1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51
52 #include <asm/switch_to.h>
53
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57
58 #include <trace/hooks/sched.h>
59
60 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_runtime);
61
62 /*
63 * Targeted preemption latency for CPU-bound tasks:
64 *
65 * NOTE: this latency value is not the same as the concept of
66 * 'timeslice length' - timeslices in CFS are of variable length
67 * and have no persistent notion like in traditional, time-slice
68 * based scheduling concepts.
69 *
70 * (to see the precise effective timeslice length of your workload,
71 * run vmstat and monitor the context-switches (cs) field)
72 *
73 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
74 */
75 unsigned int sysctl_sched_latency = 6000000ULL;
76 EXPORT_SYMBOL_GPL(sysctl_sched_latency);
77
78 /*
79 * The initial- and re-scaling of tunables is configurable
80 *
81 * Options are:
82 *
83 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
84 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
85 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
86 *
87 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
88 */
89 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
90
91 /*
92 * Minimal preemption granularity for CPU-bound tasks:
93 *
94 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds)
95 */
96 unsigned int sysctl_sched_base_slice = 700000ULL;
97 EXPORT_SYMBOL_GPL(sysctl_sched_base_slice);
98 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL;
99
100 /*
101 * After fork, child runs first. If set to 0 (default) then
102 * parent will (try to) run first.
103 */
104 unsigned int sysctl_sched_child_runs_first __read_mostly;
105
106 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
107
setup_sched_thermal_decay_shift(char * str)108 static int __init setup_sched_thermal_decay_shift(char *str)
109 {
110 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
111 return 1;
112 }
113 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
114
115 #ifdef CONFIG_SMP
116 /*
117 * For asym packing, by default the lower numbered CPU has higher priority.
118 */
arch_asym_cpu_priority(int cpu)119 int __weak arch_asym_cpu_priority(int cpu)
120 {
121 return -cpu;
122 }
123
124 /*
125 * The margin used when comparing utilization with CPU capacity.
126 *
127 * (default: ~20%)
128 */
129 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
130
131 /*
132 * The margin used when comparing CPU capacities.
133 * is 'cap1' noticeably greater than 'cap2'
134 *
135 * (default: ~5%)
136 */
137 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
138 #endif
139
140 #ifdef CONFIG_CFS_BANDWIDTH
141 /*
142 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
143 * each time a cfs_rq requests quota.
144 *
145 * Note: in the case that the slice exceeds the runtime remaining (either due
146 * to consumption or the quota being specified to be smaller than the slice)
147 * we will always only issue the remaining available time.
148 *
149 * (default: 5 msec, units: microseconds)
150 */
151 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
152 #endif
153
154 #ifdef CONFIG_NUMA_BALANCING
155 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
156 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
157 #endif
158
159 #ifdef CONFIG_SYSCTL
160 static struct ctl_table sched_fair_sysctls[] = {
161 {
162 .procname = "sched_child_runs_first",
163 .data = &sysctl_sched_child_runs_first,
164 .maxlen = sizeof(unsigned int),
165 .mode = 0644,
166 .proc_handler = proc_dointvec,
167 },
168 #ifdef CONFIG_CFS_BANDWIDTH
169 {
170 .procname = "sched_cfs_bandwidth_slice_us",
171 .data = &sysctl_sched_cfs_bandwidth_slice,
172 .maxlen = sizeof(unsigned int),
173 .mode = 0644,
174 .proc_handler = proc_dointvec_minmax,
175 .extra1 = SYSCTL_ONE,
176 },
177 #endif
178 #ifdef CONFIG_NUMA_BALANCING
179 {
180 .procname = "numa_balancing_promote_rate_limit_MBps",
181 .data = &sysctl_numa_balancing_promote_rate_limit,
182 .maxlen = sizeof(unsigned int),
183 .mode = 0644,
184 .proc_handler = proc_dointvec_minmax,
185 .extra1 = SYSCTL_ZERO,
186 },
187 #endif /* CONFIG_NUMA_BALANCING */
188 };
189
sched_fair_sysctl_init(void)190 static int __init sched_fair_sysctl_init(void)
191 {
192 register_sysctl_init("kernel", sched_fair_sysctls);
193 return 0;
194 }
195 late_initcall(sched_fair_sysctl_init);
196 #endif
197
update_load_add(struct load_weight * lw,unsigned long inc)198 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
199 {
200 lw->weight += inc;
201 lw->inv_weight = 0;
202 }
203
update_load_sub(struct load_weight * lw,unsigned long dec)204 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
205 {
206 lw->weight -= dec;
207 lw->inv_weight = 0;
208 }
209
update_load_set(struct load_weight * lw,unsigned long w)210 static inline void update_load_set(struct load_weight *lw, unsigned long w)
211 {
212 lw->weight = w;
213 lw->inv_weight = 0;
214 }
215
216 /*
217 * Increase the granularity value when there are more CPUs,
218 * because with more CPUs the 'effective latency' as visible
219 * to users decreases. But the relationship is not linear,
220 * so pick a second-best guess by going with the log2 of the
221 * number of CPUs.
222 *
223 * This idea comes from the SD scheduler of Con Kolivas:
224 */
get_update_sysctl_factor(void)225 static unsigned int get_update_sysctl_factor(void)
226 {
227 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
228 unsigned int factor;
229
230 switch (sysctl_sched_tunable_scaling) {
231 case SCHED_TUNABLESCALING_NONE:
232 factor = 1;
233 break;
234 case SCHED_TUNABLESCALING_LINEAR:
235 factor = cpus;
236 break;
237 case SCHED_TUNABLESCALING_LOG:
238 default:
239 factor = 1 + ilog2(cpus);
240 break;
241 }
242
243 return factor;
244 }
245
update_sysctl(void)246 static void update_sysctl(void)
247 {
248 unsigned int factor = get_update_sysctl_factor();
249
250 #define SET_SYSCTL(name) \
251 (sysctl_##name = (factor) * normalized_sysctl_##name)
252 SET_SYSCTL(sched_base_slice);
253 #undef SET_SYSCTL
254 }
255
sched_init_granularity(void)256 void __init sched_init_granularity(void)
257 {
258 update_sysctl();
259 }
260
261 #define WMULT_CONST (~0U)
262 #define WMULT_SHIFT 32
263
__update_inv_weight(struct load_weight * lw)264 static void __update_inv_weight(struct load_weight *lw)
265 {
266 unsigned long w;
267
268 if (likely(lw->inv_weight))
269 return;
270
271 w = scale_load_down(lw->weight);
272
273 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
274 lw->inv_weight = 1;
275 else if (unlikely(!w))
276 lw->inv_weight = WMULT_CONST;
277 else
278 lw->inv_weight = WMULT_CONST / w;
279 }
280
281 /*
282 * delta_exec * weight / lw.weight
283 * OR
284 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
285 *
286 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
287 * we're guaranteed shift stays positive because inv_weight is guaranteed to
288 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
289 *
290 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
291 * weight/lw.weight <= 1, and therefore our shift will also be positive.
292 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)293 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
294 {
295 u64 fact = scale_load_down(weight);
296 u32 fact_hi = (u32)(fact >> 32);
297 int shift = WMULT_SHIFT;
298 int fs;
299
300 __update_inv_weight(lw);
301
302 if (unlikely(fact_hi)) {
303 fs = fls(fact_hi);
304 shift -= fs;
305 fact >>= fs;
306 }
307
308 fact = mul_u32_u32(fact, lw->inv_weight);
309
310 fact_hi = (u32)(fact >> 32);
311 if (fact_hi) {
312 fs = fls(fact_hi);
313 shift -= fs;
314 fact >>= fs;
315 }
316
317 return mul_u64_u32_shr(delta_exec, fact, shift);
318 }
319
320 /*
321 * delta /= w
322 */
calc_delta_fair(u64 delta,struct sched_entity * se)323 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
324 {
325 if (unlikely(se->load.weight != NICE_0_LOAD))
326 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
327
328 return delta;
329 }
330
331 const struct sched_class fair_sched_class;
332
333 /**************************************************************
334 * CFS operations on generic schedulable entities:
335 */
336
337 #ifdef CONFIG_FAIR_GROUP_SCHED
338
339 /* Walk up scheduling entities hierarchy */
340 #define for_each_sched_entity(se) \
341 for (; se; se = se->parent)
342
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)343 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
344 {
345 struct rq *rq = rq_of(cfs_rq);
346 int cpu = cpu_of(rq);
347
348 if (cfs_rq->on_list)
349 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
350
351 cfs_rq->on_list = 1;
352
353 /*
354 * Ensure we either appear before our parent (if already
355 * enqueued) or force our parent to appear after us when it is
356 * enqueued. The fact that we always enqueue bottom-up
357 * reduces this to two cases and a special case for the root
358 * cfs_rq. Furthermore, it also means that we will always reset
359 * tmp_alone_branch either when the branch is connected
360 * to a tree or when we reach the top of the tree
361 */
362 if (cfs_rq->tg->parent &&
363 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
364 /*
365 * If parent is already on the list, we add the child
366 * just before. Thanks to circular linked property of
367 * the list, this means to put the child at the tail
368 * of the list that starts by parent.
369 */
370 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
371 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
372 /*
373 * The branch is now connected to its tree so we can
374 * reset tmp_alone_branch to the beginning of the
375 * list.
376 */
377 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
378 return true;
379 }
380
381 if (!cfs_rq->tg->parent) {
382 /*
383 * cfs rq without parent should be put
384 * at the tail of the list.
385 */
386 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
387 &rq->leaf_cfs_rq_list);
388 /*
389 * We have reach the top of a tree so we can reset
390 * tmp_alone_branch to the beginning of the list.
391 */
392 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
393 return true;
394 }
395
396 /*
397 * The parent has not already been added so we want to
398 * make sure that it will be put after us.
399 * tmp_alone_branch points to the begin of the branch
400 * where we will add parent.
401 */
402 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
403 /*
404 * update tmp_alone_branch to points to the new begin
405 * of the branch
406 */
407 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
408 return false;
409 }
410
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412 {
413 if (cfs_rq->on_list) {
414 struct rq *rq = rq_of(cfs_rq);
415
416 /*
417 * With cfs_rq being unthrottled/throttled during an enqueue,
418 * it can happen the tmp_alone_branch points to the leaf that
419 * we finally want to delete. In this case, tmp_alone_branch moves
420 * to the prev element but it will point to rq->leaf_cfs_rq_list
421 * at the end of the enqueue.
422 */
423 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
424 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
425
426 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
427 cfs_rq->on_list = 0;
428 }
429 }
430
assert_list_leaf_cfs_rq(struct rq * rq)431 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
432 {
433 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
434 }
435
436 /* Iterate through all leaf cfs_rq's on a runqueue */
437 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
438 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
439 leaf_cfs_rq_list)
440
441 /* Do the two (enqueued) entities belong to the same group ? */
442 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)443 is_same_group(struct sched_entity *se, struct sched_entity *pse)
444 {
445 if (se->cfs_rq == pse->cfs_rq)
446 return se->cfs_rq;
447
448 return NULL;
449 }
450
parent_entity(const struct sched_entity * se)451 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
452 {
453 return se->parent;
454 }
455
456 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)457 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
458 {
459 int se_depth, pse_depth;
460
461 /*
462 * preemption test can be made between sibling entities who are in the
463 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
464 * both tasks until we find their ancestors who are siblings of common
465 * parent.
466 */
467
468 /* First walk up until both entities are at same depth */
469 se_depth = (*se)->depth;
470 pse_depth = (*pse)->depth;
471
472 while (se_depth > pse_depth) {
473 se_depth--;
474 *se = parent_entity(*se);
475 }
476
477 while (pse_depth > se_depth) {
478 pse_depth--;
479 *pse = parent_entity(*pse);
480 }
481
482 while (!is_same_group(*se, *pse)) {
483 *se = parent_entity(*se);
484 *pse = parent_entity(*pse);
485 }
486 }
487
tg_is_idle(struct task_group * tg)488 static int tg_is_idle(struct task_group *tg)
489 {
490 return tg->idle > 0;
491 }
492
cfs_rq_is_idle(struct cfs_rq * cfs_rq)493 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
494 {
495 return cfs_rq->idle > 0;
496 }
497
se_is_idle(struct sched_entity * se)498 static int se_is_idle(struct sched_entity *se)
499 {
500 if (entity_is_task(se))
501 return task_has_idle_policy(task_of(se));
502 return cfs_rq_is_idle(group_cfs_rq(se));
503 }
504
505 #else /* !CONFIG_FAIR_GROUP_SCHED */
506
507 #define for_each_sched_entity(se) \
508 for (; se; se = NULL)
509
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)510 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
511 {
512 return true;
513 }
514
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)515 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
516 {
517 }
518
assert_list_leaf_cfs_rq(struct rq * rq)519 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
520 {
521 }
522
523 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
524 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
525
parent_entity(struct sched_entity * se)526 static inline struct sched_entity *parent_entity(struct sched_entity *se)
527 {
528 return NULL;
529 }
530
531 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)532 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
533 {
534 }
535
tg_is_idle(struct task_group * tg)536 static inline int tg_is_idle(struct task_group *tg)
537 {
538 return 0;
539 }
540
cfs_rq_is_idle(struct cfs_rq * cfs_rq)541 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
542 {
543 return 0;
544 }
545
se_is_idle(struct sched_entity * se)546 static int se_is_idle(struct sched_entity *se)
547 {
548 return task_has_idle_policy(task_of(se));
549 }
550
551 #endif /* CONFIG_FAIR_GROUP_SCHED */
552
553 static __always_inline
554 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
555
556 /**************************************************************
557 * Scheduling class tree data structure manipulation methods:
558 */
559
max_vruntime(u64 max_vruntime,u64 vruntime)560 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
561 {
562 s64 delta = (s64)(vruntime - max_vruntime);
563 if (delta > 0)
564 max_vruntime = vruntime;
565
566 return max_vruntime;
567 }
568
min_vruntime(u64 min_vruntime,u64 vruntime)569 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
570 {
571 s64 delta = (s64)(vruntime - min_vruntime);
572 if (delta < 0)
573 min_vruntime = vruntime;
574
575 return min_vruntime;
576 }
577
entity_before(const struct sched_entity * a,const struct sched_entity * b)578 static inline bool entity_before(const struct sched_entity *a,
579 const struct sched_entity *b)
580 {
581 /*
582 * Tiebreak on vruntime seems unnecessary since it can
583 * hardly happen.
584 */
585 return (s64)(a->deadline - b->deadline) < 0;
586 }
587
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)588 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
589 {
590 return (s64)(se->vruntime - cfs_rq->min_vruntime);
591 }
592
593 #define __node_2_se(node) \
594 rb_entry((node), struct sched_entity, run_node)
595
596 /*
597 * Compute virtual time from the per-task service numbers:
598 *
599 * Fair schedulers conserve lag:
600 *
601 * \Sum lag_i = 0
602 *
603 * Where lag_i is given by:
604 *
605 * lag_i = S - s_i = w_i * (V - v_i)
606 *
607 * Where S is the ideal service time and V is it's virtual time counterpart.
608 * Therefore:
609 *
610 * \Sum lag_i = 0
611 * \Sum w_i * (V - v_i) = 0
612 * \Sum w_i * V - w_i * v_i = 0
613 *
614 * From which we can solve an expression for V in v_i (which we have in
615 * se->vruntime):
616 *
617 * \Sum v_i * w_i \Sum v_i * w_i
618 * V = -------------- = --------------
619 * \Sum w_i W
620 *
621 * Specifically, this is the weighted average of all entity virtual runtimes.
622 *
623 * [[ NOTE: this is only equal to the ideal scheduler under the condition
624 * that join/leave operations happen at lag_i = 0, otherwise the
625 * virtual time has non-contiguous motion equivalent to:
626 *
627 * V +-= lag_i / W
628 *
629 * Also see the comment in place_entity() that deals with this. ]]
630 *
631 * However, since v_i is u64, and the multiplication could easily overflow
632 * transform it into a relative form that uses smaller quantities:
633 *
634 * Substitute: v_i == (v_i - v0) + v0
635 *
636 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
637 * V = ---------------------------- = --------------------- + v0
638 * W W
639 *
640 * Which we track using:
641 *
642 * v0 := cfs_rq->min_vruntime
643 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
644 * \Sum w_i := cfs_rq->avg_load
645 *
646 * Since min_vruntime is a monotonic increasing variable that closely tracks
647 * the per-task service, these deltas: (v_i - v), will be in the order of the
648 * maximal (virtual) lag induced in the system due to quantisation.
649 *
650 * Also, we use scale_load_down() to reduce the size.
651 *
652 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
653 */
654 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)655 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
656 {
657 unsigned long weight = scale_load_down(se->load.weight);
658 s64 key = entity_key(cfs_rq, se);
659
660 cfs_rq->avg_vruntime += key * weight;
661 cfs_rq->avg_load += weight;
662 }
663
664 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)665 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
666 {
667 unsigned long weight = scale_load_down(se->load.weight);
668 s64 key = entity_key(cfs_rq, se);
669
670 cfs_rq->avg_vruntime -= key * weight;
671 cfs_rq->avg_load -= weight;
672 }
673
674 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)675 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
676 {
677 /*
678 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
679 */
680 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
681 }
682
683 /*
684 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
685 * For this to be so, the result of this function must have a left bias.
686 */
avg_vruntime(struct cfs_rq * cfs_rq)687 u64 avg_vruntime(struct cfs_rq *cfs_rq)
688 {
689 struct sched_entity *curr = cfs_rq->curr;
690 s64 avg = cfs_rq->avg_vruntime;
691 long load = cfs_rq->avg_load;
692
693 if (curr && curr->on_rq) {
694 unsigned long weight = scale_load_down(curr->load.weight);
695
696 avg += entity_key(cfs_rq, curr) * weight;
697 load += weight;
698 }
699
700 if (load) {
701 /* sign flips effective floor / ceiling */
702 if (avg < 0)
703 avg -= (load - 1);
704 avg = div_s64(avg, load);
705 }
706
707 return cfs_rq->min_vruntime + avg;
708 }
709
710 /*
711 * lag_i = S - s_i = w_i * (V - v_i)
712 *
713 * However, since V is approximated by the weighted average of all entities it
714 * is possible -- by addition/removal/reweight to the tree -- to move V around
715 * and end up with a larger lag than we started with.
716 *
717 * Limit this to either double the slice length with a minimum of TICK_NSEC
718 * since that is the timing granularity.
719 *
720 * EEVDF gives the following limit for a steady state system:
721 *
722 * -r_max < lag < max(r_max, q)
723 *
724 * XXX could add max_slice to the augmented data to track this.
725 */
entity_lag(u64 avruntime,struct sched_entity * se)726 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
727 {
728 s64 vlag, limit;
729
730 vlag = avruntime - se->vruntime;
731 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
732
733 return clamp(vlag, -limit, limit);
734 }
735
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)736 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 SCHED_WARN_ON(!se->on_rq);
739
740 se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
741 }
742
743 /*
744 * Entity is eligible once it received less service than it ought to have,
745 * eg. lag >= 0.
746 *
747 * lag_i = S - s_i = w_i*(V - v_i)
748 *
749 * lag_i >= 0 -> V >= v_i
750 *
751 * \Sum (v_i - v)*w_i
752 * V = ------------------ + v
753 * \Sum w_i
754 *
755 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
756 *
757 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
758 * to the loss in precision caused by the division.
759 */
vruntime_eligible(struct cfs_rq * cfs_rq,u64 vruntime)760 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
761 {
762 struct sched_entity *curr = cfs_rq->curr;
763 s64 avg = cfs_rq->avg_vruntime;
764 long load = cfs_rq->avg_load;
765
766 if (curr && curr->on_rq) {
767 unsigned long weight = scale_load_down(curr->load.weight);
768
769 avg += entity_key(cfs_rq, curr) * weight;
770 load += weight;
771 }
772
773 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
774 }
775
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)776 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
777 {
778 return vruntime_eligible(cfs_rq, se->vruntime);
779 }
780
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)781 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
782 {
783 u64 min_vruntime = cfs_rq->min_vruntime;
784 /*
785 * open coded max_vruntime() to allow updating avg_vruntime
786 */
787 s64 delta = (s64)(vruntime - min_vruntime);
788 if (delta > 0) {
789 avg_vruntime_update(cfs_rq, delta);
790 min_vruntime = vruntime;
791 }
792 return min_vruntime;
793 }
794
update_min_vruntime(struct cfs_rq * cfs_rq)795 static void update_min_vruntime(struct cfs_rq *cfs_rq)
796 {
797 struct sched_entity *se = __pick_root_entity(cfs_rq);
798 struct sched_entity *curr = cfs_rq->curr;
799 u64 vruntime = cfs_rq->min_vruntime;
800
801 if (curr) {
802 if (curr->on_rq)
803 vruntime = curr->vruntime;
804 else
805 curr = NULL;
806 }
807
808 if (se) {
809 if (!curr)
810 vruntime = se->min_vruntime;
811 else
812 vruntime = min_vruntime(vruntime, se->min_vruntime);
813 }
814
815 /* ensure we never gain time by being placed backwards. */
816 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
817 }
818
cfs_rq_min_slice(struct cfs_rq * cfs_rq)819 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
820 {
821 struct sched_entity *root = __pick_root_entity(cfs_rq);
822 struct sched_entity *curr = cfs_rq->curr;
823 u64 min_slice = ~0ULL;
824
825 if (curr && curr->on_rq)
826 min_slice = curr->slice;
827
828 if (root)
829 min_slice = min(min_slice, root->min_slice);
830
831 return min_slice;
832 }
833
__entity_less(struct rb_node * a,const struct rb_node * b)834 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
835 {
836 return entity_before(__node_2_se(a), __node_2_se(b));
837 }
838
839 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
840
__min_vruntime_update(struct sched_entity * se,struct rb_node * node)841 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
842 {
843 if (node) {
844 struct sched_entity *rse = __node_2_se(node);
845 if (vruntime_gt(min_vruntime, se, rse))
846 se->min_vruntime = rse->min_vruntime;
847 }
848 }
849
__min_slice_update(struct sched_entity * se,struct rb_node * node)850 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
851 {
852 if (node) {
853 struct sched_entity *rse = __node_2_se(node);
854 if (rse->min_slice < se->min_slice)
855 se->min_slice = rse->min_slice;
856 }
857 }
858
859 /*
860 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
861 */
min_vruntime_update(struct sched_entity * se,bool exit)862 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
863 {
864 u64 old_min_vruntime = se->min_vruntime;
865 u64 old_min_slice = se->min_slice;
866 struct rb_node *node = &se->run_node;
867
868 se->min_vruntime = se->vruntime;
869 __min_vruntime_update(se, node->rb_right);
870 __min_vruntime_update(se, node->rb_left);
871
872 se->min_slice = se->slice;
873 __min_slice_update(se, node->rb_right);
874 __min_slice_update(se, node->rb_left);
875
876 return se->min_vruntime == old_min_vruntime &&
877 se->min_slice == old_min_slice;
878 }
879
880 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
881 run_node, min_vruntime, min_vruntime_update);
882
883 /*
884 * Enqueue an entity into the rb-tree:
885 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)886 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
887 {
888 trace_android_rvh_enqueue_entity(cfs_rq, se);
889 avg_vruntime_add(cfs_rq, se);
890 se->min_vruntime = se->vruntime;
891 se->min_slice = se->slice;
892 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
893 __entity_less, &min_vruntime_cb);
894 }
895
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)896 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
897 {
898 trace_android_rvh_dequeue_entity(cfs_rq, se);
899 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
900 &min_vruntime_cb);
901 avg_vruntime_sub(cfs_rq, se);
902 }
903
__pick_root_entity(struct cfs_rq * cfs_rq)904 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
905 {
906 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
907
908 if (!root)
909 return NULL;
910
911 return __node_2_se(root);
912 }
913
__pick_first_entity(struct cfs_rq * cfs_rq)914 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
915 {
916 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
917
918 if (!left)
919 return NULL;
920
921 return __node_2_se(left);
922 }
923
924 /*
925 * HACK, stash a copy of deadline at the point of pick in vlag,
926 * which isn't used until dequeue.
927 */
set_protect_slice(struct sched_entity * se)928 static inline void set_protect_slice(struct sched_entity *se)
929 {
930 se->vlag = se->deadline;
931 }
932
protect_slice(struct sched_entity * se)933 static inline bool protect_slice(struct sched_entity *se)
934 {
935 return se->vlag == se->deadline;
936 }
937
cancel_protect_slice(struct sched_entity * se)938 static inline void cancel_protect_slice(struct sched_entity *se)
939 {
940 if (protect_slice(se))
941 se->vlag = se->deadline + 1;
942 }
943
944 /*
945 * Earliest Eligible Virtual Deadline First
946 *
947 * In order to provide latency guarantees for different request sizes
948 * EEVDF selects the best runnable task from two criteria:
949 *
950 * 1) the task must be eligible (must be owed service)
951 *
952 * 2) from those tasks that meet 1), we select the one
953 * with the earliest virtual deadline.
954 *
955 * We can do this in O(log n) time due to an augmented RB-tree. The
956 * tree keeps the entries sorted on deadline, but also functions as a
957 * heap based on the vruntime by keeping:
958 *
959 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
960 *
961 * Which allows tree pruning through eligibility.
962 */
pick_eevdf(struct cfs_rq * cfs_rq)963 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
964 {
965 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
966 struct sched_entity *se = __pick_first_entity(cfs_rq);
967 struct sched_entity *curr = cfs_rq->curr;
968 struct sched_entity *best = NULL;
969
970 /*
971 * We can safely skip eligibility check if there is only one entity
972 * in this cfs_rq, saving some cycles.
973 */
974 if (cfs_rq->nr_running == 1)
975 return curr && curr->on_rq ? curr : se;
976
977 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
978 curr = NULL;
979
980 if (sched_feat(RUN_TO_PARITY) && curr && protect_slice(curr))
981 return curr;
982
983 /* Pick the leftmost entity if it's eligible */
984 if (se && entity_eligible(cfs_rq, se)) {
985 best = se;
986 goto found;
987 }
988
989 /* Heap search for the EEVD entity */
990 while (node) {
991 struct rb_node *left = node->rb_left;
992
993 /*
994 * Eligible entities in left subtree are always better
995 * choices, since they have earlier deadlines.
996 */
997 if (left && vruntime_eligible(cfs_rq,
998 __node_2_se(left)->min_vruntime)) {
999 node = left;
1000 continue;
1001 }
1002
1003 se = __node_2_se(node);
1004
1005 /*
1006 * The left subtree either is empty or has no eligible
1007 * entity, so check the current node since it is the one
1008 * with earliest deadline that might be eligible.
1009 */
1010 if (entity_eligible(cfs_rq, se)) {
1011 best = se;
1012 break;
1013 }
1014
1015 node = node->rb_right;
1016 }
1017 found:
1018 if (!best || (curr && entity_before(curr, best)))
1019 best = curr;
1020
1021 return best;
1022 }
1023
1024 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)1025 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
1026 {
1027 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
1028
1029 if (!last)
1030 return NULL;
1031
1032 return __node_2_se(last);
1033 }
1034
1035 /**************************************************************
1036 * Scheduling class statistics methods:
1037 */
1038 #ifdef CONFIG_SMP
sched_update_scaling(void)1039 int sched_update_scaling(void)
1040 {
1041 unsigned int factor = get_update_sysctl_factor();
1042
1043 #define WRT_SYSCTL(name) \
1044 (normalized_sysctl_##name = sysctl_##name / (factor))
1045 WRT_SYSCTL(sched_base_slice);
1046 #undef WRT_SYSCTL
1047
1048 return 0;
1049 }
1050 #endif
1051 #endif
1052
1053 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1054
1055 /*
1056 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1057 * this is probably good enough.
1058 */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1059 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1060 {
1061 bool skip_preempt = false;
1062
1063 trace_android_rvh_update_deadline(cfs_rq, se, &skip_preempt);
1064 if (skip_preempt)
1065 return false;
1066
1067 if ((s64)(se->vruntime - se->deadline) < 0)
1068 return false;
1069
1070 /*
1071 * For EEVDF the virtual time slope is determined by w_i (iow.
1072 * nice) while the request time r_i is determined by
1073 * sysctl_sched_base_slice.
1074 */
1075 if (!se->custom_slice)
1076 se->slice = sysctl_sched_base_slice;
1077
1078 /*
1079 * EEVDF: vd_i = ve_i + r_i / w_i
1080 */
1081 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1082
1083 /*
1084 * The task has consumed its request, reschedule.
1085 */
1086 return true;
1087 }
1088
1089 #include "pelt.h"
1090 #ifdef CONFIG_SMP
1091
1092 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1093 static unsigned long task_h_load(struct task_struct *p);
1094 static unsigned long capacity_of(int cpu);
1095
1096 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1097 void init_entity_runnable_average(struct sched_entity *se)
1098 {
1099 struct sched_avg *sa = &se->avg;
1100
1101 memset(sa, 0, sizeof(*sa));
1102
1103 /*
1104 * Tasks are initialized with full load to be seen as heavy tasks until
1105 * they get a chance to stabilize to their real load level.
1106 * Group entities are initialized with zero load to reflect the fact that
1107 * nothing has been attached to the task group yet.
1108 */
1109 if (entity_is_task(se))
1110 sa->load_avg = scale_load_down(se->load.weight);
1111
1112 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1113 }
1114
1115 /*
1116 * With new tasks being created, their initial util_avgs are extrapolated
1117 * based on the cfs_rq's current util_avg:
1118 *
1119 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1120 * * se_weight(se)
1121 *
1122 * However, in many cases, the above util_avg does not give a desired
1123 * value. Moreover, the sum of the util_avgs may be divergent, such
1124 * as when the series is a harmonic series.
1125 *
1126 * To solve this problem, we also cap the util_avg of successive tasks to
1127 * only 1/2 of the left utilization budget:
1128 *
1129 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1130 *
1131 * where n denotes the nth task and cpu_scale the CPU capacity.
1132 *
1133 * For example, for a CPU with 1024 of capacity, a simplest series from
1134 * the beginning would be like:
1135 *
1136 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1137 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1138 *
1139 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1140 * if util_avg > util_avg_cap.
1141 */
post_init_entity_util_avg(struct task_struct * p)1142 void post_init_entity_util_avg(struct task_struct *p)
1143 {
1144 struct sched_entity *se = &p->se;
1145 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1146 struct sched_avg *sa = &se->avg;
1147 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1148 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1149
1150 if (p->sched_class != &fair_sched_class) {
1151 /*
1152 * For !fair tasks do:
1153 *
1154 update_cfs_rq_load_avg(now, cfs_rq);
1155 attach_entity_load_avg(cfs_rq, se);
1156 switched_from_fair(rq, p);
1157 *
1158 * such that the next switched_to_fair() has the
1159 * expected state.
1160 */
1161 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1162 return;
1163 }
1164
1165 if (cap > 0) {
1166 if (cfs_rq->avg.util_avg != 0) {
1167 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se);
1168 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1169
1170 if (sa->util_avg > cap)
1171 sa->util_avg = cap;
1172 } else {
1173 sa->util_avg = cap;
1174 }
1175 }
1176
1177 sa->runnable_avg = sa->util_avg;
1178
1179 /* Hook before this se's util is attached to cfs_rq's util */
1180 trace_android_rvh_post_init_entity_util_avg(se);
1181 }
1182
1183 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1184 void init_entity_runnable_average(struct sched_entity *se)
1185 {
1186 }
post_init_entity_util_avg(struct task_struct * p)1187 void post_init_entity_util_avg(struct task_struct *p)
1188 {
1189 }
update_tg_load_avg(struct cfs_rq * cfs_rq)1190 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1191 {
1192 }
1193 #endif /* CONFIG_SMP */
1194
update_se(struct rq * rq,struct sched_entity * se)1195 static s64 update_se(struct rq *rq, struct sched_entity *se)
1196 {
1197 u64 now = rq_clock_task(rq);
1198 s64 delta_exec;
1199
1200 delta_exec = now - se->exec_start;
1201 if (unlikely(delta_exec <= 0))
1202 return delta_exec;
1203
1204 se->exec_start = now;
1205 if (entity_is_task(se)) {
1206 struct task_struct *donor = task_of(se);
1207 struct task_struct *running = rq->curr;
1208 /*
1209 * If se is a task, we account the time against the running
1210 * task, as w/ proxy-exec they may not be the same.
1211 */
1212 running->se.exec_start = now;
1213 running->se.sum_exec_runtime += delta_exec;
1214
1215 trace_sched_stat_runtime(running, delta_exec);
1216 account_group_exec_runtime(running, delta_exec);
1217
1218 /* cgroup time is always accounted against the donor */
1219 cgroup_account_cputime(donor, delta_exec);
1220 } else {
1221 /* If not task, account the time against donor se */
1222 se->sum_exec_runtime += delta_exec;
1223 }
1224
1225 if (schedstat_enabled()) {
1226 struct sched_statistics *stats;
1227
1228 stats = __schedstats_from_se(se);
1229 __schedstat_set(stats->exec_max,
1230 max(delta_exec, stats->exec_max));
1231 }
1232
1233 return delta_exec;
1234 }
1235
did_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * curr)1236 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1237 {
1238 if (!sched_feat(PREEMPT_SHORT))
1239 return false;
1240
1241 if (curr->vlag == curr->deadline)
1242 return false;
1243
1244 return !entity_eligible(cfs_rq, curr);
1245 }
1246
do_preempt_short(struct cfs_rq * cfs_rq,struct sched_entity * pse,struct sched_entity * se)1247 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1248 struct sched_entity *pse, struct sched_entity *se)
1249 {
1250 if (!sched_feat(PREEMPT_SHORT))
1251 return false;
1252
1253 if (pse->slice >= se->slice)
1254 return false;
1255
1256 if (!entity_eligible(cfs_rq, pse))
1257 return false;
1258
1259 if (entity_before(pse, se))
1260 return true;
1261
1262 if (!entity_eligible(cfs_rq, se))
1263 return true;
1264
1265 return false;
1266 }
1267
1268 /*
1269 * Used by other classes to account runtime.
1270 */
update_curr_common(struct rq * rq)1271 s64 update_curr_common(struct rq *rq)
1272 {
1273 return update_se(rq, &rq->donor->se);
1274 }
1275
1276 /*
1277 * Update the current task's runtime statistics.
1278 */
update_curr(struct cfs_rq * cfs_rq)1279 static void update_curr(struct cfs_rq *cfs_rq)
1280 {
1281 /*
1282 * Note: cfs_rq->curr corresponds to the task picked to
1283 * run (ie: rq->donor.se) which due to proxy-exec may
1284 * not necessarily be the actual task running
1285 * (rq->curr.se). This is easy to confuse!
1286 */
1287 struct sched_entity *curr = cfs_rq->curr;
1288 struct rq *rq = rq_of(cfs_rq);
1289 s64 delta_exec;
1290 bool resched;
1291
1292 if (unlikely(!curr))
1293 return;
1294
1295 delta_exec = update_se(rq, curr);
1296 if (unlikely(delta_exec <= 0))
1297 return;
1298
1299 curr->vruntime += calc_delta_fair(delta_exec, curr);
1300 resched = update_deadline(cfs_rq, curr);
1301 update_min_vruntime(cfs_rq);
1302
1303 if (entity_is_task(curr)) {
1304 /*
1305 * If the fair_server is active, we need to account for the
1306 * fair_server time whether or not the task is running on
1307 * behalf of fair_server or not:
1308 * - If the task is running on behalf of fair_server, we need
1309 * to limit its time based on the assigned runtime.
1310 * - Fair task that runs outside of fair_server should account
1311 * against fair_server such that it can account for this time
1312 * and possibly avoid running this period.
1313 */
1314 if (dl_server_active(&rq->fair_server))
1315 dl_server_update(&rq->fair_server, delta_exec);
1316 }
1317
1318 account_cfs_rq_runtime(cfs_rq, delta_exec);
1319
1320 if (cfs_rq->nr_running == 1)
1321 return;
1322
1323 if (resched || did_preempt_short(cfs_rq, curr)) {
1324 resched_curr(rq);
1325 clear_buddies(cfs_rq, curr);
1326 }
1327 }
1328
update_curr_fair(struct rq * rq)1329 static void update_curr_fair(struct rq *rq)
1330 {
1331 update_curr(cfs_rq_of(&rq->donor->se));
1332 }
1333
1334 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1335 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1336 {
1337 struct sched_statistics *stats;
1338 struct task_struct *p = NULL;
1339
1340 if (!schedstat_enabled())
1341 return;
1342
1343 stats = __schedstats_from_se(se);
1344
1345 if (entity_is_task(se))
1346 p = task_of(se);
1347
1348 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1349 }
1350
1351 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1352 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1353 {
1354 struct sched_statistics *stats;
1355 struct task_struct *p = NULL;
1356
1357 if (!schedstat_enabled())
1358 return;
1359
1360 stats = __schedstats_from_se(se);
1361
1362 /*
1363 * When the sched_schedstat changes from 0 to 1, some sched se
1364 * maybe already in the runqueue, the se->statistics.wait_start
1365 * will be 0.So it will let the delta wrong. We need to avoid this
1366 * scenario.
1367 */
1368 if (unlikely(!schedstat_val(stats->wait_start)))
1369 return;
1370
1371 if (entity_is_task(se))
1372 p = task_of(se);
1373
1374 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1375 }
1376
1377 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1378 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1379 {
1380 struct sched_statistics *stats;
1381 struct task_struct *tsk = NULL;
1382
1383 if (!schedstat_enabled())
1384 return;
1385
1386 stats = __schedstats_from_se(se);
1387
1388 if (entity_is_task(se))
1389 tsk = task_of(se);
1390
1391 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1392 }
1393
1394 /*
1395 * Task is being enqueued - update stats:
1396 */
1397 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1398 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1399 {
1400 if (!schedstat_enabled())
1401 return;
1402
1403 /*
1404 * Are we enqueueing a waiting task? (for current tasks
1405 * a dequeue/enqueue event is a NOP)
1406 */
1407 if (se != cfs_rq->curr)
1408 update_stats_wait_start_fair(cfs_rq, se);
1409
1410 if (flags & ENQUEUE_WAKEUP)
1411 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1412 }
1413
1414 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1415 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1416 {
1417
1418 if (!schedstat_enabled())
1419 return;
1420
1421 /*
1422 * Mark the end of the wait period if dequeueing a
1423 * waiting task:
1424 */
1425 if (se != cfs_rq->curr)
1426 update_stats_wait_end_fair(cfs_rq, se);
1427
1428 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1429 struct task_struct *tsk = task_of(se);
1430 unsigned int state;
1431
1432 /* XXX racy against TTWU */
1433 state = READ_ONCE(tsk->__state);
1434 if (state & TASK_INTERRUPTIBLE)
1435 __schedstat_set(tsk->stats.sleep_start,
1436 rq_clock(rq_of(cfs_rq)));
1437 if (state & TASK_UNINTERRUPTIBLE)
1438 __schedstat_set(tsk->stats.block_start,
1439 rq_clock(rq_of(cfs_rq)));
1440 }
1441 }
1442
1443 /*
1444 * We are picking a new current task - update its stats:
1445 */
1446 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1447 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1448 {
1449 /*
1450 * We are starting a new run period:
1451 */
1452 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1453 }
1454
1455 /**************************************************
1456 * Scheduling class queueing methods:
1457 */
1458
is_core_idle(int cpu)1459 static inline bool is_core_idle(int cpu)
1460 {
1461 #ifdef CONFIG_SCHED_SMT
1462 int sibling;
1463
1464 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1465 if (cpu == sibling)
1466 continue;
1467
1468 if (!idle_cpu(sibling))
1469 return false;
1470 }
1471 #endif
1472
1473 return true;
1474 }
1475
1476 #ifdef CONFIG_NUMA
1477 #define NUMA_IMBALANCE_MIN 2
1478
1479 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1480 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1481 {
1482 /*
1483 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1484 * threshold. Above this threshold, individual tasks may be contending
1485 * for both memory bandwidth and any shared HT resources. This is an
1486 * approximation as the number of running tasks may not be related to
1487 * the number of busy CPUs due to sched_setaffinity.
1488 */
1489 if (dst_running > imb_numa_nr)
1490 return imbalance;
1491
1492 /*
1493 * Allow a small imbalance based on a simple pair of communicating
1494 * tasks that remain local when the destination is lightly loaded.
1495 */
1496 if (imbalance <= NUMA_IMBALANCE_MIN)
1497 return 0;
1498
1499 return imbalance;
1500 }
1501 #endif /* CONFIG_NUMA */
1502
1503 #ifdef CONFIG_NUMA_BALANCING
1504 /*
1505 * Approximate time to scan a full NUMA task in ms. The task scan period is
1506 * calculated based on the tasks virtual memory size and
1507 * numa_balancing_scan_size.
1508 */
1509 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1510 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1511
1512 /* Portion of address space to scan in MB */
1513 unsigned int sysctl_numa_balancing_scan_size = 256;
1514
1515 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1516 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1517
1518 /* The page with hint page fault latency < threshold in ms is considered hot */
1519 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1520
1521 struct numa_group {
1522 refcount_t refcount;
1523
1524 spinlock_t lock; /* nr_tasks, tasks */
1525 int nr_tasks;
1526 pid_t gid;
1527 int active_nodes;
1528
1529 struct rcu_head rcu;
1530 unsigned long total_faults;
1531 unsigned long max_faults_cpu;
1532 /*
1533 * faults[] array is split into two regions: faults_mem and faults_cpu.
1534 *
1535 * Faults_cpu is used to decide whether memory should move
1536 * towards the CPU. As a consequence, these stats are weighted
1537 * more by CPU use than by memory faults.
1538 */
1539 unsigned long faults[];
1540 };
1541
1542 /*
1543 * For functions that can be called in multiple contexts that permit reading
1544 * ->numa_group (see struct task_struct for locking rules).
1545 */
deref_task_numa_group(struct task_struct * p)1546 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1547 {
1548 return rcu_dereference_check(p->numa_group, p == current ||
1549 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1550 }
1551
deref_curr_numa_group(struct task_struct * p)1552 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1553 {
1554 return rcu_dereference_protected(p->numa_group, p == current);
1555 }
1556
1557 static inline unsigned long group_faults_priv(struct numa_group *ng);
1558 static inline unsigned long group_faults_shared(struct numa_group *ng);
1559
task_nr_scan_windows(struct task_struct * p)1560 static unsigned int task_nr_scan_windows(struct task_struct *p)
1561 {
1562 unsigned long rss = 0;
1563 unsigned long nr_scan_pages;
1564
1565 /*
1566 * Calculations based on RSS as non-present and empty pages are skipped
1567 * by the PTE scanner and NUMA hinting faults should be trapped based
1568 * on resident pages
1569 */
1570 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1571 rss = get_mm_rss(p->mm);
1572 if (!rss)
1573 rss = nr_scan_pages;
1574
1575 rss = round_up(rss, nr_scan_pages);
1576 return rss / nr_scan_pages;
1577 }
1578
1579 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1580 #define MAX_SCAN_WINDOW 2560
1581
task_scan_min(struct task_struct * p)1582 static unsigned int task_scan_min(struct task_struct *p)
1583 {
1584 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1585 unsigned int scan, floor;
1586 unsigned int windows = 1;
1587
1588 if (scan_size < MAX_SCAN_WINDOW)
1589 windows = MAX_SCAN_WINDOW / scan_size;
1590 floor = 1000 / windows;
1591
1592 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1593 return max_t(unsigned int, floor, scan);
1594 }
1595
task_scan_start(struct task_struct * p)1596 static unsigned int task_scan_start(struct task_struct *p)
1597 {
1598 unsigned long smin = task_scan_min(p);
1599 unsigned long period = smin;
1600 struct numa_group *ng;
1601
1602 /* Scale the maximum scan period with the amount of shared memory. */
1603 rcu_read_lock();
1604 ng = rcu_dereference(p->numa_group);
1605 if (ng) {
1606 unsigned long shared = group_faults_shared(ng);
1607 unsigned long private = group_faults_priv(ng);
1608
1609 period *= refcount_read(&ng->refcount);
1610 period *= shared + 1;
1611 period /= private + shared + 1;
1612 }
1613 rcu_read_unlock();
1614
1615 return max(smin, period);
1616 }
1617
task_scan_max(struct task_struct * p)1618 static unsigned int task_scan_max(struct task_struct *p)
1619 {
1620 unsigned long smin = task_scan_min(p);
1621 unsigned long smax;
1622 struct numa_group *ng;
1623
1624 /* Watch for min being lower than max due to floor calculations */
1625 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1626
1627 /* Scale the maximum scan period with the amount of shared memory. */
1628 ng = deref_curr_numa_group(p);
1629 if (ng) {
1630 unsigned long shared = group_faults_shared(ng);
1631 unsigned long private = group_faults_priv(ng);
1632 unsigned long period = smax;
1633
1634 period *= refcount_read(&ng->refcount);
1635 period *= shared + 1;
1636 period /= private + shared + 1;
1637
1638 smax = max(smax, period);
1639 }
1640
1641 return max(smin, smax);
1642 }
1643
account_numa_enqueue(struct rq * rq,struct task_struct * p)1644 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1645 {
1646 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1647 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1648 }
1649
account_numa_dequeue(struct rq * rq,struct task_struct * p)1650 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1651 {
1652 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1653 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1654 }
1655
1656 /* Shared or private faults. */
1657 #define NR_NUMA_HINT_FAULT_TYPES 2
1658
1659 /* Memory and CPU locality */
1660 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1661
1662 /* Averaged statistics, and temporary buffers. */
1663 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1664
task_numa_group_id(struct task_struct * p)1665 pid_t task_numa_group_id(struct task_struct *p)
1666 {
1667 struct numa_group *ng;
1668 pid_t gid = 0;
1669
1670 rcu_read_lock();
1671 ng = rcu_dereference(p->numa_group);
1672 if (ng)
1673 gid = ng->gid;
1674 rcu_read_unlock();
1675
1676 return gid;
1677 }
1678
1679 /*
1680 * The averaged statistics, shared & private, memory & CPU,
1681 * occupy the first half of the array. The second half of the
1682 * array is for current counters, which are averaged into the
1683 * first set by task_numa_placement.
