowtrylock(lock);
321 }
322
rt_mutex_cmpxchg_release(struct rt_mutex_base * lock,struct task_struct * old,struct task_struct * new)323 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
324 struct task_struct *old,
325 struct task_struct *new)
326 {
327 return false;
328 }
329
mark_rt_mutex_waiters(struct rt_mutex_base * lock)330 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
331 {
332 lock->owner = (struct task_struct *)
333 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
334 }
335
336 /*
337 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
338 */
unlock_rt_mutex_safe(struct rt_mutex_base * lock,unsigned long flags)339 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
340 unsigned long flags)
341 __releases(lock->wait_lock)
342 {
343 lock->owner = NULL;
344 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
345 return true;
346 }
347 #endif
348
__waiter_prio(struct task_struct * task)349 static __always_inline int __waiter_prio(struct task_struct *task)
350 {
351 return task->prio;
352 }
353
354 /*
355 * Update the waiter->tree copy of the sort keys.
356 */
357 static __always_inline void
waiter_update_prio(struct rt_mutex_waiter * waiter,struct task_struct * task)358 waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
359 {
360 lockdep_assert_held(&waiter->lock->wait_lock);
361 lockdep_assert(RB_EMPTY_NODE(&waiter->tree.entry));
362
363 waiter->tree.prio = __waiter_prio(task);
364 waiter->tree.deadline = task->dl.deadline;
365 }
366
367 /*
368 * Update the waiter->pi_tree copy of the sort keys (from the tree copy).
369 */
370 static __always_inline void
waiter_clone_prio(struct rt_mutex_waiter * waiter,struct task_struct * task)371 waiter_clone_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
372 {
373 lockdep_assert_held(&waiter->lock->wait_lock);
374 lockdep_assert_held(&task->pi_lock);
375 lockdep_assert(RB_EMPTY_NODE(&waiter->pi_tree.entry));
376
377 waiter->pi_tree.prio = waiter->tree.prio;
378 waiter->pi_tree.deadline = waiter->tree.deadline;
379 }
380
381 /*
382 * Only use with rt_waiter_node_{less,equal}()
383 */
384 #define task_to_waiter_node(p) \
385 &(struct rt_waiter_node){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
386 #define task_to_waiter(p) \
387 &(struct rt_mutex_waiter){ .tree = *task_to_waiter_node(p) }
388
rt_waiter_node_less(struct rt_waiter_node * left,struct rt_waiter_node * right)389 static __always_inline int rt_waiter_node_less(struct rt_waiter_node *left,
390 struct rt_waiter_node *right)
391 {
392 if (left->prio < right->prio)
393 return 1;
394
395 /*
396 * If both waiters have dl_prio(), we check the deadlines of the
397 * associated tasks.
398 * If left waiter has a dl_prio(), and we didn't return 1 above,
399 * then right waiter has a dl_prio() too.
400 */
401 if (dl_prio(left->prio))
402 return dl_time_before(left->deadline, right->deadline);
403
404 return 0;
405 }
406
rt_waiter_node_equal(struct rt_waiter_node * left,struct rt_waiter_node * right)407 static __always_inline int rt_waiter_node_equal(struct rt_waiter_node *left,
408 struct rt_waiter_node *right)
409 {
410 if (left->prio != right->prio)
411 return 0;
412
413 /*
414 * If both waiters have dl_prio(), we check the deadlines of the
415 * associated tasks.
416 * If left waiter has a dl_prio(), and we didn't return 0 above,
417 * then right waiter has a dl_prio() too.
418 */
419 if (dl_prio(left->prio))
420 return left->deadline == right->deadline;
421
422 return 1;
423 }
424
rt_mutex_steal(struct rt_mutex_waiter * waiter,struct rt_mutex_waiter * top_waiter)425 static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
426 struct rt_mutex_waiter *top_waiter)
427 {
428 if (rt_waiter_node_less(&waiter->tree, &top_waiter->tree))
429 return true;
430
431 #ifdef RT_MUTEX_BUILD_SPINLOCKS
432 /*
433 * Note that RT tasks are excluded from same priority (lateral)
434 * steals to prevent the introduction of an unbounded latency.
435 */
436 if (rt_or_dl_prio(waiter->tree.prio))
437 return false;
438
439 return rt_waiter_node_equal(&waiter->tree, &top_waiter->tree);
440 #else
441 return false;
442 #endif
443 }
444
445 #define __node_2_waiter(node) \
446 rb_entry((node), struct rt_mutex_waiter, tree.entry)
447
__waiter_less(struct rb_node * a,const struct rb_node * b)448 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
449 {
450 struct rt_mutex_waiter *aw = __node_2_waiter(a);
451 struct rt_mutex_waiter *bw = __node_2_waiter(b);
452
453 if (rt_waiter_node_less(&aw->tree, &bw->tree))
454 return 1;
455
456 if (!build_ww_mutex())
457 return 0;
458
459 if (rt_waiter_node_less(&bw->tree, &aw->tree))
460 return 0;
461
462 /* NOTE: relies on waiter->ww_ctx being set before insertion */
463 if (aw->ww_ctx) {
464 if (!bw->ww_ctx)
465 return 1;
466
467 return (signed long)(aw->ww_ctx->stamp -
468 bw->ww_ctx->stamp) < 0;
469 }
470
471 return 0;
472 }
473
474 static __always_inline void
rt_mutex_enqueue(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)475 rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
476 {
477 lockdep_assert_held(&lock->wait_lock);
478
479 rb_add_cached(&waiter->tree.entry, &lock->waiters, __waiter_less);
480 }
481
482 static __always_inline void
rt_mutex_dequeue(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)483 rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
484 {
485 lockdep_assert_held(&lock->wait_lock);
486
487 if (RB_EMPTY_NODE(&waiter->tree.entry))
488 return;
489
490 rb_erase_cached(&waiter->tree.entry, &lock->waiters);
491 RB_CLEAR_NODE(&waiter->tree.entry);
492 }
493
494 #define __node_2_rt_node(node) \
495 rb_entry((node), struct rt_waiter_node, entry)
496
__pi_waiter_less(struct rb_node * a,const struct rb_node * b)497 static __always_inline bool __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
498 {
499 return rt_waiter_node_less(__node_2_rt_node(a), __node_2_rt_node(b));
500 }
501
502 static __always_inline void
rt_mutex_enqueue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)503 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
504 {
505 lockdep_assert_held(&task->pi_lock);
506
507 rb_add_cached(&waiter->pi_tree.entry, &task->pi_waiters, __pi_waiter_less);
508 }
509
510 static __always_inline void
rt_mutex_dequeue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)511 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
512 {
513 lockdep_assert_held(&task->pi_lock);
514
515 if (RB_EMPTY_NODE(&waiter->pi_tree.entry))
516 return;
517
518 rb_erase_cached(&waiter->pi_tree.entry, &task->pi_waiters);
519 RB_CLEAR_NODE(&waiter->pi_tree.entry);
520 }
521
rt_mutex_adjust_prio(struct rt_mutex_base * lock,struct task_struct * p)522 static __always_inline void rt_mutex_adjust_prio(struct rt_mutex_base *lock,