1684 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1685 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1686 {
1687 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1688 }
1689
task_faults(struct task_struct * p,int nid)1690 static inline unsigned long task_faults(struct task_struct *p, int nid)
1691 {
1692 if (!p->numa_faults)
1693 return 0;
1694
1695 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1696 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1697 }
1698
group_faults(struct task_struct * p,int nid)1699 static inline unsigned long group_faults(struct task_struct *p, int nid)
1700 {
1701 struct numa_group *ng = deref_task_numa_group(p);
1702
1703 if (!ng)
1704 return 0;
1705
1706 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1707 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1708 }
1709
group_faults_cpu(struct numa_group * group,int nid)1710 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1711 {
1712 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1713 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1714 }
1715
group_faults_priv(struct numa_group * ng)1716 static inline unsigned long group_faults_priv(struct numa_group *ng)
1717 {
1718 unsigned long faults = 0;
1719 int node;
1720
1721 for_each_online_node(node) {
1722 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1723 }
1724
1725 return faults;
1726 }
1727
group_faults_shared(struct numa_group * ng)1728 static inline unsigned long group_faults_shared(struct numa_group *ng)
1729 {
1730 unsigned long faults = 0;
1731 int node;
1732
1733 for_each_online_node(node) {
1734 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1735 }
1736
1737 return faults;
1738 }
1739
1740 /*
1741 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1742 * considered part of a numa group's pseudo-interleaving set. Migrations
1743 * between these nodes are slowed down, to allow things to settle down.
1744 */
1745 #define ACTIVE_NODE_FRACTION 3
1746
numa_is_active_node(int nid,struct numa_group * ng)1747 static bool numa_is_active_node(int nid, struct numa_group *ng)
1748 {
1749 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1750 }
1751
1752 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1753 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1754 int lim_dist, bool task)
1755 {
1756 unsigned long score = 0;
1757 int node, max_dist;
1758
1759 /*
1760 * All nodes are directly connected, and the same distance
1761 * from each other. No need for fancy placement algorithms.
1762 */
1763 if (sched_numa_topology_type == NUMA_DIRECT)
1764 return 0;
1765
1766 /* sched_max_numa_distance may be changed in parallel. */
1767 max_dist = READ_ONCE(sched_max_numa_distance);
1768 /*
1769 * This code is called for each node, introducing N^2 complexity,
1770 * which should be OK given the number of nodes rarely exceeds 8.
1771 */
1772 for_each_online_node(node) {
1773 unsigned long faults;
1774 int dist = node_distance(nid, node);
1775
1776 /*
1777 * The furthest away nodes in the system are not interesting
1778 * for placement; nid was already counted.
1779 */
1780 if (dist >= max_dist || node == nid)
1781 continue;
1782
1783 /*
1784 * On systems with a backplane NUMA topology, compare groups
1785 * of nodes, and move tasks towards the group with the most
1786 * memory accesses. When comparing two nodes at distance
1787 * "hoplimit", only nodes closer by than "hoplimit" are part
1788 * of each group. Skip other nodes.
1789 */
1790 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1791 continue;
1792
1793 /* Add up the faults from nearby nodes. */
1794 if (task)
1795 faults = task_faults(p, node);
1796 else
1797 faults = group_faults(p, node);
1798
1799 /*
1800 * On systems with a glueless mesh NUMA topology, there are
1801 * no fixed "groups of nodes". Instead, nodes that are not
1802 * directly connected bounce traffic through intermediate
1803 * nodes; a numa_group can occupy any set of nodes.
1804 * The further away a node is, the less the faults count.
1805 * This seems to result in good task placement.
1806 */
1807 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1808 faults *= (max_dist - dist);
1809 faults /= (max_dist - LOCAL_DISTANCE);
1810 }
1811
1812 score += faults;
1813 }
1814
1815 return score;
1816 }
1817
1818 /*
1819 * These return the fraction of accesses done by a particular task, or
1820 * task group, on a particular numa node. The group weight is given a
1821 * larger multiplier, in order to group tasks together that are almost
1822 * evenly spread out between numa nodes.
1823 */
task_weight(struct task_struct * p,int nid,int dist)1824 static inline unsigned long task_weight(struct task_struct *p, int nid,
1825 int dist)
1826 {
1827 unsigned long faults, total_faults;
1828
1829 if (!p->numa_faults)
1830 return 0;
1831
1832 total_faults = p->total_numa_faults;
1833
1834 if (!total_faults)
1835 return 0;
1836
1837 faults = task_faults(p, nid);
1838 faults += score_nearby_nodes(p, nid, dist, true);
1839
1840 return 1000 * faults / total_faults;
1841 }
1842
group_weight(struct task_struct * p,int nid,int dist)1843 static inline unsigned long group_weight(struct task_struct *p, int nid,
1844 int dist)
1845 {
1846 struct numa_group *ng = deref_task_numa_group(p);
1847 unsigned long faults, total_faults;
1848
1849 if (!ng)
1850 return 0;
1851
1852 total_faults = ng->total_faults;
1853
1854 if (!total_faults)
1855 return 0;
1856
1857 faults = group_faults(p, nid);
1858 faults += score_nearby_nodes(p, nid, dist, false);
1859
1860 return 1000 * faults / total_faults;
1861 }
1862
1863 /*
1864 * If memory tiering mode is enabled, cpupid of slow memory page is
1865 * used to record scan time instead of CPU and PID. When tiering mode
1866 * is disabled at run time, the scan time (in cpupid) will be
1867 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1868 * access out of array bound.
1869 */
cpupid_valid(int cpupid)1870 static inline bool cpupid_valid(int cpupid)
1871 {
1872 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1873 }
1874
1875 /*
1876 * For memory tiering mode, if there are enough free pages (more than
1877 * enough watermark defined here) in fast memory node, to take full
1878 * advantage of fast memory capacity, all recently accessed slow
1879 * memory pages will be migrated to fast memory node without
1880 * considering hot threshold.
1881 */
pgdat_free_space_enough(struct pglist_data * pgdat)1882 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1883 {
1884 int z;
1885 unsigned long enough_wmark;
1886
1887 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1888 pgdat->node_present_pages >> 4);
1889 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1890 struct zone *zone = pgdat->node_zones + z;
1891
1892 if (!populated_zone(zone))
1893 continue;
1894
1895 if (zone_watermark_ok(zone, 0,
1896 promo_wmark_pages(zone) + enough_wmark,
1897 ZONE_MOVABLE, 0))
1898 return true;
1899 }
1900 return false;
1901 }
1902
1903 /*
1904 * For memory tiering mode, when page tables are scanned, the scan
1905 * time will be recorded in struct page in addition to make page
1906 * PROT_NONE for slow memory page. So when the page is accessed, in
1907 * hint page fault handler, the hint page fault latency is calculated
1908 * via,
1909 *
1910 * hint page fault latency = hint page fault time - scan time
1911 *
1912 * The smaller the hint page fault latency, the higher the possibility
1913 * for the page to be hot.
1914 */
numa_hint_fault_latency(struct folio * folio)1915 static int numa_hint_fault_latency(struct folio *folio)
1916 {
1917 int last_time, time;
1918
1919 time = jiffies_to_msecs(jiffies);
1920 last_time = folio_xchg_access_time(folio, time);
1921
1922 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1923 }
1924
1925 /*
1926 * For memory tiering mode, too high promotion/demotion throughput may
1927 * hurt application latency. So we provide a mechanism to rate limit
1928 * the number of pages that are tried to be promoted.
1929 */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1930 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1931 unsigned long rate_limit, int nr)
1932 {
1933 unsigned long nr_cand;
1934 unsigned int now, start;
1935
1936 now = jiffies_to_msecs(jiffies);
1937 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1938 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1939 start = pgdat->nbp_rl_start;
1940 if (now - start > MSEC_PER_SEC &&
1941 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1942 pgdat->nbp_rl_nr_cand = nr_cand;
1943 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1944 return true;
1945 return false;
1946 }
1947
1948 #define NUMA_MIGRATION_ADJUST_STEPS 16
1949
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1950 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1951 unsigned long rate_limit,
1952 unsigned int ref_th)
1953 {
1954 unsigned int now, start, th_period, unit_th, th;
1955 unsigned long nr_cand, ref_cand, diff_cand;
1956
1957 now = jiffies_to_msecs(jiffies);
1958 th_period = sysctl_numa_balancing_scan_period_max;
1959 start = pgdat->nbp_th_start;
1960 if (now - start > th_period &&
1961 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1962 ref_cand = rate_limit *
1963 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1964 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1965 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1966 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1967 th = pgdat->nbp_threshold ? : ref_th;
1968 if (diff_cand > ref_cand * 11 / 10)
1969 th = max(th - unit_th, unit_th);
1970 else if (diff_cand < ref_cand * 9 / 10)
1971 th = min(th + unit_th, ref_th * 2);
1972 pgdat->nbp_th_nr_cand = nr_cand;
1973 pgdat->nbp_threshold = th;
1974 }
1975 }
1976
should_numa_migrate_memory(struct task_struct * p,struct folio * folio,int src_nid,int dst_cpu)1977 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1978 int src_nid, int dst_cpu)
1979 {
1980 struct numa_group *ng = deref_curr_numa_group(p);
1981 int dst_nid = cpu_to_node(dst_cpu);
1982 int last_cpupid, this_cpupid;
1983
1984 /*
1985 * Cannot migrate to memoryless nodes.
1986 */
1987 if (!node_state(dst_nid, N_MEMORY))
1988 return false;
1989
1990 /*
1991 * The pages in slow memory node should be migrated according
1992 * to hot/cold instead of private/shared.
1993 */
1994 if (folio_use_access_time(folio)) {
1995 struct pglist_data *pgdat;
1996 unsigned long rate_limit;
1997 unsigned int latency, th, def_th;
1998
1999 pgdat = NODE_DATA(dst_nid);
2000 if (pgdat_free_space_enough(pgdat)) {
2001 /* workload changed, reset hot threshold */
2002 pgdat->nbp_threshold = 0;
2003 return true;
2004 }
2005
2006 def_th = sysctl_numa_balancing_hot_threshold;
2007 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
2008 (20 - PAGE_SHIFT);
2009 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
2010
2011 th = pgdat->nbp_threshold ? : def_th;
2012 latency = numa_hint_fault_latency(folio);
2013 if (latency >= th)
2014 return false;
2015
2016 return !numa_promotion_rate_limit(pgdat, rate_limit,
2017 folio_nr_pages(folio));
2018 }
2019
2020 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
2021 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
2022
2023 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
2024 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
2025 return false;
2026
2027 /*
2028 * Allow first faults or private faults to migrate immediately early in
2029 * the lifetime of a task. The magic number 4 is based on waiting for
2030 * two full passes of the "multi-stage node selection" test that is
2031 * executed below.
2032 */
2033 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
2034 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
2035 return true;
2036
2037 /*
2038 * Multi-stage node selection is used in conjunction with a periodic
2039 * migration fault to build a temporal task<->page relation. By using
2040 * a two-stage filter we remove short/unlikely relations.
2041 *
2042 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
2043 * a task's usage of a particular page (n_p) per total usage of this
2044 * page (n_t) (in a given time-span) to a probability.
2045 *
2046 * Our periodic faults will sample this probability and getting the
2047 * same result twice in a row, given these samples are fully
2048 * independent, is then given by P(n)^2, provided our sample period
2049 * is sufficiently short compared to the usage pattern.
2050 *
2051 * This quadric squishes small probabilities, making it less likely we
2052 * act on an unlikely task<->page relation.
2053 */
2054 if (!cpupid_pid_unset(last_cpupid) &&
2055 cpupid_to_nid(last_cpupid) != dst_nid)
2056 return false;
2057
2058 /* Always allow migrate on private faults */
2059 if (cpupid_match_pid(p, last_cpupid))
2060 return true;
2061
2062 /* A shared fault, but p->numa_group has not been set up yet. */
2063 if (!ng)
2064 return true;
2065
2066 /*
2067 * Destination node is much more heavily used than the source
2068 * node? Allow migration.
2069 */
2070 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2071 ACTIVE_NODE_FRACTION)
2072 return true;
2073
2074 /*
2075 * Distribute memory according to CPU & memory use on each node,
2076 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2077 *
2078 * faults_cpu(dst) 3 faults_cpu(src)
2079 * --------------- * - > ---------------
2080 * faults_mem(dst) 4 faults_mem(src)
2081 */
2082 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2083 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2084 }
2085
2086 /*
2087 * 'numa_type' describes the node at the moment of load balancing.
2088 */
2089 enum numa_type {
2090 /* The node has spare capacity that can be used to run more tasks. */
2091 node_has_spare = 0,
2092 /*
2093 * The node is fully used and the tasks don't compete for more CPU
2094 * cycles. Nevertheless, some tasks might wait before running.
2095 */
2096 node_fully_busy,
2097 /*
2098 * The node is overloaded and can't provide expected CPU cycles to all
2099 * tasks.
2100 */
2101 node_overloaded
2102 };
2103
2104 /* Cached statistics for all CPUs within a node */
2105 struct numa_stats {
2106 unsigned long load;
2107 unsigned long runnable;
2108 unsigned long util;
2109 /* Total compute capacity of CPUs on a node */
2110 unsigned long compute_capacity;
2111 unsigned int nr_running;
2112 unsigned int weight;
2113 enum numa_type node_type;
2114 int idle_cpu;
2115 };
2116
2117 struct task_numa_env {
2118 struct task_struct *p;
2119
2120 int src_cpu, src_nid;
2121 int dst_cpu, dst_nid;
2122 int imb_numa_nr;
2123
2124 struct numa_stats src_stats, dst_stats;
2125
2126 int imbalance_pct;
2127 int dist;
2128
2129 struct task_struct *best_task;
2130 long best_imp;
2131 int best_cpu;
2132 };
2133
2134 static unsigned long cpu_load(struct rq *rq);
2135 static unsigned long cpu_runnable(struct rq *rq);
2136
2137 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2138 numa_type numa_classify(unsigned int imbalance_pct,
2139 struct numa_stats *ns)
2140 {
2141 if ((ns->nr_running > ns->weight) &&
2142 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2143 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2144 return node_overloaded;
2145
2146 if ((ns->nr_running < ns->weight) ||
2147 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2148 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2149 return node_has_spare;
2150
2151 return node_fully_busy;
2152 }
2153
2154 #ifdef CONFIG_SCHED_SMT
2155 /* Forward declarations of select_idle_sibling helpers */
2156 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2157 static inline int numa_idle_core(int idle_core, int cpu)
2158 {
2159 if (!static_branch_likely(&sched_smt_present) ||
2160 idle_core >= 0 || !test_idle_cores(cpu))
2161 return idle_core;
2162
2163 /*
2164 * Prefer cores instead of packing HT siblings
2165 * and triggering future load balancing.
2166 */
2167 if (is_core_idle(cpu))
2168 idle_core = cpu;
2169
2170 return idle_core;
2171 }
2172 #else
numa_idle_core(int idle_core,int cpu)2173 static inline int numa_idle_core(int idle_core, int cpu)
2174 {
2175 return idle_core;
2176 }
2177 #endif
2178
2179 /*
2180 * Gather all necessary information to make NUMA balancing placement
2181 * decisions that are compatible with standard load balancer. This
2182 * borrows code and logic from update_sg_lb_stats but sharing a
2183 * common implementation is impractical.
2184 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2185 static void update_numa_stats(struct task_numa_env *env,
2186 struct numa_stats *ns, int nid,
2187 bool find_idle)
2188 {
2189 int cpu, idle_core = -1;
2190
2191 memset(ns, 0, sizeof(*ns));
2192 ns->idle_cpu = -1;
2193
2194 rcu_read_lock();
2195 for_each_cpu(cpu, cpumask_of_node(nid)) {
2196 struct rq *rq = cpu_rq(cpu);
2197
2198 ns->load += cpu_load(rq);
2199 ns->runnable += cpu_runnable(rq);
2200 ns->util += cpu_util_cfs(cpu);
2201 ns->nr_running += rq->cfs.h_nr_running;
2202 ns->compute_capacity += capacity_of(cpu);
2203
2204 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2205 if (READ_ONCE(rq->numa_migrate_on) ||
2206 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2207 continue;
2208
2209 if (ns->idle_cpu == -1)
2210 ns->idle_cpu = cpu;
2211
2212 idle_core = numa_idle_core(idle_core, cpu);
2213 }
2214 }
2215 rcu_read_unlock();
2216
2217 ns->weight = cpumask_weight(cpumask_of_node(nid));
2218
2219 ns->node_type = numa_classify(env->imbalance_pct, ns);
2220
2221 if (idle_core >= 0)
2222 ns->idle_cpu = idle_core;
2223 }
2224
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2225 static void task_numa_assign(struct task_numa_env *env,
2226 struct task_struct *p, long imp)
2227 {
2228 struct rq *rq = cpu_rq(env->dst_cpu);
2229
2230 /* Check if run-queue part of active NUMA balance. */
2231 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2232 int cpu;
2233 int start = env->dst_cpu;
2234
2235 /* Find alternative idle CPU. */
2236 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2237 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2238 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2239 continue;
2240 }
2241
2242 env->dst_cpu = cpu;
2243 rq = cpu_rq(env->dst_cpu);
2244 if (!xchg(&rq->numa_migrate_on, 1))
2245 goto assign;
2246 }
2247
2248 /* Failed to find an alternative idle CPU */
2249 return;
2250 }
2251
2252 assign:
2253 /*
2254 * Clear previous best_cpu/rq numa-migrate flag, since task now
2255 * found a better CPU to move/swap.
2256 */
2257 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2258 rq = cpu_rq(env->best_cpu);
2259 WRITE_ONCE(rq->numa_migrate_on, 0);
2260 }
2261
2262 if (env->best_task)
2263 put_task_struct(env->best_task);
2264 if (p)
2265 get_task_struct(p);
2266
2267 env->best_task = p;
2268 env->best_imp = imp;
2269 env->best_cpu = env->dst_cpu;
2270 }
2271
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2272 static bool load_too_imbalanced(long src_load, long dst_load,
2273 struct task_numa_env *env)
2274 {
2275 long imb, old_imb;
2276 long orig_src_load, orig_dst_load;
2277 long src_capacity, dst_capacity;
2278
2279 /*
2280 * The load is corrected for the CPU capacity available on each node.
2281 *
2282 * src_load dst_load
2283 * ------------ vs ---------
2284 * src_capacity dst_capacity
2285 */
2286 src_capacity = env->src_stats.compute_capacity;
2287 dst_capacity = env->dst_stats.compute_capacity;
2288
2289 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2290
2291 orig_src_load = env->src_stats.load;
2292 orig_dst_load = env->dst_stats.load;
2293
2294 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2295
2296 /* Would this change make things worse? */
2297 return (imb > old_imb);
2298 }
2299
2300 /*
2301 * Maximum NUMA importance can be 1998 (2*999);
2302 * SMALLIMP @ 30 would be close to 1998/64.
2303 * Used to deter task migration.
2304 */
2305 #define SMALLIMP 30
2306
2307 /*
2308 * This checks if the overall compute and NUMA accesses of the system would
2309 * be improved if the source tasks was migrated to the target dst_cpu taking
2310 * into account that it might be best if task running on the dst_cpu should
2311 * be exchanged with the source task
2312 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2313 static bool task_numa_compare(struct task_numa_env *env,
2314 long taskimp, long groupimp, bool maymove)
2315 {
2316 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2317 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2318 long imp = p_ng ? groupimp : taskimp;
2319 struct task_struct *cur;
2320 long src_load, dst_load;
2321 int dist = env->dist;
2322 long moveimp = imp;
2323 long load;
2324 bool stopsearch = false;
2325
2326 if (READ_ONCE(dst_rq->numa_migrate_on))
2327 return false;
2328
2329 rcu_read_lock();
2330 cur = rcu_dereference(dst_rq->curr);
2331 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2332 cur = NULL;
2333
2334 /*
2335 * Because we have preemption enabled we can get migrated around and
2336 * end try selecting ourselves (current == env->p) as a swap candidate.
2337 */
2338 if (cur == env->p) {
2339 stopsearch = true;
2340 goto unlock;
2341 }
2342
2343 if (!cur) {
2344 if (maymove && moveimp >= env->best_imp)
2345 goto assign;
2346 else
2347 goto unlock;
2348 }
2349
2350 /* Skip this swap candidate if cannot move to the source cpu. */
2351 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2352 goto unlock;
2353
2354 /*
2355 * Skip this swap candidate if it is not moving to its preferred
2356 * node and the best task is.
2357 */
2358 if (env->best_task &&
2359 env->best_task->numa_preferred_nid == env->src_nid &&
2360 cur->numa_preferred_nid != env->src_nid) {
2361 goto unlock;
2362 }
2363
2364 /*
2365 * "imp" is the fault differential for the source task between the
2366 * source and destination node. Calculate the total differential for
2367 * the source task and potential destination task. The more negative
2368 * the value is, the more remote accesses that would be expected to
2369 * be incurred if the tasks were swapped.
2370 *
2371 * If dst and source tasks are in the same NUMA group, or not
2372 * in any group then look only at task weights.
2373 */
2374 cur_ng = rcu_dereference(cur->numa_group);
2375 if (cur_ng == p_ng) {
2376 /*
2377 * Do not swap within a group or between tasks that have
2378 * no group if there is spare capacity. Swapping does
2379 * not address the load imbalance and helps one task at
2380 * the cost of punishing another.
2381 */
2382 if (env->dst_stats.node_type == node_has_spare)
2383 goto unlock;
2384
2385 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2386 task_weight(cur, env->dst_nid, dist);
2387 /*
2388 * Add some hysteresis to prevent swapping the
2389 * tasks within a group over tiny differences.
2390 */
2391 if (cur_ng)
2392 imp -= imp / 16;
2393 } else {
2394 /*
2395 * Compare the group weights. If a task is all by itself
2396 * (not part of a group), use the task weight instead.
2397 */
2398 if (cur_ng && p_ng)
2399 imp += group_weight(cur, env->src_nid, dist) -
2400 group_weight(cur, env->dst_nid, dist);
2401 else
2402 imp += task_weight(cur, env->src_nid, dist) -
2403 task_weight(cur, env->dst_nid, dist);
2404 }
2405
2406 /* Discourage picking a task already on its preferred node */
2407 if (cur->numa_preferred_nid == env->dst_nid)
2408 imp -= imp / 16;
2409
2410 /*
2411 * Encourage picking a task that moves to its preferred node.
2412 * This potentially makes imp larger than it's maximum of
2413 * 1998 (see SMALLIMP and task_weight for why) but in this
2414 * case, it does not matter.
2415 */
2416 if (cur->numa_preferred_nid == env->src_nid)
2417 imp += imp / 8;
2418
2419 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2420 imp = moveimp;
2421 cur = NULL;
2422 goto assign;
2423 }
2424
2425 /*
2426 * Prefer swapping with a task moving to its preferred node over a
2427 * task that is not.
2428 */
2429 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2430 env->best_task->numa_preferred_nid != env->src_nid) {
2431 goto assign;
2432 }
2433
2434 /*
2435 * If the NUMA importance is less than SMALLIMP,
2436 * task migration might only result in ping pong
2437 * of tasks and also hurt performance due to cache
2438 * misses.
2439 */
2440 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2441 goto unlock;
2442
2443 /*
2444 * In the overloaded case, try and keep the load balanced.
2445 */
2446 load = task_h_load(env->p) - task_h_load(cur);
2447 if (!load)
2448 goto assign;
2449
2450 dst_load = env->dst_stats.load + load;
2451 src_load = env->src_stats.load - load;
2452
2453 if (load_too_imbalanced(src_load, dst_load, env))
2454 goto unlock;
2455
2456 assign:
2457 /* Evaluate an idle CPU for a task numa move. */
2458 if (!cur) {
2459 int cpu = env->dst_stats.idle_cpu;
2460
2461 /* Nothing cached so current CPU went idle since the search. */
2462 if (cpu < 0)
2463 cpu = env->dst_cpu;
2464
2465 /*
2466 * If the CPU is no longer truly idle and the previous best CPU
2467 * is, keep using it.
2468 */
2469 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2470 idle_cpu(env->best_cpu)) {
2471 cpu = env->best_cpu;
2472 }
2473
2474 env->dst_cpu = cpu;
2475 }
2476
2477 task_numa_assign(env, cur, imp);
2478
2479 /*
2480 * If a move to idle is allowed because there is capacity or load
2481 * balance improves then stop the search. While a better swap
2482 * candidate may exist, a search is not free.
2483 */
2484 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2485 stopsearch = true;
2486
2487 /*
2488 * If a swap candidate must be identified and the current best task
2489 * moves its preferred node then stop the search.
2490 */
2491 if (!maymove && env->best_task &&
2492 env->best_task->numa_preferred_nid == env->src_nid) {
2493 stopsearch = true;
2494 }
2495 unlock:
2496 rcu_read_unlock();
2497
2498 return stopsearch;
2499 }
2500
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2501 static void task_numa_find_cpu(struct task_numa_env *env,
2502 long taskimp, long groupimp)
2503 {
2504 bool maymove = false;
2505 int cpu;
2506
2507 /*
2508 * If dst node has spare capacity, then check if there is an
2509 * imbalance that would be overruled by the load balancer.
2510 */
2511 if (env->dst_stats.node_type == node_has_spare) {
2512 unsigned int imbalance;
2513 int src_running, dst_running;
2514
2515 /*
2516 * Would movement cause an imbalance? Note that if src has
2517 * more running tasks that the imbalance is ignored as the
2518 * move improves the imbalance from the perspective of the
2519 * CPU load balancer.
2520 * */
2521 src_running = env->src_stats.nr_running - 1;
2522 dst_running = env->dst_stats.nr_running + 1;
2523 imbalance = max(0, dst_running - src_running);
2524 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2525 env->imb_numa_nr);
2526
2527 /* Use idle CPU if there is no imbalance */
2528 if (!imbalance) {
2529 maymove = true;
2530 if (env->dst_stats.idle_cpu >= 0) {
2531 env->dst_cpu = env->dst_stats.idle_cpu;
2532 task_numa_assign(env, NULL, 0);
2533 return;
2534 }
2535 }
2536 } else {
2537 long src_load, dst_load, load;
2538 /*
2539 * If the improvement from just moving env->p direction is better
2540 * than swapping tasks around, check if a move is possible.
2541 */
2542 load = task_h_load(env->p);
2543 dst_load = env->dst_stats.load + load;
2544 src_load = env->src_stats.load - load;
2545 maymove = !load_too_imbalanced(src_load, dst_load, env);
2546 }
2547
2548 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2549 /* Skip this CPU if the source task cannot migrate */
2550 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2551 continue;
2552
2553 env->dst_cpu = cpu;
2554 if (task_numa_compare(env, taskimp, groupimp, maymove))
2555 break;
2556 }
2557 }
2558
task_numa_migrate(struct task_struct * p)2559 static int task_numa_migrate(struct task_struct *p)
2560 {
2561 struct task_numa_env env = {
2562 .p = p,
2563
2564 .src_cpu = task_cpu(p),
2565 .src_nid = task_node(p),
2566
2567 .imbalance_pct = 112,
2568
2569 .best_task = NULL,
2570 .best_imp = 0,
2571 .best_cpu = -1,
2572 };
2573 unsigned long taskweight, groupweight;
2574 struct sched_domain *sd;
2575 long taskimp, groupimp;
2576 struct numa_group *ng;
2577 struct rq *best_rq;
2578 int nid, ret, dist;
2579
2580 /*
2581 * Pick the lowest SD_NUMA domain, as that would have the smallest
2582 * imbalance and would be the first to start moving tasks about.
2583 *
2584 * And we want to avoid any moving of tasks about, as that would create
2585 * random movement of tasks -- counter the numa conditions we're trying
2586 * to satisfy here.
2587 */
2588 rcu_read_lock();
2589 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2590 if (sd) {
2591 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2592 env.imb_numa_nr = sd->imb_numa_nr;
2593 }
2594 rcu_read_unlock();
2595
2596 /*
2597 * Cpusets can break the scheduler domain tree into smaller
2598 * balance domains, some of which do not cross NUMA boundaries.
2599 * Tasks that are "trapped" in such domains cannot be migrated
2600 * elsewhere, so there is no point in (re)trying.
2601 */
2602 if (unlikely(!sd)) {
2603 sched_setnuma(p, task_node(p));
2604 return -EINVAL;
2605 }
2606
2607 env.dst_nid = p->numa_preferred_nid;
2608 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2609 taskweight = task_weight(p, env.src_nid, dist);
2610 groupweight = group_weight(p, env.src_nid, dist);
2611 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2612 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2613 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2614 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2615
2616 /* Try to find a spot on the preferred nid. */
2617 task_numa_find_cpu(&env, taskimp, groupimp);
2618
2619 /*
2620 * Look at other nodes in these cases:
2621 * - there is no space available on the preferred_nid
2622 * - the task is part of a numa_group that is interleaved across
2623 * multiple NUMA nodes; in order to better consolidate the group,
2624 * we need to check other locations.
2625 */
2626 ng = deref_curr_numa_group(p);
2627 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2628 for_each_node_state(nid, N_CPU) {
2629 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2630 continue;
2631
2632 dist = node_distance(env.src_nid, env.dst_nid);
2633 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2634 dist != env.dist) {
2635 taskweight = task_weight(p, env.src_nid, dist);
2636 groupweight = group_weight(p, env.src_nid, dist);
2637 }
2638
2639 /* Only consider nodes where both task and groups benefit */
2640 taskimp = task_weight(p, nid, dist) - taskweight;
2641 groupimp = group_weight(p, nid, dist) - groupweight;
2642 if (taskimp < 0 && groupimp < 0)
2643 continue;
2644
2645 env.dist = dist;
2646 env.dst_nid = nid;
2647 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2648 task_numa_find_cpu(&env, taskimp, groupimp);
2649 }
2650 }
2651
2652 /*
2653 * If the task is part of a workload that spans multiple NUMA nodes,
2654 * and is migrating into one of the workload's active nodes, remember
2655 * this node as the task's preferred numa node, so the workload can
2656 * settle down.
2657 * A task that migrated to a second choice node will be better off
2658 * trying for a better one later. Do not set the preferred node here.
2659 */
2660 if (ng) {
2661 if (env.best_cpu == -1)
2662 nid = env.src_nid;
2663 else
2664 nid = cpu_to_node(env.best_cpu);
2665
2666 if (nid != p->numa_preferred_nid)
2667 sched_setnuma(p, nid);
2668 }
2669
2670 /* No better CPU than the current one was found. */
2671 if (env.best_cpu == -1) {
2672 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2673 return -EAGAIN;
2674 }
2675
2676 best_rq = cpu_rq(env.best_cpu);
2677 if (env.best_task == NULL) {
2678 ret = migrate_task_to(p, env.best_cpu);
2679 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2680 if (ret != 0)
2681 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2682 return ret;
2683 }
2684
2685 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2686 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2687
2688 if (ret != 0)
2689 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2690 put_task_struct(env.best_task);
2691 return ret;
2692 }
2693
2694 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2695 static void numa_migrate_preferred(struct task_struct *p)
2696 {
2697 unsigned long interval = HZ;
2698
2699 /* This task has no NUMA fault statistics yet */
2700 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2701 return;
2702
2703 /* Periodically retry migrating the task to the preferred node */
2704 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2705 p->numa_migrate_retry = jiffies + interval;
2706
2707 /* Success if task is already running on preferred CPU */
2708 if (task_node(p) == p->numa_preferred_nid)
2709 return;
2710
2711 /* Otherwise, try migrate to a CPU on the preferred node */
2712 task_numa_migrate(p);
2713 }
2714
2715 /*
2716 * Find out how many nodes the workload is actively running on. Do this by
2717 * tracking the nodes from which NUMA hinting faults are triggered. This can
2718 * be different from the set of nodes where the workload's memory is currently
2719 * located.
2720 */
numa_group_count_active_nodes(struct numa_group * numa_group)2721 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2722 {
2723 unsigned long faults, max_faults = 0;
2724 int nid, active_nodes = 0;
2725
2726 for_each_node_state(nid, N_CPU) {
2727 faults = group_faults_cpu(numa_group, nid);
2728 if (faults > max_faults)
2729 max_faults = faults;
2730 }
2731
2732 for_each_node_state(nid, N_CPU) {
2733 faults = group_faults_cpu(numa_group, nid);
2734 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2735 active_nodes++;
2736 }
2737
2738 numa_group->max_faults_cpu = max_faults;
2739 numa_group->active_nodes = active_nodes;
2740 }
2741
2742 /*
2743 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2744 * increments. The more local the fault statistics are, the higher the scan
2745 * period will be for the next scan window. If local/(local+remote) ratio is
2746 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2747 * the scan period will decrease. Aim for 70% local accesses.
2748 */
2749 #define NUMA_PERIOD_SLOTS 10
2750 #define NUMA_PERIOD_THRESHOLD 7
2751
2752 /*
2753 * Increase the scan period (slow down scanning) if the majority of
2754 * our memory is already on our local node, or if the majority of
2755 * the page accesses are shared with other processes.
2756 * Otherwise, decrease the scan period.
2757 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2758 static void update_task_scan_period(struct task_struct *p,
2759 unsigned long shared, unsigned long private)
2760 {
2761 unsigned int period_slot;
2762 int lr_ratio, ps_ratio;
2763 int diff;
2764
2765 unsigned long remote = p->numa_faults_locality[0];
2766 unsigned long local = p->numa_faults_locality[1];
2767
2768 /*
2769 * If there were no record hinting faults then either the task is
2770 * completely idle or all activity is in areas that are not of interest
2771 * to automatic numa balancing. Related to that, if there were failed
2772 * migration then it implies we are migrating too quickly or the local
2773 * node is overloaded. In either case, scan slower
2774 */
2775 if (local + shared == 0 || p->numa_faults_locality[2]) {
2776 p->numa_scan_period = min(p->numa_scan_period_max,
2777 p->numa_scan_period << 1);
2778
2779 p->mm->numa_next_scan = jiffies +
2780 msecs_to_jiffies(p->numa_scan_period);
2781
2782 return;
2783 }
2784
2785 /*
2786 * Prepare to scale scan period relative to the current period.
2787 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2788 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2789 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2790 */
2791 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2792 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2793 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2794
2795 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2796 /*
2797 * Most memory accesses are local. There is no need to
2798 * do fast NUMA scanning, since memory is already local.
2799 */
2800 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2801 if (!slot)
2802 slot = 1;
2803 diff = slot * period_slot;
2804 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2805 /*
2806 * Most memory accesses are shared with other tasks.
2807 * There is no point in continuing fast NUMA scanning,
2808 * since other tasks may just move the memory elsewhere.
2809 */
2810 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2811 if (!slot)
2812 slot = 1;
2813 diff = slot * period_slot;
2814 } else {
2815 /*
2816 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2817 * yet they are not on the local NUMA node. Speed up
2818 * NUMA scanning to get the memory moved over.
2819 */
2820 int ratio = max(lr_ratio, ps_ratio);
2821 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2822 }
2823
2824 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2825 task_scan_min(p), task_scan_max(p));
2826 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2827 }
2828
2829 /*
2830 * Get the fraction of time the task has been running since the last
2831 * NUMA placement cycle. The scheduler keeps similar statistics, but
2832 * decays those on a 32ms period, which is orders of magnitude off
2833 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2834 * stats only if the task is so new there are no NUMA statistics yet.
2835 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2836 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2837 {
2838 u64 runtime, delta, now;
2839 /* Use the start of this time slice to avoid calculations. */
2840 now = p->se.exec_start;
2841 runtime = p->se.sum_exec_runtime;
2842
2843 if (p->last_task_numa_placement) {
2844 delta = runtime - p->last_sum_exec_runtime;
2845 *period = now - p->last_task_numa_placement;
2846
2847 /* Avoid time going backwards, prevent potential divide error: */
2848 if (unlikely((s64)*period < 0))
2849 *period = 0;
2850 } else {
2851 delta = p->se.avg.load_sum;
2852 *period = LOAD_AVG_MAX;
2853 }
2854
2855 p->last_sum_exec_runtime = runtime;
2856 p->last_task_numa_placement = now;
2857
2858 return delta;
2859 }
2860
2861 /*
2862 * Determine the preferred nid for a task in a numa_group. This needs to
2863 * be done in a way that produces consistent results with group_weight,
2864 * otherwise workloads might not converge.
2865 */
preferred_group_nid(struct task_struct * p,int nid)2866 static int preferred_group_nid(struct task_struct *p, int nid)
2867 {
2868 nodemask_t nodes;
2869 int dist;
2870
2871 /* Direct connections between all NUMA nodes. */
2872 if (sched_numa_topology_type == NUMA_DIRECT)
2873 return nid;
2874
2875 /*
2876 * On a system with glueless mesh NUMA topology, group_weight
2877 * scores nodes according to the number of NUMA hinting faults on
2878 * both the node itself, and on nearby nodes.
2879 */
2880 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2881 unsigned long score, max_score = 0;
2882 int node, max_node = nid;
2883
2884 dist = sched_max_numa_distance;
2885
2886 for_each_node_state(node, N_CPU) {
2887 score = group_weight(p, node, dist);
2888 if (score > max_score) {
2889 max_score = score;
2890 max_node = node;
2891 }
2892 }
2893 return max_node;
2894 }
2895
2896 /*
2897 * Finding the preferred nid in a system with NUMA backplane
2898 * interconnect topology is more involved. The goal is to locate
2899 * tasks from numa_groups near each other in the system, and
2900 * untangle workloads from different sides of the system. This requires
2901 * searching down the hierarchy of node groups, recursively searching
2902 * inside the highest scoring group of nodes. The nodemask tricks
2903 * keep the complexity of the search down.
2904 */
2905 nodes = node_states[N_CPU];
2906 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2907 unsigned long max_faults = 0;
2908 nodemask_t max_group = NODE_MASK_NONE;
2909 int a, b;
2910
2911 /* Are there nodes at this distance from each other? */
2912 if (!find_numa_distance(dist))
2913 continue;
2914
2915 for_each_node_mask(a, nodes) {
2916 unsigned long faults = 0;
2917 nodemask_t this_group;
2918 nodes_clear(this_group);
2919
2920 /* Sum group's NUMA faults; includes a==b case. */
2921 for_each_node_mask(b, nodes) {
2922 if (node_distance(a, b) < dist) {
2923 faults += group_faults(p, b);
2924 node_set(b, this_group);
2925 node_clear(b, nodes);
2926 }
2927 }
2928
2929 /* Remember the top group. */
2930 if (faults > max_faults) {
2931 max_faults = faults;
2932 max_group = this_group;
2933 /*
2934 * subtle: at the smallest distance there is
2935 * just one node left in each "group", the
2936 * winner is the preferred nid.
2937 */
2938 nid = a;
2939 }
2940 }
2941 /* Next round, evaluate the nodes within max_group. */
2942 if (!max_faults)
2943 break;
2944 nodes = max_group;
2945 }
2946 return nid;
2947 }
2948
task_numa_placement(struct task_struct * p)2949 static void task_numa_placement(struct task_struct *p)
2950 {
2951 int seq, nid, max_nid = NUMA_NO_NODE;
2952 unsigned long max_faults = 0;
2953 unsigned long fault_types[2] = { 0, 0 };
2954 unsigned long total_faults;
2955 u64 runtime, period;
2956 spinlock_t *group_lock = NULL;
2957 struct numa_group *ng;
2958
2959 /*
2960 * The p->mm->numa_scan_seq field gets updated without
2961 * exclusive access. Use READ_ONCE() here to ensure
2962 * that the field is read in a single access:
2963 */
2964 seq = READ_ONCE(p->mm->numa_scan_seq);
2965 if (p->numa_scan_seq == seq)
2966 return;
2967 p->numa_scan_seq = seq;
2968 p->numa_scan_period_max = task_scan_max(p);
2969
2970 total_faults = p->numa_faults_locality[0] +
2971 p->numa_faults_locality[1];
2972 runtime = numa_get_avg_runtime(p, &period);
2973
2974 /* If the task is part of a group prevent parallel updates to group stats */
2975 ng = deref_curr_numa_group(p);
2976 if (ng) {
2977 group_lock = &ng->lock;
2978 spin_lock_irq(group_lock);
2979 }
2980
2981 /* Find the node with the highest number of faults */
2982 for_each_online_node(nid) {
2983 /* Keep track of the offsets in numa_faults array */
2984 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2985 unsigned long faults = 0, group_faults = 0;
2986 int priv;
2987
2988 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2989 long diff, f_diff, f_weight;
2990
2991 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2992 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2993 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2994 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2995
2996 /* Decay existing window, copy faults since last scan */
2997 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2998 fault_types[priv] += p->numa_faults[membuf_idx];
2999 p->numa_faults[membuf_idx] = 0;
3000
3001 /*
3002 * Normalize the faults_from, so all tasks in a group
3003 * count according to CPU use, instead of by the raw
3004 * number of faults. Tasks with little runtime have
3005 * little over-all impact on throughput, and thus their
3006 * faults are less important.
3007 */
3008 f_weight = div64_u64(runtime << 16, period + 1);
3009 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
3010 (total_faults + 1);
3011 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
3012 p->numa_faults[cpubuf_idx] = 0;
3013
3014 p->numa_faults[mem_idx] += diff;
3015 p->numa_faults[cpu_idx] += f_diff;
3016 faults += p->numa_faults[mem_idx];
3017 p->total_numa_faults += diff;
3018 if (ng) {
3019 /*
3020 * safe because we can only change our own group
3021 *
3022 * mem_idx represents the offset for a given
3023 * nid and priv in a specific region because it
3024 * is at the beginning of the numa_faults array.
3025 */
3026 ng->faults[mem_idx] += diff;
3027 ng->faults[cpu_idx] += f_diff;
3028 ng->total_faults += diff;
3029 group_faults += ng->faults[mem_idx];
3030 }
3031 }
3032
3033 if (!ng) {
3034 if (faults > max_faults) {
3035 max_faults = faults;
3036 max_nid = nid;
3037 }
3038 } else if (group_faults > max_faults) {
3039 max_faults = group_faults;
3040 max_nid = nid;
3041 }
3042 }
3043
3044 /* Cannot migrate task to CPU-less node */
3045 max_nid = numa_nearest_node(max_nid, N_CPU);
3046
3047 if (ng) {
3048 numa_group_count_active_nodes(ng);
3049 spin_unlock_irq(group_lock);
3050 max_nid = preferred_group_nid(p, max_nid);
3051 }
3052
3053 if (max_faults) {
3054 /* Set the new preferred node */
3055 if (max_nid != p->numa_preferred_nid)
3056 sched_setnuma(p, max_nid);
3057 }
3058
3059 update_task_scan_period(p, fault_types[0], fault_types[1]);
3060 }
3061
get_numa_group(struct numa_group * grp)3062 static inline int get_numa_group(struct numa_group *grp)
3063 {
3064 return refcount_inc_not_zero(&grp->refcount);
3065 }
3066
put_numa_group(struct numa_group * grp)3067 static inline void put_numa_group(struct numa_group *grp)
3068 {
3069 if (refcount_dec_and_test(&grp->refcount))
3070 kfree_rcu(grp, rcu);
3071 }
3072
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)3073 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3074 int *priv)
3075 {
3076 struct numa_group *grp, *my_grp;
3077 struct task_struct *tsk;
3078 bool join = false;
3079 int cpu = cpupid_to_cpu(cpupid);
3080 int i;
3081
3082 if (unlikely(!deref_curr_numa_group(p))) {
3083 unsigned int size = sizeof(struct numa_group) +
3084 NR_NUMA_HINT_FAULT_STATS *
3085 nr_node_ids * sizeof(unsigned long);
3086
3087 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3088 if (!grp)
3089 return;
3090
3091 refcount_set(&grp->refcount, 1);
3092 grp->active_nodes = 1;
3093 grp->max_faults_cpu = 0;
3094 spin_lock_init(&grp->lock);
3095 grp->gid = p->pid;
3096
3097 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3098 grp->faults[i] = p->numa_faults[i];
3099
3100 grp->total_faults = p->total_numa_faults;
3101
3102 grp->nr_tasks++;
3103 rcu_assign_pointer(p->numa_group, grp);
3104 }
3105
3106 rcu_read_lock();
3107 tsk = READ_ONCE(cpu_rq(cpu)->curr);
3108
3109 if (!cpupid_match_pid(tsk, cpupid))
3110 goto no_join;
3111
3112 grp = rcu_dereference(tsk->numa_group);
3113 if (!grp)
3114 goto no_join;
3115
3116 my_grp = deref_curr_numa_group(p);
3117 if (grp == my_grp)
3118 goto no_join;
3119
3120 /*
3121 * Only join the other group if its bigger; if we're the bigger group,
3122 * the other task will join us.
3123 */
3124 if (my_grp->nr_tasks > grp->nr_tasks)
3125 goto no_join;
3126
3127 /*
3128 * Tie-break on the grp address.
3129 */
3130 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3131 goto no_join;
3132
3133 /* Always join threads in the same process. */
3134 if (tsk->mm == current->mm)
3135 join = true;
3136
3137 /* Simple filter to avoid false positives due to PID collisions */
3138 if (flags & TNF_SHARED)
3139 join = true;
3140
3141 /* Update priv based on whether false sharing was detected */
3142 *priv = !join;
3143
3144 if (join && !get_numa_group(grp))
3145 goto no_join;
3146
3147 rcu_read_unlock();
3148
3149 if (!join)
3150 return;
3151
3152 WARN_ON_ONCE(irqs_disabled());
3153 double_lock_irq(&my_grp->lock, &grp->lock);
3154
3155 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3156 my_grp->faults[i] -= p->numa_faults[i];
3157 grp->faults[i] += p->numa_faults[i];
3158 }
3159 my_grp->total_faults -= p->total_numa_faults;
3160 grp->total_faults += p->total_numa_faults;
3161
3162 my_grp->nr_tasks--;
3163 grp->nr_tasks++;
3164
3165 spin_unlock(&my_grp->lock);
3166 spin_unlock_irq(&grp->lock);
3167
3168 rcu_assign_pointer(p->numa_group, grp);
3169
3170 put_numa_group(my_grp);
3171 return;
3172
3173 no_join:
3174 rcu_read_unlock();
3175 return;
3176 }
3177
3178 /*
3179 * Get rid of NUMA statistics associated with a task (either current or dead).
3180 * If @final is set, the task is dead and has reached refcount zero, so we can
3181 * safely free all relevant data structures. Otherwise, there might be
3182 * concurrent reads from places like load balancing and procfs, and we should
3183 * reset the data back to default state without freeing ->numa_faults.
3184 */
task_numa_free(struct task_struct * p,bool final)3185 void task_numa_free(struct task_struct *p, bool final)
3186 {
3187 /* safe: p either is current or is being freed by current */
3188 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3189 unsigned long *numa_faults = p->numa_faults;
3190 unsigned long flags;
3191 int i;
3192
3193 if (!numa_faults)
3194 return;
3195
3196 if (grp) {
3197 spin_lock_irqsave(&grp->lock, flags);
3198 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3199 grp->faults[i] -= p->numa_faults[i];
3200 grp->total_faults -= p->total_numa_faults;
3201
3202 grp->nr_tasks--;
3203 spin_unlock_irqrestore(&grp->lock, flags);
3204 RCU_INIT_POINTER(p->numa_group, NULL);
3205 put_numa_group(grp);
3206 }
3207
3208 if (final) {
3209 p->numa_faults = NULL;
3210 kfree(numa_faults);
3211 } else {
3212 p->total_numa_faults = 0;
3213 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3214 numa_faults[i] = 0;
3215 }
3216 }
3217
3218 /*
3219 * Got a PROT_NONE fault for a page on @node.
3220 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3221 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3222 {
3223 struct task_struct *p = current;
3224 bool migrated = flags & TNF_MIGRATED;
3225 int cpu_node = task_node(current);
3226 int local = !!(flags & TNF_FAULT_LOCAL);
3227 struct numa_group *ng;
3228 int priv;
3229
3230 if (!static_branch_likely(&sched_numa_balancing))
3231 return;
3232
3233 /* for example, ksmd faulting in a user's mm */
3234 if (!p->mm)
3235 return;
3236
3237 /*
3238 * NUMA faults statistics are unnecessary for the slow memory
3239 * node for memory tiering mode.
3240 */
3241 if (!node_is_toptier(mem_node) &&
3242 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3243 !cpupid_valid(last_cpupid)))
3244 return;
3245
3246 /* Allocate buffer to track faults on a per-node basis */
3247 if (unlikely(!p->numa_faults)) {
3248 int size = sizeof(*p->numa_faults) *
3249 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3250
3251 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3252 if (!p->numa_faults)
3253 return;
3254
3255 p->total_numa_faults = 0;
3256 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3257 }
3258
3259 /*
3260 * First accesses are treated as private, otherwise consider accesses
3261 * to be private if the accessing pid has not changed
3262 */
3263 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3264 priv = 1;
3265 } else {
3266 priv = cpupid_match_pid(p, last_cpupid);
3267 if (!priv && !(flags & TNF_NO_GROUP))
3268 task_numa_group(p, last_cpupid, flags, &priv);
3269 }
3270
3271 /*
3272 * If a workload spans multiple NUMA nodes, a shared fault that
3273 * occurs wholly within the set of nodes that the workload is
3274 * actively using should be counted as local. This allows the
3275 * scan rate to slow down when a workload has settled down.
3276 */
3277 ng = deref_curr_numa_group(p);
3278 if (!priv && !local && ng && ng->active_nodes > 1 &&
3279 numa_is_active_node(cpu_node, ng) &&
3280 numa_is_active_node(mem_node, ng))
3281 local = 1;
3282
3283 /*
3284 * Retry to migrate task to preferred node periodically, in case it
3285 * previously failed, or the scheduler moved us.
3286 */
3287 if (time_after(jiffies, p->numa_migrate_retry)) {
3288 task_numa_placement(p);
3289 numa_migrate_preferred(p);
3290 }
3291
3292 if (migrated)
3293 p->numa_pages_migrated += pages;
3294 if (flags & TNF_MIGRATE_FAIL)
3295 p->numa_faults_locality[2] += pages;
3296
3297 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3298 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3299 p->numa_faults_locality[local] += pages;
3300 }
3301
reset_ptenuma_scan(struct task_struct * p)3302 static void reset_ptenuma_scan(struct task_struct *p)
3303 {
3304 /*
3305 * We only did a read acquisition of the mmap sem, so
3306 * p->mm->numa_scan_seq is written to without exclusive access
3307 * and the update is not guaranteed to be atomic. That's not
3308 * much of an issue though, since this is just used for
3309 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3310 * expensive, to avoid any form of compiler optimizations:
3311 */
3312 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3313 p->mm->numa_scan_offset = 0;
3314 }
3315
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3316 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3317 {
3318 unsigned long pids;
3319 /*
3320 * Allow unconditional access first two times, so that all the (pages)
3321 * of VMAs get prot_none fault introduced irrespective of accesses.
3322 * This is also done to avoid any side effect of task scanning
3323 * amplifying the unfairness of disjoint set of VMAs' access.
3324 */
3325 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3326 return true;
3327
3328 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3329 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3330 return true;
3331
3332 /*
3333 * Complete a scan that has already started regardless of PID access, or
3334 * some VMAs may never be scanned in multi-threaded applications:
3335 */
3336 if (mm->numa_scan_offset > vma->vm_start) {
3337 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3338 return true;
3339 }
3340
3341 /*
3342 * This vma has not been accessed for a while, and if the number
3343 * the threads in the same process is low, which means no other
3344 * threads can help scan this vma, force a vma scan.
3345 */
3346 if (READ_ONCE(mm->numa_scan_seq) >
3347 (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3348 return true;
3349
3350 return false;
3351 }
3352
3353 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3354
3355 /*
3356 * The expensive part of numa migration is done from task_work context.
3357 * Triggered from task_tick_numa().
3358 */
task_numa_work(struct callback_head * work)3359 static void task_numa_work(struct callback_head *work)
3360 {
3361 unsigned long migrate, next_scan, now = jiffies;
3362 struct task_struct *p = current;
3363 struct mm_struct *mm = p->mm;
3364 u64 runtime = p->se.sum_exec_runtime;
3365 struct vm_area_struct *vma;
3366 unsigned long start, end;
3367 unsigned long nr_pte_updates = 0;
3368 long pages, virtpages;
3369 struct vma_iterator vmi;
3370 bool vma_pids_skipped;
3371 bool vma_pids_forced = false;
3372
3373 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3374
3375 work->next = work;
3376 /*
3377 * Who cares about NUMA placement when they're dying.
3378 *
3379 * NOTE: make sure not to dereference p->mm before this check,
3380 * exit_task_work() happens _after_ exit_mm() so we could be called
3381 * without p->mm even though we still had it when we enqueued this
3382 * work.
3383 */
3384 if (p->flags & PF_EXITING)
3385 return;
3386
3387 if (!mm->numa_next_scan) {
3388 mm->numa_next_scan = now +
3389 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3390 }
3391
3392 /*
3393 * Enforce maximal scan/migration frequency..
3394 */
3395 migrate = mm->numa_next_scan;
3396 if (time_before(now, migrate))
3397 return;
3398
3399 if (p->numa_scan_period == 0) {
3400 p->numa_scan_period_max = task_scan_max(p);
3401 p->numa_scan_period = task_scan_start(p);
3402 }
3403
3404 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3405 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3406 return;
3407
3408 /*
3409 * Delay this task enough that another task of this mm will likely win
3410 * the next time around.
3411 */
3412 p->node_stamp += 2 * TICK_NSEC;
3413
3414 pages = sysctl_numa_balancing_scan_size;
3415 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3416 virtpages = pages * 8; /* Scan up to this much virtual space */
3417 if (!pages)
3418 return;
3419
3420
3421 if (!mmap_read_trylock(mm))
3422 return;
3423
3424 /*
3425 * VMAs are skipped if the current PID has not trapped a fault within
3426 * the VMA recently. Allow scanning to be forced if there is no
3427 * suitable VMA remaining.
3428 */
3429 vma_pids_skipped = false;
3430
3431 retry_pids:
3432 start = mm->numa_scan_offset;
3433 vma_iter_init(&vmi, mm, start);
3434 vma = vma_next(&vmi);
3435 if (!vma) {
3436 reset_ptenuma_scan(p);
3437 start = 0;
3438 vma_iter_set(&vmi, start);
3439 vma = vma_next(&vmi);
3440 }
3441
3442 for (; vma; vma = vma_next(&vmi)) {
3443 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3444 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3445 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3446 continue;
3447 }
3448
3449 /*
3450 * Shared library pages mapped by multiple processes are not
3451 * migrated as it is expected they are cache replicated. Avoid
3452 * hinting faults in read-only file-backed mappings or the vDSO
3453 * as migrating the pages will be of marginal benefit.
3454 */
3455 if (!vma->vm_mm ||
3456 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3457 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3458 continue;
3459 }
3460
3461 /*
3462 * Skip inaccessible VMAs to avoid any confusion between
3463 * PROT_NONE and NUMA hinting PTEs
3464 */
3465 if (!vma_is_accessible(vma)) {
3466 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3467 continue;
3468 }
3469
3470 /* Initialise new per-VMA NUMAB state. */
3471 if (!vma->numab_state) {
3472 struct vma_numab_state *ptr;
3473
3474 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3475 if (!ptr)
3476 continue;
3477
3478 if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3479 kfree(ptr);
3480 continue;
3481 }
3482
3483 vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3484
3485 vma->numab_state->next_scan = now +
3486 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3487
3488 /* Reset happens after 4 times scan delay of scan start */
3489 vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
3490 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3491
3492 /*
3493 * Ensure prev_scan_seq does not match numa_scan_seq,
3494 * to prevent VMAs being skipped prematurely on the
3495 * first scan:
3496 */
3497 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3498 }
3499
3500 /*
3501 * Scanning the VMAs of short lived tasks add more overhead. So
3502 * delay the scan for new VMAs.
3503 */
3504 if (mm->numa_scan_seq && time_before(jiffies,
3505 vma->numab_state->next_scan)) {
3506 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3507 continue;
3508 }
3509
3510 /* RESET access PIDs regularly for old VMAs. */
3511 if (mm->numa_scan_seq &&
3512 time_after(jiffies, vma->numab_state->pids_active_reset)) {
3513 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3514 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3515 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3516 vma->numab_state->pids_active[1] = 0;
3517 }
3518
3519 /* Do not rescan VMAs twice within the same sequence. */
3520 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3521 mm->numa_scan_offset = vma->vm_end;
3522 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3523 continue;
3524 }
3525
3526 /*
3527 * Do not scan the VMA if task has not accessed it, unless no other
3528 * VMA candidate exists.
3529 */
3530 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3531 vma_pids_skipped = true;
3532 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3533 continue;
3534 }
3535
3536 do {
3537 start = max(start, vma->vm_start);
3538 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3539 end = min(end, vma->vm_end);
3540 nr_pte_updates = change_prot_numa(vma, start, end);
3541
3542 /*
3543 * Try to scan sysctl_numa_balancing_size worth of
3544 * hpages that have at least one present PTE that
3545 * is not already PTE-numa. If the VMA contains
3546 * areas that are unused or already full of prot_numa
3547 * PTEs, scan up to virtpages, to skip through those
3548 * areas faster.
3549 */
3550 if (nr_pte_updates)
3551 pages -= (end - start) >> PAGE_SHIFT;
3552 virtpages -= (end - start) >> PAGE_SHIFT;
3553
3554 start = end;
3555 if (pages <= 0 || virtpages <= 0)
3556 goto out;
3557
3558 cond_resched();
3559 } while (end != vma->vm_end);
3560
3561 /* VMA scan is complete, do not scan until next sequence. */
3562 vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3563
3564 /*
3565 * Only force scan within one VMA at a time, to limit the
3566 * cost of scanning a potentially uninteresting VMA.
3567 */
3568 if (vma_pids_forced)
3569 break;
3570 }
3571
3572 /*
3573 * If no VMAs are remaining and VMAs were skipped due to the PID
3574 * not accessing the VMA previously, then force a scan to ensure
3575 * forward progress:
3576 */
3577 if (!vma && !vma_pids_forced && vma_pids_skipped) {
3578 vma_pids_forced = true;
3579 goto retry_pids;
3580 }
3581
3582 out:
3583 /*
3584 * It is possible to reach the end of the VMA list but the last few
3585 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3586 * would find the !migratable VMA on the next scan but not reset the
3587 * scanner to the start so check it now.
3588 */
3589 if (vma)
3590 mm->numa_scan_offset = start;
3591 else
3592 reset_ptenuma_scan(p);
3593 mmap_read_unlock(mm);
3594
3595 /*
3596 * Make sure tasks use at least 32x as much time to run other code
3597 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3598 * Usually update_task_scan_period slows down scanning enough; on an
3599 * overloaded system we need to limit overhead on a per task basis.
3600 */
3601 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3602 u64 diff = p->se.sum_exec_runtime - runtime;
3603 p->node_stamp += 32 * diff;
3604 }
3605 }
3606
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3607 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3608 {
3609 int mm_users = 0;
3610 struct mm_struct *mm = p->mm;
3611
3612 if (mm) {
3613 mm_users = atomic_read(&mm->mm_users);
3614 if (mm_users == 1) {
3615 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3616 mm->numa_scan_seq = 0;
3617 }
3618 }
3619 p->node_stamp = 0;
3620 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3621 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3622 p->numa_migrate_retry = 0;
3623 /* Protect against double add, see task_tick_numa and task_numa_work */
3624 p->numa_work.next = &p->numa_work;
3625 p->numa_faults = NULL;
3626 p->numa_pages_migrated = 0;
3627 p->total_numa_faults = 0;
3628 RCU_INIT_POINTER(p->numa_group, NULL);
3629 p->last_task_numa_placement = 0;
3630 p->last_sum_exec_runtime = 0;
3631
3632 init_task_work(&p->numa_work, task_numa_work);
3633
3634 /* New address space, reset the preferred nid */
3635 if (!(clone_flags & CLONE_VM)) {
3636 p->numa_preferred_nid = NUMA_NO_NODE;
3637 return;
3638 }
3639
3640 /*
3641 * New thread, keep existing numa_preferred_nid which should be copied
3642 * already by arch_dup_task_struct but stagger when scans start.
3643 */
3644 if (mm) {
3645 unsigned int delay;
3646
3647 delay = min_t(unsigned int, task_scan_max(current),
3648 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3649 delay += 2 * TICK_NSEC;
3650 p->node_stamp = delay;
3651 }
3652 }
3653
3654 /*
3655 * Drive the periodic memory faults..
3656 */
task_tick_numa(struct rq * rq,struct task_struct * curr)3657 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3658 {
3659 struct callback_head *work = &curr->numa_work;
3660 u64 period, now;
3661
3662 /*
3663 * We don't care about NUMA placement if we don't have memory.
3664 */
3665 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3666 return;
3667
3668 /*
3669 * Using runtime rather than walltime has the dual advantage that
3670 * we (mostly) drive the selection from busy threads and that the
3671 * task needs to have done some actual work before we bother with
3672 * NUMA placement.
3673 */
3674 now = curr->se.sum_exec_runtime;
3675 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3676
3677 if (now > curr->node_stamp + period) {
3678 if (!curr->node_stamp)
3679 curr->numa_scan_period = task_scan_start(curr);
3680 curr->node_stamp += period;
3681
3682 if (!time_before(jiffies, curr->mm->numa_next_scan))
3683 task_work_add(curr, work, TWA_RESUME);
3684 }
3685 }
3686
update_scan_period(struct task_struct * p,int new_cpu)3687 static void update_scan_period(struct task_struct *p, int new_cpu)
3688 {
3689 int src_nid = cpu_to_node(task_cpu(p));
3690 int dst_nid = cpu_to_node(new_cpu);
3691
3692 if (!static_branch_likely(&sched_numa_balancing))
3693 return;
3694
3695 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3696 return;
3697
3698 if (src_nid == dst_nid)
3699 return;
3700
3701 /*
3702 * Allow resets if faults have been trapped before one scan
3703 * has completed. This is most likely due to a new task that
3704 * is pulled cross-node due to wakeups or load balancing.
3705 */
3706 if (p->numa_scan_seq) {
3707 /*
3708 * Avoid scan adjustments if moving to the preferred
3709 * node or if the task was not previously running on
3710 * the preferred node.
3711 */
3712 if (dst_nid == p->numa_preferred_nid ||
3713 (p->numa_preferred_nid != NUMA_NO_NODE &&
3714 src_nid != p->numa_preferred_nid))
3715 return;
3716 }
3717
3718 p->numa_scan_period = task_scan_start(p);
3719 }
3720
3721 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3722 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3723 {
3724 }
3725
account_numa_enqueue(struct rq * rq,struct task_struct * p)3726 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3727 {
3728 }
3729
account_numa_dequeue(struct rq * rq,struct task_struct * p)3730 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3731 {
3732 }
3733
update_scan_period(struct task_struct * p,int new_cpu)3734 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3735 {
3736 }
3737
3738 #endif /* CONFIG_NUMA_BALANCING */
3739
3740 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3741 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3742 {
3743 update_load_add(&cfs_rq->load, se->load.weight);
3744 #ifdef CONFIG_SMP
3745 if (entity_is_task(se)) {
3746 struct rq *rq = rq_of(cfs_rq);
3747
3748 account_numa_enqueue(rq, task_of(se));
3749 list_add(&se->group_node, &rq->cfs_tasks);
3750 }
3751 #endif
3752 cfs_rq->nr_running++;
3753 if (se_is_idle(se))
3754 cfs_rq->idle_nr_running++;
3755 }
3756
3757 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3758 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3759 {
3760 update_load_sub(&cfs_rq->load, se->load.weight);
3761 #ifdef CONFIG_SMP
3762 if (entity_is_task(se)) {
3763 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3764 list_del_init(&se->group_node);
3765 }
3766 #endif
3767 cfs_rq->nr_running--;
3768 if (se_is_idle(se))
3769 cfs_rq->idle_nr_running--;
3770 }
3771
3772 /*
3773 * Signed add and clamp on underflow.
3774 *
3775 * Explicitly do a load-store to ensure the intermediate value never hits
3776 * memory. This allows lockless observations without ever seeing the negative
3777 * values.
3778 */
3779 #define add_positive(_ptr, _val) do { \
3780 typeof(_ptr) ptr = (_ptr); \
3781 typeof(_val) val = (_val); \
3782 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3783 \
3784 res = var + val; \
3785 \
3786 if (val < 0 && res > var) \
3787 res = 0; \
3788 \
3789 WRITE_ONCE(*ptr, res); \
3790 } while (0)
3791
3792 /*
3793 * Unsigned subtract and clamp on underflow.
3794 *
3795 * Explicitly do a load-store to ensure the intermediate value never hits
3796 * memory. This allows lockless observations without ever seeing the negative
3797 * values.
3798 */
3799 #define sub_positive(_ptr, _val) do { \
3800 typeof(_ptr) ptr = (_ptr); \
3801 typeof(*ptr) val = (_val); \
3802 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3803 res = var - val; \
3804 if (res > var) \
3805 res = 0; \
3806 WRITE_ONCE(*ptr, res); \
3807 } while (0)
3808
3809 /*
3810 * Remove and clamp on negative, from a local variable.
3811 *
3812 * A variant of sub_positive(), which does not use explicit load-store
3813 * and is thus optimized for local variable updates.
3814 */
3815 #define lsub_positive(_ptr, _val) do { \
3816 typeof(_ptr) ptr = (_ptr); \
3817 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3818 } while (0)
3819
3820 #ifdef CONFIG_SMP
3821 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3822 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3823 {
3824 cfs_rq->avg.load_avg += se->avg.load_avg;
3825 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3826 }
3827
3828 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3829 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3830 {
3831 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3832 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3833 /* See update_cfs_rq_load_avg() */
3834 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3835 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3836 }
3837 #else
3838 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3839 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3840 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3841 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3842 #endif
3843
reweight_eevdf(struct sched_entity * se,u64 avruntime,unsigned long weight)3844 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3845 unsigned long weight)
3846 {
3847 unsigned long old_weight = se->load.weight;
3848 s64 vlag, vslice;
3849
3850 /*
3851 * VRUNTIME
3852 * --------
3853 *
3854 * COROLLARY #1: The virtual runtime of the entity needs to be
3855 * adjusted if re-weight at !0-lag point.
3856 *
3857 * Proof: For contradiction assume this is not true, so we can
3858 * re-weight without changing vruntime at !0-lag point.
3859 *
3860 * Weight VRuntime Avg-VRuntime
3861 * before w v V
3862 * after w' v' V'
3863 *
3864 * Since lag needs to be preserved through re-weight:
3865 *
3866 * lag = (V - v)*w = (V'- v')*w', where v = v'
3867 * ==> V' = (V - v)*w/w' + v (1)
3868 *
3869 * Let W be the total weight of the entities before reweight,
3870 * since V' is the new weighted average of entities:
3871 *
3872 * V' = (WV + w'v - wv) / (W + w' - w) (2)
3873 *
3874 * by using (1) & (2) we obtain:
3875 *
3876 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3877 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3878 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3879 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3880 *
3881 * Since we are doing at !0-lag point which means V != v, we
3882 * can simplify (3):
3883 *
3884 * ==> W / (W + w' - w) = w / w'
3885 * ==> Ww' = Ww + ww' - ww
3886 * ==> W * (w' - w) = w * (w' - w)
3887 * ==> W = w (re-weight indicates w' != w)
3888 *
3889 * So the cfs_rq contains only one entity, hence vruntime of
3890 * the entity @v should always equal to the cfs_rq's weighted
3891 * average vruntime @V, which means we will always re-weight
3892 * at 0-lag point, thus breach assumption. Proof completed.
3893 *
3894 *
3895 * COROLLARY #2: Re-weight does NOT affect weighted average
3896 * vruntime of all the entities.
3897 *
3898 * Proof: According to corollary #1, Eq. (1) should be:
3899 *
3900 * (V - v)*w = (V' - v')*w'
3901 * ==> v' = V' - (V - v)*w/w' (4)
3902 *
3903 * According to the weighted average formula, we have:
3904 *
3905 * V' = (WV - wv + w'v') / (W - w + w')
3906 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3907 * = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3908 * = (WV + w'V' - Vw) / (W - w + w')
3909 *
3910 * ==> V'*(W - w + w') = WV + w'V' - Vw
3911 * ==> V' * (W - w) = (W - w) * V (5)
3912 *
3913 * If the entity is the only one in the cfs_rq, then reweight
3914 * always occurs at 0-lag point, so V won't change. Or else
3915 * there are other entities, hence W != w, then Eq. (5) turns
3916 * into V' = V. So V won't change in either case, proof done.
3917 *
3918 *
3919 * So according to corollary #1 & #2, the effect of re-weight
3920 * on vruntime should be:
3921 *
3922 * v' = V' - (V - v) * w / w' (4)
3923 * = V - (V - v) * w / w'
3924 * = V - vl * w / w'
3925 * = V - vl'
3926 */
3927 if (avruntime != se->vruntime) {
3928 vlag = entity_lag(avruntime, se);
3929 vlag = div_s64(vlag * old_weight, weight);
3930 se->vruntime = avruntime - vlag;
3931 }
3932
3933 /*
3934 * DEADLINE
3935 * --------
3936 *
3937 * When the weight changes, the virtual time slope changes and
3938 * we should adjust the relative virtual deadline accordingly.
3939 *
3940 * d' = v' + (d - v)*w/w'
3941 * = V' - (V - v)*w/w' + (d - v)*w/w'
3942 * = V - (V - v)*w/w' + (d - v)*w/w'
3943 * = V + (d - V)*w/w'
3944 */
3945 vslice = (s64)(se->deadline - avruntime);
3946 vslice = div_s64(vslice * old_weight, weight);
3947 se->deadline = avruntime + vslice;
3948 }
3949
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3950 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3951 unsigned long weight)
3952 {
3953 bool curr = cfs_rq->curr == se;
3954 u64 avruntime;
3955
3956 if (se->on_rq) {
3957 /* commit outstanding execution time */
3958 update_curr(cfs_rq);
3959 avruntime = avg_vruntime(cfs_rq);
3960 if (!curr)
3961 __dequeue_entity(cfs_rq, se);
3962 update_load_sub(&cfs_rq->load, se->load.weight);
3963 }
3964 dequeue_load_avg(cfs_rq, se);
3965
3966 trace_android_vh_reweight_entity(se, &weight);
3967
3968 if (se->on_rq) {
3969 reweight_eevdf(se, avruntime, weight);
3970 } else {
3971 /*
3972 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3973 * we need to scale se->vlag when w_i changes.
3974 */
3975 se->vlag = div_s64(se->vlag * se->load.weight, weight);
3976 }
3977
3978 update_load_set(&se->load, weight);
3979
3980 #ifdef CONFIG_SMP
3981 do {
3982 u32 divider = get_pelt_divider(&se->avg);
3983
3984 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3985 } while (0);
3986 #endif
3987
3988 enqueue_load_avg(cfs_rq, se);
3989 if (se->on_rq) {
3990 update_load_add(&cfs_rq->load, se->load.weight);
3991 if (!curr)
3992 __enqueue_entity(cfs_rq, se);
3993
3994 /*
3995 * The entity's vruntime has been adjusted, so let's check
3996 * whether the rq-wide min_vruntime needs updated too. Since
3997 * the calculations above require stable min_vruntime rather
3998 * than up-to-date one, we do the update at the end of the
3999 * reweight process.
4000 */
4001 update_min_vruntime(cfs_rq);
4002 }
4003 }
4004
reweight_task_fair(struct rq * rq,struct task_struct * p,const struct load_weight * lw)4005 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
4006 const struct load_weight *lw)
4007 {
4008 struct sched_entity *se = &p->se;
4009 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4010 struct load_weight *load = &se->load;
4011
4012 reweight_entity(cfs_rq, se, lw->weight);
4013 load->inv_weight = lw->inv_weight;
4014 }
4015
4016 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
4017
4018 #ifdef CONFIG_FAIR_GROUP_SCHED
4019 #ifdef CONFIG_SMP
4020 /*
4021 * All this does is approximate the hierarchical proportion which includes that
4022 * global sum we all love to hate.
4023 *
4024 * That is, the weight of a group entity, is the proportional share of the
4025 * group weight based on the group runqueue weights. That is:
4026 *
4027 * tg->weight * grq->load.weight
4028 * ge->load.weight = ----------------------------- (1)
4029 * \Sum grq->load.weight
4030 *
4031 * Now, because computing that sum is prohibitively expensive to compute (been
4032 * there, done that) we approximate it with this average stuff. The average
4033 * moves slower and therefore the approximation is cheaper and more stable.
4034 *
4035 * So instead of the above, we substitute:
4036 *
4037 * grq->load.weight -> grq->avg.load_avg (2)
4038 *
4039 * which yields the following:
4040 *
4041 * tg->weight * grq->avg.load_avg
4042 * ge->load.weight = ------------------------------ (3)
4043 * tg->load_avg
4044 *
4045 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
4046 *
4047 * That is shares_avg, and it is right (given the approximation (2)).
4048 *
4049 * The problem with it is that because the average is slow -- it was designed
4050 * to be exactly that of course -- this leads to transients in boundary
4051 * conditions. In specific, the case where the group was idle and we start the
4052 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
4053 * yielding bad latency etc..
4054 *
4055 * Now, in that special case (1) reduces to:
4056 *
4057 * tg->weight * grq->load.weight
4058 * ge->load.weight = ----------------------------- = tg->weight (4)
4059 * grp->load.weight
4060 *
4061 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
4062 *
4063 * So what we do is modify our approximation (3) to approach (4) in the (near)
4064 * UP case, like:
4065 *
4066 * ge->load.weight =
4067 *
4068 * tg->weight * grq->load.weight
4069 * --------------------------------------------------- (5)
4070 * tg->load_avg - grq->avg.load_avg + grq->load.weight
4071 *
4072 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
4073 * we need to use grq->avg.load_avg as its lower bound, which then gives:
4074 *
4075 *
4076 * tg->weight * grq->load.weight
4077 * ge->load.weight = ----------------------------- (6)
4078 * tg_load_avg'
4079 *
4080 * Where:
4081 *
4082 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
4083 * max(grq->load.weight, grq->avg.load_avg)
4084 *
4085 * And that is shares_weight and is icky. In the (near) UP case it approaches
4086 * (4) while in the normal case it approaches (3). It consistently
4087 * overestimates the ge->load.weight and therefore:
4088 *
4089 * \Sum ge->load.weight >= tg->weight
4090 *
4091 * hence icky!
4092 */
calc_group_shares(struct cfs_rq * cfs_rq)4093 static long calc_group_shares(struct cfs_rq *cfs_rq)
4094 {
4095 long tg_weight, tg_shares, load, shares;
4096 struct task_group *tg = cfs_rq->tg;
4097
4098 tg_shares = READ_ONCE(tg->shares);
4099
4100 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
4101
4102 tg_weight = atomic_long_read(&tg->load_avg);
4103
4104 /* Ensure tg_weight >= load */
4105 tg_weight -= cfs_rq->tg_load_avg_contrib;
4106 tg_weight += load;
4107
4108 shares = (tg_shares * load);
4109 if (tg_weight)
4110 shares /= tg_weight;
4111
4112 /*
4113 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4114 * of a group with small tg->shares value. It is a floor value which is
4115 * assigned as a minimum load.weight to the sched_entity representing
4116 * the group on a CPU.
4117 *
4118 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4119 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4120 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4121 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4122 * instead of 0.
4123 */
4124 return clamp_t(long, shares, MIN_SHARES, tg_shares);
4125 }
4126 #endif /* CONFIG_SMP */
4127
4128 /*
4129 * Recomputes the group entity based on the current state of its group
4130 * runqueue.
4131 */
update_cfs_group(struct sched_entity * se)4132 static void update_cfs_group(struct sched_entity *se)
4133 {
4134 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4135 long shares;
4136
4137 /*
4138 * When a group becomes empty, preserve its weight. This matters for
4139 * DELAY_DEQUEUE.
4140 */
4141 if (!gcfs_rq || !gcfs_rq->load.weight)
4142 return;
4143
4144 if (throttled_hierarchy(gcfs_rq))
4145 return;
4146
4147 #ifndef CONFIG_SMP
4148 shares = READ_ONCE(gcfs_rq->tg->shares);
4149 #else
4150 shares = calc_group_shares(gcfs_rq);
4151 #endif
4152 if (unlikely(se->load.weight != shares))
4153 reweight_entity(cfs_rq_of(se), se, shares);
4154 }
4155
4156 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)4157 static inline void update_cfs_group(struct sched_entity *se)
4158 {
4159 }
4160 #endif /* CONFIG_FAIR_GROUP_SCHED */
4161
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)4162 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4163 {
4164 struct rq *rq = rq_of(cfs_rq);
4165
4166 if (&rq->cfs == cfs_rq) {
4167 /*
4168 * There are a few boundary cases this might miss but it should
4169 * get called often enough that that should (hopefully) not be
4170 * a real problem.
4171 *
4172 * It will not get called when we go idle, because the idle
4173 * thread is a different class (!fair), nor will the utilization
4174 * number include things like RT tasks.
4175 *
4176 * As is, the util number is not freq-invariant (we'd have to
4177 * implement arch_scale_freq_capacity() for that).
4178 *
4179 * See cpu_util_cfs().
4180 */
4181 cpufreq_update_util(rq, flags);
4182 }
4183 }
4184
4185 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)4186 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4187 {
4188 if (sa->load_sum)
4189 return false;
4190
4191 if (sa->util_sum)
4192 return false;
4193
4194 if (sa->runnable_sum)
4195 return false;
4196
4197 /*
4198 * _avg must be null when _sum are null because _avg = _sum / divider
4199 * Make sure that rounding and/or propagation of PELT values never
4200 * break this.
4201 */
4202 SCHED_WARN_ON(sa->load_avg ||
4203 sa->util_avg ||
4204 sa->runnable_avg);
4205
4206 return true;
4207 }
4208
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4209 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4210 {
4211 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4212 cfs_rq->last_update_time_copy);
4213 }
4214 #ifdef CONFIG_FAIR_GROUP_SCHED
4215 /*
4216 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4217 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4218 * bottom-up, we only have to test whether the cfs_rq before us on the list
4219 * is our child.
4220 * If cfs_rq is not on the list, test whether a child needs its to be added to
4221 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4222 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4223 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4224 {
4225 struct cfs_rq *prev_cfs_rq;
4226 struct list_head *prev;
4227 struct rq *rq = rq_of(cfs_rq);
4228
4229 if (cfs_rq->on_list) {
4230 prev = cfs_rq->leaf_cfs_rq_list.prev;
4231 } else {
4232 prev = rq->tmp_alone_branch;
4233 }
4234
4235 if (prev == &rq->leaf_cfs_rq_list)
4236 return false;
4237
4238 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4239
4240 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4241 }
4242
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4243 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4244 {
4245 if (cfs_rq->load.weight)
4246 return false;
4247
4248 if (!load_avg_is_decayed(&cfs_rq->avg))
4249 return false;
4250
4251 if (child_cfs_rq_on_list(cfs_rq))
4252 return false;
4253
4254 return true;
4255 }
4256
4257 /**
4258 * update_tg_load_avg - update the tg's load avg
4259 * @cfs_rq: the cfs_rq whose avg changed
4260 *
4261 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4262 * However, because tg->load_avg is a global value there are performance
4263 * considerations.
4264 *
4265 * In order to avoid having to look at the other cfs_rq's, we use a
4266 * differential update where we store the last value we propagated. This in
4267 * turn allows skipping updates if the differential is 'small'.
4268 *
4269 * Updating tg's load_avg is necessary before update_cfs_share().
4270 */
update_tg_load_avg(struct cfs_rq * cfs_rq)4271 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4272 {
4273 long delta;
4274 u64 now;
4275
4276 /*
4277 * No need to update load_avg for root_task_group as it is not used.
4278 */
4279 if (cfs_rq->tg == &root_task_group)
4280 return;
4281
4282 /* rq has been offline and doesn't contribute to the share anymore: */
4283 if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4284 return;
4285
4286 /*
4287 * For migration heavy workloads, access to tg->load_avg can be
4288 * unbound. Limit the update rate to at most once per ms.
4289 */
4290 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4291 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4292 return;
4293
4294 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4295 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4296 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4297 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4298 cfs_rq->last_update_tg_load_avg = now;
4299 }
4300 }
4301
clear_tg_load_avg(struct cfs_rq * cfs_rq)4302 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4303 {
4304 long delta;
4305 u64 now;
4306
4307 /*
4308 * No need to update load_avg for root_task_group, as it is not used.
4309 */
4310 if (cfs_rq->tg == &root_task_group)
4311 return;
4312
4313 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4314 delta = 0 - cfs_rq->tg_load_avg_contrib;
4315 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4316 cfs_rq->tg_load_avg_contrib = 0;
4317 cfs_rq->last_update_tg_load_avg = now;
4318 }
4319
4320 /* CPU offline callback: */
clear_tg_offline_cfs_rqs(struct rq * rq)4321 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4322 {
4323 struct task_group *tg;
4324
4325 lockdep_assert_rq_held(rq);
4326
4327 /*
4328 * The rq clock has already been updated in
4329 * set_rq_offline(), so we should skip updating
4330 * the rq clock again in unthrottle_cfs_rq().
4331 */
4332 rq_clock_start_loop_update(rq);
4333
4334 rcu_read_lock();
4335 list_for_each_entry_rcu(tg, &task_groups, list) {
4336 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4337
4338 clear_tg_load_avg(cfs_rq);
4339 }
4340 rcu_read_unlock();
4341
4342 rq_clock_stop_loop_update(rq);
4343 }
4344
4345 /*
4346 * Called within set_task_rq() right before setting a task's CPU. The
4347 * caller only guarantees p->pi_lock is held; no other assumptions,
4348 * including the state of rq->lock, should be made.
4349 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4350 void set_task_rq_fair(struct sched_entity *se,
4351 struct cfs_rq *prev, struct cfs_rq *next)
4352 {
4353 u64 p_last_update_time;
4354 u64 n_last_update_time;
4355
4356 if (!sched_feat(ATTACH_AGE_LOAD))
4357 return;
4358
4359 /*
4360 * We are supposed to update the task to "current" time, then its up to
4361 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4362 * getting what current time is, so simply throw away the out-of-date
4363 * time. This will result in the wakee task is less decayed, but giving
4364 * the wakee more load sounds not bad.
4365 */
4366 if (!(se->avg.last_update_time && prev))
4367 return;
4368
4369 p_last_update_time = cfs_rq_last_update_time(prev);
4370 n_last_update_time = cfs_rq_last_update_time(next);
4371
4372 __update_load_avg_blocked_se(p_last_update_time, se);
4373 se->avg.last_update_time = n_last_update_time;
4374 }
4375
4376 /*
4377 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4378 * propagate its contribution. The key to this propagation is the invariant
4379 * that for each group:
4380 *
4381 * ge->avg == grq->avg (1)
4382 *
4383 * _IFF_ we look at the pure running and runnable sums. Because they
4384 * represent the very same entity, just at different points in the hierarchy.
4385 *
4386 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4387 * and simply copies the running/runnable sum over (but still wrong, because
4388 * the group entity and group rq do not have their PELT windows aligned).
4389 *
4390 * However, update_tg_cfs_load() is more complex. So we have:
4391 *
4392 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4393 *
4394 * And since, like util, the runnable part should be directly transferable,
4395 * the following would _appear_ to be the straight forward approach:
4396 *
4397 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4398 *
4399 * And per (1) we have:
4400 *
4401 * ge->avg.runnable_avg == grq->avg.runnable_avg
4402 *
4403 * Which gives:
4404 *
4405 * ge->load.weight * grq->avg.load_avg
4406 * ge->avg.load_avg = ----------------------------------- (4)
4407 * grq->load.weight
4408 *
4409 * Except that is wrong!
4410 *
4411 * Because while for entities historical weight is not important and we
4412 * really only care about our future and therefore can consider a pure
4413 * runnable sum, runqueues can NOT do this.
4414 *
4415 * We specifically want runqueues to have a load_avg that includes
4416 * historical weights. Those represent the blocked load, the load we expect
4417 * to (shortly) return to us. This only works by keeping the weights as
4418 * integral part of the sum. We therefore cannot decompose as per (3).
4419 *
4420 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4421 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4422 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4423 * runnable section of these tasks overlap (or not). If they were to perfectly
4424 * align the rq as a whole would be runnable 2/3 of the time. If however we
4425 * always have at least 1 runnable task, the rq as a whole is always runnable.
4426 *
4427 * So we'll have to approximate.. :/
4428 *
4429 * Given the constraint:
4430 *
4431 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4432 *
4433 * We can construct a rule that adds runnable to a rq by assuming minimal
4434 * overlap.
4435 *
4436 * On removal, we'll assume each task is equally runnable; which yields:
4437 *
4438 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4439 *
4440 * XXX: only do this for the part of runnable > running ?
4441 *
4442 */
4443 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4444 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4445 {
4446 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4447 u32 new_sum, divider;
4448
4449 /* Nothing to update */
4450 if (!delta_avg)
4451 return;
4452
4453 /*
4454 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4455 * See ___update_load_avg() for details.
4456 */
4457 divider = get_pelt_divider(&cfs_rq->avg);
4458
4459
4460 /* Set new sched_entity's utilization */
4461 se->avg.util_avg = gcfs_rq->avg.util_avg;
4462 new_sum = se->avg.util_avg * divider;
4463 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4464 se->avg.util_sum = new_sum;
4465
4466 /* Update parent cfs_rq utilization */
4467 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4468 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4469
4470 /* See update_cfs_rq_load_avg() */
4471 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4472 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4473 }
4474
4475 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4476 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4477 {
4478 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4479 u32 new_sum, divider;
4480
4481 /* Nothing to update */
4482 if (!delta_avg)
4483 return;
4484
4485 /*
4486 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4487 * See ___update_load_avg() for details.
4488 */
4489 divider = get_pelt_divider(&cfs_rq->avg);
4490
4491 /* Set new sched_entity's runnable */
4492 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4493 new_sum = se->avg.runnable_avg * divider;
4494 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4495 se->avg.runnable_sum = new_sum;
4496
4497 /* Update parent cfs_rq runnable */
4498 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4499 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4500 /* See update_cfs_rq_load_avg() */
4501 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4502 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4503 }
4504
4505 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4506 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4507 {
4508 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4509 unsigned long load_avg;
4510 u64 load_sum = 0;
4511 s64 delta_sum;
4512 u32 divider;
4513
4514 if (!runnable_sum)
4515 return;
4516
4517 gcfs_rq->prop_runnable_sum = 0;
4518
4519 /*
4520 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4521 * See ___update_load_avg() for details.