523 struct task_struct *p)
524 {
525 struct task_struct *pi_task = NULL;
526
527 lockdep_assert_held(&lock->wait_lock);
528 lockdep_assert(rt_mutex_owner(lock) == p);
529 lockdep_assert_held(&p->pi_lock);
530
531 if (task_has_pi_waiters(p))
532 pi_task = task_top_pi_waiter(p)->task;
533
534 rt_mutex_setprio(p, pi_task);
535 }
536
537 /* RT mutex specific wake_q wrappers */
rt_mutex_wake_q_add_task(struct rt_wake_q_head * wqh,struct task_struct * task,unsigned int wake_state)538 static __always_inline void rt_mutex_wake_q_add_task(struct rt_wake_q_head *wqh,
539 struct task_struct *task,
540 unsigned int wake_state)
541 {
542 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wake_state == TASK_RTLOCK_WAIT) {
543 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
544 WARN_ON_ONCE(wqh->rtlock_task);
545 get_task_struct(task);
546 wqh->rtlock_task = task;
547 } else {
548 wake_q_add(&wqh->head, task);
549 }
550 }
551
rt_mutex_wake_q_add(struct rt_wake_q_head * wqh,struct rt_mutex_waiter * w)552 static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh,
553 struct rt_mutex_waiter *w)
554 {
555 rt_mutex_wake_q_add_task(wqh, w->task, w->wake_state);
556 }
557
rt_mutex_wake_up_q(struct rt_wake_q_head * wqh)558 static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh)
559 {
560 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) {
561 wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT);
562 put_task_struct(wqh->rtlock_task);
563 wqh->rtlock_task = NULL;
564 }
565
566 if (!wake_q_empty(&wqh->head))
567 wake_up_q(&wqh->head);
568
569 /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
570 preempt_enable();
571 }
572
573 /*
574 * Deadlock detection is conditional:
575 *
576 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
577 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
578 *
579 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
580 * conducted independent of the detect argument.
581 *
582 * If the waiter argument is NULL this indicates the deboost path and
583 * deadlock detection is disabled independent of the detect argument
584 * and the config settings.
585 */
586 static __always_inline bool
rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter * waiter,enum rtmutex_chainwalk chwalk)587 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
588 enum rtmutex_chainwalk chwalk)
589 {
590 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
591 return waiter != NULL;
592 return chwalk == RT_MUTEX_FULL_CHAINWALK;
593 }
594
task_blocked_on_lock(struct task_struct * p)595 static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p)
596 {
597 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
598 }
599
600 /*
601 * Adjust the priority chain. Also used for deadlock detection.
602 * Decreases task's usage by one - may thus free the task.
603 *
604 * @task: the task owning the mutex (owner) for which a chain walk is
605 * probably needed
606 * @chwalk: do we have to carry out deadlock detection?
607 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
608 * things for a task that has just got its priority adjusted, and
609 * is waiting on a mutex)
610 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
611 * we dropped its pi_lock. Is never dereferenced, only used for
612 * comparison to detect lock chain changes.
613 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
614 * its priority to the mutex owner (can be NULL in the case
615 * depicted above or if the top waiter is gone away and we are
616 * actually deboosting the owner)
617 * @top_task: the current top waiter
618 *
619 * Returns 0 or -EDEADLK.
620 *
621 * Chain walk basics and protection scope
622 *
623 * [R] refcount on task
624 * [Pn] task->pi_lock held
625 * [L] rtmutex->wait_lock held
626 *
627 * Normal locking order:
628 *
629 * rtmutex->wait_lock
630 * task->pi_lock
631 *
632 * Step Description Protected by
633 * function arguments:
634 * @task [R]
635 * @orig_lock if != NULL @top_task is blocked on it
636 * @next_lock Unprotected. Cannot be
637 * dereferenced. Only used for
638 * comparison.
639 * @orig_waiter if != NULL @top_task is blocked on it
640 * @top_task current, or in case of proxy
641 * locking protected by calling
642 * code
643 * again:
644 * loop_sanity_check();
645 * retry:
646 * [1] lock(task->pi_lock); [R] acquire [P1]
647 * [2] waiter = task->pi_blocked_on; [P1]
648 * [3] check_exit_conditions_1(); [P1]
649 * [4] lock = waiter->lock; [P1]
650 * [5] if (!try_lock(lock->wait_lock)) { [P1] try to acquire [L]
651 * unlock(task->pi_lock); release [P1]
652 * goto retry;
653 * }
654 * [6] check_exit_conditions_2(); [P1] + [L]
655 * [7] requeue_lock_waiter(lock, waiter); [P1] + [L]
656 * [8] unlock(task->pi_lock); release [P1]
657 * put_task_struct(task); release [R]
658 * [9] check_exit_conditions_3(); [L]
659 * [10] task = owner(lock); [L]
660 * get_task_struct(task); [L] acquire [R]
661 * lock(task->pi_lock); [L] acquire [P2]
662 * [11] requeue_pi_waiter(tsk, waiters(lock));[P2] + [L]
663 * [12] check_exit_conditions_4(); [P2] + [L]
664 * [13] unlock(task->pi_lock); release [P2]
665 * unlock(lock->wait_lock); release [L]
666 * goto again;
667 *
668 * Where P1 is the blocking task and P2 is the lock owner; going up one step
669 * the owner becomes the next blocked task etc..
670 *
671 *
672 */
rt_mutex_adjust_prio_chain(struct task_struct * task,enum rtmutex_chainwalk chwalk,struct rt_mutex_base * orig_lock,struct rt_mutex_base * next_lock,struct rt_mutex_waiter * orig_waiter,struct task_struct * top_task)673 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
674 enum rtmutex_chainwalk chwalk,
675 struct rt_mutex_base *orig_lock,
676 struct rt_mutex_base *next_lock,
677 struct rt_mutex_waiter *orig_waiter,
678 struct task_struct *top_task)
679 {
680 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
681 struct rt_mutex_waiter *prerequeue_top_waiter;
682 int ret = 0, depth = 0;
683 struct rt_mutex_base *lock;
684 bool detect_deadlock;
685 bool requeue = true;
686
687 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
688
689 /*
690 * The (de)boosting is a step by step approach with a lot of
691 * pitfalls. We want this to be preemptible and we want hold a
692 * maximum of two locks per step. So we have to check
693 * carefully whether things change under us.
694 */
695 again:
696 /*
697 * We limit the lock chain length for each invocation.
698 */
699 if (++depth > max_lock_depth) {
700 static int prev_max;
701
702 /*
703 * Print this only once. If the admin changes the limit,
704 * print a new message when reaching the limit again.