4522 */
4523 divider = get_pelt_divider(&cfs_rq->avg);
4524
4525 if (runnable_sum >= 0) {
4526 /*
4527 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4528 * the CPU is saturated running == runnable.
4529 */
4530 runnable_sum += se->avg.load_sum;
4531 runnable_sum = min_t(long, runnable_sum, divider);
4532 } else {
4533 /*
4534 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4535 * assuming all tasks are equally runnable.
4536 */
4537 if (scale_load_down(gcfs_rq->load.weight)) {
4538 load_sum = div_u64(gcfs_rq->avg.load_sum,
4539 scale_load_down(gcfs_rq->load.weight));
4540 }
4541
4542 /* But make sure to not inflate se's runnable */
4543 runnable_sum = min(se->avg.load_sum, load_sum);
4544 }
4545
4546 /*
4547 * runnable_sum can't be lower than running_sum
4548 * Rescale running sum to be in the same range as runnable sum
4549 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4550 * runnable_sum is in [0 : LOAD_AVG_MAX]
4551 */
4552 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4553 runnable_sum = max(runnable_sum, running_sum);
4554
4555 load_sum = se_weight(se) * runnable_sum;
4556 load_avg = div_u64(load_sum, divider);
4557
4558 delta_avg = load_avg - se->avg.load_avg;
4559 if (!delta_avg)
4560 return;
4561
4562 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4563
4564 se->avg.load_sum = runnable_sum;
4565 se->avg.load_avg = load_avg;
4566 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4567 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4568 /* See update_cfs_rq_load_avg() */
4569 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4570 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4571 }
4572
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4573 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4574 {
4575 cfs_rq->propagate = 1;
4576 cfs_rq->prop_runnable_sum += runnable_sum;
4577 }
4578
4579 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4580 static inline int propagate_entity_load_avg(struct sched_entity *se)
4581 {
4582 struct cfs_rq *cfs_rq, *gcfs_rq;
4583
4584 if (entity_is_task(se))
4585 return 0;
4586
4587 gcfs_rq = group_cfs_rq(se);
4588 if (!gcfs_rq->propagate)
4589 return 0;
4590
4591 gcfs_rq->propagate = 0;
4592
4593 cfs_rq = cfs_rq_of(se);
4594
4595 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4596
4597 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4598 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4599 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4600
4601 trace_pelt_cfs_tp(cfs_rq);
4602 trace_pelt_se_tp(se);
4603
4604 return 1;
4605 }
4606
4607 /*
4608 * Check if we need to update the load and the utilization of a blocked
4609 * group_entity:
4610 */
skip_blocked_update(struct sched_entity * se)4611 static inline bool skip_blocked_update(struct sched_entity *se)
4612 {
4613 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4614
4615 /*
4616 * If sched_entity still have not zero load or utilization, we have to
4617 * decay it:
4618 */
4619 if (se->avg.load_avg || se->avg.util_avg)
4620 return false;
4621
4622 /*
4623 * If there is a pending propagation, we have to update the load and
4624 * the utilization of the sched_entity:
4625 */
4626 if (gcfs_rq->propagate)
4627 return false;
4628
4629 /*
4630 * Otherwise, the load and the utilization of the sched_entity is
4631 * already zero and there is no pending propagation, so it will be a
4632 * waste of time to try to decay it:
4633 */
4634 return true;
4635 }
4636
4637 #else /* CONFIG_FAIR_GROUP_SCHED */
4638
update_tg_load_avg(struct cfs_rq * cfs_rq)4639 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4640
clear_tg_offline_cfs_rqs(struct rq * rq)4641 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4642
propagate_entity_load_avg(struct sched_entity * se)4643 static inline int propagate_entity_load_avg(struct sched_entity *se)
4644 {
4645 return 0;
4646 }
4647
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4648 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4649
4650 #endif /* CONFIG_FAIR_GROUP_SCHED */
4651
4652 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4653 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4654 {
4655 u64 throttled = 0, now, lut;
4656 struct cfs_rq *cfs_rq;
4657 struct rq *rq;
4658 bool is_idle;
4659
4660 if (load_avg_is_decayed(&se->avg))
4661 return;
4662
4663 cfs_rq = cfs_rq_of(se);
4664 rq = rq_of(cfs_rq);
4665
4666 rcu_read_lock();
4667 is_idle = is_idle_task(rcu_dereference(rq->curr));
4668 rcu_read_unlock();
4669
4670 /*
4671 * The lag estimation comes with a cost we don't want to pay all the
4672 * time. Hence, limiting to the case where the source CPU is idle and
4673 * we know we are at the greatest risk to have an outdated clock.
4674 */
4675 if (!is_idle)
4676 return;
4677
4678 /*
4679 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4680 *
4681 * last_update_time (the cfs_rq's last_update_time)
4682 * = cfs_rq_clock_pelt()@cfs_rq_idle
4683 * = rq_clock_pelt()@cfs_rq_idle
4684 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4685 *
4686 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4687 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4688 *
4689 * rq_idle_lag (delta between now and rq's update)
4690 * = sched_clock_cpu() - rq_clock()@rq_idle
4691 *
4692 * We can then write:
4693 *
4694 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4695 * sched_clock_cpu() - rq_clock()@rq_idle
4696 * Where:
4697 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4698 * rq_clock()@rq_idle is rq->clock_idle
4699 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4700 * is cfs_rq->throttled_pelt_idle
4701 */
4702
4703 #ifdef CONFIG_CFS_BANDWIDTH
4704 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4705 /* The clock has been stopped for throttling */
4706 if (throttled == U64_MAX)
4707 return;
4708 #endif
4709 now = u64_u32_load(rq->clock_pelt_idle);
4710 /*
4711 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4712 * is observed the old clock_pelt_idle value and the new clock_idle,
4713 * which lead to an underestimation. The opposite would lead to an
4714 * overestimation.
4715 */
4716 smp_rmb();
4717 lut = cfs_rq_last_update_time(cfs_rq);
4718
4719 now -= throttled;
4720 if (now < lut)
4721 /*
4722 * cfs_rq->avg.last_update_time is more recent than our
4723 * estimation, let's use it.
4724 */
4725 now = lut;
4726 else
4727 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4728
4729 __update_load_avg_blocked_se(now, se);
4730 }
4731 #else
migrate_se_pelt_lag(struct sched_entity * se)4732 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4733 #endif
4734
4735 /**
4736 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4737 * @now: current time, as per cfs_rq_clock_pelt()
4738 * @cfs_rq: cfs_rq to update
4739 *
4740 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4741 * avg. The immediate corollary is that all (fair) tasks must be attached.
4742 *
4743 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4744 *
4745 * Return: true if the load decayed or we removed load.
4746 *
4747 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4748 * call update_tg_load_avg() when this function returns true.
4749 */
4750 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4751 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4752 {
4753 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4754 struct sched_avg *sa = &cfs_rq->avg;
4755 int decayed = 0;
4756
4757 if (cfs_rq->removed.nr) {
4758 unsigned long r;
4759 u32 divider = get_pelt_divider(&cfs_rq->avg);
4760
4761 raw_spin_lock(&cfs_rq->removed.lock);
4762 swap(cfs_rq->removed.util_avg, removed_util);
4763 swap(cfs_rq->removed.load_avg, removed_load);
4764 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4765 cfs_rq->removed.nr = 0;
4766 raw_spin_unlock(&cfs_rq->removed.lock);
4767
4768 r = removed_load;
4769 sub_positive(&sa->load_avg, r);
4770 sub_positive(&sa->load_sum, r * divider);
4771 /* See sa->util_sum below */
4772 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4773
4774 r = removed_util;
4775 sub_positive(&sa->util_avg, r);
4776 sub_positive(&sa->util_sum, r * divider);
4777 /*
4778 * Because of rounding, se->util_sum might ends up being +1 more than
4779 * cfs->util_sum. Although this is not a problem by itself, detaching
4780 * a lot of tasks with the rounding problem between 2 updates of
4781 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4782 * cfs_util_avg is not.
4783 * Check that util_sum is still above its lower bound for the new
4784 * util_avg. Given that period_contrib might have moved since the last
4785 * sync, we are only sure that util_sum must be above or equal to
4786 * util_avg * minimum possible divider
4787 */
4788 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4789
4790 r = removed_runnable;
4791 sub_positive(&sa->runnable_avg, r);
4792 sub_positive(&sa->runnable_sum, r * divider);
4793 /* See sa->util_sum above */
4794 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4795 sa->runnable_avg * PELT_MIN_DIVIDER);
4796
4797 /*
4798 * removed_runnable is the unweighted version of removed_load so we
4799 * can use it to estimate removed_load_sum.
4800 */
4801 add_tg_cfs_propagate(cfs_rq,
4802 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4803
4804 decayed = 1;
4805 }
4806
4807 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4808 u64_u32_store_copy(sa->last_update_time,
4809 cfs_rq->last_update_time_copy,
4810 sa->last_update_time);
4811 return decayed;
4812 }
4813
4814 /**
4815 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4816 * @cfs_rq: cfs_rq to attach to
4817 * @se: sched_entity to attach
4818 *
4819 * Must call update_cfs_rq_load_avg() before this, since we rely on
4820 * cfs_rq->avg.last_update_time being current.
4821 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4822 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4823 {
4824 /*
4825 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4826 * See ___update_load_avg() for details.
4827 */
4828 u32 divider = get_pelt_divider(&cfs_rq->avg);
4829
4830 /*
4831 * When we attach the @se to the @cfs_rq, we must align the decay
4832 * window because without that, really weird and wonderful things can
4833 * happen.
4834 *
4835 * XXX illustrate
4836 */
4837 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4838 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4839
4840 /*
4841 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4842 * period_contrib. This isn't strictly correct, but since we're
4843 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4844 * _sum a little.
4845 */
4846 se->avg.util_sum = se->avg.util_avg * divider;
4847
4848 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4849
4850 se->avg.load_sum = se->avg.load_avg * divider;
4851 if (se_weight(se) < se->avg.load_sum)
4852 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4853 else
4854 se->avg.load_sum = 1;
4855
4856 trace_android_rvh_attach_entity_load_avg(cfs_rq, se);
4857
4858 enqueue_load_avg(cfs_rq, se);
4859 cfs_rq->avg.util_avg += se->avg.util_avg;
4860 cfs_rq->avg.util_sum += se->avg.util_sum;
4861 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4862 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4863
4864 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4865
4866 cfs_rq_util_change(cfs_rq, 0);
4867
4868 trace_pelt_cfs_tp(cfs_rq);
4869 }
4870
4871 /**
4872 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4873 * @cfs_rq: cfs_rq to detach from
4874 * @se: sched_entity to detach
4875 *
4876 * Must call update_cfs_rq_load_avg() before this, since we rely on
4877 * cfs_rq->avg.last_update_time being current.
4878 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4879 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4880 {
4881 trace_android_rvh_detach_entity_load_avg(cfs_rq, se);
4882
4883 dequeue_load_avg(cfs_rq, se);
4884 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4885 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4886 /* See update_cfs_rq_load_avg() */
4887 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4888 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4889
4890 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4891 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4892 /* See update_cfs_rq_load_avg() */
4893 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4894 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4895
4896 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4897
4898 cfs_rq_util_change(cfs_rq, 0);
4899
4900 trace_pelt_cfs_tp(cfs_rq);
4901 }
4902
4903 /*
4904 * Optional action to be done while updating the load average
4905 */
4906 #define UPDATE_TG 0x1
4907 #define SKIP_AGE_LOAD 0x2
4908 #define DO_ATTACH 0x4
4909 #define DO_DETACH 0x8
4910
4911 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4912 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4913 {
4914 u64 now = cfs_rq_clock_pelt(cfs_rq);
4915 int decayed;
4916
4917 /*
4918 * Track task load average for carrying it to new CPU after migrated, and
4919 * track group sched_entity load average for task_h_load calculation in migration
4920 */
4921 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4922 __update_load_avg_se(now, cfs_rq, se);
4923
4924 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4925 decayed |= propagate_entity_load_avg(se);
4926
4927 trace_android_rvh_update_load_avg(now, cfs_rq, se);
4928
4929 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4930
4931 /*
4932 * DO_ATTACH means we're here from enqueue_entity().
4933 * !last_update_time means we've passed through
4934 * migrate_task_rq_fair() indicating we migrated.
4935 *
4936 * IOW we're enqueueing a task on a new CPU.
4937 */
4938 attach_entity_load_avg(cfs_rq, se);
4939 update_tg_load_avg(cfs_rq);
4940
4941 } else if (flags & DO_DETACH) {
4942 /*
4943 * DO_DETACH means we're here from dequeue_entity()
4944 * and we are migrating task out of the CPU.
4945 */
4946 detach_entity_load_avg(cfs_rq, se);
4947 update_tg_load_avg(cfs_rq);
4948 } else if (decayed) {
4949 cfs_rq_util_change(cfs_rq, 0);
4950
4951 if (flags & UPDATE_TG)
4952 update_tg_load_avg(cfs_rq);
4953 }
4954 }
4955
4956 /*
4957 * Synchronize entity load avg of dequeued entity without locking
4958 * the previous rq.
4959 */
sync_entity_load_avg(struct sched_entity * se)4960 static void sync_entity_load_avg(struct sched_entity *se)
4961 {
4962 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4963 u64 last_update_time;
4964
4965 last_update_time = cfs_rq_last_update_time(cfs_rq);
4966 __update_load_avg_blocked_se(last_update_time, se);
4967 }
4968
4969 /*
4970 * Task first catches up with cfs_rq, and then subtract
4971 * itself from the cfs_rq (task must be off the queue now).
4972 */
remove_entity_load_avg(struct sched_entity * se)4973 static void remove_entity_load_avg(struct sched_entity *se)
4974 {
4975 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4976 unsigned long flags;
4977
4978 /*
4979 * tasks cannot exit without having gone through wake_up_new_task() ->
4980 * enqueue_task_fair() which will have added things to the cfs_rq,
4981 * so we can remove unconditionally.
4982 */
4983
4984 sync_entity_load_avg(se);
4985
4986 trace_android_rvh_remove_entity_load_avg(cfs_rq, se);
4987
4988 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4989 ++cfs_rq->removed.nr;
4990 cfs_rq->removed.util_avg += se->avg.util_avg;
4991 cfs_rq->removed.load_avg += se->avg.load_avg;
4992 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4993 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4994 }
4995
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4996 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4997 {
4998 return cfs_rq->avg.runnable_avg;
4999 }
5000
cfs_rq_load_avg(struct cfs_rq * cfs_rq)5001 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
5002 {
5003 return cfs_rq->avg.load_avg;
5004 }
5005
5006 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
5007
task_util(struct task_struct * p)5008 static inline unsigned long task_util(struct task_struct *p)
5009 {
5010 return READ_ONCE(p->se.avg.util_avg);
5011 }
5012
task_runnable(struct task_struct * p)5013 static inline unsigned long task_runnable(struct task_struct *p)
5014 {
5015 return READ_ONCE(p->se.avg.runnable_avg);
5016 }
5017
_task_util_est(struct task_struct * p)5018 static inline unsigned long _task_util_est(struct task_struct *p)
5019 {
5020 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
5021 }
5022
task_util_est(struct task_struct * p)5023 static inline unsigned long task_util_est(struct task_struct *p)
5024 {
5025 return max(task_util(p), _task_util_est(p));
5026 }
5027
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5028 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
5029 struct task_struct *p)
5030 {
5031 unsigned int enqueued;
5032
5033 if (!sched_feat(UTIL_EST))
5034 return;
5035
5036 /* Update root cfs_rq's estimated utilization */
5037 enqueued = cfs_rq->avg.util_est;
5038 enqueued += _task_util_est(p);
5039 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
5040
5041 trace_sched_util_est_cfs_tp(cfs_rq);
5042 }
5043
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5044 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
5045 struct task_struct *p)
5046 {
5047 unsigned int enqueued;
5048
5049 if (!sched_feat(UTIL_EST))
5050 return;
5051
5052 /* Update root cfs_rq's estimated utilization */
5053 enqueued = cfs_rq->avg.util_est;
5054 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
5055 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
5056
5057 trace_sched_util_est_cfs_tp(cfs_rq);
5058 }
5059
5060 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
5061
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5062 static inline void util_est_update(struct cfs_rq *cfs_rq,
5063 struct task_struct *p,
5064 bool task_sleep)
5065 {
5066 unsigned int ewma, dequeued, last_ewma_diff;
5067 int ret = 0;
5068
5069 trace_android_rvh_util_est_update(cfs_rq, p, task_sleep, &ret);
5070 if (ret)
5071 return;
5072
5073 if (!sched_feat(UTIL_EST))
5074 return;
5075
5076 /*
5077 * Skip update of task's estimated utilization when the task has not
5078 * yet completed an activation, e.g. being migrated.
5079 */
5080 if (!task_sleep)
5081 return;
5082
5083 /* Get current estimate of utilization */
5084 ewma = READ_ONCE(p->se.avg.util_est);
5085
5086 /*
5087 * If the PELT values haven't changed since enqueue time,
5088 * skip the util_est update.
5089 */
5090 if (ewma & UTIL_AVG_UNCHANGED)
5091 return;
5092
5093 /* Get utilization at dequeue */
5094 dequeued = task_util(p);
5095
5096 /*
5097 * Reset EWMA on utilization increases, the moving average is used only
5098 * to smooth utilization decreases.
5099 */
5100 if (ewma <= dequeued) {
5101 ewma = dequeued;
5102 goto done;
5103 }
5104
5105 /*
5106 * Skip update of task's estimated utilization when its members are
5107 * already ~1% close to its last activation value.
5108 */
5109 last_ewma_diff = ewma - dequeued;
5110 if (last_ewma_diff < UTIL_EST_MARGIN)
5111 goto done;
5112
5113 /*
5114 * To avoid overestimation of actual task utilization, skip updates if
5115 * we cannot grant there is idle time in this CPU.
5116 */
5117 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
5118 return;
5119
5120 /*
5121 * To avoid underestimate of task utilization, skip updates of EWMA if
5122 * we cannot grant that thread got all CPU time it wanted.
5123 */
5124 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
5125 goto done;
5126
5127
5128 /*
5129 * Update Task's estimated utilization
5130 *
5131 * When *p completes an activation we can consolidate another sample
5132 * of the task size. This is done by using this value to update the
5133 * Exponential Weighted Moving Average (EWMA):
5134 *
5135 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
5136 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
5137 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
5138 * = w * ( -last_ewma_diff ) + ewma(t-1)
5139 * = w * (-last_ewma_diff + ewma(t-1) / w)
5140 *
5141 * Where 'w' is the weight of new samples, which is configured to be
5142 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
5143 */
5144 ewma <<= UTIL_EST_WEIGHT_SHIFT;
5145 ewma -= last_ewma_diff;
5146 ewma >>= UTIL_EST_WEIGHT_SHIFT;
5147 done:
5148 ewma |= UTIL_AVG_UNCHANGED;
5149 WRITE_ONCE(p->se.avg.util_est, ewma);
5150
5151 trace_sched_util_est_se_tp(&p->se);
5152 }
5153
get_actual_cpu_capacity(int cpu)5154 static inline unsigned long get_actual_cpu_capacity(int cpu)
5155 {
5156 unsigned long capacity = arch_scale_cpu_capacity(cpu);
5157
5158 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
5159
5160 return capacity;
5161 }
5162
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)5163 static inline int util_fits_cpu(unsigned long util,
5164 unsigned long uclamp_min,
5165 unsigned long uclamp_max,
5166 int cpu)
5167 {
5168 unsigned long capacity = capacity_of(cpu);
5169 unsigned long capacity_orig;
5170 bool fits, uclamp_max_fits, done = false;
5171
5172 trace_android_rvh_util_fits_cpu(util, uclamp_min, uclamp_max, cpu, &fits, &done);
5173
5174 if (done)
5175 return fits;
5176
5177 /*
5178 * Check if the real util fits without any uclamp boost/cap applied.
5179 */
5180 fits = fits_capacity(util, capacity);
5181
5182 if (!uclamp_is_used())
5183 return fits;
5184
5185 /*
5186 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5187 * uclamp_max. We only care about capacity pressure (by using
5188 * capacity_of()) for comparing against the real util.
5189 *
5190 * If a task is boosted to 1024 for example, we don't want a tiny
5191 * pressure to skew the check whether it fits a CPU or not.
5192 *
5193 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5194 * should fit a little cpu even if there's some pressure.
5195 *
5196 * Only exception is for HW or cpufreq pressure since it has a direct impact
5197 * on available OPP of the system.
5198 *
5199 * We honour it for uclamp_min only as a drop in performance level
5200 * could result in not getting the requested minimum performance level.
5201 *
5202 * For uclamp_max, we can tolerate a drop in performance level as the
5203 * goal is to cap the task. So it's okay if it's getting less.
5204 */
5205 capacity_orig = arch_scale_cpu_capacity(cpu);
5206
5207 /*
5208 * We want to force a task to fit a cpu as implied by uclamp_max.
5209 * But we do have some corner cases to cater for..
5210 *
5211 *
5212 * C=z
5213 * | ___
5214 * | C=y | |
5215 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5216 * | C=x | | | |
5217 * | ___ | | | |
5218 * | | | | | | | (util somewhere in this region)
5219 * | | | | | | |
5220 * | | | | | | |
5221 * +----------------------------------------
5222 * CPU0 CPU1 CPU2
5223 *
5224 * In the above example if a task is capped to a specific performance
5225 * point, y, then when:
5226 *
5227 * * util = 80% of x then it does not fit on CPU0 and should migrate
5228 * to CPU1
5229 * * util = 80% of y then it is forced to fit on CPU1 to honour
5230 * uclamp_max request.
5231 *
5232 * which is what we're enforcing here. A task always fits if
5233 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5234 * the normal upmigration rules should withhold still.
5235 *
5236 * Only exception is when we are on max capacity, then we need to be
5237 * careful not to block overutilized state. This is so because:
5238 *
5239 * 1. There's no concept of capping at max_capacity! We can't go
5240 * beyond this performance level anyway.
5241 * 2. The system is being saturated when we're operating near
5242 * max capacity, it doesn't make sense to block overutilized.
5243 */
5244 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5245 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5246 fits = fits || uclamp_max_fits;
5247
5248 /*
5249 *
5250 * C=z
5251 * | ___ (region a, capped, util >= uclamp_max)
5252 * | C=y | |
5253 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5254 * | C=x | | | |
5255 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5256 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5257 * | | | | | | |
5258 * | | | | | | | (region c, boosted, util < uclamp_min)
5259 * +----------------------------------------
5260 * CPU0 CPU1 CPU2
5261 *
5262 * a) If util > uclamp_max, then we're capped, we don't care about
5263 * actual fitness value here. We only care if uclamp_max fits
5264 * capacity without taking margin/pressure into account.
5265 * See comment above.
5266 *
5267 * b) If uclamp_min <= util <= uclamp_max, then the normal
5268 * fits_capacity() rules apply. Except we need to ensure that we
5269 * enforce we remain within uclamp_max, see comment above.
5270 *
5271 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5272 * need to take into account the boosted value fits the CPU without
5273 * taking margin/pressure into account.
5274 *
5275 * Cases (a) and (b) are handled in the 'fits' variable already. We
5276 * just need to consider an extra check for case (c) after ensuring we
5277 * handle the case uclamp_min > uclamp_max.
5278 */
5279 uclamp_min = min(uclamp_min, uclamp_max);
5280 if (fits && (util < uclamp_min) &&
5281 (uclamp_min > get_actual_cpu_capacity(cpu)))
5282 return -1;
5283
5284 return fits;
5285 }
5286
task_fits_cpu(struct task_struct * p,int cpu)5287 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5288 {
5289 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5290 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5291 unsigned long util = task_util_est(p);
5292 /*
5293 * Return true only if the cpu fully fits the task requirements, which
5294 * include the utilization but also the performance hints.
5295 */
5296 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5297 }
5298
is_misfit_task(struct task_struct * p,struct rq * rq,misfit_reason_t * reason)5299 static inline int is_misfit_task(struct task_struct *p, struct rq *rq,
5300 misfit_reason_t *reason)
5301 {
5302 int cpu = cpu_of(rq);
5303
5304 if (!p || p->nr_cpus_allowed == 1)
5305 return 0;
5306
5307 if (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity)
5308 return 0;
5309
5310 if (task_fits_cpu(p, cpu_of(rq)))
5311 return 0;
5312
5313 if (reason)
5314 *reason = MISFIT_PERF;
5315
5316 return 1;
5317 }
5318
update_misfit_status(struct task_struct * p,struct rq * rq)5319 inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5320 {
5321 bool need_update = true;
5322 misfit_reason_t reason;
5323
5324 rq->misfit_task_load = 0;
5325 rq->misfit_reason = -1;
5326
5327 trace_android_rvh_update_misfit_status(p, rq, &need_update);
5328 if (!sched_asym_cpucap_active() || !need_update)
5329 return;
5330
5331 /*
5332 * Affinity allows us to go somewhere higher? Or are we on biggest
5333 * available CPU already? Or do we fit into this CPU ?
5334 */
5335 if (is_misfit_task(p, rq, &reason)) {
5336 /*
5337 * Make sure that misfit_task_load will not be null even if
5338 * task_h_load() returns 0.
5339 */
5340 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5341 rq->misfit_reason = reason;
5342 }
5343
5344 }
5345 EXPORT_SYMBOL_GPL(update_misfit_status);
5346
5347 #else /* CONFIG_SMP */
5348
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5349 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5350 {
5351 return !cfs_rq->nr_running;
5352 }
5353
5354 #define UPDATE_TG 0x0
5355 #define SKIP_AGE_LOAD 0x0
5356 #define DO_ATTACH 0x0
5357 #define DO_DETACH 0x0
5358
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5359 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5360 {
5361 cfs_rq_util_change(cfs_rq, 0);
5362 }
5363
remove_entity_load_avg(struct sched_entity * se)5364 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5365
5366 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5367 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5368 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5369 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5370
sched_balance_newidle(struct rq * rq,struct rq_flags * rf)5371 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5372 {
5373 return 0;
5374 }
5375
5376 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5377 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5378
5379 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5380 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5381
5382 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5383 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5384 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5385 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5386
5387 #endif /* CONFIG_SMP */
5388
5389 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5390 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5391 {
5392 u64 vslice, vruntime = avg_vruntime(cfs_rq);
5393 s64 lag = 0;
5394
5395 if (!se->custom_slice)
5396 se->slice = sysctl_sched_base_slice;
5397 vslice = calc_delta_fair(se->slice, se);
5398
5399 /*
5400 * Due to how V is constructed as the weighted average of entities,
5401 * adding tasks with positive lag, or removing tasks with negative lag
5402 * will move 'time' backwards, this can screw around with the lag of
5403 * other tasks.
5404 *
5405 * EEVDF: placement strategy #1 / #2
5406 */
5407 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5408 struct sched_entity *curr = cfs_rq->curr;
5409 unsigned long load;
5410
5411 lag = se->vlag;
5412
5413 /*
5414 * If we want to place a task and preserve lag, we have to
5415 * consider the effect of the new entity on the weighted
5416 * average and compensate for this, otherwise lag can quickly
5417 * evaporate.
5418 *
5419 * Lag is defined as:
5420 *
5421 * lag_i = S - s_i = w_i * (V - v_i)
5422 *
5423 * To avoid the 'w_i' term all over the place, we only track
5424 * the virtual lag:
5425 *
5426 * vl_i = V - v_i <=> v_i = V - vl_i
5427 *
5428 * And we take V to be the weighted average of all v:
5429 *
5430 * V = (\Sum w_j*v_j) / W
5431 *
5432 * Where W is: \Sum w_j
5433 *
5434 * Then, the weighted average after adding an entity with lag
5435 * vl_i is given by:
5436 *
5437 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5438 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5439 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5440 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5441 * = V - w_i*vl_i / (W + w_i)
5442 *
5443 * And the actual lag after adding an entity with vl_i is:
5444 *
5445 * vl'_i = V' - v_i
5446 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5447 * = vl_i - w_i*vl_i / (W + w_i)
5448 *
5449 * Which is strictly less than vl_i. So in order to preserve lag
5450 * we should inflate the lag before placement such that the
5451 * effective lag after placement comes out right.
5452 *
5453 * As such, invert the above relation for vl'_i to get the vl_i
5454 * we need to use such that the lag after placement is the lag
5455 * we computed before dequeue.
5456 *
5457 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5458 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5459 *
5460 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5461 * = W*vl_i
5462 *
5463 * vl_i = (W + w_i)*vl'_i / W
5464 */
5465 load = cfs_rq->avg_load;
5466 if (curr && curr->on_rq)
5467 load += scale_load_down(curr->load.weight);
5468
5469 lag *= load + scale_load_down(se->load.weight);
5470 if (WARN_ON_ONCE(!load))
5471 load = 1;
5472 lag = div_s64(lag, load);
5473 }
5474
5475 se->vruntime = vruntime - lag;
5476
5477 if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
5478 se->deadline += se->vruntime;
5479 se->rel_deadline = 0;
5480 return;
5481 }
5482
5483 /*
5484 * When joining the competition; the existing tasks will be,
5485 * on average, halfway through their slice, as such start tasks
5486 * off with half a slice to ease into the competition.
5487 */
5488 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5489 vslice /= 2;
5490
5491 /*
5492 * EEVDF: vd_i = ve_i + r_i/w_i
5493 */
5494 se->deadline = se->vruntime + vslice;
5495 trace_android_rvh_place_entity(cfs_rq, se, flags, &vruntime);
5496 }
5497
5498 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5499 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5500
5501 static inline bool cfs_bandwidth_used(void);
5502
5503 static void
5504 requeue_delayed_entity(struct sched_entity *se);
5505
5506 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5507 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5508 {
5509 bool curr = cfs_rq->curr == se;
5510
5511 /*
5512 * If we're the current task, we must renormalise before calling
5513 * update_curr().
5514 */
5515 if (curr)
5516 place_entity(cfs_rq, se, flags);
5517
5518 update_curr(cfs_rq);
5519
5520 /*
5521 * When enqueuing a sched_entity, we must:
5522 * - Update loads to have both entity and cfs_rq synced with now.
5523 * - For group_entity, update its runnable_weight to reflect the new
5524 * h_nr_running of its group cfs_rq.
5525 * - For group_entity, update its weight to reflect the new share of
5526 * its group cfs_rq
5527 * - Add its new weight to cfs_rq->load.weight
5528 */
5529 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5530 se_update_runnable(se);
5531 /*
5532 * XXX update_load_avg() above will have attached us to the pelt sum;
5533 * but update_cfs_group() here will re-adjust the weight and have to
5534 * undo/redo all that. Seems wasteful.
5535 */
5536 update_cfs_group(se);
5537
5538 /*
5539 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5540 * we can place the entity.
5541 */
5542 if (!curr)
5543 place_entity(cfs_rq, se, flags);
5544
5545 account_entity_enqueue(cfs_rq, se);
5546
5547 /* Entity has migrated, no longer consider this task hot */
5548 if (flags & ENQUEUE_MIGRATED)
5549 se->exec_start = 0;
5550
5551 check_schedstat_required();
5552 update_stats_enqueue_fair(cfs_rq, se, flags);
5553 if (!curr)
5554 __enqueue_entity(cfs_rq, se);
5555 se->on_rq = 1;
5556
5557 if (cfs_rq->nr_running == 1) {
5558 check_enqueue_throttle(cfs_rq);
5559 if (!throttled_hierarchy(cfs_rq)) {
5560 list_add_leaf_cfs_rq(cfs_rq);
5561 } else {
5562 #ifdef CONFIG_CFS_BANDWIDTH
5563 struct rq *rq = rq_of(cfs_rq);
5564
5565 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5566 cfs_rq->throttled_clock = rq_clock(rq);
5567 if (!cfs_rq->throttled_clock_self)
5568 cfs_rq->throttled_clock_self = rq_clock(rq);
5569 #endif
5570 }
5571 }
5572 }
5573
__clear_buddies_next(struct sched_entity * se)5574 static void __clear_buddies_next(struct sched_entity *se)
5575 {
5576 for_each_sched_entity(se) {
5577 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5578 if (cfs_rq->next != se)
5579 break;
5580
5581 cfs_rq->next = NULL;
5582 }
5583 }
5584
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5585 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5586 {
5587 if (cfs_rq->next == se)
5588 __clear_buddies_next(se);
5589 }
5590
5591 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5592
set_delayed(struct sched_entity * se)5593 static void set_delayed(struct sched_entity *se)
5594 {
5595 se->sched_delayed = 1;
5596
5597 /*
5598 * Delayed se of cfs_rq have no tasks queued on them.
5599 * Do not adjust h_nr_runnable since dequeue_entities()
5600 * will account it for blocked tasks.
5601 */
5602 if (!entity_is_task(se))
5603 return;
5604
5605 for_each_sched_entity(se) {
5606 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5607
5608 cfs_rq->h_nr_delayed++;
5609 if (cfs_rq_throttled(cfs_rq))
5610 break;
5611 }
5612 }
5613
clear_delayed(struct sched_entity * se)5614 static void clear_delayed(struct sched_entity *se)
5615 {
5616 se->sched_delayed = 0;
5617
5618 /*
5619 * Delayed se of cfs_rq have no tasks queued on them.
5620 * Do not adjust h_nr_runnable since a dequeue has
5621 * already accounted for it or an enqueue of a task
5622 * below it will account for it in enqueue_task_fair().
5623 */
5624 if (!entity_is_task(se))
5625 return;
5626
5627 for_each_sched_entity(se) {
5628 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5629
5630 cfs_rq->h_nr_delayed--;
5631 if (cfs_rq_throttled(cfs_rq))
5632 break;
5633 }
5634 }
5635
finish_delayed_dequeue_entity(struct sched_entity * se)5636 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5637 {
5638 clear_delayed(se);
5639 if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5640 se->vlag = 0;
5641 }
5642
5643 static bool
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5644 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5645 {
5646 bool sleep = flags & DEQUEUE_SLEEP;
5647
5648 update_curr(cfs_rq);
5649 clear_buddies(cfs_rq, se);
5650
5651 if (flags & DEQUEUE_DELAYED) {
5652 SCHED_WARN_ON(!se->sched_delayed);
5653 } else {
5654 bool delay = sleep;
5655 /*
5656 * DELAY_DEQUEUE relies on spurious wakeups, special task
5657 * states must not suffer spurious wakeups, excempt them.
5658 */
5659 if (flags & DEQUEUE_SPECIAL)
5660 delay = false;
5661
5662 SCHED_WARN_ON(delay && se->sched_delayed);
5663
5664 trace_android_rvh_dequeue_entity_delayed(cfs_rq, se, &delay);
5665 if (sched_feat(DELAY_DEQUEUE) && delay &&
5666 !entity_eligible(cfs_rq, se)) {
5667 update_load_avg(cfs_rq, se, 0);
5668 set_delayed(se);
5669 return false;
5670 }
5671 }
5672
5673 int action = UPDATE_TG;
5674 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5675 action |= DO_DETACH;
5676
5677 /*
5678 * When dequeuing a sched_entity, we must:
5679 * - Update loads to have both entity and cfs_rq synced with now.
5680 * - For group_entity, update its runnable_weight to reflect the new
5681 * h_nr_running of its group cfs_rq.
5682 * - Subtract its previous weight from cfs_rq->load.weight.
5683 * - For group entity, update its weight to reflect the new share
5684 * of its group cfs_rq.
5685 */
5686 update_load_avg(cfs_rq, se, action);
5687 se_update_runnable(se);
5688
5689 update_stats_dequeue_fair(cfs_rq, se, flags);
5690
5691 update_entity_lag(cfs_rq, se);
5692 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5693 se->deadline -= se->vruntime;
5694 se->rel_deadline = 1;
5695 }
5696
5697 if (se != cfs_rq->curr)
5698 __dequeue_entity(cfs_rq, se);
5699 se->on_rq = 0;
5700 account_entity_dequeue(cfs_rq, se);
5701
5702 /* return excess runtime on last dequeue */
5703 return_cfs_rq_runtime(cfs_rq);
5704
5705 update_cfs_group(se);
5706
5707 /*
5708 * Now advance min_vruntime if @se was the entity holding it back,
5709 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5710 * put back on, and if we advance min_vruntime, we'll be placed back
5711 * further than we started -- i.e. we'll be penalized.
5712 */
5713 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5714 update_min_vruntime(cfs_rq);
5715
5716 if (flags & DEQUEUE_DELAYED)
5717 finish_delayed_dequeue_entity(se);
5718
5719 if (cfs_rq->nr_running == 0)
5720 update_idle_cfs_rq_clock_pelt(cfs_rq);
5721
5722 return true;
5723 }
5724
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5725 void set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5726 {
5727 clear_buddies(cfs_rq, se);
5728
5729 /* 'current' is not kept within the tree. */
5730 if (se->on_rq) {
5731 /*
5732 * Any task has to be enqueued before it get to execute on
5733 * a CPU. So account for the time it spent waiting on the
5734 * runqueue.
5735 */
5736 update_stats_wait_end_fair(cfs_rq, se);
5737 __dequeue_entity(cfs_rq, se);
5738 update_load_avg(cfs_rq, se, UPDATE_TG);
5739
5740 set_protect_slice(se);
5741 }
5742
5743 update_stats_curr_start(cfs_rq, se);
5744 SCHED_WARN_ON(cfs_rq->curr);
5745 cfs_rq->curr = se;
5746
5747 /*
5748 * Track our maximum slice length, if the CPU's load is at
5749 * least twice that of our own weight (i.e. don't track it
5750 * when there are only lesser-weight tasks around):
5751 */
5752 if (schedstat_enabled() &&
5753 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5754 struct sched_statistics *stats;
5755
5756 stats = __schedstats_from_se(se);
5757 __schedstat_set(stats->slice_max,
5758 max((u64)stats->slice_max,
5759 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5760 }
5761
5762 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5763 }
5764 EXPORT_SYMBOL_GPL(set_next_entity);
5765
5766 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5767
5768 /*
5769 * Pick the next process, keeping these things in mind, in this order:
5770 * 1) keep things fair between processes/task groups
5771 * 2) pick the "next" process, since someone really wants that to run
5772 * 3) pick the "last" process, for cache locality
5773 * 4) do not run the "skip" process, if something else is available
5774 */
5775 static struct sched_entity *
pick_next_entity(struct rq * rq,struct cfs_rq * cfs_rq)5776 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5777 {
5778 /*
5779 * Picking the ->next buddy will affect latency but not fairness.
5780 */
5781 if (sched_feat(PICK_BUDDY) &&
5782 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5783 /* ->next will never be delayed */
5784 SCHED_WARN_ON(cfs_rq->next->sched_delayed);
5785 return cfs_rq->next;
5786 }
5787
5788 struct sched_entity *se = pick_eevdf(cfs_rq);
5789 if (se->sched_delayed) {
5790 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5791 /*
5792 * Must not reference @se again, see __block_task().
5793 */
5794 return NULL;
5795 }
5796 return se;
5797 }
5798
5799 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5800
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5801 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5802 {
5803 /*
5804 * If still on the runqueue then deactivate_task()
5805 * was not called and update_curr() has to be done:
5806 */
5807 if (prev->on_rq)
5808 update_curr(cfs_rq);
5809
5810 /* throttle cfs_rqs exceeding runtime */
5811 check_cfs_rq_runtime(cfs_rq);
5812
5813 if (prev->on_rq) {
5814 update_stats_wait_start_fair(cfs_rq, prev);
5815 /* Put 'current' back into the tree. */
5816 __enqueue_entity(cfs_rq, prev);
5817 /* in !on_rq case, update occurred at dequeue */
5818 update_load_avg(cfs_rq, prev, 0);
5819 }
5820 SCHED_WARN_ON(cfs_rq->curr != prev);
5821 cfs_rq->curr = NULL;
5822 }
5823
5824 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5825 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5826 {
5827 /*
5828 * Update run-time statistics of the 'current'.
5829 */
5830 update_curr(cfs_rq);
5831
5832 /*
5833 * Ensure that runnable average is periodically updated.
5834 */
5835 update_load_avg(cfs_rq, curr, UPDATE_TG);
5836 update_cfs_group(curr);
5837
5838 #ifdef CONFIG_SCHED_HRTICK
5839 /*
5840 * queued ticks are scheduled to match the slice, so don't bother
5841 * validating it and just reschedule.
5842 */
5843 if (queued) {
5844 resched_curr(rq_of(cfs_rq));
5845 return;
5846 }
5847 /*
5848 * don't let the period tick interfere with the hrtick preemption
5849 */
5850 if (!sched_feat(DOUBLE_TICK) &&
5851 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5852 return;
5853 #endif
5854 trace_android_rvh_entity_tick(cfs_rq, curr);
5855 }
5856
5857
5858 /**************************************************
5859 * CFS bandwidth control machinery
5860 */
5861
5862 #ifdef CONFIG_CFS_BANDWIDTH
5863
5864 #ifdef CONFIG_JUMP_LABEL
5865 static struct static_key __cfs_bandwidth_used;
5866
cfs_bandwidth_used(void)5867 static inline bool cfs_bandwidth_used(void)
5868 {
5869 return static_key_false(&__cfs_bandwidth_used);
5870 }
5871
cfs_bandwidth_usage_inc(void)5872 void cfs_bandwidth_usage_inc(void)
5873 {
5874 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5875 }
5876
cfs_bandwidth_usage_dec(void)5877 void cfs_bandwidth_usage_dec(void)
5878 {
5879 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5880 }
5881 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5882 static bool cfs_bandwidth_used(void)
5883 {
5884 return true;
5885 }
5886
cfs_bandwidth_usage_inc(void)5887 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5888 void cfs_bandwidth_usage_dec(void) {}
5889 #endif /* CONFIG_JUMP_LABEL */
5890
5891 /*
5892 * default period for cfs group bandwidth.
5893 * default: 0.1s, units: nanoseconds
5894 */
default_cfs_period(void)5895 static inline u64 default_cfs_period(void)
5896 {
5897 return 100000000ULL;
5898 }
5899
sched_cfs_bandwidth_slice(void)5900 static inline u64 sched_cfs_bandwidth_slice(void)
5901 {
5902 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5903 }
5904
5905 /*
5906 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5907 * directly instead of rq->clock to avoid adding additional synchronization
5908 * around rq->lock.
5909 *
5910 * requires cfs_b->lock
5911 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5912 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5913 {
5914 s64 runtime;
5915
5916 if (unlikely(cfs_b->quota == RUNTIME_INF))
5917 return;
5918
5919 cfs_b->runtime += cfs_b->quota;
5920 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5921 if (runtime > 0) {
5922 cfs_b->burst_time += runtime;
5923 cfs_b->nr_burst++;
5924 }
5925
5926 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5927 cfs_b->runtime_snap = cfs_b->runtime;
5928 }
5929
tg_cfs_bandwidth(struct task_group * tg)5930 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5931 {
5932 return &tg->cfs_bandwidth;
5933 }
5934
5935 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5936 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5937 struct cfs_rq *cfs_rq, u64 target_runtime)
5938 {
5939 u64 min_amount, amount = 0;
5940
5941 lockdep_assert_held(&cfs_b->lock);
5942
5943 /* note: this is a positive sum as runtime_remaining <= 0 */
5944 min_amount = target_runtime - cfs_rq->runtime_remaining;
5945
5946 if (cfs_b->quota == RUNTIME_INF)
5947 amount = min_amount;
5948 else {
5949 start_cfs_bandwidth(cfs_b);
5950
5951 if (cfs_b->runtime > 0) {
5952 amount = min(cfs_b->runtime, min_amount);
5953 cfs_b->runtime -= amount;
5954 cfs_b->idle = 0;
5955 }
5956 }
5957
5958 cfs_rq->runtime_remaining += amount;
5959
5960 return cfs_rq->runtime_remaining > 0;
5961 }
5962
5963 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5964 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5965 {
5966 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5967 int ret;
5968
5969 raw_spin_lock(&cfs_b->lock);
5970 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5971 raw_spin_unlock(&cfs_b->lock);
5972
5973 return ret;
5974 }
5975
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5976 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5977 {
5978 /* dock delta_exec before expiring quota (as it could span periods) */
5979 cfs_rq->runtime_remaining -= delta_exec;
5980
5981 if (likely(cfs_rq->runtime_remaining > 0))
5982 return;
5983
5984 if (cfs_rq->throttled)
5985 return;
5986 /*
5987 * if we're unable to extend our runtime we resched so that the active
5988 * hierarchy can be throttled
5989 */
5990 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5991 resched_curr(rq_of(cfs_rq));
5992 }
5993
5994 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5995 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5996 {
5997 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5998 return;
5999
6000 __account_cfs_rq_runtime(cfs_rq, delta_exec);
6001 }
6002
cfs_rq_throttled(struct cfs_rq * cfs_rq)6003 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6004 {
6005 return cfs_bandwidth_used() && cfs_rq->throttled;
6006 }
6007
6008 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)6009 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6010 {
6011 return cfs_bandwidth_used() && cfs_rq->throttle_count;
6012 }
6013
6014 /*
6015 * Ensure that neither of the group entities corresponding to src_cpu or
6016 * dest_cpu are members of a throttled hierarchy when performing group
6017 * load-balance operations.
6018 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6019 static inline int throttled_lb_pair(struct task_group *tg,
6020 int src_cpu, int dest_cpu)
6021 {
6022 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
6023
6024 src_cfs_rq = tg->cfs_rq[src_cpu];
6025 dest_cfs_rq = tg->cfs_rq[dest_cpu];
6026
6027 return throttled_hierarchy(src_cfs_rq) ||
6028 throttled_hierarchy(dest_cfs_rq);
6029 }
6030
tg_unthrottle_up(struct task_group * tg,void * data)6031 static int tg_unthrottle_up(struct task_group *tg, void *data)
6032 {
6033 struct rq *rq = data;
6034 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6035
6036 cfs_rq->throttle_count--;
6037 if (!cfs_rq->throttle_count) {
6038 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
6039 cfs_rq->throttled_clock_pelt;
6040
6041 /* Add cfs_rq with load or one or more already running entities to the list */
6042 if (!cfs_rq_is_decayed(cfs_rq))
6043 list_add_leaf_cfs_rq(cfs_rq);
6044
6045 if (cfs_rq->throttled_clock_self) {
6046 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
6047
6048 cfs_rq->throttled_clock_self = 0;
6049
6050 if (SCHED_WARN_ON((s64)delta < 0))
6051 delta = 0;
6052
6053 cfs_rq->throttled_clock_self_time += delta;
6054 }
6055 }
6056
6057 return 0;
6058 }
6059
tg_throttle_down(struct task_group * tg,void * data)6060 static int tg_throttle_down(struct task_group *tg, void *data)
6061 {
6062 struct rq *rq = data;
6063 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6064
6065 /* group is entering throttled state, stop time */
6066 if (!cfs_rq->throttle_count) {
6067 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
6068 list_del_leaf_cfs_rq(cfs_rq);
6069
6070 SCHED_WARN_ON(cfs_rq->throttled_clock_self);
6071 if (cfs_rq->nr_running)
6072 cfs_rq->throttled_clock_self = rq_clock(rq);
6073 }
6074 cfs_rq->throttle_count++;
6075
6076 return 0;
6077 }
6078
throttle_cfs_rq(struct cfs_rq * cfs_rq)6079 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
6080 {
6081 struct rq *rq = rq_of(cfs_rq);
6082 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6083 struct sched_entity *se;
6084 long task_delta, idle_task_delta, delayed_delta, dequeue = 1;
6085
6086 raw_spin_lock(&cfs_b->lock);
6087 /* This will start the period timer if necessary */
6088 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
6089 /*
6090 * We have raced with bandwidth becoming available, and if we
6091 * actually throttled the timer might not unthrottle us for an
6092 * entire period. We additionally needed to make sure that any
6093 * subsequent check_cfs_rq_runtime calls agree not to throttle
6094 * us, as we may commit to do cfs put_prev+pick_next, so we ask
6095 * for 1ns of runtime rather than just check cfs_b.
6096 */
6097 dequeue = 0;
6098 } else {
6099 list_add_tail_rcu(&cfs_rq->throttled_list,
6100 &cfs_b->throttled_cfs_rq);
6101 }
6102 raw_spin_unlock(&cfs_b->lock);
6103
6104 if (!dequeue)
6105 return false; /* Throttle no longer required. */
6106
6107 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
6108
6109 /* freeze hierarchy runnable averages while throttled */
6110 rcu_read_lock();
6111 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
6112 rcu_read_unlock();
6113
6114 task_delta = cfs_rq->h_nr_running;
6115 idle_task_delta = cfs_rq->idle_h_nr_running;
6116 delayed_delta = cfs_rq->h_nr_delayed;
6117 for_each_sched_entity(se) {
6118 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6119 int flags;
6120
6121 /* throttled entity or throttle-on-deactivate */
6122 if (!se->on_rq)
6123 goto done;
6124
6125 /*
6126 * Abuse SPECIAL to avoid delayed dequeue in this instance.
6127 * This avoids teaching dequeue_entities() about throttled
6128 * entities and keeps things relatively simple.
6129 */
6130 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
6131 if (se->sched_delayed)
6132 flags |= DEQUEUE_DELAYED;
6133 dequeue_entity(qcfs_rq, se, flags);
6134
6135 if (cfs_rq_is_idle(group_cfs_rq(se)))
6136 idle_task_delta = cfs_rq->h_nr_running;
6137
6138 qcfs_rq->h_nr_running -= task_delta;
6139 qcfs_rq->idle_h_nr_running -= idle_task_delta;
6140 qcfs_rq->h_nr_delayed -= delayed_delta;
6141
6142 if (qcfs_rq->load.weight) {
6143 /* Avoid re-evaluating load for this entity: */
6144 se = parent_entity(se);
6145 break;
6146 }
6147 }
6148
6149 for_each_sched_entity(se) {
6150 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6151 /* throttled entity or throttle-on-deactivate */
6152 if (!se->on_rq)
6153 goto done;
6154
6155 update_load_avg(qcfs_rq, se, 0);
6156 se_update_runnable(se);
6157
6158 if (cfs_rq_is_idle(group_cfs_rq(se)))
6159 idle_task_delta = cfs_rq->h_nr_running;
6160
6161 qcfs_rq->h_nr_running -= task_delta;
6162 qcfs_rq->idle_h_nr_running -= idle_task_delta;
6163 qcfs_rq->h_nr_delayed -= delayed_delta;
6164 }
6165
6166 /* At this point se is NULL and we are at root level*/
6167 sub_nr_running(rq, task_delta);
6168
6169 done:
6170 /*
6171 * Note: distribution will already see us throttled via the
6172 * throttled-list. rq->lock protects completion.
6173 */
6174 cfs_rq->throttled = 1;
6175 SCHED_WARN_ON(cfs_rq->throttled_clock);
6176 if (cfs_rq->nr_running)
6177 cfs_rq->throttled_clock = rq_clock(rq);
6178 return true;
6179 }
6180
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)6181 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
6182 {
6183 struct rq *rq = rq_of(cfs_rq);
6184 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6185 struct sched_entity *se;
6186 long task_delta, idle_task_delta, delayed_delta;
6187 long rq_h_nr_running = rq->cfs.h_nr_running;
6188
6189 se = cfs_rq->tg->se[cpu_of(rq)];
6190
6191 cfs_rq->throttled = 0;
6192
6193 update_rq_clock(rq);
6194
6195 raw_spin_lock(&cfs_b->lock);
6196 if (cfs_rq->throttled_clock) {
6197 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6198 cfs_rq->throttled_clock = 0;
6199 }
6200 list_del_rcu(&cfs_rq->throttled_list);
6201 raw_spin_unlock(&cfs_b->lock);
6202
6203 /* update hierarchical throttle state */
6204 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6205
6206 if (!cfs_rq->load.weight) {
6207 if (!cfs_rq->on_list)
6208 return;
6209 /*
6210 * Nothing to run but something to decay (on_list)?
6211 * Complete the branch.
6212 */
6213 for_each_sched_entity(se) {
6214 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6215 break;
6216 }
6217 goto unthrottle_throttle;
6218 }
6219
6220 task_delta = cfs_rq->h_nr_running;
6221 idle_task_delta = cfs_rq->idle_h_nr_running;
6222 delayed_delta = cfs_rq->h_nr_delayed;
6223 for_each_sched_entity(se) {
6224 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6225
6226 /* Handle any unfinished DELAY_DEQUEUE business first. */
6227 if (se->sched_delayed) {
6228 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
6229
6230 dequeue_entity(qcfs_rq, se, flags);
6231 } else if (se->on_rq)
6232 break;
6233 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6234
6235 if (cfs_rq_is_idle(group_cfs_rq(se)))
6236 idle_task_delta = cfs_rq->h_nr_running;
6237
6238 qcfs_rq->h_nr_running += task_delta;
6239 qcfs_rq->idle_h_nr_running += idle_task_delta;
6240 qcfs_rq->h_nr_delayed += delayed_delta;
6241
6242 /* end evaluation on encountering a throttled cfs_rq */
6243 if (cfs_rq_throttled(qcfs_rq))
6244 goto unthrottle_throttle;
6245 }
6246
6247 for_each_sched_entity(se) {
6248 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6249
6250 update_load_avg(qcfs_rq, se, UPDATE_TG);
6251 se_update_runnable(se);
6252
6253 if (cfs_rq_is_idle(group_cfs_rq(se)))
6254 idle_task_delta = cfs_rq->h_nr_running;
6255
6256 qcfs_rq->h_nr_running += task_delta;
6257 qcfs_rq->idle_h_nr_running += idle_task_delta;
6258 qcfs_rq->h_nr_delayed += delayed_delta;
6259
6260 /* end evaluation on encountering a throttled cfs_rq */
6261 if (cfs_rq_throttled(qcfs_rq))
6262 goto unthrottle_throttle;
6263 }
6264
6265 /* Start the fair server if un-throttling resulted in new runnable tasks */
6266 if (!rq_h_nr_running && rq->cfs.h_nr_running)
6267 dl_server_start(&rq->fair_server);
6268
6269 /* At this point se is NULL and we are at root level*/
6270 add_nr_running(rq, task_delta);
6271
6272 unthrottle_throttle:
6273 assert_list_leaf_cfs_rq(rq);
6274
6275 /* Determine whether we need to wake up potentially idle CPU: */
6276 if (rq->curr == rq->idle && rq->cfs.nr_running)
6277 resched_curr(rq);
6278 }
6279
6280 #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)6281 static void __cfsb_csd_unthrottle(void *arg)
6282 {
6283 struct cfs_rq *cursor, *tmp;
6284 struct rq *rq = arg;
6285 struct rq_flags rf;
6286
6287 rq_lock(rq, &rf);
6288
6289 /*
6290 * Iterating over the list can trigger several call to
6291 * update_rq_clock() in unthrottle_cfs_rq().
6292 * Do it once and skip the potential next ones.
6293 */
6294 update_rq_clock(rq);
6295 rq_clock_start_loop_update(rq);
6296
6297 /*
6298 * Since we hold rq lock we're safe from concurrent manipulation of
6299 * the CSD list. However, this RCU critical section annotates the
6300 * fact that we pair with sched_free_group_rcu(), so that we cannot
6301 * race with group being freed in the window between removing it
6302 * from the list and advancing to the next entry in the list.
6303 */
6304 rcu_read_lock();
6305
6306 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6307 throttled_csd_list) {
6308 list_del_init(&cursor->throttled_csd_list);
6309
6310 if (cfs_rq_throttled(cursor))
6311 unthrottle_cfs_rq(cursor);
6312 }
6313
6314 rcu_read_unlock();
6315
6316 rq_clock_stop_loop_update(rq);
6317 rq_unlock(rq, &rf);
6318 }
6319
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6320 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6321 {
6322 struct rq *rq = rq_of(cfs_rq);
6323 bool first;
6324
6325 if (rq == this_rq()) {
6326 unthrottle_cfs_rq(cfs_rq);
6327 return;
6328 }
6329
6330 /* Already enqueued */
6331 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6332 return;
6333
6334 first = list_empty(&rq->cfsb_csd_list);
6335 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6336 if (first)
6337 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6338 }
6339 #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6340 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6341 {
6342 unthrottle_cfs_rq(cfs_rq);
6343 }
6344 #endif
6345
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6346 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6347 {
6348 lockdep_assert_rq_held(rq_of(cfs_rq));
6349
6350 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6351 cfs_rq->runtime_remaining <= 0))
6352 return;
6353
6354 __unthrottle_cfs_rq_async(cfs_rq);
6355 }
6356
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6357 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6358 {
6359 int this_cpu = smp_processor_id();
6360 u64 runtime, remaining = 1;
6361 bool throttled = false;
6362 struct cfs_rq *cfs_rq, *tmp;
6363 struct rq_flags rf;
6364 struct rq *rq;
6365 LIST_HEAD(local_unthrottle);
6366
6367 rcu_read_lock();
6368 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6369 throttled_list) {
6370 rq = rq_of(cfs_rq);
6371
6372 if (!remaining) {
6373 throttled = true;
6374 break;
6375 }
6376
6377 rq_lock_irqsave(rq, &rf);
6378 if (!cfs_rq_throttled(cfs_rq))
6379 goto next;
6380
6381 /* Already queued for async unthrottle */
6382 if (!list_empty(&cfs_rq->throttled_csd_list))
6383 goto next;
6384
6385 /* By the above checks, this should never be true */
6386 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6387
6388 raw_spin_lock(&cfs_b->lock);
6389 runtime = -cfs_rq->runtime_remaining + 1;
6390 if (runtime > cfs_b->runtime)
6391 runtime = cfs_b->runtime;
6392 cfs_b->runtime -= runtime;
6393 remaining = cfs_b->runtime;
6394 raw_spin_unlock(&cfs_b->lock);
6395
6396 cfs_rq->runtime_remaining += runtime;
6397
6398 /* we check whether we're throttled above */
6399 if (cfs_rq->runtime_remaining > 0) {
6400 if (cpu_of(rq) != this_cpu) {
6401 unthrottle_cfs_rq_async(cfs_rq);
6402 } else {
6403 /*
6404 * We currently only expect to be unthrottling
6405 * a single cfs_rq locally.
6406 */
6407 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6408 list_add_tail(&cfs_rq->throttled_csd_list,
6409 &local_unthrottle);
6410 }
6411 } else {
6412 throttled = true;
6413 }
6414
6415 next:
6416 rq_unlock_irqrestore(rq, &rf);
6417 }
6418
6419 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6420 throttled_csd_list) {
6421 struct rq *rq = rq_of(cfs_rq);
6422
6423 rq_lock_irqsave(rq, &rf);
6424
6425 list_del_init(&cfs_rq->throttled_csd_list);
6426
6427 if (cfs_rq_throttled(cfs_rq))
6428 unthrottle_cfs_rq(cfs_rq);
6429
6430 rq_unlock_irqrestore(rq, &rf);
6431 }
6432 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6433
6434 rcu_read_unlock();
6435
6436 return throttled;
6437 }
6438
6439 /*
6440 * Responsible for refilling a task_group's bandwidth and unthrottling its
6441 * cfs_rqs as appropriate. If there has been no activity within the last
6442 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6443 * used to track this state.
6444 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6445 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6446 {
6447 int throttled;
6448
6449 /* no need to continue the timer with no bandwidth constraint */
6450 if (cfs_b->quota == RUNTIME_INF)
6451 goto out_deactivate;
6452
6453 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6454 cfs_b->nr_periods += overrun;
6455
6456 /* Refill extra burst quota even if cfs_b->idle */
6457 __refill_cfs_bandwidth_runtime(cfs_b);
6458
6459 /*
6460 * idle depends on !throttled (for the case of a large deficit), and if
6461 * we're going inactive then everything else can be deferred
6462 */
6463 if (cfs_b->idle && !throttled)
6464 goto out_deactivate;
6465
6466 if (!throttled) {
6467 /* mark as potentially idle for the upcoming period */
6468 cfs_b->idle = 1;
6469 return 0;
6470 }
6471
6472 /* account preceding periods in which throttling occurred */
6473 cfs_b->nr_throttled += overrun;
6474
6475 /*
6476 * This check is repeated as we release cfs_b->lock while we unthrottle.
6477 */
6478 while (throttled && cfs_b->runtime > 0) {
6479 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6480 /* we can't nest cfs_b->lock while distributing bandwidth */
6481 throttled = distribute_cfs_runtime(cfs_b);
6482 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6483 }
6484
6485 /*
6486 * While we are ensured activity in the period following an
6487 * unthrottle, this also covers the case in which the new bandwidth is
6488 * insufficient to cover the existing bandwidth deficit. (Forcing the
6489 * timer to remain active while there are any throttled entities.)
6490 */
6491 cfs_b->idle = 0;
6492
6493 return 0;
6494
6495 out_deactivate:
6496 return 1;
6497 }
6498
6499 /* a cfs_rq won't donate quota below this amount */
6500 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6501 /* minimum remaining period time to redistribute slack quota */
6502 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6503 /* how long we wait to gather additional slack before distributing */
6504 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6505
6506 /*
6507 * Are we near the end of the current quota period?
6508 *
6509 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6510 * hrtimer base being cleared by hrtimer_start. In the case of
6511 * migrate_hrtimers, base is never cleared, so we are fine.
6512 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6513 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6514 {
6515 struct hrtimer *refresh_timer = &cfs_b->period_timer;
6516 s64 remaining;
6517
6518 /* if the call-back is running a quota refresh is already occurring */
6519 if (hrtimer_callback_running(refresh_timer))
6520 return 1;
6521
6522 /* is a quota refresh about to occur? */
6523 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6524 if (remaining < (s64)min_expire)
6525 return 1;
6526
6527 return 0;
6528 }
6529
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6530 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6531 {
6532 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6533
6534 /* if there's a quota refresh soon don't bother with slack */
6535 if (runtime_refresh_within(cfs_b, min_left))
6536 return;
6537
6538 /* don't push forwards an existing deferred unthrottle */
6539 if (cfs_b->slack_started)
6540 return;
6541 cfs_b->slack_started = true;
6542
6543 hrtimer_start(&cfs_b->slack_timer,
6544 ns_to_ktime(cfs_bandwidth_slack_period),
6545 HRTIMER_MODE_REL);
6546 }
6547
6548 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6549 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6550 {
6551 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6552 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6553
6554 if (slack_runtime <= 0)
6555 return;
6556
6557 raw_spin_lock(&cfs_b->lock);
6558 if (cfs_b->quota != RUNTIME_INF) {
6559 cfs_b->runtime += slack_runtime;
6560
6561 /* we are under rq->lock, defer unthrottling using a timer */
6562 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6563 !list_empty(&cfs_b->throttled_cfs_rq))
6564 start_cfs_slack_bandwidth(cfs_b);
6565 }
6566 raw_spin_unlock(&cfs_b->lock);
6567
6568 /* even if it's not valid for return we don't want to try again */
6569 cfs_rq->runtime_remaining -= slack_runtime;
6570 }
6571
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6572 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6573 {
6574 if (!cfs_bandwidth_used())
6575 return;
6576
6577 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6578 return;
6579
6580 __return_cfs_rq_runtime(cfs_rq);
6581 }
6582
6583 /*
6584 * This is done with a timer (instead of inline with bandwidth return) since
6585 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6586 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6587 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6588 {
6589 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6590 unsigned long flags;
6591
6592 /* confirm we're still not at a refresh boundary */
6593 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6594 cfs_b->slack_started = false;
6595
6596 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6597 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6598 return;
6599 }
6600
6601 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6602 runtime = cfs_b->runtime;
6603
6604 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6605
6606 if (!runtime)
6607 return;
6608
6609 distribute_cfs_runtime(cfs_b);
6610 }
6611
6612 /*
6613 * When a group wakes up we want to make sure that its quota is not already
6614 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6615 * runtime as update_curr() throttling can not trigger until it's on-rq.
6616 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6617 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6618 {
6619 if (!cfs_bandwidth_used())
6620 return;
6621
6622 /* an active group must be handled by the update_curr()->put() path */
6623 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6624 return;
6625
6626 /* ensure the group is not already throttled */
6627 if (cfs_rq_throttled(cfs_rq))
6628 return;
6629
6630 /* update runtime allocation */
6631 account_cfs_rq_runtime(cfs_rq, 0);
6632 if (cfs_rq->runtime_remaining <= 0)
6633 throttle_cfs_rq(cfs_rq);
6634 }
6635
sync_throttle(struct task_group * tg,int cpu)6636 static void sync_throttle(struct task_group *tg, int cpu)
6637 {
6638 struct cfs_rq *pcfs_rq, *cfs_rq;
6639
6640 if (!cfs_bandwidth_used())
6641 return;
6642
6643 if (!tg->parent)
6644 return;
6645
6646 cfs_rq = tg->cfs_rq[cpu];
6647 pcfs_rq = tg->parent->cfs_rq[cpu];
6648
6649 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6650 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6651 }
6652
6653 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6654 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6655 {
6656 if (!cfs_bandwidth_used())
6657 return false;
6658
6659 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6660 return false;
6661
6662 /*
6663 * it's possible for a throttled entity to be forced into a running
6664 * state (e.g. set_curr_task), in this case we're finished.
6665 */
6666 if (cfs_rq_throttled(cfs_rq))
6667 return true;
6668
6669 return throttle_cfs_rq(cfs_rq);
6670 }
6671
sched_cfs_slack_timer(struct hrtimer * timer)6672 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6673 {
6674 struct cfs_bandwidth *cfs_b =
6675 container_of(timer, struct cfs_bandwidth, slack_timer);
6676
6677 do_sched_cfs_slack_timer(cfs_b);
6678
6679 return HRTIMER_NORESTART;
6680 }
6681
6682 extern const u64 max_cfs_quota_period;
6683
sched_cfs_period_timer(struct hrtimer * timer)6684 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6685 {
6686 struct cfs_bandwidth *cfs_b =
6687 container_of(timer, struct cfs_bandwidth, period_timer);
6688 unsigned long flags;
6689 int overrun;
6690 int idle = 0;
6691 int count = 0;
6692
6693 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6694 for (;;) {
6695 overrun = hrtimer_forward_now(timer, cfs_b->period);
6696 if (!overrun)
6697 break;
6698
6699 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6700
6701 if (++count > 3) {
6702 u64 new, old = ktime_to_ns(cfs_b->period);
6703
6704 /*
6705 * Grow period by a factor of 2 to avoid losing precision.
6706 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6707 * to fail.
6708 */
6709 new = old * 2;
6710 if (new < max_cfs_quota_period) {
6711 cfs_b->period = ns_to_ktime(new);
6712 cfs_b->quota *= 2;
6713 cfs_b->burst *= 2;
6714
6715 pr_warn_ratelimited(
6716 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6717 smp_processor_id(),
6718 div_u64(new, NSEC_PER_USEC),
6719 div_u64(cfs_b->quota, NSEC_PER_USEC));
6720 } else {
6721 pr_warn_ratelimited(
6722 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6723 smp_processor_id(),
6724 div_u64(old, NSEC_PER_USEC),
6725 div_u64(cfs_b->quota, NSEC_PER_USEC));
6726 }
6727
6728 /* reset count so we don't come right back in here */
6729 count = 0;
6730 }
6731 }
6732 if (idle)
6733 cfs_b->period_active = 0;
6734 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6735
6736 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6737 }
6738
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6739 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6740 {
6741 raw_spin_lock_init(&cfs_b->lock);
6742 cfs_b->runtime = 0;
6743 cfs_b->quota = RUNTIME_INF;
6744 cfs_b->period = ns_to_ktime(default_cfs_period());
6745 cfs_b->burst = 0;
6746 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6747
6748 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6749 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6750 cfs_b->period_timer.function = sched_cfs_period_timer;
6751
6752 /* Add a random offset so that timers interleave */
6753 hrtimer_set_expires(&cfs_b->period_timer,
6754 get_random_u32_below(cfs_b->period));
6755 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6756 cfs_b->slack_timer.function = sched_cfs_slack_timer;
6757 cfs_b->slack_started = false;
6758 }
6759
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6760 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6761 {
6762 cfs_rq->runtime_enabled = 0;
6763 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6764 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6765 }
6766
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6767 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6768 {
6769 lockdep_assert_held(&cfs_b->lock);
6770
6771 if (cfs_b->period_active)
6772 return;
6773
6774 cfs_b->period_active = 1;
6775 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6776 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6777 }
6778
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6779 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6780 {
6781 int __maybe_unused i;
6782
6783 /* init_cfs_bandwidth() was not called */
6784 if (!cfs_b->throttled_cfs_rq.next)
6785 return;
6786
6787 hrtimer_cancel(&cfs_b->period_timer);
6788 hrtimer_cancel(&cfs_b->slack_timer);
6789
6790 /*
6791 * It is possible that we still have some cfs_rq's pending on a CSD
6792 * list, though this race is very rare. In order for this to occur, we
6793 * must have raced with the last task leaving the group while there
6794 * exist throttled cfs_rq(s), and the period_timer must have queued the
6795 * CSD item but the remote cpu has not yet processed it. To handle this,
6796 * we can simply flush all pending CSD work inline here. We're
6797 * guaranteed at this point that no additional cfs_rq of this group can
6798 * join a CSD list.
6799 */
6800 #ifdef CONFIG_SMP
6801 for_each_possible_cpu(i) {
6802 struct rq *rq = cpu_rq(i);
6803 unsigned long flags;
6804
6805 if (list_empty(&rq->cfsb_csd_list))
6806 continue;
6807
6808 local_irq_save(flags);
6809 __cfsb_csd_unthrottle(rq);
6810 local_irq_restore(flags);
6811 }
6812 #endif
6813 }
6814
6815 /*
6816 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6817 *
6818 * The race is harmless, since modifying bandwidth settings of unhooked group
6819 * bits doesn't do much.
6820 */
6821
6822 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6823 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6824 {
6825 struct task_group *tg;
6826
6827 lockdep_assert_rq_held(rq);
6828
6829 rcu_read_lock();
6830 list_for_each_entry_rcu(tg, &task_groups, list) {
6831 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6832 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6833
6834 raw_spin_lock(&cfs_b->lock);
6835 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6836 raw_spin_unlock(&cfs_b->lock);
6837 }
6838 rcu_read_unlock();
6839 }
6840
6841 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6842 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6843 {
6844 struct task_group *tg;
6845
6846 lockdep_assert_rq_held(rq);
6847
6848 /*
6849 * The rq clock has already been updated in the
6850 * set_rq_offline(), so we should skip updating
6851 * the rq clock again in unthrottle_cfs_rq().
6852 */
6853 rq_clock_start_loop_update(rq);
6854
6855 rcu_read_lock();
6856 list_for_each_entry_rcu(tg, &task_groups, list) {
6857 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6858
6859 if (!cfs_rq->runtime_enabled)
6860 continue;
6861
6862 /*
6863 * clock_task is not advancing so we just need to make sure
6864 * there's some valid quota amount
6865 */
6866 cfs_rq->runtime_remaining = 1;
6867 /*
6868 * Offline rq is schedulable till CPU is completely disabled
6869 * in take_cpu_down(), so we prevent new cfs throttling here.
6870 */
6871 cfs_rq->runtime_enabled = 0;
6872
6873 if (cfs_rq_throttled(cfs_rq))
6874 unthrottle_cfs_rq(cfs_rq);
6875 }
6876 rcu_read_unlock();
6877
6878 rq_clock_stop_loop_update(rq);
6879 }
6880
cfs_task_bw_constrained(struct task_struct * p)6881 bool cfs_task_bw_constrained(struct task_struct *p)
6882 {
6883 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6884
6885 if (!cfs_bandwidth_used())
6886 return false;
6887
6888 if (cfs_rq->runtime_enabled ||
6889 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6890 return true;
6891
6892 return false;
6893 }
6894
6895 #ifdef CONFIG_NO_HZ_FULL
6896 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6897 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6898 {
6899 int cpu = cpu_of(rq);
6900
6901 if (!cfs_bandwidth_used())
6902 return;
6903
6904 if (!tick_nohz_full_cpu(cpu))
6905 return;
6906
6907 if (rq->nr_running != 1)
6908 return;
6909
6910 /*
6911 * We know there is only one task runnable and we've just picked it. The
6912 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6913 * be otherwise able to stop the tick. Just need to check if we are using
6914 * bandwidth control.
6915 */
6916 if (cfs_task_bw_constrained(p))
6917 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6918 }
6919 #endif
6920
6921 #else /* CONFIG_CFS_BANDWIDTH */
6922
cfs_bandwidth_used(void)6923 static inline bool cfs_bandwidth_used(void)
6924 {
6925 return false;
6926 }
6927
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6928 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6929 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6930 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6931 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6932 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6933
cfs_rq_throttled(struct cfs_rq * cfs_rq)6934 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6935 {
6936 return 0;
6937 }
6938
throttled_hierarchy(struct cfs_rq * cfs_rq)6939 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6940 {
6941 return 0;
6942 }
6943
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6944 static inline int throttled_lb_pair(struct task_group *tg,
6945 int src_cpu, int dest_cpu)
6946 {
6947 return 0;
6948 }
6949
6950 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6951 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6952 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6953 #endif
6954
tg_cfs_bandwidth(struct task_group * tg)6955 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6956 {
6957 return NULL;
6958 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6959 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6960 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6961 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6962 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6963 bool cfs_task_bw_constrained(struct task_struct *p)
6964 {
6965 return false;
6966 }
6967 #endif
6968 #endif /* CONFIG_CFS_BANDWIDTH */
6969
6970 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6971 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6972 #endif
6973
6974 /**************************************************
6975 * CFS operations on tasks:
6976 */
6977
6978 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6979 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6980 {
6981 struct sched_entity *se = &p->se;
6982
6983 SCHED_WARN_ON(task_rq(p) != rq);
6984
6985 if (rq->cfs.h_nr_running > 1) {
6986 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6987 u64 slice = se->slice;
6988 s64 delta = slice - ran;
6989
6990 if (delta < 0) {
6991 if (task_current_donor(rq, p))
6992 resched_curr(rq);
6993 return;
6994 }
6995 hrtick_start(rq, delta);
6996 }
6997 }
6998
6999 /*
7000 * called from enqueue/dequeue and updates the hrtick when the
7001 * current task is from our class and nr_running is low enough
7002 * to matter.
7003 */
hrtick_update(struct rq * rq)7004 static void hrtick_update(struct rq *rq)
7005 {
7006 struct task_struct *donor = rq->donor;
7007
7008 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
7009 return;
7010
7011 hrtick_start_fair(rq, donor);
7012 }
7013 #else /* !CONFIG_SCHED_HRTICK */
7014 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)7015 hrtick_start_fair(struct rq *rq, struct task_struct *p)
7016 {
7017 }
7018
hrtick_update(struct rq * rq)7019 static inline void hrtick_update(struct rq *rq)
7020 {
7021 }
7022 #endif
7023
7024 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)7025 static inline bool cpu_overutilized(int cpu)
7026 {
7027 unsigned long rq_util_min, rq_util_max;
7028 int overutilized = -1;
7029
7030 trace_android_rvh_cpu_overutilized(cpu, &overutilized);
7031 if (overutilized != -1)
7032 return overutilized;
7033
7034 if (!sched_energy_enabled())
7035 return false;
7036
7037 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
7038 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
7039
7040 /* Return true only if the utilization doesn't fit CPU's capacity */
7041 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
7042 }
7043
7044 /*
7045 * overutilized value make sense only if EAS is enabled
7046 */
is_rd_overutilized(struct root_domain * rd)7047 static inline bool is_rd_overutilized(struct root_domain *rd)
7048 {
7049 return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
7050 }
7051
set_rd_overutilized(struct root_domain * rd,bool flag)7052 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
7053 {
7054 if (!sched_energy_enabled())
7055 return;
7056
7057 WRITE_ONCE(rd->overutilized, flag);
7058 trace_sched_overutilized_tp(rd, flag);
7059 }
7060
check_update_overutilized_status(struct rq * rq)7061 static inline void check_update_overutilized_status(struct rq *rq)
7062 {
7063 /*
7064 * overutilized field is used for load balancing decisions only
7065 * if energy aware scheduler is being used
7066 */
7067
7068 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
7069 set_rd_overutilized(rq->rd, 1);
7070 }
7071 #else
check_update_overutilized_status(struct rq * rq)7072 static inline void check_update_overutilized_status(struct rq *rq) { }
7073 #endif
7074
7075 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)7076 static int sched_idle_rq(struct rq *rq)
7077 {
7078 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
7079 rq->nr_running);
7080 }
7081
7082 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)7083 static int sched_idle_cpu(int cpu)
7084 {
7085 return sched_idle_rq(cpu_rq(cpu));
7086 }
7087 #endif
7088
7089 static void
requeue_delayed_entity(struct sched_entity * se)7090 requeue_delayed_entity(struct sched_entity *se)
7091 {
7092 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7093
7094 /*
7095 * se->sched_delayed should imply: se->on_rq == 1.
7096 * Because a delayed entity is one that is still on
7097 * the runqueue competing until elegibility.
7098 */
7099 SCHED_WARN_ON(!se->sched_delayed);
7100 SCHED_WARN_ON(!se->on_rq);
7101
7102 if (sched_feat(DELAY_ZERO)) {
7103 update_entity_lag(cfs_rq, se);
7104 if (se->vlag > 0) {
7105 cfs_rq->nr_running--;
7106 if (se != cfs_rq->curr)
7107 __dequeue_entity(cfs_rq, se);
7108 se->vlag = 0;
7109 place_entity(cfs_rq, se, 0);
7110 if (se != cfs_rq->curr)
7111 __enqueue_entity(cfs_rq, se);
7112 cfs_rq->nr_running++;
7113 }
7114 }
7115
7116 update_load_avg(cfs_rq, se, 0);
7117 clear_delayed(se);
7118 }
7119
7120 /*
7121 * The enqueue_task method is called before nr_running is
7122 * increased. Here we update the fair scheduling stats and
7123 * then put the task into the rbtree:
7124 */
7125 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)7126 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7127 {
7128 struct cfs_rq *cfs_rq;
7129 struct sched_entity *se = &p->se;
7130 int idle_h_nr_running = task_has_idle_policy(p);
7131 int h_nr_delayed = 0;
7132 int task_new = !(flags & ENQUEUE_WAKEUP);
7133 int rq_h_nr_running = rq->cfs.h_nr_running;
7134 u64 slice = 0;
7135 int should_iowait_boost;
7136
7137 /*
7138 * The code below (indirectly) updates schedutil which looks at
7139 * the cfs_rq utilization to select a frequency.
7140 * Let's add the task's estimated utilization to the cfs_rq's
7141 * estimated utilization, before we update schedutil.
7142 */
7143 if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED))
7144 util_est_enqueue(&rq->cfs, p);
7145
7146 if (flags & ENQUEUE_DELAYED) {
7147 requeue_delayed_entity(se);
7148 return;
7149 }
7150
7151 /*
7152 * If in_iowait is set, the code below may not trigger any cpufreq
7153 * utilization updates, so do it here explicitly with the IOWAIT flag
7154 * passed.
7155 */
7156 should_iowait_boost = p->in_iowait;
7157 trace_android_rvh_set_iowait(p, rq, &should_iowait_boost);
7158 if (should_iowait_boost)
7159 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
7160
7161 if (task_new)
7162 h_nr_delayed = !!se->sched_delayed;
7163
7164 for_each_sched_entity(se) {
7165 if (se->on_rq) {
7166 if (se->sched_delayed)
7167 requeue_delayed_entity(se);
7168 break;
7169 }
7170 cfs_rq = cfs_rq_of(se);
7171
7172 /*
7173 * Basically set the slice of group entries to the min_slice of
7174 * their respective cfs_rq. This ensures the group can service
7175 * its entities in the desired time-frame.
7176 */
7177 if (slice) {
7178 se->slice = slice;
7179 se->custom_slice = 1;
7180 }
7181 enqueue_entity(cfs_rq, se, flags);
7182 slice = cfs_rq_min_slice(cfs_rq);
7183
7184 cfs_rq->h_nr_running++;
7185 cfs_rq->idle_h_nr_running += idle_h_nr_running;
7186 cfs_rq->h_nr_delayed += h_nr_delayed;
7187
7188 if (cfs_rq_is_idle(cfs_rq))
7189 idle_h_nr_running = 1;
7190
7191 /* end evaluation on encountering a throttled cfs_rq */
7192 if (cfs_rq_throttled(cfs_rq))
7193 goto enqueue_throttle;
7194
7195 flags = ENQUEUE_WAKEUP;
7196 }
7197
7198 trace_android_rvh_enqueue_task_fair(rq, p, flags);
7199 for_each_sched_entity(se) {
7200 cfs_rq = cfs_rq_of(se);
7201
7202 update_load_avg(cfs_rq, se, UPDATE_TG);
7203 se_update_runnable(se);
7204 update_cfs_group(se);
7205
7206 se->slice = slice;
7207 if (se != cfs_rq->curr)
7208 min_vruntime_cb_propagate(&se->run_node, NULL);
7209 slice = cfs_rq_min_slice(cfs_rq);
7210
7211 cfs_rq->h_nr_running++;
7212 cfs_rq->idle_h_nr_running += idle_h_nr_running;
7213 cfs_rq->h_nr_delayed += h_nr_delayed;
7214
7215 if (cfs_rq_is_idle(cfs_rq))
7216 idle_h_nr_running = 1;
7217
7218 /* end evaluation on encountering a throttled cfs_rq */
7219 if (cfs_rq_throttled(cfs_rq))
7220 goto enqueue_throttle;
7221 }
7222
7223 if (!rq_h_nr_running && rq->cfs.h_nr_running) {
7224 /* Account for idle runtime */
7225 if (!rq->nr_running)
7226 dl_server_update_idle_time(rq, rq->curr);
7227 dl_server_start(&rq->fair_server);
7228 }
7229
7230 /* At this point se is NULL and we are at root level*/
7231 add_nr_running(rq, 1);
7232
7233 /*
7234 * Since new tasks are assigned an initial util_avg equal to
7235 * half of the spare capacity of their CPU, tiny tasks have the
7236 * ability to cross the overutilized threshold, which will
7237 * result in the load balancer ruining all the task placement
7238 * done by EAS. As a way to mitigate that effect, do not account
7239 * for the first enqueue operation of new tasks during the
7240 * overutilized flag detection.
7241 *
7242 * A better way of solving this problem would be to wait for
7243 * the PELT signals of tasks to converge before taking them
7244 * into account, but that is not straightforward to implement,
7245 * and the following generally works well enough in practice.
7246 */
7247 if (!task_new)
7248 check_update_overutilized_status(rq);
7249
7250 enqueue_throttle:
7251 assert_list_leaf_cfs_rq(rq);
7252
7253 hrtick_update(rq);
7254 }
7255
7256 static void set_next_buddy(struct sched_entity *se);
7257
7258 /*
7259 * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7260 * failing half-way through and resume the dequeue later.
7261 *
7262 * Returns:
7263 * -1 - dequeue delayed
7264 * 0 - dequeue throttled
7265 * 1 - dequeue complete
7266 */
dequeue_entities(struct rq * rq,struct sched_entity * se,int flags)7267 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7268 {
7269 bool was_sched_idle = sched_idle_rq(rq);
7270 bool task_sleep = flags & DEQUEUE_SLEEP;
7271 bool task_delayed = flags & DEQUEUE_DELAYED;
7272 struct task_struct *p = NULL;
7273 int idle_h_nr_running = 0;
7274 int h_nr_running = 0;
7275 int h_nr_delayed = 0;
7276 struct cfs_rq *cfs_rq;
7277 u64 slice = 0;
7278
7279 if (entity_is_task(se)) {
7280 p = task_of(se);
7281 h_nr_running = 1;
7282 idle_h_nr_running = task_has_idle_policy(p);
7283 if (!task_sleep && !task_delayed)
7284 h_nr_delayed = !!se->sched_delayed;
7285 }
7286
7287 for_each_sched_entity(se) {
7288 cfs_rq = cfs_rq_of(se);
7289
7290 if (!dequeue_entity(cfs_rq, se, flags)) {
7291 if (p && &p->se == se)
7292 return -1;
7293
7294 slice = cfs_rq_min_slice(cfs_rq);
7295 break;
7296 }
7297
7298 cfs_rq->h_nr_running -= h_nr_running;
7299 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7300 cfs_rq->h_nr_delayed -= h_nr_delayed;
7301
7302 if (cfs_rq_is_idle(cfs_rq))
7303 idle_h_nr_running = h_nr_running;
7304
7305 /* end evaluation on encountering a throttled cfs_rq */
7306 if (cfs_rq_throttled(cfs_rq))
7307 return 0;
7308
7309 /* Don't dequeue parent if it has other entities besides us */
7310 if (cfs_rq->load.weight) {
7311 slice = cfs_rq_min_slice(cfs_rq);
7312
7313 /* Avoid re-evaluating load for this entity: */
7314 se = parent_entity(se);
7315 /*
7316 * Bias pick_next to pick a task from this cfs_rq, as
7317 * p is sleeping when it is within its sched_slice.
7318 */
7319 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7320 set_next_buddy(se);
7321 break;
7322 }
7323 flags |= DEQUEUE_SLEEP;
7324 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7325 }
7326
7327 trace_android_rvh_dequeue_task_fair(rq, p, flags);
7328 for_each_sched_entity(se) {
7329 cfs_rq = cfs_rq_of(se);
7330
7331 update_load_avg(cfs_rq, se, UPDATE_TG);
7332 se_update_runnable(se);
7333 update_cfs_group(se);
7334
7335 se->slice = slice;
7336 if (se != cfs_rq->curr)
7337 min_vruntime_cb_propagate(&se->run_node, NULL);
7338 slice = cfs_rq_min_slice(cfs_rq);
7339
7340 cfs_rq->h_nr_running -= h_nr_running;
7341 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7342 cfs_rq->h_nr_delayed -= h_nr_delayed;
7343
7344 if (cfs_rq_is_idle(cfs_rq))
7345 idle_h_nr_running = h_nr_running;
7346
7347 /* end evaluation on encountering a throttled cfs_rq */
7348 if (cfs_rq_throttled(cfs_rq))
7349 return 0;
7350 }
7351
7352 sub_nr_running(rq, h_nr_running);
7353
7354 /* balance early to pull high priority tasks */
7355 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7356 rq->next_balance = jiffies;
7357
7358 if (p && task_delayed) {
7359 SCHED_WARN_ON(!task_sleep);
7360 SCHED_WARN_ON(p->on_rq != 1);
7361
7362 /* Fix-up what dequeue_task_fair() skipped */
7363 hrtick_update(rq);
7364
7365 /*
7366 * Fix-up what block_task() skipped.
7367 *
7368 * Must be last, @p might not be valid after this.
7369 */
7370 __block_task(rq, p);
7371 }
7372
7373 return 1;
7374 }
7375
7376 /*
7377 * The dequeue_task method is called before nr_running is
7378 * decreased. We remove the task from the rbtree and
7379 * update the fair scheduling stats:
7380 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)7381 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7382 {
7383 if (!p->se.sched_delayed)
7384 util_est_dequeue(&rq->cfs, p);
7385
7386 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7387 if (dequeue_entities(rq, &p->se, flags) < 0)
7388 return false;
7389
7390 /*
7391 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7392 */
7393
7394 hrtick_update(rq);
7395 return true;
7396 }
7397
7398 #ifdef CONFIG_SMP
7399
7400 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7401 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7402 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7403 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7404
7405 #ifdef CONFIG_NO_HZ_COMMON
7406
7407 static struct {
7408 cpumask_var_t idle_cpus_mask;
7409 atomic_t nr_cpus;
7410 int has_blocked; /* Idle CPUS has blocked load */
7411 int needs_update; /* Newly idle CPUs need their next_balance collated */
7412 unsigned long next_balance; /* in jiffy units */
7413 unsigned long next_blocked; /* Next update of blocked load in jiffies */
7414 } nohz ____cacheline_aligned;
7415
7416 #endif /* CONFIG_NO_HZ_COMMON */
7417
cpu_load(struct rq * rq)7418 static unsigned long cpu_load(struct rq *rq)
7419 {
7420 return cfs_rq_load_avg(&rq->cfs);
7421 }
7422
7423 /*
7424 * cpu_load_without - compute CPU load without any contributions from *p
7425 * @cpu: the CPU which load is requested
7426 * @p: the task which load should be discounted
7427 *
7428 * The load of a CPU is defined by the load of tasks currently enqueued on that
7429 * CPU as well as tasks which are currently sleeping after an execution on that
7430 * CPU.