705 */
706 if (prev_max != max_lock_depth) {
707 prev_max = max_lock_depth;
708 printk(KERN_WARNING "Maximum lock depth %d reached "
709 "task: %s (%d)\n", max_lock_depth,
710 top_task->comm, task_pid_nr(top_task));
711 }
712 put_task_struct(task);
713
714 return -EDEADLK;
715 }
716
717 /*
718 * We are fully preemptible here and only hold the refcount on
719 * @task. So everything can have changed under us since the
720 * caller or our own code below (goto retry/again) dropped all
721 * locks.
722 */
723 retry:
724 /*
725 * [1] Task cannot go away as we did a get_task() before !
726 */
727 raw_spin_lock_irq(&task->pi_lock);
728
729 /*
730 * [2] Get the waiter on which @task is blocked on.
731 */
732 waiter = task->pi_blocked_on;
733
734 /*
735 * [3] check_exit_conditions_1() protected by task->pi_lock.
736 */
737
738 /*
739 * Check whether the end of the boosting chain has been
740 * reached or the state of the chain has changed while we
741 * dropped the locks.
742 */
743 if (!waiter)
744 goto out_unlock_pi;
745
746 /*
747 * Check the orig_waiter state. After we dropped the locks,
748 * the previous owner of the lock might have released the lock.
749 */
750 if (orig_waiter && !rt_mutex_owner(orig_lock))
751 goto out_unlock_pi;
752
753 /*
754 * We dropped all locks after taking a refcount on @task, so
755 * the task might have moved on in the lock chain or even left
756 * the chain completely and blocks now on an unrelated lock or
757 * on @orig_lock.
758 *
759 * We stored the lock on which @task was blocked in @next_lock,
760 * so we can detect the chain change.
761 */
762 if (next_lock != waiter->lock)
763 goto out_unlock_pi;
764
765 /*
766 * There could be 'spurious' loops in the lock graph due to ww_mutex,
767 * consider:
768 *
769 * P1: A, ww_A, ww_B
770 * P2: ww_B, ww_A
771 * P3: A
772 *
773 * P3 should not return -EDEADLK because it gets trapped in the cycle
774 * created by P1 and P2 (which will resolve -- and runs into
775 * max_lock_depth above). Therefore disable detect_deadlock such that
776 * the below termination condition can trigger once all relevant tasks
777 * are boosted.
778 *
779 * Even when we start with ww_mutex we can disable deadlock detection,
780 * since we would supress a ww_mutex induced deadlock at [6] anyway.
781 * Supressing it here however is not sufficient since we might still
782 * hit [6] due to adjustment driven iteration.
783 *
784 * NOTE: if someone were to create a deadlock between 2 ww_classes we'd
785 * utterly fail to report it; lockdep should.
786 */
787 if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock)
788 detect_deadlock = false;
789
790 /*
791 * Drop out, when the task has no waiters. Note,
792 * top_waiter can be NULL, when we are in the deboosting
793 * mode!
794 */
795 if (top_waiter) {
796 if (!task_has_pi_waiters(task))
797 goto out_unlock_pi;
798 /*
799 * If deadlock detection is off, we stop here if we
800 * are not the top pi waiter of the task. If deadlock
801 * detection is enabled we continue, but stop the
802 * requeueing in the chain walk.
803 */
804 if (top_waiter != task_top_pi_waiter(task)) {
805 if (!detect_deadlock)
806 goto out_unlock_pi;
807 else
808 requeue = false;
809 }
810 }
811
812 /*
813 * If the waiter priority is the same as the task priority
814 * then there is no further priority adjustment necessary. If
815 * deadlock detection is off, we stop the chain walk. If its
816 * enabled we continue, but stop the requeueing in the chain
817 * walk.
818 */
819 if (rt_waiter_node_equal(&waiter->tree, task_to_waiter_node(task))) {
820 if (!detect_deadlock)
821 goto out_unlock_pi;
822 else
823 requeue = false;
824 }
825
826 /*
827 * [4] Get the next lock; per holding task->pi_lock we can't unblock
828 * and guarantee @lock's existence.
829 */
830 lock = waiter->lock;
831 /*
832 * [5] We need to trylock here as we are holding task->pi_lock,
833 * which is the reverse lock order versus the other rtmutex
834 * operations.
835 *
836 * Per the above, holding task->pi_lock guarantees lock exists, so
837 * inverting this lock order is infeasible from a life-time
838 * perspective.
839 */
840 if (!raw_spin_trylock(&lock->wait_lock)) {
841 raw_spin_unlock_irq(&task->pi_lock);
842 cpu_relax();
843 goto retry;
844 }
845
846 /*
847 * [6] check_exit_conditions_2() protected by task->pi_lock and
848 * lock->wait_lock.
849 *
850 * Deadlock detection. If the lock is the same as the original
851 * lock which caused us to walk the lock chain or if the
852 * current lock is owned by the task which initiated the chain
853 * walk, we detected a deadlock.
854 */
855 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
856 ret = -EDEADLK;
857
858 /*
859 * When the deadlock is due to ww_mutex; also see above. Don't
860 * report the deadlock and instead let the ww_mutex wound/die
861 * logic pick which of the contending threads gets -EDEADLK.
862 *
863 * NOTE: assumes the cycle only contains a single ww_class; any
864 * other configuration and we fail to report; also, see
865 * lockdep.
866 */
867 if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx)
868 ret = 0;
869
870 raw_spin_unlock(&lock->wait_lock);
871 goto out_unlock_pi;
872 }
873
874 /*
875 * If we just follow the lock chain for deadlock detection, no
876 * need to do all the requeue operations. To avoid a truckload
877 * of conditionals around the various places below, just do the
878 * minimum chain walk checks.
879 */
880 if (!requeue) {
881 /*
882 * No requeue[7] here. Just release @task [8]
883 */
884 raw_spin_unlock(&task->pi_lock);
885 put_task_struct(task);
886
887 /*
888 * [9] check_exit_conditions_3 protected by lock->wait_lock.
889 * If there is no owner of the lock, end of chain.
890 */
891 if (!rt_mutex_owner(lock)) {
892 raw_spin_unlock_irq(&lock->wait_lock);
893 return 0;
894 }
895
896 /* [10] Grab the next task, i.e. owner of @lock */
897 task = get_task_struct(rt_mutex_owner(lock));
898 raw_spin_lock(&task->pi_lock);
899
900 /*
901 * No requeue [11] here. We just do deadlock detection.
902 *
903 * [12] Store whether owner is blocked
904 * itself. Decision is made after dropping the locks
905 */
906 next_lock = task_blocked_on_lock(task);
907 /*
908 * Get the top waiter for the next iteration
909 */
910 top_waiter = rt_mutex_top_waiter(lock);
911
912 /* [13] Drop locks */
913 raw_spin_unlock(&task->pi_lock);
914 raw_spin_unlock_irq(&lock->wait_lock);
915
916 /* If owner is not blocked, end of chain. */
917 if (!next_lock)
918 goto out_put_task;
919 goto again;
920 }
921
922 /*
923 * Store the current top waiter before doing the requeue
924 * operation on @lock. We need it for the boost/deboost
925 * decision below.