7431 *
7432 * This method returns the load of the specified CPU by discounting the load of
7433 * the specified task, whenever the task is currently contributing to the CPU
7434 * load.
7435 */
cpu_load_without(struct rq * rq,struct task_struct * p)7436 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7437 {
7438 struct cfs_rq *cfs_rq;
7439 unsigned int load;
7440
7441 /* Task has no contribution or is new */
7442 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7443 return cpu_load(rq);
7444
7445 cfs_rq = &rq->cfs;
7446 load = READ_ONCE(cfs_rq->avg.load_avg);
7447
7448 /* Discount task's util from CPU's util */
7449 lsub_positive(&load, task_h_load(p));
7450
7451 return load;
7452 }
7453
cpu_runnable(struct rq * rq)7454 static unsigned long cpu_runnable(struct rq *rq)
7455 {
7456 return cfs_rq_runnable_avg(&rq->cfs);
7457 }
7458
cpu_runnable_without(struct rq * rq,struct task_struct * p)7459 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7460 {
7461 struct cfs_rq *cfs_rq;
7462 unsigned int runnable;
7463
7464 /* Task has no contribution or is new */
7465 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7466 return cpu_runnable(rq);
7467
7468 cfs_rq = &rq->cfs;
7469 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7470
7471 /* Discount task's runnable from CPU's runnable */
7472 lsub_positive(&runnable, p->se.avg.runnable_avg);
7473
7474 return runnable;
7475 }
7476
capacity_of(int cpu)7477 static unsigned long capacity_of(int cpu)
7478 {
7479 return cpu_rq(cpu)->cpu_capacity;
7480 }
7481
record_wakee(struct task_struct * p)7482 static void record_wakee(struct task_struct *p)
7483 {
7484 /*
7485 * Only decay a single time; tasks that have less then 1 wakeup per
7486 * jiffy will not have built up many flips.
7487 */
7488 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7489 current->wakee_flips >>= 1;
7490 current->wakee_flip_decay_ts = jiffies;
7491 }
7492
7493 if (current->last_wakee != p) {
7494 current->last_wakee = p;
7495 current->wakee_flips++;
7496 }
7497 }
7498
7499 /*
7500 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7501 *
7502 * A waker of many should wake a different task than the one last awakened
7503 * at a frequency roughly N times higher than one of its wakees.
7504 *
7505 * In order to determine whether we should let the load spread vs consolidating
7506 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7507 * partner, and a factor of lls_size higher frequency in the other.
7508 *
7509 * With both conditions met, we can be relatively sure that the relationship is
7510 * non-monogamous, with partner count exceeding socket size.
7511 *
7512 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7513 * whatever is irrelevant, spread criteria is apparent partner count exceeds
7514 * socket size.
7515 */
wake_wide(struct task_struct * p)7516 static int wake_wide(struct task_struct *p)
7517 {
7518 unsigned int master = current->wakee_flips;
7519 unsigned int slave = p->wakee_flips;
7520 int factor = __this_cpu_read(sd_llc_size);
7521
7522 if (master < slave)
7523 swap(master, slave);
7524 if (slave < factor || master < slave * factor)
7525 return 0;
7526 return 1;
7527 }
7528
7529 /*
7530 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7531 * soonest. For the purpose of speed we only consider the waking and previous
7532 * CPU.
7533 *
7534 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7535 * cache-affine and is (or will be) idle.
7536 *
7537 * wake_affine_weight() - considers the weight to reflect the average
7538 * scheduling latency of the CPUs. This seems to work
7539 * for the overloaded case.
7540 */
7541 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7542 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7543 {
7544 /*
7545 * If this_cpu is idle, it implies the wakeup is from interrupt
7546 * context. Only allow the move if cache is shared. Otherwise an
7547 * interrupt intensive workload could force all tasks onto one
7548 * node depending on the IO topology or IRQ affinity settings.
7549 *
7550 * If the prev_cpu is idle and cache affine then avoid a migration.
7551 * There is no guarantee that the cache hot data from an interrupt
7552 * is more important than cache hot data on the prev_cpu and from
7553 * a cpufreq perspective, it's better to have higher utilisation
7554 * on one CPU.
7555 */
7556 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7557 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7558
7559 if (sync && cpu_rq(this_cpu)->nr_running == 1)
7560 return this_cpu;
7561
7562 if (available_idle_cpu(prev_cpu))
7563 return prev_cpu;
7564
7565 return nr_cpumask_bits;
7566 }
7567
7568 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7569 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7570 int this_cpu, int prev_cpu, int sync)
7571 {
7572 s64 this_eff_load, prev_eff_load;
7573 unsigned long task_load;
7574
7575 this_eff_load = cpu_load(cpu_rq(this_cpu));
7576
7577 if (sync) {
7578 unsigned long current_load = task_h_load(current);
7579
7580 if (current_load > this_eff_load)
7581 return this_cpu;
7582
7583 this_eff_load -= current_load;
7584 }
7585
7586 task_load = task_h_load(p);
7587
7588 this_eff_load += task_load;
7589 if (sched_feat(WA_BIAS))
7590 this_eff_load *= 100;
7591 this_eff_load *= capacity_of(prev_cpu);
7592
7593 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7594 prev_eff_load -= task_load;
7595 if (sched_feat(WA_BIAS))
7596 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7597 prev_eff_load *= capacity_of(this_cpu);
7598
7599 /*
7600 * If sync, adjust the weight of prev_eff_load such that if
7601 * prev_eff == this_eff that select_idle_sibling() will consider
7602 * stacking the wakee on top of the waker if no other CPU is
7603 * idle.
7604 */
7605 if (sync)
7606 prev_eff_load += 1;
7607
7608 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7609 }
7610
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7611 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7612 int this_cpu, int prev_cpu, int sync)
7613 {
7614 int target = nr_cpumask_bits;
7615
7616 if (sched_feat(WA_IDLE))
7617 target = wake_affine_idle(this_cpu, prev_cpu, sync);
7618
7619 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7620 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7621
7622 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7623 if (target != this_cpu)
7624 return prev_cpu;
7625
7626 schedstat_inc(sd->ttwu_move_affine);
7627 schedstat_inc(p->stats.nr_wakeups_affine);
7628 return target;
7629 }
7630
7631 static struct sched_group *
7632 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7633
7634 /*
7635 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7636 */
7637 static int
sched_balance_find_dst_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7638 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7639 {
7640 unsigned long load, min_load = ULONG_MAX;
7641 unsigned int min_exit_latency = UINT_MAX;
7642 u64 latest_idle_timestamp = 0;
7643 int least_loaded_cpu = this_cpu;
7644 int shallowest_idle_cpu = -1;
7645 int i;
7646
7647 /* Check if we have any choice: */
7648 if (group->group_weight == 1)
7649 return cpumask_first(sched_group_span(group));
7650
7651 /* Traverse only the allowed CPUs */
7652 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7653 struct rq *rq = cpu_rq(i);
7654
7655 if (!sched_core_cookie_match(rq, p))
7656 continue;
7657
7658 if (sched_idle_cpu(i))
7659 return i;
7660
7661 if (available_idle_cpu(i)) {
7662 struct cpuidle_state *idle = idle_get_state(rq);
7663 if (idle && idle->exit_latency < min_exit_latency) {
7664 /*
7665 * We give priority to a CPU whose idle state
7666 * has the smallest exit latency irrespective
7667 * of any idle timestamp.
7668 */
7669 min_exit_latency = idle->exit_latency;
7670 latest_idle_timestamp = rq->idle_stamp;
7671 shallowest_idle_cpu = i;
7672 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7673 rq->idle_stamp > latest_idle_timestamp) {
7674 /*
7675 * If equal or no active idle state, then
7676 * the most recently idled CPU might have
7677 * a warmer cache.
7678 */
7679 latest_idle_timestamp = rq->idle_stamp;
7680 shallowest_idle_cpu = i;
7681 }
7682 } else if (shallowest_idle_cpu == -1) {
7683 load = cpu_load(cpu_rq(i));
7684 if (load < min_load) {
7685 min_load = load;
7686 least_loaded_cpu = i;
7687 }
7688 }
7689 }
7690
7691 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7692 }
7693
sched_balance_find_dst_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7694 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7695 int cpu, int prev_cpu, int sd_flag)
7696 {
7697 int new_cpu = cpu;
7698
7699 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7700 return prev_cpu;
7701
7702 /*
7703 * We need task's util for cpu_util_without, sync it up to
7704 * prev_cpu's last_update_time.
7705 */
7706 if (!(sd_flag & SD_BALANCE_FORK))
7707 sync_entity_load_avg(&p->se);
7708
7709 while (sd) {
7710 struct sched_group *group;
7711 struct sched_domain *tmp;
7712 int weight;
7713
7714 if (!(sd->flags & sd_flag)) {
7715 sd = sd->child;
7716 continue;
7717 }
7718
7719 group = sched_balance_find_dst_group(sd, p, cpu);
7720 if (!group) {
7721 sd = sd->child;
7722 continue;
7723 }
7724
7725 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7726 if (new_cpu == cpu) {
7727 /* Now try balancing at a lower domain level of 'cpu': */
7728 sd = sd->child;
7729 continue;
7730 }
7731
7732 /* Now try balancing at a lower domain level of 'new_cpu': */
7733 cpu = new_cpu;
7734 weight = sd->span_weight;
7735 sd = NULL;
7736 for_each_domain(cpu, tmp) {
7737 if (weight <= tmp->span_weight)
7738 break;
7739 if (tmp->flags & sd_flag)
7740 sd = tmp;
7741 }
7742 }
7743
7744 return new_cpu;
7745 }
7746
__select_idle_cpu(int cpu,struct task_struct * p)7747 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7748 {
7749 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7750 sched_cpu_cookie_match(cpu_rq(cpu), p))
7751 return cpu;
7752
7753 return -1;
7754 }
7755
7756 #ifdef CONFIG_SCHED_SMT
7757 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7758 EXPORT_SYMBOL_GPL(sched_smt_present);
7759
set_idle_cores(int cpu,int val)7760 static inline void set_idle_cores(int cpu, int val)
7761 {
7762 struct sched_domain_shared *sds;
7763
7764 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7765 if (sds)
7766 WRITE_ONCE(sds->has_idle_cores, val);
7767 }
7768
test_idle_cores(int cpu)7769 static inline bool test_idle_cores(int cpu)
7770 {
7771 struct sched_domain_shared *sds;
7772
7773 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7774 if (sds)
7775 return READ_ONCE(sds->has_idle_cores);
7776
7777 return false;
7778 }
7779
7780 /*
7781 * Scans the local SMT mask to see if the entire core is idle, and records this
7782 * information in sd_llc_shared->has_idle_cores.
7783 *
7784 * Since SMT siblings share all cache levels, inspecting this limited remote
7785 * state should be fairly cheap.
7786 */
__update_idle_core(struct rq * rq)7787 void __update_idle_core(struct rq *rq)
7788 {
7789 int core = cpu_of(rq);
7790 int cpu;
7791
7792 rcu_read_lock();
7793 if (test_idle_cores(core))
7794 goto unlock;
7795
7796 for_each_cpu(cpu, cpu_smt_mask(core)) {
7797 if (cpu == core)
7798 continue;
7799
7800 if (!available_idle_cpu(cpu))
7801 goto unlock;
7802 }
7803
7804 set_idle_cores(core, 1);
7805 unlock:
7806 rcu_read_unlock();
7807 }
7808
7809 /*
7810 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7811 * there are no idle cores left in the system; tracked through
7812 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7813 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7814 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7815 {
7816 bool idle = true;
7817 int cpu;
7818
7819 for_each_cpu(cpu, cpu_smt_mask(core)) {
7820 if (!available_idle_cpu(cpu)) {
7821 idle = false;
7822 if (*idle_cpu == -1) {
7823 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7824 *idle_cpu = cpu;
7825 break;
7826 }
7827 continue;
7828 }
7829 break;
7830 }
7831 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7832 *idle_cpu = cpu;
7833 }
7834
7835 if (idle)
7836 return core;
7837
7838 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7839 return -1;
7840 }
7841
7842 /*
7843 * Scan the local SMT mask for idle CPUs.
7844 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7845 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7846 {
7847 int cpu;
7848
7849 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7850 if (cpu == target)
7851 continue;
7852 /*
7853 * Check if the CPU is in the LLC scheduling domain of @target.
7854 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7855 */
7856 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7857 continue;
7858 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7859 return cpu;
7860 }
7861
7862 return -1;
7863 }
7864
7865 #else /* CONFIG_SCHED_SMT */
7866
set_idle_cores(int cpu,int val)7867 static inline void set_idle_cores(int cpu, int val)
7868 {
7869 }
7870
test_idle_cores(int cpu)7871 static inline bool test_idle_cores(int cpu)
7872 {
7873 return false;
7874 }
7875
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7876 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7877 {
7878 return __select_idle_cpu(core, p);
7879 }
7880
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7881 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7882 {
7883 return -1;
7884 }
7885
7886 #endif /* CONFIG_SCHED_SMT */
7887
7888 /*
7889 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7890 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7891 * average idle time for this rq (as found in rq->avg_idle).
7892 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7893 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7894 {
7895 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7896 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7897 struct sched_domain_shared *sd_share;
7898
7899 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7900
7901 if (sched_feat(SIS_UTIL)) {
7902 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7903 if (sd_share) {
7904 /* because !--nr is the condition to stop scan */
7905 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7906 /* overloaded LLC is unlikely to have idle cpu/core */
7907 if (nr == 1)
7908 return -1;
7909 }
7910 }
7911
7912 if (static_branch_unlikely(&sched_cluster_active)) {
7913 struct sched_group *sg = sd->groups;
7914
7915 if (sg->flags & SD_CLUSTER) {
7916 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7917 if (!cpumask_test_cpu(cpu, cpus))
7918 continue;
7919
7920 if (has_idle_core) {
7921 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7922 if ((unsigned int)i < nr_cpumask_bits)
7923 return i;
7924 } else {
7925 if (--nr <= 0)
7926 return -1;
7927 idle_cpu = __select_idle_cpu(cpu, p);
7928 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7929 return idle_cpu;
7930 }
7931 }
7932 cpumask_andnot(cpus, cpus, sched_group_span(sg));
7933 }
7934 }
7935
7936 for_each_cpu_wrap(cpu, cpus, target + 1) {
7937 if (has_idle_core) {
7938 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7939 if ((unsigned int)i < nr_cpumask_bits)
7940 return i;
7941
7942 } else {
7943 if (--nr <= 0)
7944 return -1;
7945 idle_cpu = __select_idle_cpu(cpu, p);
7946 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7947 break;
7948 }
7949 }
7950
7951 if (has_idle_core)
7952 set_idle_cores(target, false);
7953
7954 return idle_cpu;
7955 }
7956
7957 /*
7958 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7959 * the task fits. If no CPU is big enough, but there are idle ones, try to
7960 * maximize capacity.
7961 */
7962 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7963 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7964 {
7965 unsigned long task_util, util_min, util_max, best_cap = 0;
7966 int fits, best_fits = 0;
7967 int cpu, best_cpu = -1;
7968 struct cpumask *cpus;
7969
7970 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7971 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7972
7973 task_util = task_util_est(p);
7974 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7975 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7976
7977 for_each_cpu_wrap(cpu, cpus, target) {
7978 unsigned long cpu_cap = capacity_of(cpu);
7979
7980 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7981 continue;
7982
7983 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7984
7985 /* This CPU fits with all requirements */
7986 if (fits > 0)
7987 return cpu;
7988 /*
7989 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7990 * Look for the CPU with best capacity.
7991 */
7992 else if (fits < 0)
7993 cpu_cap = get_actual_cpu_capacity(cpu);
7994
7995 /*
7996 * First, select CPU which fits better (-1 being better than 0).
7997 * Then, select the one with best capacity at same level.
7998 */
7999 if ((fits < best_fits) ||
8000 ((fits == best_fits) && (cpu_cap > best_cap))) {
8001 best_cap = cpu_cap;
8002 best_cpu = cpu;
8003 best_fits = fits;
8004 }
8005 }
8006
8007 return best_cpu;
8008 }
8009
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)8010 static inline bool asym_fits_cpu(unsigned long util,
8011 unsigned long util_min,
8012 unsigned long util_max,
8013 int cpu)
8014 {
8015 if (sched_asym_cpucap_active())
8016 /*
8017 * Return true only if the cpu fully fits the task requirements
8018 * which include the utilization and the performance hints.
8019 */
8020 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
8021
8022 return true;
8023 }
8024
8025 /*
8026 * Try and locate an idle core/thread in the LLC cache domain.
8027 */
select_idle_sibling(struct task_struct * p,int prev,int target)8028 static int select_idle_sibling(struct task_struct *p, int prev, int target)
8029 {
8030 bool has_idle_core = false;
8031 struct sched_domain *sd;
8032 unsigned long task_util, util_min, util_max;
8033 int i, recent_used_cpu, prev_aff = -1;
8034
8035 /*
8036 * On asymmetric system, update task utilization because we will check
8037 * that the task fits with CPU's capacity.
8038 */
8039 if (sched_asym_cpucap_active()) {
8040 sync_entity_load_avg(&p->se);
8041 task_util = task_util_est(p);
8042 util_min = uclamp_eff_value(p, UCLAMP_MIN);
8043 util_max = uclamp_eff_value(p, UCLAMP_MAX);
8044 }
8045
8046 /*
8047 * per-cpu select_rq_mask usage
8048 */
8049 lockdep_assert_irqs_disabled();
8050
8051 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
8052 asym_fits_cpu(task_util, util_min, util_max, target))
8053 return target;
8054
8055 /*
8056 * If the previous CPU is cache affine and idle, don't be stupid:
8057 */
8058 if (prev != target && cpus_share_cache(prev, target) &&
8059 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
8060 asym_fits_cpu(task_util, util_min, util_max, prev)) {
8061
8062 if (!static_branch_unlikely(&sched_cluster_active) ||
8063 cpus_share_resources(prev, target))
8064 return prev;
8065
8066 prev_aff = prev;
8067 }
8068
8069 /*
8070 * Allow a per-cpu kthread to stack with the wakee if the
8071 * kworker thread and the tasks previous CPUs are the same.
8072 * The assumption is that the wakee queued work for the
8073 * per-cpu kthread that is now complete and the wakeup is
8074 * essentially a sync wakeup. An obvious example of this
8075 * pattern is IO completions.
8076 */
8077 if (is_per_cpu_kthread(current) &&
8078 in_task() &&
8079 prev == smp_processor_id() &&
8080 this_rq()->nr_running <= 1 &&
8081 asym_fits_cpu(task_util, util_min, util_max, prev)) {
8082 return prev;
8083 }
8084
8085 /* Check a recently used CPU as a potential idle candidate: */
8086 recent_used_cpu = p->recent_used_cpu;
8087 p->recent_used_cpu = prev;
8088 if (recent_used_cpu != prev &&
8089 recent_used_cpu != target &&
8090 cpus_share_cache(recent_used_cpu, target) &&
8091 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
8092 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
8093 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
8094
8095 if (!static_branch_unlikely(&sched_cluster_active) ||
8096 cpus_share_resources(recent_used_cpu, target))
8097 return recent_used_cpu;
8098
8099 } else {
8100 recent_used_cpu = -1;
8101 }
8102
8103 /*
8104 * For asymmetric CPU capacity systems, our domain of interest is
8105 * sd_asym_cpucapacity rather than sd_llc.
8106 */
8107 if (sched_asym_cpucap_active()) {
8108 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
8109 /*
8110 * On an asymmetric CPU capacity system where an exclusive
8111 * cpuset defines a symmetric island (i.e. one unique
8112 * capacity_orig value through the cpuset), the key will be set
8113 * but the CPUs within that cpuset will not have a domain with
8114 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
8115 * capacity path.
8116 */
8117 if (sd) {
8118 i = select_idle_capacity(p, sd, target);
8119 return ((unsigned)i < nr_cpumask_bits) ? i : target;
8120 }
8121 }
8122
8123 sd = rcu_dereference(per_cpu(sd_llc, target));
8124 if (!sd)
8125 return target;
8126
8127 if (sched_smt_active()) {
8128 has_idle_core = test_idle_cores(target);
8129
8130 if (!has_idle_core && cpus_share_cache(prev, target)) {
8131 i = select_idle_smt(p, sd, prev);
8132 if ((unsigned int)i < nr_cpumask_bits)
8133 return i;
8134 }
8135 }
8136
8137 i = select_idle_cpu(p, sd, has_idle_core, target);
8138 if ((unsigned)i < nr_cpumask_bits)
8139 return i;
8140
8141 /*
8142 * For cluster machines which have lower sharing cache like L2 or
8143 * LLC Tag, we tend to find an idle CPU in the target's cluster
8144 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
8145 * use them if possible when no idle CPU found in select_idle_cpu().
8146 */
8147 if ((unsigned int)prev_aff < nr_cpumask_bits)
8148 return prev_aff;
8149 if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
8150 return recent_used_cpu;
8151
8152 return target;
8153 }
8154
8155 /**
8156 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
8157 * @cpu: the CPU to get the utilization for
8158 * @p: task for which the CPU utilization should be predicted or NULL
8159 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
8160 * @boost: 1 to enable boosting, otherwise 0
8161 *
8162 * The unit of the return value must be the same as the one of CPU capacity
8163 * so that CPU utilization can be compared with CPU capacity.
8164 *
8165 * CPU utilization is the sum of running time of runnable tasks plus the
8166 * recent utilization of currently non-runnable tasks on that CPU.
8167 * It represents the amount of CPU capacity currently used by CFS tasks in
8168 * the range [0..max CPU capacity] with max CPU capacity being the CPU
8169 * capacity at f_max.
8170 *
8171 * The estimated CPU utilization is defined as the maximum between CPU
8172 * utilization and sum of the estimated utilization of the currently
8173 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
8174 * previously-executed tasks, which helps better deduce how busy a CPU will
8175 * be when a long-sleeping task wakes up. The contribution to CPU utilization
8176 * of such a task would be significantly decayed at this point of time.
8177 *
8178 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
8179 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
8180 * utilization. Boosting is implemented in cpu_util() so that internal
8181 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
8182 * latter via cpu_util_cfs_boost().
8183 *
8184 * CPU utilization can be higher than the current CPU capacity
8185 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
8186 * of rounding errors as well as task migrations or wakeups of new tasks.
8187 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
8188 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
8189 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
8190 * capacity. CPU utilization is allowed to overshoot current CPU capacity
8191 * though since this is useful for predicting the CPU capacity required
8192 * after task migrations (scheduler-driven DVFS).
8193 *
8194 * Return: (Boosted) (estimated) utilization for the specified CPU.
8195 */
8196 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)8197 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
8198 {
8199 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
8200 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
8201 unsigned long runnable;
8202
8203 if (boost) {
8204 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8205 util = max(util, runnable);
8206 }
8207
8208 /*
8209 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8210 * contribution. If @p migrates from another CPU to @cpu add its
8211 * contribution. In all the other cases @cpu is not impacted by the
8212 * migration so its util_avg is already correct.
8213 */
8214 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8215 lsub_positive(&util, task_util(p));
8216 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8217 util += task_util(p);
8218
8219 if (sched_feat(UTIL_EST)) {
8220 unsigned long util_est;
8221
8222 util_est = READ_ONCE(cfs_rq->avg.util_est);
8223
8224 /*
8225 * During wake-up @p isn't enqueued yet and doesn't contribute
8226 * to any cpu_rq(cpu)->cfs.avg.util_est.
8227 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8228 * has been enqueued.
8229 *
8230 * During exec (@dst_cpu = -1) @p is enqueued and does
8231 * contribute to cpu_rq(cpu)->cfs.util_est.
8232 * Remove it to "simulate" cpu_util without @p's contribution.
8233 *
8234 * Despite the task_on_rq_queued(@p) check there is still a
8235 * small window for a possible race when an exec
8236 * select_task_rq_fair() races with LB's detach_task().
8237 *
8238 * detach_task()
8239 * deactivate_task()
8240 * p->on_rq = TASK_ON_RQ_MIGRATING;
8241 * -------------------------------- A
8242 * dequeue_task() \
8243 * dequeue_task_fair() + Race Time
8244 * util_est_dequeue() /
8245 * -------------------------------- B
8246 *
8247 * The additional check "current == p" is required to further
8248 * reduce the race window.
8249 */
8250 if (dst_cpu == cpu)
8251 util_est += _task_util_est(p);
8252 else if (p && unlikely(task_on_rq_queued(p) || current == p))
8253 lsub_positive(&util_est, _task_util_est(p));
8254
8255 util = max(util, util_est);
8256 }
8257
8258 return min(util, arch_scale_cpu_capacity(cpu));
8259 }
8260
cpu_util_cfs(int cpu)8261 unsigned long cpu_util_cfs(int cpu)
8262 {
8263 return cpu_util(cpu, NULL, -1, 0);
8264 }
8265
cpu_util_cfs_boost(int cpu)8266 unsigned long cpu_util_cfs_boost(int cpu)
8267 {
8268 unsigned long util = INT_MAX;
8269
8270 trace_android_rvh_cpu_util_cfs_boost(cpu, &util);
8271 if (util != INT_MAX)
8272 return util;
8273
8274 return cpu_util(cpu, NULL, -1, 1);
8275 }
8276
8277 /*
8278 * cpu_util_without: compute cpu utilization without any contributions from *p
8279 * @cpu: the CPU which utilization is requested
8280 * @p: the task which utilization should be discounted
8281 *
8282 * The utilization of a CPU is defined by the utilization of tasks currently
8283 * enqueued on that CPU as well as tasks which are currently sleeping after an
8284 * execution on that CPU.
8285 *
8286 * This method returns the utilization of the specified CPU by discounting the
8287 * utilization of the specified task, whenever the task is currently
8288 * contributing to the CPU utilization.
8289 */
cpu_util_without(int cpu,struct task_struct * p)8290 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8291 {
8292 /* Task has no contribution or is new */
8293 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8294 p = NULL;
8295
8296 return cpu_util(cpu, p, -1, 0);
8297 }
8298
8299 /*
8300 * This function computes an effective utilization for the given CPU, to be
8301 * used for frequency selection given the linear relation: f = u * f_max.
8302 *
8303 * The scheduler tracks the following metrics:
8304 *
8305 * cpu_util_{cfs,rt,dl,irq}()
8306 * cpu_bw_dl()
8307 *
8308 * Where the cfs,rt and dl util numbers are tracked with the same metric and
8309 * synchronized windows and are thus directly comparable.
8310 *
8311 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8312 * which excludes things like IRQ and steal-time. These latter are then accrued
8313 * in the IRQ utilization.
8314 *
8315 * The DL bandwidth number OTOH is not a measured metric but a value computed
8316 * based on the task model parameters and gives the minimal utilization
8317 * required to meet deadlines.
8318 */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long * min,unsigned long * max)8319 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8320 unsigned long *min,
8321 unsigned long *max)
8322 {
8323 unsigned long util, irq, scale;
8324 struct rq *rq = cpu_rq(cpu);
8325
8326 scale = arch_scale_cpu_capacity(cpu);
8327
8328 /*
8329 * Early check to see if IRQ/steal time saturates the CPU, can be
8330 * because of inaccuracies in how we track these -- see
8331 * update_irq_load_avg().
8332 */
8333 irq = cpu_util_irq(rq);
8334 if (unlikely(irq >= scale)) {
8335 if (min)
8336 *min = scale;
8337 if (max)
8338 *max = scale;
8339 return scale;
8340 }
8341
8342 if (min) {
8343 /*
8344 * The minimum utilization returns the highest level between:
8345 * - the computed DL bandwidth needed with the IRQ pressure which
8346 * steals time to the deadline task.
8347 * - The minimum performance requirement for CFS and/or RT.
8348 */
8349 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8350
8351 /*
8352 * When an RT task is runnable and uclamp is not used, we must
8353 * ensure that the task will run at maximum compute capacity.
8354 */
8355 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8356 *min = max(*min, scale);
8357 }
8358
8359 /*
8360 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8361 * CFS tasks and we use the same metric to track the effective
8362 * utilization (PELT windows are synchronized) we can directly add them
8363 * to obtain the CPU's actual utilization.
8364 */
8365 util = util_cfs + cpu_util_rt(rq);
8366 util += cpu_util_dl(rq);
8367
8368 /*
8369 * The maximum hint is a soft bandwidth requirement, which can be lower
8370 * than the actual utilization because of uclamp_max requirements.
8371 */
8372 if (max)
8373 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8374
8375 if (util >= scale)
8376 return scale;
8377
8378 /*
8379 * There is still idle time; further improve the number by using the
8380 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8381 * need to scale the task numbers:
8382 *
8383 * max - irq
8384 * U' = irq + --------- * U
8385 * max
8386 */
8387 util = scale_irq_capacity(util, irq, scale);
8388 util += irq;
8389
8390 return min(scale, util);
8391 }
8392
sched_cpu_util(int cpu)8393 unsigned long sched_cpu_util(int cpu)
8394 {
8395 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8396 }
8397
8398 /*
8399 * energy_env - Utilization landscape for energy estimation.
8400 * @task_busy_time: Utilization contribution by the task for which we test the
8401 * placement. Given by eenv_task_busy_time().
8402 * @pd_busy_time: Utilization of the whole perf domain without the task
8403 * contribution. Given by eenv_pd_busy_time().
8404 * @cpu_cap: Maximum CPU capacity for the perf domain.
8405 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8406 */
8407 struct energy_env {
8408 unsigned long task_busy_time;
8409 unsigned long pd_busy_time;
8410 unsigned long cpu_cap;
8411 unsigned long pd_cap;
8412 };
8413
8414 /*
8415 * Compute the task busy time for compute_energy(). This time cannot be
8416 * injected directly into effective_cpu_util() because of the IRQ scaling.
8417 * The latter only makes sense with the most recent CPUs where the task has
8418 * run.
8419 */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)8420 static inline void eenv_task_busy_time(struct energy_env *eenv,
8421 struct task_struct *p, int prev_cpu)
8422 {
8423 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8424 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8425
8426 if (unlikely(irq >= max_cap))
8427 busy_time = max_cap;
8428 else
8429 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8430
8431 eenv->task_busy_time = busy_time;
8432 }
8433
8434 /*
8435 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8436 * utilization for each @pd_cpus, it however doesn't take into account
8437 * clamping since the ratio (utilization / cpu_capacity) is already enough to
8438 * scale the EM reported power consumption at the (eventually clamped)
8439 * cpu_capacity.
8440 *
8441 * The contribution of the task @p for which we want to estimate the
8442 * energy cost is removed (by cpu_util()) and must be calculated
8443 * separately (see eenv_task_busy_time). This ensures:
8444 *
8445 * - A stable PD utilization, no matter which CPU of that PD we want to place
8446 * the task on.
8447 *
8448 * - A fair comparison between CPUs as the task contribution (task_util())
8449 * will always be the same no matter which CPU utilization we rely on
8450 * (util_avg or util_est).
8451 *
8452 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8453 * exceed @eenv->pd_cap.
8454 */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)8455 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8456 struct cpumask *pd_cpus,
8457 struct task_struct *p)
8458 {
8459 unsigned long busy_time = 0;
8460 int cpu;
8461
8462 for_each_cpu(cpu, pd_cpus) {
8463 unsigned long util = cpu_util(cpu, p, -1, 0);
8464
8465 busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8466 }
8467
8468 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8469 }
8470
8471 /*
8472 * Compute the maximum utilization for compute_energy() when the task @p
8473 * is placed on the cpu @dst_cpu.
8474 *
8475 * Returns the maximum utilization among @eenv->cpus. This utilization can't
8476 * exceed @eenv->cpu_cap.
8477 */
8478 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8479 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8480 struct task_struct *p, int dst_cpu)
8481 {
8482 unsigned long max_util = 0;
8483 int cpu;
8484
8485 for_each_cpu(cpu, pd_cpus) {
8486 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8487 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8488 unsigned long eff_util, min, max;
8489
8490 /*
8491 * Performance domain frequency: utilization clamping
8492 * must be considered since it affects the selection
8493 * of the performance domain frequency.
8494 * NOTE: in case RT tasks are running, by default the min
8495 * utilization can be max OPP.
8496 */
8497 eff_util = effective_cpu_util(cpu, util, &min, &max);
8498
8499 /* Task's uclamp can modify min and max value */
8500 if (tsk && uclamp_is_used()) {
8501 min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8502
8503 /*
8504 * If there is no active max uclamp constraint,
8505 * directly use task's one, otherwise keep max.
8506 */
8507 if (uclamp_rq_is_idle(cpu_rq(cpu)))
8508 max = uclamp_eff_value(p, UCLAMP_MAX);
8509 else
8510 max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8511 }
8512
8513 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8514 max_util = max(max_util, eff_util);
8515 }
8516
8517 return min(max_util, eenv->cpu_cap);
8518 }
8519
8520 /*
8521 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8522 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8523 * contribution is ignored.
8524 */
8525 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8526 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8527 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8528 {
8529 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8530 unsigned long busy_time = eenv->pd_busy_time;
8531 unsigned long energy;
8532
8533 if (dst_cpu >= 0)
8534 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8535
8536 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8537
8538 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8539
8540 return energy;
8541 }
8542
8543 /*
8544 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8545 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8546 * spare capacity in each performance domain and uses it as a potential
8547 * candidate to execute the task. Then, it uses the Energy Model to figure
8548 * out which of the CPU candidates is the most energy-efficient.
8549 *
8550 * The rationale for this heuristic is as follows. In a performance domain,
8551 * all the most energy efficient CPU candidates (according to the Energy
8552 * Model) are those for which we'll request a low frequency. When there are
8553 * several CPUs for which the frequency request will be the same, we don't
8554 * have enough data to break the tie between them, because the Energy Model
8555 * only includes active power costs. With this model, if we assume that
8556 * frequency requests follow utilization (e.g. using schedutil), the CPU with
8557 * the maximum spare capacity in a performance domain is guaranteed to be among
8558 * the best candidates of the performance domain.
8559 *
8560 * In practice, it could be preferable from an energy standpoint to pack
8561 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8562 * but that could also hurt our chances to go cluster idle, and we have no
8563 * ways to tell with the current Energy Model if this is actually a good
8564 * idea or not. So, find_energy_efficient_cpu() basically favors
8565 * cluster-packing, and spreading inside a cluster. That should at least be
8566 * a good thing for latency, and this is consistent with the idea that most
8567 * of the energy savings of EAS come from the asymmetry of the system, and
8568 * not so much from breaking the tie between identical CPUs. That's also the
8569 * reason why EAS is enabled in the topology code only for systems where
8570 * SD_ASYM_CPUCAPACITY is set.
8571 *
8572 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8573 * they don't have any useful utilization data yet and it's not possible to
8574 * forecast their impact on energy consumption. Consequently, they will be
8575 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8576 * to be energy-inefficient in some use-cases. The alternative would be to
8577 * bias new tasks towards specific types of CPUs first, or to try to infer
8578 * their util_avg from the parent task, but those heuristics could hurt
8579 * other use-cases too. So, until someone finds a better way to solve this,
8580 * let's keep things simple by re-using the existing slow path.
8581 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu,int sync)8582 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu, int sync)
8583 {
8584 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8585 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8586 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8587 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8588 struct root_domain *rd = this_rq()->rd;
8589 int cpu, best_energy_cpu, target = -1;
8590 int prev_fits = -1, best_fits = -1;
8591 unsigned long best_actual_cap = 0;
8592 unsigned long prev_actual_cap = 0;
8593 struct sched_domain *sd;
8594 struct perf_domain *pd;
8595 struct energy_env eenv;
8596 int new_cpu = INT_MAX;
8597
8598 trace_android_rvh_find_energy_efficient_cpu(p, prev_cpu, sync, &new_cpu);
8599 if (new_cpu != INT_MAX)
8600 return new_cpu;
8601
8602 sync_entity_load_avg(&p->se);
8603
8604 rcu_read_lock();
8605 pd = rcu_dereference(rd->pd);
8606 if (!pd)
8607 goto unlock;
8608
8609 cpu = smp_processor_id();
8610 if (sync && cpu_rq(cpu)->nr_running == 1 &&
8611 cpumask_test_cpu(cpu, p->cpus_ptr) &&
8612 task_fits_cpu(p, cpu)) {
8613 rcu_read_unlock();
8614 return cpu;
8615 }
8616
8617 /*
8618 * Energy-aware wake-up happens on the lowest sched_domain starting
8619 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8620 */
8621 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8622 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8623 sd = sd->parent;
8624 if (!sd)
8625 goto unlock;
8626
8627 target = prev_cpu;
8628
8629 sync_entity_load_avg(&p->se);
8630 if (!task_util_est(p) && p_util_min == 0)
8631 goto unlock;
8632
8633 eenv_task_busy_time(&eenv, p, prev_cpu);
8634
8635 for (; pd; pd = pd->next) {
8636 unsigned long util_min = p_util_min, util_max = p_util_max;
8637 unsigned long cpu_cap, cpu_actual_cap, util;
8638 long prev_spare_cap = -1, max_spare_cap = -1;
8639 unsigned long rq_util_min, rq_util_max;
8640 unsigned long cur_delta, base_energy;
8641 int max_spare_cap_cpu = -1;
8642 int fits, max_fits = -1;
8643
8644 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8645
8646 if (cpumask_empty(cpus))
8647 continue;
8648
8649 /* Account external pressure for the energy estimation */
8650 cpu = cpumask_first(cpus);
8651 cpu_actual_cap = get_actual_cpu_capacity(cpu);
8652
8653 eenv.cpu_cap = cpu_actual_cap;
8654 eenv.pd_cap = 0;
8655
8656 for_each_cpu(cpu, cpus) {
8657 struct rq *rq = cpu_rq(cpu);
8658
8659 eenv.pd_cap += cpu_actual_cap;
8660
8661 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8662 continue;
8663
8664 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8665 continue;
8666
8667 util = cpu_util(cpu, p, cpu, 0);
8668 cpu_cap = capacity_of(cpu);
8669
8670 /*
8671 * Skip CPUs that cannot satisfy the capacity request.
8672 * IOW, placing the task there would make the CPU
8673 * overutilized. Take uclamp into account to see how
8674 * much capacity we can get out of the CPU; this is
8675 * aligned with sched_cpu_util().
8676 */
8677 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8678 /*
8679 * Open code uclamp_rq_util_with() except for
8680 * the clamp() part. I.e.: apply max aggregation
8681 * only. util_fits_cpu() logic requires to
8682 * operate on non clamped util but must use the
8683 * max-aggregated uclamp_{min, max}.
8684 */
8685 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8686 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8687
8688 util_min = max(rq_util_min, p_util_min);
8689 util_max = max(rq_util_max, p_util_max);
8690 }
8691
8692 fits = util_fits_cpu(util, util_min, util_max, cpu);
8693 if (!fits)
8694 continue;
8695
8696 lsub_positive(&cpu_cap, util);
8697
8698 if (cpu == prev_cpu) {
8699 /* Always use prev_cpu as a candidate. */
8700 prev_spare_cap = cpu_cap;
8701 prev_fits = fits;
8702 } else if ((fits > max_fits) ||
8703 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8704 /*
8705 * Find the CPU with the maximum spare capacity
8706 * among the remaining CPUs in the performance
8707 * domain.
8708 */
8709 max_spare_cap = cpu_cap;
8710 max_spare_cap_cpu = cpu;
8711 max_fits = fits;
8712 }
8713 }
8714
8715 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8716 continue;
8717
8718 eenv_pd_busy_time(&eenv, cpus, p);
8719 /* Compute the 'base' energy of the pd, without @p */
8720 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8721
8722 /* Evaluate the energy impact of using prev_cpu. */
8723 if (prev_spare_cap > -1) {
8724 prev_delta = compute_energy(&eenv, pd, cpus, p,
8725 prev_cpu);
8726 /* CPU utilization has changed */
8727 if (prev_delta < base_energy)
8728 goto unlock;
8729 prev_delta -= base_energy;
8730 prev_actual_cap = cpu_actual_cap;
8731 best_delta = min(best_delta, prev_delta);
8732 }
8733
8734 /* Evaluate the energy impact of using max_spare_cap_cpu. */
8735 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8736 /* Current best energy cpu fits better */
8737 if (max_fits < best_fits)
8738 continue;
8739
8740 /*
8741 * Both don't fit performance hint (i.e. uclamp_min)
8742 * but best energy cpu has better capacity.
8743 */
8744 if ((max_fits < 0) &&
8745 (cpu_actual_cap <= best_actual_cap))
8746 continue;
8747
8748 cur_delta = compute_energy(&eenv, pd, cpus, p,
8749 max_spare_cap_cpu);
8750 /* CPU utilization has changed */
8751 if (cur_delta < base_energy)
8752 goto unlock;
8753 cur_delta -= base_energy;
8754
8755 /*
8756 * Both fit for the task but best energy cpu has lower
8757 * energy impact.
8758 */
8759 if ((max_fits > 0) && (best_fits > 0) &&
8760 (cur_delta >= best_delta))
8761 continue;
8762
8763 best_delta = cur_delta;
8764 best_energy_cpu = max_spare_cap_cpu;
8765 best_fits = max_fits;
8766 best_actual_cap = cpu_actual_cap;
8767 }
8768 }
8769 rcu_read_unlock();
8770
8771 if ((best_fits > prev_fits) ||
8772 ((best_fits > 0) && (best_delta < prev_delta)) ||
8773 ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8774 target = best_energy_cpu;
8775
8776 return target;
8777
8778 unlock:
8779 rcu_read_unlock();
8780
8781 return target;
8782 }
8783
8784 /*
8785 * select_task_rq_fair: Select target runqueue for the waking task in domains
8786 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8787 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8788 *
8789 * Balances load by selecting the idlest CPU in the idlest group, or under
8790 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8791 *
8792 * Returns the target CPU number.
8793 */
8794 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8795 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8796 {
8797 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8798 struct sched_domain *tmp, *sd = NULL;
8799 int cpu = smp_processor_id();
8800 int new_cpu = prev_cpu;
8801 int want_affine = 0;
8802 int target_cpu = -1;
8803 /* SD_flags and WF_flags share the first nibble */
8804 int sd_flag = wake_flags & 0xF;
8805
8806 if (trace_android_rvh_select_task_rq_fair_enabled() &&
8807 !(sd_flag & SD_BALANCE_FORK))
8808 sync_entity_load_avg(&p->se);
8809 trace_android_rvh_select_task_rq_fair(p, prev_cpu, sd_flag,
8810 wake_flags, &target_cpu);
8811 if (target_cpu >= 0)
8812 return target_cpu;
8813
8814 /*
8815 * required for stable ->cpus_allowed
8816 */
8817 lockdep_assert_held(&p->pi_lock);
8818 if (wake_flags & WF_TTWU) {
8819 record_wakee(p);
8820
8821 if ((wake_flags & WF_CURRENT_CPU) &&
8822 cpumask_test_cpu(cpu, p->cpus_ptr))
8823 return cpu;
8824
8825 if (!is_rd_overutilized(this_rq()->rd)) {
8826 new_cpu = find_energy_efficient_cpu(p, prev_cpu, sync);
8827 if (new_cpu >= 0)
8828 return new_cpu;
8829 new_cpu = prev_cpu;
8830 }
8831
8832 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8833 }
8834
8835 rcu_read_lock();
8836 for_each_domain(cpu, tmp) {
8837 /*
8838 * If both 'cpu' and 'prev_cpu' are part of this domain,
8839 * cpu is a valid SD_WAKE_AFFINE target.
8840 */
8841 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8842 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8843 if (cpu != prev_cpu)
8844 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8845
8846 sd = NULL; /* Prefer wake_affine over balance flags */
8847 break;
8848 }
8849
8850 /*
8851 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8852 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8853 * will usually go to the fast path.
8854 */
8855 if (tmp->flags & sd_flag)
8856 sd = tmp;
8857 else if (!want_affine)
8858 break;
8859 }
8860
8861 if (unlikely(sd)) {
8862 /* Slow path */
8863 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8864 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
8865 /* Fast path */
8866 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8867 }
8868 rcu_read_unlock();
8869
8870 return new_cpu;
8871 }
8872
8873 /*
8874 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8875 * cfs_rq_of(p) references at time of call are still valid and identify the
8876 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8877 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8878 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8879 {
8880 struct sched_entity *se = &p->se;
8881
8882 if (!task_on_rq_migrating(p)) {
8883 remove_entity_load_avg(se);
8884
8885 /*
8886 * Here, the task's PELT values have been updated according to
8887 * the current rq's clock. But if that clock hasn't been
8888 * updated in a while, a substantial idle time will be missed,
8889 * leading to an inflation after wake-up on the new rq.
8890 *
8891 * Estimate the missing time from the cfs_rq last_update_time
8892 * and update sched_avg to improve the PELT continuity after
8893 * migration.
8894 */
8895 migrate_se_pelt_lag(se);
8896 }
8897
8898 /* Tell new CPU we are migrated */
8899 se->avg.last_update_time = 0;
8900
8901 update_scan_period(p, new_cpu);
8902 }
8903
task_dead_fair(struct task_struct * p)8904 static void task_dead_fair(struct task_struct *p)
8905 {
8906 struct sched_entity *se = &p->se;
8907
8908 if (se->sched_delayed) {
8909 struct rq_flags rf;
8910 struct rq *rq;
8911
8912 rq = task_rq_lock(p, &rf);
8913 if (se->sched_delayed) {
8914 update_rq_clock(rq);
8915 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8916 }
8917 task_rq_unlock(rq, p, &rf);
8918 }
8919
8920 remove_entity_load_avg(se);
8921 }
8922
8923 /*
8924 * Set the max capacity the task is allowed to run at for misfit detection.
8925 */
set_task_max_allowed_capacity(struct task_struct * p)8926 static void set_task_max_allowed_capacity(struct task_struct *p)
8927 {
8928 struct asym_cap_data *entry;
8929
8930 if (!sched_asym_cpucap_active())
8931 return;
8932
8933 rcu_read_lock();
8934 list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8935 cpumask_t *cpumask;
8936
8937 cpumask = cpu_capacity_span(entry);
8938 if (!cpumask_intersects(p->cpus_ptr, cpumask))
8939 continue;
8940
8941 p->max_allowed_capacity = entry->capacity;
8942 break;
8943 }
8944 rcu_read_unlock();
8945 }
8946
set_cpus_allowed_fair(struct task_struct * p,struct affinity_context * ctx)8947 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8948 {
8949 set_cpus_allowed_common(p, ctx);
8950 set_task_max_allowed_capacity(p);
8951 }
8952
8953 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8954 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8955 {
8956 trace_android_rvh_balance_fair(rq, prev, rf);
8957 if (sched_fair_runnable(rq))
8958 return 1;
8959
8960 return sched_balance_newidle(rq, rf) != 0;
8961 }
8962 #else
set_task_max_allowed_capacity(struct task_struct * p)8963 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8964 #endif /* CONFIG_SMP */
8965
set_next_buddy(struct sched_entity * se)8966 static void set_next_buddy(struct sched_entity *se)
8967 {
8968 for_each_sched_entity(se) {
8969 if (SCHED_WARN_ON(!se->on_rq))
8970 return;
8971 if (se_is_idle(se))
8972 return;
8973 cfs_rq_of(se)->next = se;
8974 }
8975 }
8976
8977 /*
8978 * Preempt the current task with a newly woken task if needed:
8979 */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8980 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8981 {
8982 struct task_struct *donor = rq->donor;
8983 struct sched_entity *se = &donor->se, *pse = &p->se;
8984 struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8985 int cse_is_idle, pse_is_idle;
8986 bool ignore = false;
8987 bool preempt = false;
8988
8989 if (unlikely(se == pse))
8990 return;
8991 trace_android_rvh_check_preempt_wakeup_ignore(donor, &ignore);
8992 if (ignore)
8993 return;
8994
8995 /*
8996 * This is possible from callers such as attach_tasks(), in which we
8997 * unconditionally wakeup_preempt() after an enqueue (which may have
8998 * lead to a throttle). This both saves work and prevents false
8999 * next-buddy nomination below.
9000 */
9001 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
9002 return;
9003
9004 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
9005 set_next_buddy(pse);
9006 }
9007
9008 /*
9009 * We can come here with TIF_NEED_RESCHED already set from new task
9010 * wake up path.
9011 *
9012 * Note: this also catches the edge-case of curr being in a throttled
9013 * group (e.g. via set_curr_task), since update_curr() (in the
9014 * enqueue of curr) will have resulted in resched being set. This
9015 * prevents us from potentially nominating it as a false LAST_BUDDY
9016 * below.
9017 */
9018 if (test_tsk_need_resched(rq->curr))
9019 return;
9020
9021 if (!sched_feat(WAKEUP_PREEMPTION))
9022 return;
9023
9024 find_matching_se(&se, &pse);
9025 WARN_ON_ONCE(!pse);
9026
9027 cse_is_idle = se_is_idle(se);
9028 pse_is_idle = se_is_idle(pse);
9029
9030 /*
9031 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
9032 * in the inverse case).
9033 */
9034 if (cse_is_idle && !pse_is_idle) {
9035 /*
9036 * When non-idle entity preempt an idle entity,
9037 * don't give idle entity slice protection.
9038 */
9039 cancel_protect_slice(se);
9040 goto preempt;
9041 }
9042
9043 if (cse_is_idle != pse_is_idle)
9044 return;
9045
9046 /*
9047 * BATCH and IDLE tasks do not preempt others.
9048 */
9049 if (unlikely(!normal_policy(p->policy)))
9050 return;
9051
9052 cfs_rq = cfs_rq_of(se);
9053 update_curr(cfs_rq);
9054 trace_android_rvh_check_preempt_wakeup_fair(rq, p, &preempt, &ignore,
9055 wake_flags, se, pse);
9056 if (preempt)
9057 goto preempt;
9058 if (ignore)
9059 return;
9060 /*
9061 * If @p has a shorter slice than current and @p is eligible, override
9062 * current's slice protection in order to allow preemption.
9063 *
9064 * Note that even if @p does not turn out to be the most eligible
9065 * task at this moment, current's slice protection will be lost.
9066 */
9067 if (do_preempt_short(cfs_rq, pse, se))
9068 cancel_protect_slice(se);
9069
9070 /*
9071 * If @p has become the most eligible task, force preemption.
9072 */
9073 if (pick_eevdf(cfs_rq) == pse)
9074 goto preempt;
9075
9076 return;
9077
9078 preempt:
9079 resched_curr(rq);
9080 }
9081
pick_task_fair(struct rq * rq)9082 static struct task_struct *pick_task_fair(struct rq *rq)
9083 {
9084 struct sched_entity *se;
9085 struct cfs_rq *cfs_rq;
9086
9087 again:
9088 cfs_rq = &rq->cfs;
9089 if (!cfs_rq->nr_running)
9090 return NULL;
9091
9092 do {
9093 /* Might not have done put_prev_entity() */
9094 if (cfs_rq->curr && cfs_rq->curr->on_rq)
9095 update_curr(cfs_rq);
9096
9097 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
9098 goto again;
9099
9100 se = pick_next_entity(rq, cfs_rq);
9101 if (!se)
9102 goto again;
9103 cfs_rq = group_cfs_rq(se);
9104 } while (cfs_rq);
9105
9106 return task_of(se);
9107 }
9108
9109 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
9110 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
9111
9112 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)9113 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
9114 {
9115 struct sched_entity *se;
9116 struct task_struct *p = NULL;
9117 int new_tasks;
9118
9119 again:
9120 trace_android_rvh_before_pick_task_fair(rq, &p, prev, rf);
9121 if (!p) {
9122 p = pick_task_fair(rq);
9123 trace_android_rvh_replace_next_task_fair(rq, &p, prev);
9124 }
9125
9126 if (!p)
9127 goto idle;
9128 se = &p->se;
9129
9130 #ifdef CONFIG_FAIR_GROUP_SCHED
9131 if (prev->sched_class != &fair_sched_class ||
9132 rq->curr != rq->donor)
9133 goto simple;
9134
9135 __put_prev_set_next_dl_server(rq, prev, p);
9136
9137 /*
9138 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
9139 * likely that a next task is from the same cgroup as the current.
9140 *
9141 * Therefore attempt to avoid putting and setting the entire cgroup
9142 * hierarchy, only change the part that actually changes.
9143 *
9144 * Since we haven't yet done put_prev_entity and if the selected task
9145 * is a different task than we started out with, try and touch the
9146 * least amount of cfs_rqs.
9147 */
9148 if (prev != p) {
9149 struct sched_entity *pse = &prev->se;
9150 struct cfs_rq *cfs_rq;
9151
9152 while (!(cfs_rq = is_same_group(se, pse))) {
9153 int se_depth = se->depth;
9154 int pse_depth = pse->depth;
9155
9156 if (se_depth <= pse_depth) {
9157 put_prev_entity(cfs_rq_of(pse), pse);
9158 pse = parent_entity(pse);
9159 }
9160 if (se_depth >= pse_depth) {
9161 set_next_entity(cfs_rq_of(se), se);
9162 se = parent_entity(se);
9163 }
9164 }
9165
9166 put_prev_entity(cfs_rq, pse);
9167 set_next_entity(cfs_rq, se);
9168
9169 __set_next_task_fair(rq, p, true);
9170 }
9171
9172 return p;
9173
9174 simple:
9175 #endif
9176 put_prev_set_next_task(rq, prev, p);
9177 return p;
9178
9179 idle:
9180 if (!rf)
9181 return NULL;
9182
9183 new_tasks = sched_balance_newidle(rq, rf);
9184
9185 /*
9186 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
9187 * possible for any higher priority task to appear. In that case we
9188 * must re-start the pick_next_entity() loop.
9189 */
9190 if (new_tasks < 0)
9191 return RETRY_TASK;
9192
9193 if (new_tasks > 0)
9194 goto again;
9195
9196 /*
9197 * rq is about to be idle, check if we need to update the
9198 * lost_idle_time of clock_pelt
9199 */
9200 update_idle_rq_clock_pelt(rq);
9201
9202 return NULL;
9203 }
9204
__pick_next_task_fair(struct rq * rq,struct task_struct * prev)9205 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
9206 {
9207 return pick_next_task_fair(rq, prev, NULL);
9208 }
9209
fair_server_pick_task(struct sched_dl_entity * dl_se)9210 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
9211 {
9212 return pick_task_fair(dl_se->rq);
9213 }
9214
fair_server_init(struct rq * rq)9215 void fair_server_init(struct rq *rq)
9216 {
9217 struct sched_dl_entity *dl_se = &rq->fair_server;
9218
9219 init_dl_entity(dl_se);
9220
9221 dl_server_init(dl_se, rq, fair_server_pick_task);
9222 }
9223
9224 /*
9225 * Account for a descheduled task:
9226 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev,struct task_struct * next)9227 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
9228 {
9229 struct sched_entity *se = &prev->se;
9230 struct cfs_rq *cfs_rq;
9231
9232 for_each_sched_entity(se) {
9233 cfs_rq = cfs_rq_of(se);
9234 put_prev_entity(cfs_rq, se);
9235 }
9236 }
9237
9238 /*
9239 * sched_yield() is very simple
9240 */
yield_task_fair(struct rq * rq)9241 static void yield_task_fair(struct rq *rq)
9242 {
9243 struct task_struct *curr = rq->curr;
9244 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9245 struct sched_entity *se = &curr->se;
9246
9247 /*
9248 * Are we the only task in the tree?
9249 */
9250 if (unlikely(rq->nr_running == 1))
9251 return;
9252
9253 clear_buddies(cfs_rq, se);
9254
9255 update_rq_clock(rq);
9256 /*
9257 * Update run-time statistics of the 'current'.
9258 */
9259 update_curr(cfs_rq);
9260 /*
9261 * Tell update_rq_clock() that we've just updated,
9262 * so we don't do microscopic update in schedule()
9263 * and double the fastpath cost.
9264 */
9265 rq_clock_skip_update(rq);
9266
9267 se->deadline += calc_delta_fair(se->slice, se);
9268 }
9269
yield_to_task_fair(struct rq * rq,struct task_struct * p)9270 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9271 {
9272 struct sched_entity *se = &p->se;
9273
9274 /* throttled hierarchies are not runnable */
9275 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9276 return false;
9277
9278 /* Tell the scheduler that we'd really like se to run next. */
9279 set_next_buddy(se);
9280
9281 yield_task_fair(rq);
9282
9283 return true;
9284 }
9285
9286 #ifdef CONFIG_SMP
9287 /**************************************************
9288 * Fair scheduling class load-balancing methods.
9289 *
9290 * BASICS
9291 *
9292 * The purpose of load-balancing is to achieve the same basic fairness the
9293 * per-CPU scheduler provides, namely provide a proportional amount of compute
9294 * time to each task. This is expressed in the following equation:
9295 *
9296 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
9297 *
9298 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9299 * W_i,0 is defined as:
9300 *
9301 * W_i,0 = \Sum_j w_i,j (2)
9302 *
9303 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9304 * is derived from the nice value as per sched_prio_to_weight[].
9305 *
9306 * The weight average is an exponential decay average of the instantaneous
9307 * weight:
9308 *
9309 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
9310 *
9311 * C_i is the compute capacity of CPU i, typically it is the
9312 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9313 * can also include other factors [XXX].
9314 *
9315 * To achieve this balance we define a measure of imbalance which follows
9316 * directly from (1):
9317 *
9318 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
9319 *
9320 * We them move tasks around to minimize the imbalance. In the continuous
9321 * function space it is obvious this converges, in the discrete case we get
9322 * a few fun cases generally called infeasible weight scenarios.
9323 *
9324 * [XXX expand on:
9325 * - infeasible weights;
9326 * - local vs global optima in the discrete case. ]
9327 *
9328 *
9329 * SCHED DOMAINS
9330 *
9331 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9332 * for all i,j solution, we create a tree of CPUs that follows the hardware
9333 * topology where each level pairs two lower groups (or better). This results
9334 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9335 * tree to only the first of the previous level and we decrease the frequency
9336 * of load-balance at each level inversely proportional to the number of CPUs in
9337 * the groups.
9338 *
9339 * This yields:
9340 *
9341 * log_2 n 1 n
9342 * \Sum { --- * --- * 2^i } = O(n) (5)
9343 * i = 0 2^i 2^i
9344 * `- size of each group
9345 * | | `- number of CPUs doing load-balance
9346 * | `- freq
9347 * `- sum over all levels
9348 *
9349 * Coupled with a limit on how many tasks we can migrate every balance pass,
9350 * this makes (5) the runtime complexity of the balancer.
9351 *
9352 * An important property here is that each CPU is still (indirectly) connected
9353 * to every other CPU in at most O(log n) steps:
9354 *
9355 * The adjacency matrix of the resulting graph is given by:
9356 *
9357 * log_2 n
9358 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
9359 * k = 0
9360 *
9361 * And you'll find that:
9362 *
9363 * A^(log_2 n)_i,j != 0 for all i,j (7)
9364 *
9365 * Showing there's indeed a path between every CPU in at most O(log n) steps.
9366 * The task movement gives a factor of O(m), giving a convergence complexity
9367 * of:
9368 *
9369 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
9370 *
9371 *
9372 * WORK CONSERVING
9373 *
9374 * In order to avoid CPUs going idle while there's still work to do, new idle
9375 * balancing is more aggressive and has the newly idle CPU iterate up the domain
9376 * tree itself instead of relying on other CPUs to bring it work.
9377 *
9378 * This adds some complexity to both (5) and (8) but it reduces the total idle
9379 * time.
9380 *
9381 * [XXX more?]
9382 *
9383 *
9384 * CGROUPS
9385 *
9386 * Cgroups make a horror show out of (2), instead of a simple sum we get:
9387 *
9388 * s_k,i
9389 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
9390 * S_k
9391 *
9392 * Where
9393 *
9394 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
9395 *
9396 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9397 *
9398 * The big problem is S_k, its a global sum needed to compute a local (W_i)
9399 * property.
9400 *
9401 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9402 * rewrite all of this once again.]
9403 */
9404
9405 unsigned long __read_mostly max_load_balance_interval = HZ/10;
9406 EXPORT_SYMBOL_GPL(max_load_balance_interval);
9407
9408 enum fbq_type { regular, remote, all };
9409
9410 /*
9411 * 'group_type' describes the group of CPUs at the moment of load balancing.
9412 *
9413 * The enum is ordered by pulling priority, with the group with lowest priority
9414 * first so the group_type can simply be compared when selecting the busiest
9415 * group. See update_sd_pick_busiest().
9416 */
9417 enum group_type {
9418 /* The group has spare capacity that can be used to run more tasks. */
9419 group_has_spare = 0,
9420 /*
9421 * The group is fully used and the tasks don't compete for more CPU
9422 * cycles. Nevertheless, some tasks might wait before running.
9423 */
9424 group_fully_busy,
9425 /*
9426 * One task doesn't fit with CPU's capacity and must be migrated to a
9427 * more powerful CPU.
9428 */
9429 group_misfit_task,
9430 /*
9431 * Balance SMT group that's fully busy. Can benefit from migration
9432 * a task on SMT with busy sibling to another CPU on idle core.
9433 */
9434 group_smt_balance,
9435 /*
9436 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9437 * and the task should be migrated to it instead of running on the
9438 * current CPU.
9439 */
9440 group_asym_packing,
9441 /*
9442 * The tasks' affinity constraints previously prevented the scheduler
9443 * from balancing the load across the system.
9444 */
9445 group_imbalanced,
9446 /*
9447 * The CPU is overloaded and can't provide expected CPU cycles to all
9448 * tasks.
9449 */
9450 group_overloaded
9451 };
9452
9453 enum migration_type {
9454 migrate_load = 0,
9455 migrate_util,
9456 migrate_task,
9457 migrate_misfit
9458 };
9459
9460 #define LBF_ALL_PINNED 0x01
9461 #define LBF_NEED_BREAK 0x02
9462 #define LBF_DST_PINNED 0x04
9463 #define LBF_SOME_PINNED 0x08
9464 #define LBF_ACTIVE_LB 0x10
9465
9466 struct lb_env {
9467 struct sched_domain *sd;
9468
9469 struct rq *src_rq;
9470 int src_cpu;
9471
9472 int dst_cpu;
9473 struct rq *dst_rq;
9474
9475 struct cpumask *dst_grpmask;
9476 int new_dst_cpu;
9477 enum cpu_idle_type idle;
9478 long imbalance;
9479 /* The set of CPUs under consideration for load-balancing */
9480 struct cpumask *cpus;
9481
9482 unsigned int flags;
9483
9484 unsigned int loop;
9485 unsigned int loop_break;
9486 unsigned int loop_max;
9487
9488 enum fbq_type fbq_type;
9489 enum migration_type migration_type;
9490 struct list_head tasks;
9491 struct rq_flags *src_rq_rf;
9492 };
9493
9494 /*
9495 * Is this task likely cache-hot:
9496 */
task_hot(struct task_struct * p,struct lb_env * env)9497 static int task_hot(struct task_struct *p, struct lb_env *env)
9498 {
9499 s64 delta;
9500
9501 lockdep_assert_rq_held(env->src_rq);
9502
9503 if (p->sched_class != &fair_sched_class)
9504 return 0;
9505
9506 if (unlikely(task_has_idle_policy(p)))
9507 return 0;
9508
9509 /* SMT siblings share cache */
9510 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9511 return 0;
9512
9513 /*
9514 * Buddy candidates are cache hot:
9515 */
9516 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9517 (&p->se == cfs_rq_of(&p->se)->next))
9518 return 1;
9519
9520 if (sysctl_sched_migration_cost == -1)
9521 return 1;
9522
9523 /*
9524 * Don't migrate task if the task's cookie does not match
9525 * with the destination CPU's core cookie.
9526 */
9527 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9528 return 1;
9529
9530 if (sysctl_sched_migration_cost == 0)
9531 return 0;
9532
9533 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9534
9535 return delta < (s64)sysctl_sched_migration_cost;
9536 }
9537
9538 #ifdef CONFIG_NUMA_BALANCING
9539 /*
9540 * Returns 1, if task migration degrades locality
9541 * Returns 0, if task migration improves locality i.e migration preferred.
9542 * Returns -1, if task migration is not affected by locality.
9543 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9544 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9545 {
9546 struct numa_group *numa_group = rcu_dereference(p->numa_group);
9547 unsigned long src_weight, dst_weight;
9548 int src_nid, dst_nid, dist;
9549
9550 if (!static_branch_likely(&sched_numa_balancing))
9551 return -1;
9552
9553 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9554 return -1;
9555
9556 src_nid = cpu_to_node(env->src_cpu);
9557 dst_nid = cpu_to_node(env->dst_cpu);
9558
9559 if (src_nid == dst_nid)
9560 return -1;
9561
9562 /* Migrating away from the preferred node is always bad. */
9563 if (src_nid == p->numa_preferred_nid) {
9564 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9565 return 1;
9566 else
9567 return -1;
9568 }
9569
9570 /* Encourage migration to the preferred node. */
9571 if (dst_nid == p->numa_preferred_nid)
9572 return 0;
9573
9574 /* Leaving a core idle is often worse than degrading locality. */
9575 if (env->idle == CPU_IDLE)
9576 return -1;
9577
9578 dist = node_distance(src_nid, dst_nid);
9579 if (numa_group) {
9580 src_weight = group_weight(p, src_nid, dist);
9581 dst_weight = group_weight(p, dst_nid, dist);
9582 } else {
9583 src_weight = task_weight(p, src_nid, dist);
9584 dst_weight = task_weight(p, dst_nid, dist);
9585 }
9586
9587 return dst_weight < src_weight;
9588 }
9589
9590 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9591 static inline int migrate_degrades_locality(struct task_struct *p,
9592 struct lb_env *env)
9593 {
9594 return -1;
9595 }
9596 #endif
9597
9598 /*
9599 * Check whether the task is ineligible on the destination cpu
9600 *
9601 * When the PLACE_LAG scheduling feature is enabled and
9602 * dst_cfs_rq->nr_running is greater than 1, if the task
9603 * is ineligible, it will also be ineligible when
9604 * it is migrated to the destination cpu.
9605 */
task_is_ineligible_on_dst_cpu(struct task_struct * p,int dest_cpu)9606 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu)
9607 {
9608 struct cfs_rq *dst_cfs_rq;
9609
9610 #ifdef CONFIG_FAIR_GROUP_SCHED
9611 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu];
9612 #else
9613 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs;
9614 #endif
9615 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_running &&
9616 !entity_eligible(task_cfs_rq(p), &p->se))
9617 return 1;
9618
9619 return 0;
9620 }
9621
9622 /*
9623 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9624 */
9625 static
can_migrate_task(struct task_struct * p,struct lb_env * env)9626 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9627 {
9628 int tsk_cache_hot;
9629 int can_migrate = 1;
9630
9631 lockdep_assert_rq_held(env->src_rq);
9632 if (p->sched_task_hot)
9633 p->sched_task_hot = 0;
9634
9635 trace_android_rvh_can_migrate_task(p, env->dst_cpu, &can_migrate);
9636 if (!can_migrate)
9637 return 0;
9638
9639 /*
9640 * We do not migrate tasks that are:
9641 * 1) throttled_lb_pair, or
9642 * 2) cannot be migrated to this CPU due to cpus_ptr, or
9643 * 3) running (obviously), or
9644 * 4) are cache-hot on their current CPU.
9645 * 5) are blocked on mutexes (if SCHED_PROXY_EXEC is enabled)
9646 */
9647 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9648 return 0;
9649
9650 /*
9651 * We want to prioritize the migration of eligible tasks.
9652 * For ineligible tasks we soft-limit them and only allow
9653 * them to migrate when nr_balance_failed is non-zero to
9654 * avoid load-balancing trying very hard to balance the load.
9655 */
9656 if (!env->sd->nr_balance_failed &&
9657 task_is_ineligible_on_dst_cpu(p, env->dst_cpu))
9658 return 0;
9659
9660 /* Disregard percpu kthreads; they are where they need to be. */
9661 if (kthread_is_per_cpu(p))
9662 return 0;
9663
9664 if (task_is_blocked(p))
9665 return 0;
9666
9667 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9668 int cpu;
9669
9670 schedstat_inc(p->stats.nr_failed_migrations_affine);
9671
9672 env->flags |= LBF_SOME_PINNED;
9673
9674 /*
9675 * Remember if this task can be migrated to any other CPU in
9676 * our sched_group. We may want to revisit it if we couldn't
9677 * meet load balance goals by pulling other tasks on src_cpu.
9678 *
9679 * Avoid computing new_dst_cpu
9680 * - for NEWLY_IDLE
9681 * - if we have already computed one in current iteration
9682 * - if it's an active balance
9683 */
9684 if (env->idle == CPU_NEWLY_IDLE ||
9685 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9686 return 0;
9687
9688 /* Prevent to re-select dst_cpu via env's CPUs: */
9689 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9690 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9691 env->flags |= LBF_DST_PINNED;
9692 env->new_dst_cpu = cpu;
9693 break;
9694 }
9695 }
9696
9697 return 0;
9698 }
9699
9700 /* Record that we found at least one task that could run on dst_cpu */
9701 env->flags &= ~LBF_ALL_PINNED;
9702
9703 if (task_on_cpu(env->src_rq, p) ||
9704 task_current_donor(env->src_rq, p)) {
9705 schedstat_inc(p->stats.nr_failed_migrations_running);
9706 return 0;
9707 }
9708
9709 /*
9710 * Aggressive migration if:
9711 * 1) active balance
9712 * 2) destination numa is preferred
9713 * 3) task is cache cold, or
9714 * 4) too many balance attempts have failed.
9715 */
9716 if (env->flags & LBF_ACTIVE_LB)
9717 return 1;
9718
9719 tsk_cache_hot = migrate_degrades_locality(p, env);
9720 if (tsk_cache_hot == -1)
9721 tsk_cache_hot = task_hot(p, env);
9722
9723 if (tsk_cache_hot <= 0 ||
9724 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9725 if (tsk_cache_hot == 1)
9726 p->sched_task_hot = 1;
9727 return 1;
9728 }
9729
9730 schedstat_inc(p->stats.nr_failed_migrations_hot);
9731 return 0;
9732 }
9733
9734 /*
9735 * detach_task() -- detach the task for the migration specified in env
9736 */
detach_task(struct task_struct * p,struct lb_env * env)9737 static void detach_task(struct task_struct *p, struct lb_env *env)
9738 {
9739 int detached = 0;
9740
9741 lockdep_assert_rq_held(env->src_rq);
9742
9743 /*
9744 * The vendor hook may drop the lock temporarily, so
9745 * pass the rq flags to unpin lock. We expect the
9746 * rq lock to be held after return.
9747 */
9748 trace_android_rvh_migrate_queued_task(env->src_rq, env->src_rq_rf, p,
9749 env->dst_cpu, &detached);
9750 if (detached)
9751 return;
9752
9753 WARN_ON(task_current(env->src_rq, p));
9754 WARN_ON(task_current_donor(env->src_rq, p));
9755
9756 if (p->sched_task_hot) {
9757 p->sched_task_hot = 0;
9758 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9759 schedstat_inc(p->stats.nr_forced_migrations);
9760 }
9761
9762 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9763 set_task_cpu(p, env->dst_cpu);
9764 }
9765
9766 /*
9767 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9768 * part of active balancing operations within "domain".
9769 *
9770 * Returns a task if successful and NULL otherwise.
9771 */
detach_one_task(struct lb_env * env)9772 static struct task_struct *detach_one_task(struct lb_env *env)
9773 {
9774 struct task_struct *p;
9775
9776 lockdep_assert_rq_held(env->src_rq);
9777
9778 list_for_each_entry_reverse(p,
9779 &env->src_rq->cfs_tasks, se.group_node) {
9780 if (!can_migrate_task(p, env))
9781 continue;
9782
9783 detach_task(p, env);
9784
9785 /*
9786 * Right now, this is only the second place where
9787 * lb_gained[env->idle] is updated (other is detach_tasks)
9788 * so we can safely collect stats here rather than
9789 * inside detach_tasks().
9790 */
9791 schedstat_inc(env->sd->lb_gained[env->idle]);
9792 return p;
9793 }
9794 return NULL;
9795 }
9796
9797 /*
9798 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9799 * busiest_rq, as part of a balancing operation within domain "sd".
9800 *
9801 * Returns number of detached tasks if successful and 0 otherwise.
9802 */
detach_tasks(struct lb_env * env)9803 static int detach_tasks(struct lb_env *env)
9804 {
9805 struct list_head *tasks = &env->src_rq->cfs_tasks;
9806 unsigned long util, load;
9807 struct task_struct *p;
9808 int detached = 0;
9809
9810 lockdep_assert_rq_held(env->src_rq);
9811
9812 /*
9813 * Source run queue has been emptied by another CPU, clear
9814 * LBF_ALL_PINNED flag as we will not test any task.
9815 */
9816 if (env->src_rq->nr_running <= 1) {
9817 env->flags &= ~LBF_ALL_PINNED;
9818 return 0;
9819 }
9820
9821 if (env->imbalance <= 0)
9822 return 0;
9823
9824 while (!list_empty(tasks)) {
9825 /*
9826 * We don't want to steal all, otherwise we may be treated likewise,
9827 * which could at worst lead to a livelock crash.
9828 */
9829 if (env->idle && env->src_rq->nr_running <= 1)
9830 break;
9831
9832 env->loop++;
9833 /* We've more or less seen every task there is, call it quits */
9834 if (env->loop > env->loop_max)
9835 break;
9836
9837 /* take a breather every nr_migrate tasks */
9838 if (env->loop > env->loop_break) {
9839 env->loop_break += SCHED_NR_MIGRATE_BREAK;
9840 env->flags |= LBF_NEED_BREAK;
9841 break;
9842 }
9843
9844 p = list_last_entry(tasks, struct task_struct, se.group_node);
9845
9846 if (!can_migrate_task(p, env))
9847 goto next;
9848
9849 switch (env->migration_type) {
9850 case migrate_load:
9851 /*
9852 * Depending of the number of CPUs and tasks and the
9853 * cgroup hierarchy, task_h_load() can return a null
9854 * value. Make sure that env->imbalance decreases
9855 * otherwise detach_tasks() will stop only after
9856 * detaching up to loop_max tasks.
9857 */
9858 load = max_t(unsigned long, task_h_load(p), 1);
9859
9860 if (sched_feat(LB_MIN) &&
9861 load < 16 && !env->sd->nr_balance_failed)
9862 goto next;
9863
9864 /*
9865 * Make sure that we don't migrate too much load.
9866 * Nevertheless, let relax the constraint if
9867 * scheduler fails to find a good waiting task to
9868 * migrate.
9869 */
9870 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9871 goto next;
9872
9873 env->imbalance -= load;
9874 break;
9875
9876 case migrate_util:
9877 util = task_util_est(p);
9878
9879 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9880 goto next;
9881
9882 env->imbalance -= util;
9883 break;
9884
9885 case migrate_task:
9886 env->imbalance--;
9887 break;
9888
9889 case migrate_misfit:
9890 /* This is not a misfit task */
9891 if (!is_misfit_task(p, cpu_rq(env->src_cpu), NULL))
9892 goto next;
9893
9894 env->imbalance = 0;
9895 break;
9896 }
9897
9898 detach_task(p, env);
9899 list_add(&p->se.group_node, &env->tasks);
9900
9901 detached++;
9902
9903 #ifdef CONFIG_PREEMPTION
9904 /*
9905 * NEWIDLE balancing is a source of latency, so preemptible
9906 * kernels will stop after the first task is detached to minimize
9907 * the critical section.
9908 */
9909 if (env->idle == CPU_NEWLY_IDLE)
9910 break;
9911 #endif
9912
9913 /*
9914 * We only want to steal up to the prescribed amount of
9915 * load/util/tasks.
9916 */
9917 if (env->imbalance <= 0)
9918 break;
9919
9920 continue;
9921 next:
9922 if (p->sched_task_hot)
9923 schedstat_inc(p->stats.nr_failed_migrations_hot);
9924
9925 list_move(&p->se.group_node, tasks);
9926 }
9927
9928 /*
9929 * Right now, this is one of only two places we collect this stat
9930 * so we can safely collect detach_one_task() stats here rather
9931 * than inside detach_one_task().
9932 */
9933 schedstat_add(env->sd->lb_gained[env->idle], detached);
9934
9935 return detached;
9936 }
9937
9938 /*
9939 * attach_task() -- attach the task detached by detach_task() to its new rq.
9940 */
attach_task(struct rq * rq,struct task_struct * p)9941 static void attach_task(struct rq *rq, struct task_struct *p)
9942 {
9943 lockdep_assert_rq_held(rq);
9944
9945 WARN_ON_ONCE(task_rq(p) != rq);
9946 activate_task(rq, p, ENQUEUE_NOCLOCK);
9947 wakeup_preempt(rq, p, 0);
9948 }
9949
9950 /*
9951 * attach_one_task() -- attaches the task returned from detach_one_task() to
9952 * its new rq.
9953 */
attach_one_task(struct rq * rq,struct task_struct * p)9954 static void attach_one_task(struct rq *rq, struct task_struct *p)
9955 {
9956 struct rq_flags rf;
9957
9958 rq_lock(rq, &rf);
9959 update_rq_clock(rq);
9960 attach_task(rq, p);
9961 rq_unlock(rq, &rf);
9962 }
9963
9964 /*
9965 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9966 * new rq.
9967 */
attach_tasks(struct lb_env * env)9968 static void attach_tasks(struct lb_env *env)
9969 {
9970 struct list_head *tasks = &env->tasks;
9971 struct task_struct *p;
9972 struct rq_flags rf;
9973
9974 rq_lock(env->dst_rq, &rf);
9975 update_rq_clock(env->dst_rq);
9976
9977 while (!list_empty(tasks)) {
9978 p = list_first_entry(tasks, struct task_struct, se.group_node);
9979 list_del_init(&p->se.group_node);
9980
9981 attach_task(env->dst_rq, p);
9982 }
9983
9984 rq_unlock(env->dst_rq, &rf);
9985 }
9986
9987 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9988 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9989 {
9990 if (cfs_rq->avg.load_avg)
9991 return true;
9992
9993 if (cfs_rq->avg.util_avg)
9994 return true;
9995
9996 return false;
9997 }
9998
others_have_blocked(struct rq * rq)9999 static inline bool others_have_blocked(struct rq *rq)
10000 {
10001 if (cpu_util_rt(rq))
10002 return true;
10003
10004 if (cpu_util_dl(rq))
10005 return true;
10006
10007 if (hw_load_avg(rq))
10008 return true;
10009
10010 if (cpu_util_irq(rq))
10011 return true;
10012
10013 return false;
10014 }
10015
update_blocked_load_tick(struct rq * rq)10016 static inline void update_blocked_load_tick(struct rq *rq)
10017 {
10018 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
10019 }
10020
update_blocked_load_status(struct rq * rq,bool has_blocked)10021 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
10022 {
10023 if (!has_blocked)
10024 rq->has_blocked_load = 0;
10025 }
10026 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)10027 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)10028 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)10029 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)10030 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
10031 #endif
10032
__update_blocked_others(struct rq * rq,bool * done)10033 static bool __update_blocked_others(struct rq *rq, bool *done)
10034 {
10035 bool updated;
10036
10037 /*
10038 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
10039 * DL and IRQ signals have been updated before updating CFS.
10040 */
10041 updated = update_other_load_avgs(rq);
10042
10043 if (others_have_blocked(rq))
10044 *done = false;
10045
10046 return updated;
10047 }
10048
10049 #ifdef CONFIG_FAIR_GROUP_SCHED
10050
__update_blocked_fair(struct rq * rq,bool * done)10051 static bool __update_blocked_fair(struct rq *rq, bool *done)
10052 {
10053 struct cfs_rq *cfs_rq, *pos;
10054 bool decayed = false;
10055 int cpu = cpu_of(rq);
10056
10057 trace_android_rvh_update_blocked_fair(rq);
10058
10059 /*
10060 * Iterates the task_group tree in a bottom up fashion, see
10061 * list_add_leaf_cfs_rq() for details.
10062 */
10063 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
10064 struct sched_entity *se;
10065
10066 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
10067 update_tg_load_avg(cfs_rq);
10068
10069 if (cfs_rq->nr_running == 0)
10070 update_idle_cfs_rq_clock_pelt(cfs_rq);
10071
10072 if (cfs_rq == &rq->cfs)
10073 decayed = true;
10074 }
10075
10076 /* Propagate pending load changes to the parent, if any: */
10077 se = cfs_rq->tg->se[cpu];
10078 if (se && !skip_blocked_update(se))
10079 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10080
10081 /*
10082 * There can be a lot of idle CPU cgroups. Don't let fully
10083 * decayed cfs_rqs linger on the list.
10084 */
10085 if (cfs_rq_is_decayed(cfs_rq))
10086 list_del_leaf_cfs_rq(cfs_rq);
10087
10088 /* Don't need periodic decay once load/util_avg are null */
10089 if (cfs_rq_has_blocked(cfs_rq))
10090 *done = false;
10091 }
10092
10093 return decayed;
10094 }
10095
10096 /*
10097 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
10098 * This needs to be done in a top-down fashion because the load of a child
10099 * group is a fraction of its parents load.
10100 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)10101 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
10102 {
10103 struct rq *rq = rq_of(cfs_rq);
10104 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
10105 unsigned long now = jiffies;
10106 unsigned long load;
10107
10108 if (cfs_rq->last_h_load_update == now)
10109 return;
10110
10111 WRITE_ONCE(cfs_rq->h_load_next, NULL);
10112 for_each_sched_entity(se) {
10113 cfs_rq = cfs_rq_of(se);
10114 WRITE_ONCE(cfs_rq->h_load_next, se);
10115 if (cfs_rq->last_h_load_update == now)
10116 break;
10117 }
10118
10119 if (!se) {
10120 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
10121 cfs_rq->last_h_load_update = now;
10122 }
10123
10124 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
10125 load = cfs_rq->h_load;
10126 load = div64_ul(load * se->avg.load_avg,
10127 cfs_rq_load_avg(cfs_rq) + 1);
10128 cfs_rq = group_cfs_rq(se);
10129 cfs_rq->h_load = load;
10130 cfs_rq->last_h_load_update = now;
10131 }
10132 }
10133
task_h_load(struct task_struct * p)10134 static unsigned long task_h_load(struct task_struct *p)
10135 {
10136 struct cfs_rq *cfs_rq = task_cfs_rq(p);
10137
10138 update_cfs_rq_h_load(cfs_rq);
10139 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
10140 cfs_rq_load_avg(cfs_rq) + 1);
10141 }
10142 #else
__update_blocked_fair(struct rq * rq,bool * done)10143 static bool __update_blocked_fair(struct rq *rq, bool *done)
10144 {
10145 struct cfs_rq *cfs_rq = &rq->cfs;
10146 bool decayed;
10147
10148 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
10149 if (cfs_rq_has_blocked(cfs_rq))
10150 *done = false;
10151
10152 return decayed;
10153 }
10154
task_h_load(struct task_struct * p)10155 static unsigned long task_h_load(struct task_struct *p)
10156 {
10157 return p->se.avg.load_avg;
10158 }
10159 #endif
10160
sched_balance_update_blocked_averages(int cpu)10161 static void sched_balance_update_blocked_averages(int cpu)
10162 {
10163 bool decayed = false, done = true;
10164 struct rq *rq = cpu_rq(cpu);
10165 struct rq_flags rf;
10166
10167 rq_lock_irqsave(rq, &rf);
10168 update_blocked_load_tick(rq);
10169 update_rq_clock(rq);
10170
10171 decayed |= __update_blocked_others(rq, &done);
10172 decayed |= __update_blocked_fair(rq, &done);
10173
10174 update_blocked_load_status(rq, !done);
10175 if (decayed)
10176 cpufreq_update_util(rq, 0);
10177 rq_unlock_irqrestore(rq, &rf);
10178 }
10179
10180 /********** Helpers for sched_balance_find_src_group ************************/
10181
10182 /*
10183 * sg_lb_stats - stats of a sched_group required for load-balancing:
10184 */
10185 struct sg_lb_stats {
10186 unsigned long avg_load; /* Avg load over the CPUs of the group */
10187 unsigned long group_load; /* Total load over the CPUs of the group */
10188 unsigned long group_capacity; /* Capacity over the CPUs of the group */
10189 unsigned long group_util; /* Total utilization over the CPUs of the group */
10190 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
10191 unsigned int sum_nr_running; /* Nr of all tasks running in the group */
10192 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
10193 unsigned int idle_cpus; /* Nr of idle CPUs in the group */
10194 unsigned int group_weight;
10195 enum group_type group_type;
10196 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
10197 unsigned int group_smt_balance; /* Task on busy SMT be moved */
10198 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
10199 misfit_reason_t group_misfit_reason;
10200 #ifdef CONFIG_NUMA_BALANCING
10201 unsigned int nr_numa_running;
10202 unsigned int nr_preferred_running;
10203 #endif
10204 };
10205
10206 /*
10207 * sd_lb_stats - stats of a sched_domain required for load-balancing:
10208 */
10209 struct sd_lb_stats {
10210 struct sched_group *busiest; /* Busiest group in this sd */
10211 struct sched_group *local; /* Local group in this sd */
10212 unsigned long total_load; /* Total load of all groups in sd */
10213 unsigned long total_capacity; /* Total capacity of all groups in sd */
10214 unsigned long avg_load; /* Average load across all groups in sd */
10215 unsigned int prefer_sibling; /* Tasks should go to sibling first */
10216
10217 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */
10218 struct sg_lb_stats local_stat; /* Statistics of the local group */
10219 };
10220
init_sd_lb_stats(struct sd_lb_stats * sds)10221 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
10222 {
10223 /*
10224 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
10225 * local_stat because update_sg_lb_stats() does a full clear/assignment.
10226 * We must however set busiest_stat::group_type and
10227 * busiest_stat::idle_cpus to the worst busiest group because
10228 * update_sd_pick_busiest() reads these before assignment.
10229 */
10230 *sds = (struct sd_lb_stats){
10231 .busiest = NULL,
10232 .local = NULL,
10233 .total_load = 0UL,
10234 .total_capacity = 0UL,
10235 .busiest_stat = {
10236 .idle_cpus = UINT_MAX,
10237 .group_type = group_has_spare,
10238 },
10239 };
10240 }
10241
scale_rt_capacity(int cpu)10242 static unsigned long scale_rt_capacity(int cpu)
10243 {
10244 unsigned long max = get_actual_cpu_capacity(cpu);
10245 struct rq *rq = cpu_rq(cpu);
10246 unsigned long used, free;
10247 unsigned long irq;
10248
10249 irq = cpu_util_irq(rq);
10250
10251 if (unlikely(irq >= max))
10252 return 1;
10253
10254 /*
10255 * avg_rt.util_avg and avg_dl.util_avg track binary signals
10256 * (running and not running) with weights 0 and 1024 respectively.
10257 */
10258 used = cpu_util_rt(rq);
10259 used += cpu_util_dl(rq);
10260
10261 if (unlikely(used >= max))
10262 return 1;
10263
10264 free = max - used;
10265
10266 return scale_irq_capacity(free, irq, max);
10267 }
10268
update_cpu_capacity(struct sched_domain * sd,int cpu)10269 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
10270 {
10271 unsigned long capacity = scale_rt_capacity(cpu);
10272 struct sched_group *sdg = sd->groups;
10273
10274 if (!capacity)
10275 capacity = 1;
10276
10277 trace_android_rvh_update_cpu_capacity(cpu, &capacity);
10278 cpu_rq(cpu)->cpu_capacity = capacity;
10279 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
10280
10281 sdg->sgc->capacity = capacity;
10282 sdg->sgc->min_capacity = capacity;
10283 sdg->sgc->max_capacity = capacity;
10284 }
10285
update_group_capacity(struct sched_domain * sd,int cpu)10286 void update_group_capacity(struct sched_domain *sd, int cpu)
10287 {
10288 struct sched_domain *child = sd->child;
10289 struct sched_group *group, *sdg = sd->groups;
10290 unsigned long capacity, min_capacity, max_capacity;
10291 unsigned long interval;
10292
10293 interval = msecs_to_jiffies(sd->balance_interval);
10294 interval = clamp(interval, 1UL, max_load_balance_interval);
10295 sdg->sgc->next_update = jiffies + interval;
10296
10297 if (!child) {
10298 update_cpu_capacity(sd, cpu);
10299 return;
10300 }
10301
10302 capacity = 0;
10303 min_capacity = ULONG_MAX;
10304 max_capacity = 0;
10305
10306 if (child->flags & SD_OVERLAP) {
10307 /*
10308 * SD_OVERLAP domains cannot assume that child groups
10309 * span the current group.