926 */
927 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
928
929 /* [7] Requeue the waiter in the lock waiter tree. */
930 rt_mutex_dequeue(lock, waiter);
931
932 /*
933 * Update the waiter prio fields now that we're dequeued.
934 *
935 * These values can have changed through either:
936 *
937 * sys_sched_set_scheduler() / sys_sched_setattr()
938 *
939 * or
940 *
941 * DL CBS enforcement advancing the effective deadline.
942 */
943 waiter_update_prio(waiter, task);
944
945 rt_mutex_enqueue(lock, waiter);
946
947 /*
948 * [8] Release the (blocking) task in preparation for
949 * taking the owner task in [10].
950 *
951 * Since we hold lock->waiter_lock, task cannot unblock, even if we
952 * release task->pi_lock.
953 */
954 raw_spin_unlock(&task->pi_lock);
955 put_task_struct(task);
956
957 /*
958 * [9] check_exit_conditions_3 protected by lock->wait_lock.
959 *
960 * We must abort the chain walk if there is no lock owner even
961 * in the dead lock detection case, as we have nothing to
962 * follow here. This is the end of the chain we are walking.
963 */
964 if (!rt_mutex_owner(lock)) {
965 /*
966 * If the requeue [7] above changed the top waiter,
967 * then we need to wake the new top waiter up to try
968 * to get the lock.
969 */
970 top_waiter = rt_mutex_top_waiter(lock);
971 if (prerequeue_top_waiter != top_waiter)
972 wake_up_state(top_waiter->task, top_waiter->wake_state);
973 raw_spin_unlock_irq(&lock->wait_lock);
974 return 0;
975 }
976
977 /*
978 * [10] Grab the next task, i.e. the owner of @lock
979 *
980 * Per holding lock->wait_lock and checking for !owner above, there
981 * must be an owner and it cannot go away.
982 */
983 task = get_task_struct(rt_mutex_owner(lock));
984 raw_spin_lock(&task->pi_lock);
985
986 /* [11] requeue the pi waiters if necessary */
987 if (waiter == rt_mutex_top_waiter(lock)) {
988 /*
989 * The waiter became the new top (highest priority)
990 * waiter on the lock. Replace the previous top waiter
991 * in the owner tasks pi waiters tree with this waiter
992 * and adjust the priority of the owner.
993 */
994 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
995 waiter_clone_prio(waiter, task);
996 rt_mutex_enqueue_pi(task, waiter);
997 rt_mutex_adjust_prio(lock, task);
998
999 } else if (prerequeue_top_waiter == waiter) {
1000 /*
1001 * The waiter was the top waiter on the lock, but is
1002 * no longer the top priority waiter. Replace waiter in
1003 * the owner tasks pi waiters tree with the new top
1004 * (highest priority) waiter and adjust the priority
1005 * of the owner.
1006 * The new top waiter is stored in @waiter so that
1007 * @waiter == @top_waiter evaluates to true below and
1008 * we continue to deboost the rest of the chain.
1009 */
1010 rt_mutex_dequeue_pi(task, waiter);
1011 waiter = rt_mutex_top_waiter(lock);
1012 waiter_clone_prio(waiter, task);
1013 rt_mutex_enqueue_pi(task, waiter);
1014 rt_mutex_adjust_prio(lock, task);
1015 } else {
1016 /*
1017 * Nothing changed. No need to do any priority
1018 * adjustment.
1019 */
1020 }
1021
1022 /*
1023 * [12] check_exit_conditions_4() protected by task->pi_lock
1024 * and lock->wait_lock. The actual decisions are made after we
1025 * dropped the locks.
1026 *
1027 * Check whether the task which owns the current lock is pi
1028 * blocked itself. If yes we store a pointer to the lock for
1029 * the lock chain change detection above. After we dropped
1030 * task->pi_lock next_lock cannot be dereferenced anymore.
1031 */
1032 next_lock = task_blocked_on_lock(task);
1033 /*
1034 * Store the top waiter of @lock for the end of chain walk
1035 * decision below.
1036 */
1037 top_waiter = rt_mutex_top_waiter(lock);
1038
1039 /* [13] Drop the locks */
1040 raw_spin_unlock(&task->pi_lock);
1041 raw_spin_unlock_irq(&lock->wait_lock);
1042
1043 /*
1044 * Make the actual exit decisions [12], based on the stored
1045 * values.
1046 *
1047 * We reached the end of the lock chain. Stop right here. No
1048 * point to go back just to figure that out.
1049 */
1050 if (!next_lock)
1051 goto out_put_task;
1052
1053 /*
1054 * If the current waiter is not the top waiter on the lock,
1055 * then we can stop the chain walk here if we are not in full
1056 * deadlock detection mode.
1057 */
1058 if (!detect_deadlock && waiter != top_waiter)
1059 goto out_put_task;
1060
1061 goto again;
1062
1063 out_unlock_pi:
1064 raw_spin_unlock_irq(&task->pi_lock);
1065 out_put_task:
1066 put_task_struct(task);
1067
1068 return ret;
1069 }
1070
1071 /*
1072 * Try to take an rt-mutex
1073 *
1074 * Must be called with lock->wait_lock held and interrupts disabled
1075 *
1076 * @lock: The lock to be acquired.
1077 * @task: The task which wants to acquire the lock
1078 * @waiter: The waiter that is queued to the lock's wait tree if the
1079 * callsite called task_blocked_on_lock(), otherwise NULL
1080 */
1081 static int __sched
try_to_take_rt_mutex(struct rt_mutex_base * lock,struct task_struct * task,struct rt_mutex_waiter * waiter)1082 try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task,
1083 struct rt_mutex_waiter *waiter)
1084 {
1085 lockdep_assert_held(&lock->wait_lock);
1086
1087 /*
1088 * Before testing whether we can acquire @lock, we set the
1089 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
1090 * other tasks which try to modify @lock into the slow path
1091 * and they serialize on @lock->wait_lock.
1092 *
1093 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
1094 * as explained at the top of this file if and only if:
1095 *
1096 * - There is a lock owner. The caller must fixup the
1097 * transient state if it does a trylock or leaves the lock
1098 * function due to a signal or timeout.
1099 *
1100 * - @task acquires the lock and there are no other
1101 * waiters. This is undone in rt_mutex_set_owner(@task) at
1102 * the end of this function.
1103 */
1104 mark_rt_mutex_waiters(lock);
1105
1106 /*
1107 * If @lock has an owner, give up.
1108 */
1109 if (rt_mutex_owner(lock))
1110 return 0;
1111
1112 /*
1113 * If @waiter != NULL, @task has already enqueued the waiter
1114 * into @lock waiter tree. If @waiter == NULL then this is a
1115 * trylock attempt.
1116 */
1117 if (waiter) {
1118 struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock);
1119
1120 /*
1121 * If waiter is the highest priority waiter of @lock,
1122 * or allowed to steal it, take it over.
1123 */
1124 if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) {
1125 /*
1126 * We can acquire the lock. Remove the waiter from the
1127 * lock waiters tree.
1128 */
1129 rt_mutex_dequeue(lock, waiter);
1130 } else {
1131 return 0;
1132 }
1133 } else {
1134 /*
1135 * If the lock has waiters already we check whether @task is
1136 * eligible to take over the lock.
1137 *
1138 * If there are no other waiters, @task can acquire
1139 * the lock. @task->pi_blocked_on is NULL, so it does
1140 * not need to be dequeued.
1141 */
1142 if (rt_mutex_has_waiters(lock)) {
1143 /* Check whether the trylock can steal it. */
1144 if (!rt_mutex_steal(task_to_waiter(task),
1145 rt_mutex_top_waiter(lock)))
1146 return 0;
1147
1148 /*
1149 * The current top waiter stays enqueued. We
1150 * don't have to change anything in the lock
1151 * waiters order.
1152 */
1153 } else {
1154 /*
1155 * No waiters. Take the lock without the
1156 * pi_lock dance.@task->pi_blocked_on is NULL
1157 * and we have no waiters to enqueue in @task
1158 * pi waiters tree.
1159 */
1160 goto takeit;
1161 }
1162 }
1163
1164 /*
1165 * Clear @task->pi_blocked_on. Requires protection by
1166 * @task->pi_lock. Redundant operation for the @waiter == NULL
1167 * case, but conditionals are more expensive than a redundant
1168 * store.
1169 */
1170 raw_spin_lock(&task->pi_lock);
1171 task->pi_blocked_on = NULL;
1172 /*
1173 * Finish the lock acquisition. @task is the new owner. If
1174 * other waiters exist we have to insert the highest priority
1175 * waiter into @task->pi_waiters tree.
1176 */
1177 if (rt_mutex_has_waiters(lock))
1178 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
1179 raw_spin_unlock(&task->pi_lock);
1180
1181 takeit:
1182 /*
1183 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
1184 * are still waiters or clears it.
1185 */
1186 rt_mutex_set_owner(lock, task);
1187
1188 return 1;
1189 }
1190
1191 /*
1192 * Task blocks on lock.
1193 *
1194 * Prepare waiter and propagate pi chain
1195 *
1196 * This must be called with lock->wait_lock held and interrupts disabled
1197 */
task_blocks_on_rt_mutex(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * task,struct ww_acquire_ctx * ww_ctx,enum rtmutex_chainwalk chwalk,struct wake_q_head * wake_q)1198 static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
1199 struct rt_mutex_waiter *waiter,
1200 struct task_struct *task,
1201 struct ww_acquire_ctx *ww_ctx,
1202 enum rtmutex_chainwalk chwalk,
1203 struct wake_q_head *wake_q)
1204 {
1205 struct task_struct *owner = rt_mutex_owner(lock);
1206 struct rt_mutex_waiter *top_waiter = waiter;
1207 struct rt_mutex_base *next_lock;
1208 int chain_walk = 0, res;
1209
1210 lockdep_assert_held(&lock->wait_lock);
1211
1212 /*
1213 * Early deadlock detection. We really don't want the task to
1214 * enqueue on itself just to untangle the mess later. It's not
1215 * only an optimization. We drop the locks, so another waiter
1216 * can come in before the chain walk detects the deadlock. So
1217 * the other will detect the deadlock and return -EDEADLOCK,
1218 * which is wrong, as the other waiter is not in a deadlock
1219 * situation.
1220 *
1221 * Except for ww_mutex, in that case the chain walk must already deal
1222 * with spurious cycles, see the comments at [3] and [6].
1223 */
1224 if (owner == task && !(build_ww_mutex() && ww_ctx))
1225 return -EDEADLK;
1226
1227 raw_spin_lock(&task->pi_lock);
1228 waiter->task = task;
1229 waiter->lock = lock;
1230 waiter_update_prio(waiter, task);
1231 waiter_clone_prio(waiter, task);
1232
1233 /* Get the top priority waiter on the lock */
1234 if (rt_mutex_has_waiters(lock))
1235 top_waiter = rt_mutex_top_waiter(lock);
1236 rt_mutex_enqueue(lock, waiter);
1237
1238 task->pi_blocked_on = waiter;
1239
1240 raw_spin_unlock(&task->pi_lock);
1241
1242 if (build_ww_mutex() && ww_ctx) {
1243 struct rt_mutex *rtm;
1244
1245 /* Check whether the waiter should back out immediately */
1246 rtm = container_of(lock, struct rt_mutex, rtmutex);
1247 res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx, wake_q);
1248 if (res) {
1249 raw_spin_lock(&task->pi_lock);
1250 rt_mutex_dequeue(lock, waiter);
1251 task->pi_blocked_on = NULL;
1252 raw_spin_unlock(&task->pi_lock);
1253 return res;
1254 }
1255 }
1256
1257 if (!owner)
1258 return 0;
1259
1260 raw_spin_lock(&owner->pi_lock);
1261 if (waiter == rt_mutex_top_waiter(lock)) {
1262 rt_mutex_dequeue_pi(owner, top_waiter);
1263 rt_mutex_enqueue_pi(owner, waiter);
1264
1265 rt_mutex_adjust_prio(lock, owner);
1266 if (owner->pi_blocked_on)
1267 chain_walk = 1;
1268 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1269 chain_walk = 1;
1270 }
1271
1272 /* Store the lock on which owner is blocked or NULL */
1273 next_lock = task_blocked_on_lock(owner);
1274
1275 raw_spin_unlock(&owner->pi_lock);
1276 /*
1277 * Even if full deadlock detection is on, if the owner is not
1278 * blocked itself, we can avoid finding this out in the chain
1279 * walk.
1280 */
1281 if (!chain_walk || !next_lock)
1282 return 0;
1283
1284 /*
1285 * The owner can't disappear while holding a lock,
1286 * so the owner struct is protected by wait_lock.
1287 * Gets dropped in rt_mutex_adjust_prio_chain()!
1288 */
1289 get_task_struct(owner);
1290
1291 preempt_disable();
1292 raw_spin_unlock_irq(&lock->wait_lock);
1293 /* wake up any tasks on the wake_q before calling rt_mutex_adjust_prio_chain */
1294 wake_up_q(wake_q);
1295 wake_q_init(wake_q);
1296 preempt_enable();
1297
1298
1299 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1300 next_lock, waiter, task);
1301
1302 raw_spin_lock_irq(&lock->wait_lock);
1303
1304 return res;
1305 }
1306
1307 /*
1308 * Remove the top waiter from the current tasks pi waiter tree and
1309 * queue it up.
1310 *
1311 * Called with lock->wait_lock held and interrupts disabled.
1312 */
mark_wakeup_next_waiter(struct rt_wake_q_head * wqh,struct rt_mutex_base * lock)1313 static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
1314 struct rt_mutex_base *lock)
1315 {
1316 struct rt_mutex_waiter *waiter;
1317
1318 lockdep_assert_held(&lock->wait_lock);
1319
1320 raw_spin_lock(¤t->pi_lock);
1321
1322 waiter = rt_mutex_top_waiter(lock);
1323
1324 /*
1325 * Remove it from current->pi_waiters and deboost.
1326 *
1327 * We must in fact deboost here in order to ensure we call
1328 * rt_mutex_setprio() to update p->pi_top_task before the
1329 * task unblocks.
1330 */
1331 rt_mutex_dequeue_pi(current, waiter);
1332 rt_mutex_adjust_prio(lock, current);
1333
1334 /*
1335 * As we are waking up the top waiter, and the waiter stays
1336 * queued on the lock until it gets the lock, this lock
1337 * obviously has waiters. Just set the bit here and this has
1338 * the added benefit of forcing all new tasks into the
1339 * slow path making sure no task of lower priority than
1340 * the top waiter can steal this lock.
1341 */
1342 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1343
1344 /*
1345 * We deboosted before waking the top waiter task such that we don't
1346 * run two tasks with the 'same' priority (and ensure the
1347 * p->pi_top_task pointer points to a blocked task). This however can
1348 * lead to priority inversion if we would get preempted after the
1349 * deboost but before waking our donor task, hence the preempt_disable()
1350 * before unlock.
1351 *
1352 * Pairs with preempt_enable() in rt_mutex_wake_up_q();
1353 */
1354 preempt_disable();
1355 rt_mutex_wake_q_add(wqh, waiter);
1356 raw_spin_unlock(¤t->pi_lock);
1357 }
1358
__rt_mutex_slowtrylock(struct rt_mutex_base * lock)1359 static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1360 {
1361 int ret = try_to_take_rt_mutex(lock, current, NULL);
1362
1363 /*
1364 * try_to_take_rt_mutex() sets the lock waiters bit
1365 * unconditionally. Clean this up.
1366 */
1367 fixup_rt_mutex_waiters(lock, true);
1368
1369 return ret;
1370 }
1371
1372 /*
1373 * Slow path try-lock function:
1374 */
rt_mutex_slowtrylock(struct rt_mutex_base * lock)1375 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1376 {
1377 unsigned long flags;
1378 int ret;
1379
1380 /*
1381 * If the lock already has an owner we fail to get the lock.
1382 * This can be done without taking the @lock->wait_lock as
1383 * it is only being read, and this is a trylock anyway.
1384 */
1385 if (rt_mutex_owner(lock))
1386 return 0;
1387
1388 /*
1389 * The mutex has currently no owner. Lock the wait lock and try to
1390 * acquire the lock. We use irqsave here to support early boot calls.
1391 */
1392 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1393
1394 ret = __rt_mutex_slowtrylock(lock);
1395
1396 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1397
1398 return ret;
1399 }
1400
__rt_mutex_trylock(struct rt_mutex_base * lock)1401 static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock)
1402 {
1403 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1404 return 1;
1405
1406 return rt_mutex_slowtrylock(lock);
1407 }
1408
1409 /*
1410 * Slow path to release a rt-mutex.
1411 */
rt_mutex_slowunlock(struct rt_mutex_base * lock)1412 static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock)
1413 {
1414 DEFINE_RT_WAKE_Q(wqh);
1415 unsigned long flags;
1416
1417 /* irqsave required to support early boot calls */
1418 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1419
1420 debug_rt_mutex_unlock(lock);
1421
1422 /*
1423 * We must be careful here if the fast path is enabled. If we
1424 * have no waiters queued we cannot set owner to NULL here
1425 * because of:
1426 *
1427 * foo->lock->owner = NULL;
1428 * rtmutex_lock(foo->lock); <- fast path
1429 * free = atomic_dec_and_test(foo->refcnt);
1430 * rtmutex_unlock(foo->lock); <- fast path
1431 * if (free)
1432 * kfree(foo);
1433 * raw_spin_unlock(foo->lock->wait_lock);
1434 *
1435 * So for the fastpath enabled kernel:
1436 *
1437 * Nothing can set the waiters bit as long as we hold
1438 * lock->wait_lock. So we do the following sequence:
1439 *
1440 * owner = rt_mutex_owner(lock);
1441 * clear_rt_mutex_waiters(lock);
1442 * raw_spin_unlock(&lock->wait_lock);
1443 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1444 * return;
1445 * goto retry;
1446 *
1447 * The fastpath disabled variant is simple as all access to
1448 * lock->owner is serialized by lock->wait_lock:
1449 *
1450 * lock->owner = NULL;
1451 * raw_spin_unlock(&lock->wait_lock);
1452 */
1453 while (!rt_mutex_has_waiters(lock)) {
1454 /* Drops lock->wait_lock ! */
1455 if (unlock_rt_mutex_safe(lock, flags) == true)
1456 return;
1457 /* Relock the rtmutex and try again */
1458 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1459 }
1460
1461 /*
1462 * The wakeup next waiter path does not suffer from the above
1463 * race. See the comments there.
1464 *
1465 * Queue the next waiter for wakeup once we release the wait_lock.
1466 */
1467 mark_wakeup_next_waiter(&wqh, lock);
1468 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1469
1470 rt_mutex_wake_up_q(&wqh);
1471 }
1472
__rt_mutex_unlock(struct rt_mutex_base * lock)1473 static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock)
1474 {
1475 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1476 return;
1477
1478 rt_mutex_slowunlock(lock);
1479 }
1480
1481 #ifdef CONFIG_SMP
rtmutex_spin_on_owner(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * owner)1482 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1483 struct rt_mutex_waiter *waiter,
1484 struct task_struct *owner)
1485 {
1486 bool res = true;
1487
1488 rcu_read_lock();
1489 for (;;) {
1490 /* If owner changed, trylock again. */
1491 if (owner != rt_mutex_owner(lock))
1492 break;
1493 /*
1494 * Ensure that @owner is dereferenced after checking that
1495 * the lock owner still matches @owner. If that fails,
1496 * @owner might point to freed memory. If it still matches,
1497 * the rcu_read_lock() ensures the memory stays valid.
1498 */
1499 barrier();
1500 /*
1501 * Stop spinning when:
1502 * - the lock owner has been scheduled out
1503 * - current is not longer the top waiter
1504 * - current is requested to reschedule (redundant
1505 * for CONFIG_PREEMPT_RCU=y)
1506 * - the VCPU on which owner runs is preempted
1507 */
1508 if (!owner_on_cpu(owner) || need_resched() ||
1509 !rt_mutex_waiter_is_top_waiter(lock, waiter)) {
1510 res = false;
1511 break;
1512 }
1513 cpu_relax();
1514 }
1515 rcu_read_unlock();
1516 return res;
1517 }
1518 #else
rtmutex_spin_on_owner(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter,struct task_struct * owner)1519 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1520 struct rt_mutex_waiter *waiter,
1521 struct task_struct *owner)
1522 {
1523 return false;
1524 }
1525 #endif
1526
1527 #ifdef RT_MUTEX_BUILD_MUTEX
1528 /*
1529 * Functions required for:
1530 * - rtmutex, futex on all kernels
1531 * - mutex and rwsem substitutions on RT kernels
1532 */
1533
1534 /*
1535 * Remove a waiter from a lock and give up
1536 *
1537 * Must be called with lock->wait_lock held and interrupts disabled. It must
1538 * have just failed to try_to_take_rt_mutex().
1539 */
remove_waiter(struct rt_mutex_base * lock,struct rt_mutex_waiter * waiter)1540 static void __sched remove_waiter(struct rt_mutex_base *lock,
1541 struct rt_mutex_waiter *waiter)
1542 {
1543 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1544 struct task_struct *owner = rt_mutex_owner(lock);
1545 struct rt_mutex_base *next_lock;
1546
1547 lockdep_assert_held(&lock->wait_lock);
1548
1549 raw_spin_lock(¤t->pi_lock);
1550 rt_mutex_dequeue(lock, waiter);
1551 current->pi_blocked_on = NULL;
1552 raw_spin_unlock(¤t->pi_lock);
1553
1554 /*
1555 * Only update priority if the waiter was the highest priority
1556 * waiter of the lock and there is an owner to update.
1557 */
1558 if (!owner || !is_top_waiter)
1559 return;
1560
1561 raw_spin_lock(&owner->pi_lock);
1562
1563 rt_mutex_dequeue_pi(owner, waiter);
1564
1565 if (rt_mutex_has_waiters(lock))
1566 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1567
1568 rt_mutex_adjust_prio(lock, owner);
1569
1570 /* Store the lock on which owner is blocked or NULL */
1571 next_lock = task_blocked_on_lock(owner);
1572
1573 raw_spin_unlock(&owner->pi_lock);
1574
1575 /*
1576 * Don't walk the chain, if the owner task is not blocked
1577 * itself.
1578 */
1579 if (!next_lock)
1580 return;
1581
1582 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1583 get_task_struct(owner);
1584
1585 raw_spin_unlock_irq(&lock->wait_lock);
1586
1587 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1588 next_lock, NULL, current);
1589
1590 raw_spin_lock_irq(&lock->wait_lock);
1591 }
1592
1593 /**
1594 * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop
1595 * @lock: the rt_mutex to take
1596 * @ww_ctx: WW mutex context pointer
1597 * @state: the state the task should block in (TASK_INTERRUPTIBLE
1598 * or TASK_UNINTERRUPTIBLE)
1599 * @timeout: the pre-initialized and started timer, or NULL for none
1600 * @waiter: the pre-initialized rt_mutex_waiter
1601 * @wake_q: wake_q of tasks to wake when we drop the lock->wait_lock
1602 *
1603 * Must be called with lock->wait_lock held and interrupts disabled
1604 */
rt_mutex_slowlock_block(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state,struct hrtimer_sleeper * timeout,struct rt_mutex_waiter * waiter,struct wake_q_head * wake_q)1605 static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
1606 struct ww_acquire_ctx *ww_ctx,
1607 unsigned int state,
1608 struct hrtimer_sleeper *timeout,
1609 struct rt_mutex_waiter *waiter,
1610 struct wake_q_head *wake_q)
1611 {
1612 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1613 struct task_struct *owner;
1614 int ret = 0;
1615
1616 trace_android_vh_rtmutex_wait_start(lock);
1617 for (;;) {
1618 /* Try to acquire the lock: */
1619 if (try_to_take_rt_mutex(lock, current, waiter))
1620 break;
1621
1622 if (timeout && !timeout->task) {
1623 ret = -ETIMEDOUT;
1624 break;
1625 }
1626 if (signal_pending_state(state, current)) {
1627 ret = -EINTR;
1628 break;
1629 }
1630
1631 if (build_ww_mutex() && ww_ctx) {
1632 ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx);
1633 if (ret)
1634 break;
1635 }
1636
1637 if (waiter == rt_mutex_top_waiter(lock))
1638 owner = rt_mutex_owner(lock);
1639 else
1640 owner = NULL;
1641 preempt_disable();
1642 raw_spin_unlock_irq(&lock->wait_lock);
1643 if (wake_q) {
1644 wake_up_q(wake_q);
1645 wake_q_init(wake_q);
1646 }
1647 preempt_enable();
1648
1649 if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner))
1650 rt_mutex_schedule();
1651
1652 raw_spin_lock_irq(&lock->wait_lock);
1653 set_current_state(state);
1654 }
1655
1656 trace_android_vh_rtmutex_wait_finish(lock);
1657 __set_current_state(TASK_RUNNING);
1658 return ret;
1659 }
1660
rt_mutex_handle_deadlock(int res,int detect_deadlock,struct rt_mutex_base * lock,struct rt_mutex_waiter * w)1661 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1662 struct rt_mutex_base *lock,
1663 struct rt_mutex_waiter *w)
1664 {
1665 /*
1666 * If the result is not -EDEADLOCK or the caller requested
1667 * deadlock detection, nothing to do here.
1668 */
1669 if (res != -EDEADLOCK || detect_deadlock)
1670 return;
1671
1672 if (build_ww_mutex() && w->ww_ctx)
1673 return;
1674
1675 raw_spin_unlock_irq(&lock->wait_lock);
1676
1677 WARN(1, "rtmutex deadlock detected\n");
1678
1679 while (1) {
1680 set_current_state(TASK_INTERRUPTIBLE);
1681 rt_mutex_schedule();
1682 }
1683 }
1684
1685 /**
1686 * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held
1687 * @lock: The rtmutex to block lock
1688 * @ww_ctx: WW mutex context pointer
1689 * @state: The task state for sleeping
1690 * @chwalk: Indicator whether full or partial chainwalk is requested
1691 * @waiter: Initializer waiter for blocking
1692 * @wake_q: The wake_q to wake tasks after we release the wait_lock
1693 */
__rt_mutex_slowlock(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state,enum rtmutex_chainwalk chwalk,struct rt_mutex_waiter * waiter,struct wake_q_head * wake_q)1694 static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
1695 struct ww_acquire_ctx *ww_ctx,
1696 unsigned int state,
1697 enum rtmutex_chainwalk chwalk,
1698 struct rt_mutex_waiter *waiter,
1699 struct wake_q_head *wake_q)
1700 {
1701 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1702 struct ww_mutex *ww = ww_container_of(rtm);
1703 int ret;
1704
1705 lockdep_assert_held(&lock->wait_lock);
1706
1707 /* Try to acquire the lock again: */
1708 if (try_to_take_rt_mutex(lock, current, NULL)) {
1709 if (build_ww_mutex() && ww_ctx) {
1710 __ww_mutex_check_waiters(rtm, ww_ctx, wake_q);
1711 ww_mutex_lock_acquired(ww, ww_ctx);
1712 }
1713 return 0;
1714 }
1715
1716 set_current_state(state);
1717
1718 trace_contention_begin(lock, LCB_F_RT);
1719
1720 ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk, wake_q);
1721 if (likely(!ret))
1722 ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter, wake_q);
1723
1724 if (likely(!ret)) {
1725 /* acquired the lock */
1726 if (build_ww_mutex() && ww_ctx) {
1727 if (!ww_ctx->is_wait_die)
1728 __ww_mutex_check_waiters(rtm, ww_ctx, wake_q);
1729 ww_mutex_lock_acquired(ww, ww_ctx);
1730 }
1731 } else {
1732 __set_current_state(TASK_RUNNING);
1733 remove_waiter(lock, waiter);
1734 rt_mutex_handle_deadlock(ret, chwalk, lock, waiter);
1735 }
1736
1737 /*
1738 * try_to_take_rt_mutex() sets the waiter bit
1739 * unconditionally. We might have to fix that up.
1740 */
1741 fixup_rt_mutex_waiters(lock, true);
1742
1743 trace_contention_end(lock, ret);
1744
1745 return ret;
1746 }
1747
__rt_mutex_slowlock_locked(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state,struct wake_q_head * wake_q)1748 static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
1749 struct ww_acquire_ctx *ww_ctx,
1750 unsigned int state,
1751 struct wake_q_head *wake_q)
1752 {
1753 struct rt_mutex_waiter waiter;
1754 int ret;
1755
1756 rt_mutex_init_waiter(&waiter);
1757 waiter.ww_ctx = ww_ctx;
1758
1759 ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
1760 &waiter, wake_q);
1761
1762 debug_rt_mutex_free_waiter(&waiter);
1763 return ret;
1764 }
1765
1766 /*
1767 * rt_mutex_slowlock - Locking slowpath invoked when fast path fails
1768 * @lock: The rtmutex to block lock
1769 * @ww_ctx: WW mutex context pointer
1770 * @state: The task state for sleeping
1771 */
rt_mutex_slowlock(struct rt_mutex_base * lock,struct ww_acquire_ctx * ww_ctx,unsigned int state)1772 static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
1773 struct ww_acquire_ctx *ww_ctx,
1774 unsigned int state)
1775 {
1776 DEFINE_WAKE_Q(wake_q);
1777 unsigned long flags;
1778 int ret;
1779
1780 /*
1781 * Do all pre-schedule work here, before we queue a waiter and invoke
1782 * PI -- any such work that trips on rtlock (PREEMPT_RT spinlock) would
1783 * otherwise recurse back into task_blocks_on_rt_mutex() through
1784 * rtlock_slowlock() and will then enqueue a second waiter for this
1785 * same task and things get really confusing real fast.
1786 */
1787 rt_mutex_pre_schedule();
1788
1789 /*
1790 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1791 * be called in early boot if the cmpxchg() fast path is disabled
1792 * (debug, no architecture support). In this case we will acquire the
1793 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1794 * enable interrupts in that early boot case. So we need to use the
1795 * irqsave/restore variants.
1796 */
1797 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1798 ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state, &wake_q);
1799 preempt_disable();
1800 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1801 wake_up_q(&wake_q);
1802 preempt_enable();
1803 rt_mutex_post_schedule();
1804
1805 return ret;
1806 }
1807
__rt_mutex_lock(struct rt_mutex_base * lock,unsigned int state)1808 static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
1809 unsigned int state)
1810 {
1811 lockdep_assert(!current->pi_blocked_on);
1812
1813 if (likely(rt_mutex_try_acquire(lock)))
1814 return 0;
1815
1816 return rt_mutex_slowlock(lock, NULL, state);
1817 }
1818 #endif /* RT_MUTEX_BUILD_MUTEX */
1819
1820 #ifdef RT_MUTEX_BUILD_SPINLOCKS
1821 /*
1822 * Functions required for spin/rw_lock substitution on RT kernels
1823 */
1824
1825 /**
1826 * rtlock_slowlock_locked - Slow path lock acquisition for RT locks
1827 * @lock: The underlying RT mutex
1828 * @wake_q: The wake_q to wake tasks after we release the wait_lock
1829 */
rtlock_slowlock_locked(struct rt_mutex_base * lock,struct wake_q_head * wake_q)1830 static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock,
1831 struct wake_q_head *wake_q)
1832 {
1833 struct rt_mutex_waiter waiter;
1834 struct task_struct *owner;
1835
1836 lockdep_assert_held(&lock->wait_lock);
1837
1838 if (try_to_take_rt_mutex(lock, current, NULL))
1839 return;
1840
1841 rt_mutex_init_rtlock_waiter(&waiter);
1842
1843 /* Save current state and set state to TASK_RTLOCK_WAIT */
1844 current_save_and_set_rtlock_wait_state();
1845
1846 trace_contention_begin(lock, LCB_F_RT);
1847
1848 task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK, wake_q);
1849
1850 for (;;) {
1851 /* Try to acquire the lock again */
1852 if (try_to_take_rt_mutex(lock, current, &waiter))
1853 break;
1854
1855 if (&waiter == rt_mutex_top_waiter(lock))
1856 owner = rt_mutex_owner(lock);
1857 else
1858 owner = NULL;
1859 preempt_disable();
1860 raw_spin_unlock_irq(&lock->wait_lock);
1861 wake_up_q(wake_q);
1862 wake_q_init(wake_q);
1863 preempt_enable();
1864
1865 if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
1866 schedule_rtlock();
1867
1868 raw_spin_lock_irq(&lock->wait_lock);
1869 set_current_state(TASK_RTLOCK_WAIT);
1870 }
1871
1872 /* Restore the task state */
1873 current_restore_rtlock_saved_state();
1874
1875 /*
1876 * try_to_take_rt_mutex() sets the waiter bit unconditionally.
1877 * We might have to fix that up:
1878 */
1879 fixup_rt_mutex_waiters(lock, true);
1880 debug_rt_mutex_free_waiter(&waiter);
1881
1882 trace_contention_end(lock, 0);
1883 }
1884
rtlock_slowlock(struct rt_mutex_base * lock)1885 static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
1886 {
1887 unsigned long flags;
1888 DEFINE_WAKE_Q(wake_q);
1889
1890 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1891 rtlock_slowlock_locked(lock, &wake_q);
1892 preempt_disable();
1893 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1894 wake_up_q(&wake_q);
1895 preempt_enable();
1896 }
1897
1898 #endif /* RT_MUTEX_BUILD_SPINLOCKS */
1899