10310 */
10311
10312 for_each_cpu(cpu, sched_group_span(sdg)) {
10313 unsigned long cpu_cap = capacity_of(cpu);
10314
10315 capacity += cpu_cap;
10316 min_capacity = min(cpu_cap, min_capacity);
10317 max_capacity = max(cpu_cap, max_capacity);
10318 }
10319 } else {
10320 /*
10321 * !SD_OVERLAP domains can assume that child groups
10322 * span the current group.
10323 */
10324
10325 group = child->groups;
10326 do {
10327 struct sched_group_capacity *sgc = group->sgc;
10328
10329 capacity += sgc->capacity;
10330 min_capacity = min(sgc->min_capacity, min_capacity);
10331 max_capacity = max(sgc->max_capacity, max_capacity);
10332 group = group->next;
10333 } while (group != child->groups);
10334 }
10335
10336 sdg->sgc->capacity = capacity;
10337 sdg->sgc->min_capacity = min_capacity;
10338 sdg->sgc->max_capacity = max_capacity;
10339 }
10340
10341 /*
10342 * Check whether the capacity of the rq has been noticeably reduced by side
10343 * activity. The imbalance_pct is used for the threshold.
10344 * Return true is the capacity is reduced
10345 */
10346 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)10347 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10348 {
10349 return ((rq->cpu_capacity * sd->imbalance_pct) <
10350 (arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10351 }
10352
10353 /* Check if the rq has a misfit task */
check_misfit_status(struct rq * rq)10354 static inline bool check_misfit_status(struct rq *rq)
10355 {
10356 return rq->misfit_task_load;
10357 }
10358
10359 /*
10360 * Group imbalance indicates (and tries to solve) the problem where balancing
10361 * groups is inadequate due to ->cpus_ptr constraints.
10362 *
10363 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10364 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10365 * Something like:
10366 *
10367 * { 0 1 2 3 } { 4 5 6 7 }
10368 * * * * *
10369 *
10370 * If we were to balance group-wise we'd place two tasks in the first group and
10371 * two tasks in the second group. Clearly this is undesired as it will overload
10372 * cpu 3 and leave one of the CPUs in the second group unused.
10373 *
10374 * The current solution to this issue is detecting the skew in the first group
10375 * by noticing the lower domain failed to reach balance and had difficulty
10376 * moving tasks due to affinity constraints.
10377 *
10378 * When this is so detected; this group becomes a candidate for busiest; see
10379 * update_sd_pick_busiest(). And calculate_imbalance() and
10380 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10381 * to create an effective group imbalance.
10382 *
10383 * This is a somewhat tricky proposition since the next run might not find the
10384 * group imbalance and decide the groups need to be balanced again. A most
10385 * subtle and fragile situation.
10386 */
10387
sg_imbalanced(struct sched_group * group)10388 static inline int sg_imbalanced(struct sched_group *group)
10389 {
10390 return group->sgc->imbalance;
10391 }
10392
10393 /*
10394 * group_has_capacity returns true if the group has spare capacity that could
10395 * be used by some tasks.
10396 * We consider that a group has spare capacity if the number of task is
10397 * smaller than the number of CPUs or if the utilization is lower than the
10398 * available capacity for CFS tasks.
10399 * For the latter, we use a threshold to stabilize the state, to take into
10400 * account the variance of the tasks' load and to return true if the available
10401 * capacity in meaningful for the load balancer.
10402 * As an example, an available capacity of 1% can appear but it doesn't make
10403 * any benefit for the load balance.
10404 */
10405 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10406 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10407 {
10408 if (sgs->sum_nr_running < sgs->group_weight)
10409 return true;
10410
10411 if ((sgs->group_capacity * imbalance_pct) <
10412 (sgs->group_runnable * 100))
10413 return false;
10414
10415 if ((sgs->group_capacity * 100) >
10416 (sgs->group_util * imbalance_pct))
10417 return true;
10418
10419 return false;
10420 }
10421
10422 /*
10423 * group_is_overloaded returns true if the group has more tasks than it can
10424 * handle.
10425 * group_is_overloaded is not equals to !group_has_capacity because a group
10426 * with the exact right number of tasks, has no more spare capacity but is not
10427 * overloaded so both group_has_capacity and group_is_overloaded return
10428 * false.
10429 */
10430 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10431 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10432 {
10433 if (sgs->sum_nr_running <= sgs->group_weight)
10434 return false;
10435
10436 if ((sgs->group_capacity * 100) <
10437 (sgs->group_util * imbalance_pct))
10438 return true;
10439
10440 if ((sgs->group_capacity * imbalance_pct) <
10441 (sgs->group_runnable * 100))
10442 return true;
10443
10444 return false;
10445 }
10446
10447 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)10448 group_type group_classify(unsigned int imbalance_pct,
10449 struct sched_group *group,
10450 struct sg_lb_stats *sgs)
10451 {
10452 if (group_is_overloaded(imbalance_pct, sgs))
10453 return group_overloaded;
10454
10455 if (sg_imbalanced(group))
10456 return group_imbalanced;
10457
10458 if (sgs->group_asym_packing)
10459 return group_asym_packing;
10460
10461 if (sgs->group_smt_balance)
10462 return group_smt_balance;
10463
10464 if (sgs->group_misfit_task_load)
10465 return group_misfit_task;
10466
10467 if (!group_has_capacity(imbalance_pct, sgs))
10468 return group_fully_busy;
10469
10470 return group_has_spare;
10471 }
10472
10473 /**
10474 * sched_use_asym_prio - Check whether asym_packing priority must be used
10475 * @sd: The scheduling domain of the load balancing
10476 * @cpu: A CPU
10477 *
10478 * Always use CPU priority when balancing load between SMT siblings. When
10479 * balancing load between cores, it is not sufficient that @cpu is idle. Only
10480 * use CPU priority if the whole core is idle.
10481 *
10482 * Returns: True if the priority of @cpu must be followed. False otherwise.
10483 */
sched_use_asym_prio(struct sched_domain * sd,int cpu)10484 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10485 {
10486 if (!(sd->flags & SD_ASYM_PACKING))
10487 return false;
10488
10489 if (!sched_smt_active())
10490 return true;
10491
10492 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10493 }
10494
sched_asym(struct sched_domain * sd,int dst_cpu,int src_cpu)10495 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10496 {
10497 /*
10498 * First check if @dst_cpu can do asym_packing load balance. Only do it
10499 * if it has higher priority than @src_cpu.
10500 */
10501 return sched_use_asym_prio(sd, dst_cpu) &&
10502 sched_asym_prefer(dst_cpu, src_cpu);
10503 }
10504
10505 /**
10506 * sched_group_asym - Check if the destination CPU can do asym_packing balance
10507 * @env: The load balancing environment
10508 * @sgs: Load-balancing statistics of the candidate busiest group
10509 * @group: The candidate busiest group
10510 *
10511 * @env::dst_cpu can do asym_packing if it has higher priority than the
10512 * preferred CPU of @group.
10513 *
10514 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10515 * otherwise.
10516 */
10517 static inline bool
sched_group_asym(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10518 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10519 {
10520 /*
10521 * CPU priorities do not make sense for SMT cores with more than one
10522 * busy sibling.
10523 */
10524 if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10525 (sgs->group_weight - sgs->idle_cpus != 1))
10526 return false;
10527
10528 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10529 }
10530
10531 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)10532 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10533 struct sched_group *sg2)
10534 {
10535 if (!sg1 || !sg2)
10536 return false;
10537
10538 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10539 (sg2->flags & SD_SHARE_CPUCAPACITY);
10540 }
10541
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10542 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10543 struct sched_group *group)
10544 {
10545 if (!env->idle)
10546 return false;
10547
10548 /*
10549 * For SMT source group, it is better to move a task
10550 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10551 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10552 * will not be on.
10553 */
10554 if (group->flags & SD_SHARE_CPUCAPACITY &&
10555 sgs->sum_h_nr_running > 1)
10556 return true;
10557
10558 return false;
10559 }
10560
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)10561 static inline long sibling_imbalance(struct lb_env *env,
10562 struct sd_lb_stats *sds,
10563 struct sg_lb_stats *busiest,
10564 struct sg_lb_stats *local)
10565 {
10566 int ncores_busiest, ncores_local;
10567 long imbalance;
10568
10569 if (!env->idle || !busiest->sum_nr_running)
10570 return 0;
10571
10572 ncores_busiest = sds->busiest->cores;
10573 ncores_local = sds->local->cores;
10574
10575 if (ncores_busiest == ncores_local) {
10576 imbalance = busiest->sum_nr_running;
10577 lsub_positive(&imbalance, local->sum_nr_running);
10578 return imbalance;
10579 }
10580
10581 /* Balance such that nr_running/ncores ratio are same on both groups */
10582 imbalance = ncores_local * busiest->sum_nr_running;
10583 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10584 /* Normalize imbalance and do rounding on normalization */
10585 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10586 imbalance /= ncores_local + ncores_busiest;
10587
10588 /* Take advantage of resource in an empty sched group */
10589 if (imbalance <= 1 && local->sum_nr_running == 0 &&
10590 busiest->sum_nr_running > 1)
10591 imbalance = 2;
10592
10593 return imbalance;
10594 }
10595
10596 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)10597 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10598 {
10599 /*
10600 * When there is more than 1 task, the group_overloaded case already
10601 * takes care of cpu with reduced capacity
10602 */
10603 if (rq->cfs.h_nr_running != 1)
10604 return false;
10605
10606 return check_cpu_capacity(rq, sd);
10607 }
10608
10609 /**
10610 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10611 * @env: The load balancing environment.
10612 * @sds: Load-balancing data with statistics of the local group.
10613 * @group: sched_group whose statistics are to be updated.
10614 * @sgs: variable to hold the statistics for this group.
10615 * @sg_overloaded: sched_group is overloaded
10616 * @sg_overutilized: sched_group is overutilized
10617 */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,bool * sg_overloaded,bool * sg_overutilized)10618 static inline void update_sg_lb_stats(struct lb_env *env,
10619 struct sd_lb_stats *sds,
10620 struct sched_group *group,
10621 struct sg_lb_stats *sgs,
10622 bool *sg_overloaded,
10623 bool *sg_overutilized)
10624 {
10625 int i, nr_running, local_group;
10626
10627 memset(sgs, 0, sizeof(*sgs));
10628
10629 local_group = group == sds->local;
10630
10631 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10632 struct rq *rq = cpu_rq(i);
10633 unsigned long load = cpu_load(rq);
10634
10635 sgs->group_load += load;
10636 sgs->group_util += cpu_util_cfs(i);
10637 sgs->group_runnable += cpu_runnable(rq);
10638 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
10639
10640 nr_running = rq->nr_running;
10641 sgs->sum_nr_running += nr_running;
10642
10643 if (nr_running > 1)
10644 *sg_overloaded = 1;
10645
10646 if (cpu_overutilized(i))
10647 *sg_overutilized = 1;
10648
10649 #ifdef CONFIG_NUMA_BALANCING
10650 sgs->nr_numa_running += rq->nr_numa_running;
10651 sgs->nr_preferred_running += rq->nr_preferred_running;
10652 #endif
10653 /*
10654 * No need to call idle_cpu() if nr_running is not 0
10655 */
10656 if (!nr_running && idle_cpu(i)) {
10657 sgs->idle_cpus++;
10658 /* Idle cpu can't have misfit task */
10659 continue;
10660 }
10661
10662 if (local_group)
10663 continue;
10664
10665 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10666 /* Check for a misfit task on the cpu */
10667 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10668 sgs->group_misfit_task_load = rq->misfit_task_load;
10669 *sg_overloaded = 1;
10670 sgs->group_misfit_reason = rq->misfit_reason;
10671 }
10672 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10673 /* Check for a task running on a CPU with reduced capacity */
10674 if (sgs->group_misfit_task_load < load)
10675 sgs->group_misfit_task_load = load;
10676 }
10677 }
10678
10679 sgs->group_capacity = group->sgc->capacity;
10680
10681 sgs->group_weight = group->group_weight;
10682
10683 /* Check if dst CPU is idle and preferred to this group */
10684 if (!local_group && env->idle && sgs->sum_h_nr_running &&
10685 sched_group_asym(env, sgs, group))
10686 sgs->group_asym_packing = 1;
10687
10688 /* Check for loaded SMT group to be balanced to dst CPU */
10689 if (!local_group && smt_balance(env, sgs, group))
10690 sgs->group_smt_balance = 1;
10691
10692 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10693
10694 /* Computing avg_load makes sense only when group is overloaded */
10695 if (sgs->group_type == group_overloaded)
10696 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10697 sgs->group_capacity;
10698 }
10699
10700 /**
10701 * update_sd_pick_busiest - return 1 on busiest group
10702 * @env: The load balancing environment.
10703 * @sds: sched_domain statistics
10704 * @sg: sched_group candidate to be checked for being the busiest
10705 * @sgs: sched_group statistics
10706 *
10707 * Determine if @sg is a busier group than the previously selected
10708 * busiest group.
10709 *
10710 * Return: %true if @sg is a busier group than the previously selected
10711 * busiest group. %false otherwise.
10712 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)10713 static bool update_sd_pick_busiest(struct lb_env *env,
10714 struct sd_lb_stats *sds,
10715 struct sched_group *sg,
10716 struct sg_lb_stats *sgs)
10717 {
10718 struct sg_lb_stats *busiest = &sds->busiest_stat;
10719
10720 /* Make sure that there is at least one task to pull */
10721 if (!sgs->sum_h_nr_running)
10722 return false;
10723
10724 /*
10725 * Don't try to pull misfit tasks we can't help.
10726 * We can use max_capacity here as reduction in capacity on some
10727 * CPUs in the group should either be possible to resolve
10728 * internally or be covered by avg_load imbalance (eventually).
10729 */
10730 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10731 (sgs->group_type == group_misfit_task) &&
10732 (sgs->group_misfit_reason == MISFIT_PERF) &&
10733 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10734 sds->local_stat.group_type != group_has_spare))
10735 return false;
10736
10737 if (sgs->group_type > busiest->group_type)
10738 return true;
10739
10740 if (sgs->group_type < busiest->group_type)
10741 return false;
10742
10743 /*
10744 * The candidate and the current busiest group are the same type of
10745 * group. Let check which one is the busiest according to the type.
10746 */
10747
10748 switch (sgs->group_type) {
10749 case group_overloaded:
10750 /* Select the overloaded group with highest avg_load. */
10751 return sgs->avg_load > busiest->avg_load;
10752
10753 case group_imbalanced:
10754 /*
10755 * Select the 1st imbalanced group as we don't have any way to
10756 * choose one more than another.
10757 */
10758 return false;
10759
10760 case group_asym_packing:
10761 /* Prefer to move from lowest priority CPU's work */
10762 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10763
10764 case group_misfit_task:
10765 /*
10766 * If we have more than one misfit sg go with the biggest
10767 * misfit.
10768 */
10769 return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10770
10771 case group_smt_balance:
10772 /*
10773 * Check if we have spare CPUs on either SMT group to
10774 * choose has spare or fully busy handling.
10775 */
10776 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10777 goto has_spare;
10778
10779 fallthrough;
10780
10781 case group_fully_busy:
10782 /*
10783 * Select the fully busy group with highest avg_load. In
10784 * theory, there is no need to pull task from such kind of
10785 * group because tasks have all compute capacity that they need
10786 * but we can still improve the overall throughput by reducing
10787 * contention when accessing shared HW resources.
10788 *
10789 * XXX for now avg_load is not computed and always 0 so we
10790 * select the 1st one, except if @sg is composed of SMT
10791 * siblings.
10792 */
10793
10794 if (sgs->avg_load < busiest->avg_load)
10795 return false;
10796
10797 if (sgs->avg_load == busiest->avg_load) {
10798 /*
10799 * SMT sched groups need more help than non-SMT groups.
10800 * If @sg happens to also be SMT, either choice is good.
10801 */
10802 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10803 return false;
10804 }
10805
10806 break;
10807
10808 case group_has_spare:
10809 /*
10810 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10811 * as we do not want to pull task off SMT core with one task
10812 * and make the core idle.
10813 */
10814 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10815 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10816 return false;
10817 else
10818 return true;
10819 }
10820 has_spare:
10821
10822 /*
10823 * Select not overloaded group with lowest number of idle CPUs
10824 * and highest number of running tasks. We could also compare
10825 * the spare capacity which is more stable but it can end up
10826 * that the group has less spare capacity but finally more idle
10827 * CPUs which means less opportunity to pull tasks.
10828 */
10829 if (sgs->idle_cpus > busiest->idle_cpus)
10830 return false;
10831 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10832 (sgs->sum_nr_running <= busiest->sum_nr_running))
10833 return false;
10834
10835 break;
10836 }
10837
10838 /*
10839 * Candidate sg has no more than one task per CPU and has higher
10840 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10841 * throughput. Maximize throughput, power/energy consequences are not
10842 * considered.
10843 */
10844 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10845 (sgs->group_type <= group_fully_busy) &&
10846 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10847 return false;
10848
10849 return true;
10850 }
10851
10852 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10853 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10854 {
10855 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10856 return regular;
10857 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10858 return remote;
10859 return all;
10860 }
10861
fbq_classify_rq(struct rq * rq)10862 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10863 {
10864 if (rq->nr_running > rq->nr_numa_running)
10865 return regular;
10866 if (rq->nr_running > rq->nr_preferred_running)
10867 return remote;
10868 return all;
10869 }
10870 #else
fbq_classify_group(struct sg_lb_stats * sgs)10871 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10872 {
10873 return all;
10874 }
10875
fbq_classify_rq(struct rq * rq)10876 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10877 {
10878 return regular;
10879 }
10880 #endif /* CONFIG_NUMA_BALANCING */
10881
10882
10883 struct sg_lb_stats;
10884
10885 /*
10886 * task_running_on_cpu - return 1 if @p is running on @cpu.
10887 */
10888
task_running_on_cpu(int cpu,struct task_struct * p)10889 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10890 {
10891 /* Task has no contribution or is new */
10892 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10893 return 0;
10894
10895 if (task_on_rq_queued(p))
10896 return 1;
10897
10898 return 0;
10899 }
10900
10901 /**
10902 * idle_cpu_without - would a given CPU be idle without p ?
10903 * @cpu: the processor on which idleness is tested.
10904 * @p: task which should be ignored.
10905 *
10906 * Return: 1 if the CPU would be idle. 0 otherwise.
10907 */
idle_cpu_without(int cpu,struct task_struct * p)10908 static int idle_cpu_without(int cpu, struct task_struct *p)
10909 {
10910 struct rq *rq = cpu_rq(cpu);
10911
10912 if (rq->curr != rq->idle && rq->curr != p)
10913 return 0;
10914
10915 /*
10916 * rq->nr_running can't be used but an updated version without the
10917 * impact of p on cpu must be used instead. The updated nr_running
10918 * be computed and tested before calling idle_cpu_without().
10919 */
10920
10921 if (rq->ttwu_pending)
10922 return 0;
10923
10924 return 1;
10925 }
10926
10927 /*
10928 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10929 * @sd: The sched_domain level to look for idlest group.
10930 * @group: sched_group whose statistics are to be updated.
10931 * @sgs: variable to hold the statistics for this group.
10932 * @p: The task for which we look for the idlest group/CPU.
10933 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10934 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10935 struct sched_group *group,
10936 struct sg_lb_stats *sgs,
10937 struct task_struct *p)
10938 {
10939 int i, nr_running;
10940
10941 memset(sgs, 0, sizeof(*sgs));
10942
10943 /* Assume that task can't fit any CPU of the group */
10944 if (sd->flags & SD_ASYM_CPUCAPACITY)
10945 sgs->group_misfit_task_load = 1;
10946
10947 for_each_cpu(i, sched_group_span(group)) {
10948 struct rq *rq = cpu_rq(i);
10949 misfit_reason_t reason;
10950 unsigned int local;
10951
10952 sgs->group_load += cpu_load_without(rq, p);
10953 sgs->group_util += cpu_util_without(i, p);
10954 sgs->group_runnable += cpu_runnable_without(rq, p);
10955 local = task_running_on_cpu(i, p);
10956 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10957
10958 nr_running = rq->nr_running - local;
10959 sgs->sum_nr_running += nr_running;
10960
10961 /*
10962 * No need to call idle_cpu_without() if nr_running is not 0
10963 */
10964 if (!nr_running && idle_cpu_without(i, p))
10965 sgs->idle_cpus++;
10966
10967 /* Check if task fits in the CPU */
10968 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10969 sgs->group_misfit_task_load) {
10970 if (!is_misfit_task(p, rq, &reason)) {
10971 sgs->group_misfit_task_load = 0;
10972 sgs->group_misfit_reason = -1;
10973 } else {
10974 sgs->group_misfit_task_load =
10975 max_t(unsigned long, task_h_load(p), 1);
10976 sgs->group_misfit_reason = reason;
10977 }
10978 }
10979
10980 }
10981
10982 sgs->group_capacity = group->sgc->capacity;
10983
10984 sgs->group_weight = group->group_weight;
10985
10986 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10987
10988 /*
10989 * Computing avg_load makes sense only when group is fully busy or
10990 * overloaded
10991 */
10992 if (sgs->group_type == group_fully_busy ||
10993 sgs->group_type == group_overloaded)
10994 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10995 sgs->group_capacity;
10996 }
10997
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10998 static bool update_pick_idlest(struct sched_group *idlest,
10999 struct sg_lb_stats *idlest_sgs,
11000 struct sched_group *group,
11001 struct sg_lb_stats *sgs)
11002 {
11003 if (sgs->group_type < idlest_sgs->group_type)
11004 return true;
11005
11006 if (sgs->group_type > idlest_sgs->group_type)
11007 return false;
11008
11009 /*
11010 * The candidate and the current idlest group are the same type of
11011 * group. Let check which one is the idlest according to the type.
11012 */
11013
11014 switch (sgs->group_type) {
11015 case group_overloaded:
11016 case group_fully_busy:
11017 /* Select the group with lowest avg_load. */
11018 if (idlest_sgs->avg_load <= sgs->avg_load)
11019 return false;
11020 break;
11021
11022 case group_imbalanced:
11023 case group_asym_packing:
11024 case group_smt_balance:
11025 /* Those types are not used in the slow wakeup path */
11026 return false;
11027
11028 case group_misfit_task:
11029 /* Select group with the highest max capacity */
11030 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
11031 return false;
11032 break;
11033
11034 case group_has_spare:
11035 /* Select group with most idle CPUs */
11036 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
11037 return false;
11038
11039 /* Select group with lowest group_util */
11040 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
11041 idlest_sgs->group_util <= sgs->group_util)
11042 return false;
11043
11044 break;
11045 }
11046
11047 return true;
11048 }
11049
11050 /*
11051 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
11052 * domain.
11053 *
11054 * Assumes p is allowed on at least one CPU in sd.
11055 */
11056 static struct sched_group *
sched_balance_find_dst_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)11057 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
11058 {
11059 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
11060 struct sg_lb_stats local_sgs, tmp_sgs;
11061 struct sg_lb_stats *sgs;
11062 unsigned long imbalance;
11063 struct sg_lb_stats idlest_sgs = {
11064 .avg_load = UINT_MAX,
11065 .group_type = group_overloaded,
11066 };
11067
11068 do {
11069 int local_group;
11070
11071 /* Skip over this group if it has no CPUs allowed */
11072 if (!cpumask_intersects(sched_group_span(group),
11073 p->cpus_ptr))
11074 continue;
11075
11076 /* Skip over this group if no cookie matched */
11077 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
11078 continue;
11079
11080 local_group = cpumask_test_cpu(this_cpu,
11081 sched_group_span(group));
11082
11083 if (local_group) {
11084 sgs = &local_sgs;
11085 local = group;
11086 } else {
11087 sgs = &tmp_sgs;
11088 }
11089
11090 update_sg_wakeup_stats(sd, group, sgs, p);
11091
11092 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
11093 idlest = group;
11094 idlest_sgs = *sgs;
11095 }
11096
11097 } while (group = group->next, group != sd->groups);
11098
11099
11100 /* There is no idlest group to push tasks to */
11101 if (!idlest)
11102 return NULL;
11103
11104 /* The local group has been skipped because of CPU affinity */
11105 if (!local)
11106 return idlest;
11107
11108 /*
11109 * If the local group is idler than the selected idlest group
11110 * don't try and push the task.
11111 */
11112 if (local_sgs.group_type < idlest_sgs.group_type)
11113 return NULL;
11114
11115 /*
11116 * If the local group is busier than the selected idlest group
11117 * try and push the task.
11118 */
11119 if (local_sgs.group_type > idlest_sgs.group_type)
11120 return idlest;
11121
11122 switch (local_sgs.group_type) {
11123 case group_overloaded:
11124 case group_fully_busy:
11125
11126 /* Calculate allowed imbalance based on load */
11127 imbalance = scale_load_down(NICE_0_LOAD) *
11128 (sd->imbalance_pct-100) / 100;
11129
11130 /*
11131 * When comparing groups across NUMA domains, it's possible for
11132 * the local domain to be very lightly loaded relative to the
11133 * remote domains but "imbalance" skews the comparison making
11134 * remote CPUs look much more favourable. When considering
11135 * cross-domain, add imbalance to the load on the remote node
11136 * and consider staying local.
11137 */
11138
11139 if ((sd->flags & SD_NUMA) &&
11140 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
11141 return NULL;
11142
11143 /*
11144 * If the local group is less loaded than the selected
11145 * idlest group don't try and push any tasks.
11146 */
11147 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
11148 return NULL;
11149
11150 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
11151 return NULL;
11152 break;
11153
11154 case group_imbalanced:
11155 case group_asym_packing:
11156 case group_smt_balance:
11157 /* Those type are not used in the slow wakeup path */
11158 return NULL;
11159
11160 case group_misfit_task:
11161 /* Select group with the highest max capacity */
11162 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
11163 return NULL;
11164 break;
11165
11166 case group_has_spare:
11167 #ifdef CONFIG_NUMA
11168 if (sd->flags & SD_NUMA) {
11169 int imb_numa_nr = sd->imb_numa_nr;
11170 #ifdef CONFIG_NUMA_BALANCING
11171 int idlest_cpu;
11172 /*
11173 * If there is spare capacity at NUMA, try to select
11174 * the preferred node
11175 */
11176 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
11177 return NULL;
11178
11179 idlest_cpu = cpumask_first(sched_group_span(idlest));
11180 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
11181 return idlest;
11182 #endif /* CONFIG_NUMA_BALANCING */
11183 /*
11184 * Otherwise, keep the task close to the wakeup source
11185 * and improve locality if the number of running tasks
11186 * would remain below threshold where an imbalance is
11187 * allowed while accounting for the possibility the
11188 * task is pinned to a subset of CPUs. If there is a
11189 * real need of migration, periodic load balance will
11190 * take care of it.
11191 */
11192 if (p->nr_cpus_allowed != NR_CPUS) {
11193 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
11194
11195 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
11196 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
11197 }
11198
11199 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
11200 if (!adjust_numa_imbalance(imbalance,
11201 local_sgs.sum_nr_running + 1,
11202 imb_numa_nr)) {
11203 return NULL;
11204 }
11205 }
11206 #endif /* CONFIG_NUMA */
11207
11208 /*
11209 * Select group with highest number of idle CPUs. We could also
11210 * compare the utilization which is more stable but it can end
11211 * up that the group has less spare capacity but finally more
11212 * idle CPUs which means more opportunity to run task.
11213 */
11214 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
11215 return NULL;
11216 break;
11217 }
11218
11219 return idlest;
11220 }
11221
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)11222 static void update_idle_cpu_scan(struct lb_env *env,
11223 unsigned long sum_util)
11224 {
11225 struct sched_domain_shared *sd_share;
11226 int llc_weight, pct;
11227 u64 x, y, tmp;
11228 /*
11229 * Update the number of CPUs to scan in LLC domain, which could
11230 * be used as a hint in select_idle_cpu(). The update of sd_share
11231 * could be expensive because it is within a shared cache line.
11232 * So the write of this hint only occurs during periodic load
11233 * balancing, rather than CPU_NEWLY_IDLE, because the latter
11234 * can fire way more frequently than the former.
11235 */
11236 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
11237 return;
11238
11239 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
11240 if (env->sd->span_weight != llc_weight)
11241 return;
11242
11243 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
11244 if (!sd_share)
11245 return;
11246
11247 /*
11248 * The number of CPUs to search drops as sum_util increases, when
11249 * sum_util hits 85% or above, the scan stops.
11250 * The reason to choose 85% as the threshold is because this is the
11251 * imbalance_pct(117) when a LLC sched group is overloaded.
11252 *
11253 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
11254 * and y'= y / SCHED_CAPACITY_SCALE
11255 *
11256 * x is the ratio of sum_util compared to the CPU capacity:
11257 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
11258 * y' is the ratio of CPUs to be scanned in the LLC domain,
11259 * and the number of CPUs to scan is calculated by:
11260 *
11261 * nr_scan = llc_weight * y' [2]
11262 *
11263 * When x hits the threshold of overloaded, AKA, when
11264 * x = 100 / pct, y drops to 0. According to [1],
11265 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
11266 *
11267 * Scale x by SCHED_CAPACITY_SCALE:
11268 * x' = sum_util / llc_weight; [3]
11269 *
11270 * and finally [1] becomes:
11271 * y = SCHED_CAPACITY_SCALE -
11272 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
11273 *
11274 */
11275 /* equation [3] */
11276 x = sum_util;
11277 do_div(x, llc_weight);
11278
11279 /* equation [4] */
11280 pct = env->sd->imbalance_pct;
11281 tmp = x * x * pct * pct;
11282 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
11283 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
11284 y = SCHED_CAPACITY_SCALE - tmp;
11285
11286 /* equation [2] */
11287 y *= llc_weight;
11288 do_div(y, SCHED_CAPACITY_SCALE);
11289 if ((int)y != sd_share->nr_idle_scan)
11290 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
11291 }
11292
11293 /**
11294 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
11295 * @env: The load balancing environment.
11296 * @sds: variable to hold the statistics for this sched_domain.
11297 */
11298
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)11299 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
11300 {
11301 struct sched_group *sg = env->sd->groups;
11302 struct sg_lb_stats *local = &sds->local_stat;
11303 struct sg_lb_stats tmp_sgs;
11304 unsigned long sum_util = 0;
11305 bool sg_overloaded = 0, sg_overutilized = 0;
11306
11307 do {
11308 struct sg_lb_stats *sgs = &tmp_sgs;
11309 int local_group;
11310
11311 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
11312 if (local_group) {
11313 sds->local = sg;
11314 sgs = local;
11315
11316 if (env->idle != CPU_NEWLY_IDLE ||
11317 time_after_eq(jiffies, sg->sgc->next_update))
11318 update_group_capacity(env->sd, env->dst_cpu);
11319 }
11320
11321 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11322
11323 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11324 sds->busiest = sg;
11325 sds->busiest_stat = *sgs;
11326 }
11327
11328 /* Now, start updating sd_lb_stats */
11329 sds->total_load += sgs->group_load;
11330 sds->total_capacity += sgs->group_capacity;
11331
11332 sum_util += sgs->group_util;
11333 sg = sg->next;
11334 } while (sg != env->sd->groups);
11335
11336 /*
11337 * Indicate that the child domain of the busiest group prefers tasks
11338 * go to a child's sibling domains first. NB the flags of a sched group
11339 * are those of the child domain.
11340 */
11341 if (sds->busiest)
11342 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11343
11344
11345 if (env->sd->flags & SD_NUMA)
11346 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11347
11348 if (!env->sd->parent) {
11349 /* update overload indicator if we are at root domain */
11350 set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11351
11352 /* Update over-utilization (tipping point, U >= 0) indicator */
11353 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11354 } else if (sg_overutilized) {
11355 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11356 }
11357
11358 update_idle_cpu_scan(env, sum_util);
11359 }
11360
11361 /**
11362 * calculate_imbalance - Calculate the amount of imbalance present within the
11363 * groups of a given sched_domain during load balance.
11364 * @env: load balance environment
11365 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11366 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)11367 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11368 {
11369 struct sg_lb_stats *local, *busiest;
11370
11371 local = &sds->local_stat;
11372 busiest = &sds->busiest_stat;
11373
11374 if (busiest->group_type == group_misfit_task) {
11375 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11376 /* Set imbalance to allow misfit tasks to be balanced. */
11377 env->migration_type = migrate_misfit;
11378 env->imbalance = 1;
11379 } else {
11380 /*
11381 * Set load imbalance to allow moving task from cpu
11382 * with reduced capacity.
11383 */
11384 env->migration_type = migrate_load;
11385 env->imbalance = busiest->group_misfit_task_load;
11386 }
11387 return;
11388 }
11389
11390 if (busiest->group_type == group_asym_packing) {
11391 /*
11392 * In case of asym capacity, we will try to migrate all load to
11393 * the preferred CPU.
11394 */
11395 env->migration_type = migrate_task;
11396 env->imbalance = busiest->sum_h_nr_running;
11397 return;
11398 }
11399
11400 if (busiest->group_type == group_smt_balance) {
11401 /* Reduce number of tasks sharing CPU capacity */
11402 env->migration_type = migrate_task;
11403 env->imbalance = 1;
11404 return;
11405 }
11406
11407 if (busiest->group_type == group_imbalanced) {
11408 /*
11409 * In the group_imb case we cannot rely on group-wide averages
11410 * to ensure CPU-load equilibrium, try to move any task to fix
11411 * the imbalance. The next load balance will take care of
11412 * balancing back the system.
11413 */
11414 env->migration_type = migrate_task;
11415 env->imbalance = 1;
11416 return;
11417 }
11418
11419 /*
11420 * Try to use spare capacity of local group without overloading it or
11421 * emptying busiest.
11422 */
11423 if (local->group_type == group_has_spare) {
11424 if ((busiest->group_type > group_fully_busy) &&
11425 !(env->sd->flags & SD_SHARE_LLC)) {
11426 /*
11427 * If busiest is overloaded, try to fill spare
11428 * capacity. This might end up creating spare capacity
11429 * in busiest or busiest still being overloaded but
11430 * there is no simple way to directly compute the
11431 * amount of load to migrate in order to balance the
11432 * system.
11433 */
11434 env->migration_type = migrate_util;
11435 env->imbalance = max(local->group_capacity, local->group_util) -
11436 local->group_util;
11437
11438 /*
11439 * In some cases, the group's utilization is max or even
11440 * higher than capacity because of migrations but the
11441 * local CPU is (newly) idle. There is at least one
11442 * waiting task in this overloaded busiest group. Let's
11443 * try to pull it.
11444 */
11445 if (env->idle && env->imbalance == 0) {
11446 env->migration_type = migrate_task;
11447 env->imbalance = 1;
11448 }
11449
11450 return;
11451 }
11452
11453 if (busiest->group_weight == 1 || sds->prefer_sibling) {
11454 /*
11455 * When prefer sibling, evenly spread running tasks on
11456 * groups.
11457 */
11458 env->migration_type = migrate_task;
11459 env->imbalance = sibling_imbalance(env, sds, busiest, local);
11460 } else {
11461
11462 /*
11463 * If there is no overload, we just want to even the number of
11464 * idle CPUs.
11465 */
11466 env->migration_type = migrate_task;
11467 env->imbalance = max_t(long, 0,
11468 (local->idle_cpus - busiest->idle_cpus));
11469 }
11470
11471 #ifdef CONFIG_NUMA
11472 /* Consider allowing a small imbalance between NUMA groups */
11473 if (env->sd->flags & SD_NUMA) {
11474 env->imbalance = adjust_numa_imbalance(env->imbalance,
11475 local->sum_nr_running + 1,
11476 env->sd->imb_numa_nr);
11477 }
11478 #endif
11479
11480 /* Number of tasks to move to restore balance */
11481 env->imbalance >>= 1;
11482
11483 return;
11484 }
11485
11486 /*
11487 * Local is fully busy but has to take more load to relieve the
11488 * busiest group
11489 */
11490 if (local->group_type < group_overloaded) {
11491 /*
11492 * Local will become overloaded so the avg_load metrics are
11493 * finally needed.
11494 */
11495
11496 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11497 local->group_capacity;
11498
11499 /*
11500 * If the local group is more loaded than the selected
11501 * busiest group don't try to pull any tasks.
11502 */
11503 if (local->avg_load >= busiest->avg_load) {
11504 env->imbalance = 0;
11505 return;
11506 }
11507
11508 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11509 sds->total_capacity;
11510
11511 /*
11512 * If the local group is more loaded than the average system
11513 * load, don't try to pull any tasks.
11514 */
11515 if (local->avg_load >= sds->avg_load) {
11516 env->imbalance = 0;
11517 return;
11518 }
11519
11520 }
11521
11522 /*
11523 * Both group are or will become overloaded and we're trying to get all
11524 * the CPUs to the average_load, so we don't want to push ourselves
11525 * above the average load, nor do we wish to reduce the max loaded CPU
11526 * below the average load. At the same time, we also don't want to
11527 * reduce the group load below the group capacity. Thus we look for
11528 * the minimum possible imbalance.
11529 */
11530 env->migration_type = migrate_load;
11531 env->imbalance = min(
11532 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11533 (sds->avg_load - local->avg_load) * local->group_capacity
11534 ) / SCHED_CAPACITY_SCALE;
11535 }
11536
11537 /******* sched_balance_find_src_group() helpers end here *********************/
11538
11539 /*
11540 * Decision matrix according to the local and busiest group type:
11541 *
11542 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11543 * has_spare nr_idle balanced N/A N/A balanced balanced
11544 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
11545 * misfit_task force N/A N/A N/A N/A N/A
11546 * asym_packing force force N/A N/A force force
11547 * imbalanced force force N/A N/A force force
11548 * overloaded force force N/A N/A force avg_load
11549 *
11550 * N/A : Not Applicable because already filtered while updating
11551 * statistics.
11552 * balanced : The system is balanced for these 2 groups.
11553 * force : Calculate the imbalance as load migration is probably needed.
11554 * avg_load : Only if imbalance is significant enough.
11555 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
11556 * different in groups.
11557 */
11558
11559 /**
11560 * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11561 * if there is an imbalance.
11562 * @env: The load balancing environment.
11563 *
11564 * Also calculates the amount of runnable load which should be moved
11565 * to restore balance.
11566 *
11567 * Return: - The busiest group if imbalance exists.
11568 */
sched_balance_find_src_group(struct lb_env * env)11569 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11570 {
11571 struct sg_lb_stats *local, *busiest;
11572 struct sd_lb_stats sds;
11573 int out_balance = 1;
11574
11575 init_sd_lb_stats(&sds);
11576
11577 /*
11578 * Compute the various statistics relevant for load balancing at
11579 * this level.
11580 */
11581 update_sd_lb_stats(env, &sds);
11582
11583 /* There is no busy sibling group to pull tasks from */
11584 if (!sds.busiest)
11585 goto out_balanced;
11586
11587 busiest = &sds.busiest_stat;
11588
11589 /* Misfit tasks should be dealt with regardless of the avg load */
11590 if (busiest->group_type == group_misfit_task)
11591 goto force_balance;
11592
11593 trace_android_rvh_sched_balance_find_src_group(sds.busiest, env->dst_rq, &out_balance);
11594 if (!is_rd_overutilized(env->dst_rq->rd) &&
11595 rcu_dereference(env->dst_rq->rd->pd) && out_balance)
11596 goto out_balanced;
11597
11598 /* ASYM feature bypasses nice load balance check */
11599 if (busiest->group_type == group_asym_packing)
11600 goto force_balance;
11601
11602 /*
11603 * If the busiest group is imbalanced the below checks don't
11604 * work because they assume all things are equal, which typically
11605 * isn't true due to cpus_ptr constraints and the like.
11606 */
11607 if (busiest->group_type == group_imbalanced)
11608 goto force_balance;
11609
11610 local = &sds.local_stat;
11611 /*
11612 * If the local group is busier than the selected busiest group
11613 * don't try and pull any tasks.
11614 */
11615 if (local->group_type > busiest->group_type)
11616 goto out_balanced;
11617
11618 /*
11619 * When groups are overloaded, use the avg_load to ensure fairness
11620 * between tasks.
11621 */
11622 if (local->group_type == group_overloaded) {
11623 /*
11624 * If the local group is more loaded than the selected
11625 * busiest group don't try to pull any tasks.
11626 */
11627 if (local->avg_load >= busiest->avg_load)
11628 goto out_balanced;
11629
11630 /* XXX broken for overlapping NUMA groups */
11631 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11632 sds.total_capacity;
11633
11634 /*
11635 * Don't pull any tasks if this group is already above the
11636 * domain average load.
11637 */
11638 if (local->avg_load >= sds.avg_load)
11639 goto out_balanced;
11640
11641 /*
11642 * If the busiest group is more loaded, use imbalance_pct to be
11643 * conservative.
11644 */
11645 if (100 * busiest->avg_load <=
11646 env->sd->imbalance_pct * local->avg_load)
11647 goto out_balanced;
11648 }
11649
11650 /*
11651 * Try to move all excess tasks to a sibling domain of the busiest
11652 * group's child domain.
11653 */
11654 if (sds.prefer_sibling && local->group_type == group_has_spare &&
11655 sibling_imbalance(env, &sds, busiest, local) > 1)
11656 goto force_balance;
11657
11658 if (busiest->group_type != group_overloaded) {
11659 if (!env->idle) {
11660 /*
11661 * If the busiest group is not overloaded (and as a
11662 * result the local one too) but this CPU is already
11663 * busy, let another idle CPU try to pull task.
11664 */
11665 goto out_balanced;
11666 }
11667
11668 if (busiest->group_type == group_smt_balance &&
11669 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11670 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
11671 goto force_balance;
11672 }
11673
11674 if (busiest->group_weight > 1 &&
11675 local->idle_cpus <= (busiest->idle_cpus + 1)) {
11676 /*
11677 * If the busiest group is not overloaded
11678 * and there is no imbalance between this and busiest
11679 * group wrt idle CPUs, it is balanced. The imbalance
11680 * becomes significant if the diff is greater than 1
11681 * otherwise we might end up to just move the imbalance
11682 * on another group. Of course this applies only if
11683 * there is more than 1 CPU per group.
11684 */
11685 goto out_balanced;
11686 }
11687
11688 if (busiest->sum_h_nr_running == 1) {
11689 /*
11690 * busiest doesn't have any tasks waiting to run
11691 */
11692 goto out_balanced;
11693 }
11694 }
11695
11696 force_balance:
11697 /* Looks like there is an imbalance. Compute it */
11698 calculate_imbalance(env, &sds);
11699 return env->imbalance ? sds.busiest : NULL;
11700
11701 out_balanced:
11702 env->imbalance = 0;
11703 return NULL;
11704 }
11705
11706 /*
11707 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11708 */
sched_balance_find_src_rq(struct lb_env * env,struct sched_group * group)11709 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11710 struct sched_group *group)
11711 {
11712 struct rq *busiest = NULL, *rq;
11713 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11714 unsigned int busiest_nr = 0;
11715 int i, done = 0;
11716
11717 trace_android_rvh_find_busiest_queue(env->dst_cpu, group, env->cpus,
11718 &busiest, &done);
11719 if (done)
11720 return busiest;
11721
11722 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11723 unsigned long capacity, load, util;
11724 unsigned int nr_running;
11725 enum fbq_type rt;
11726
11727 rq = cpu_rq(i);
11728 rt = fbq_classify_rq(rq);
11729
11730 /*
11731 * We classify groups/runqueues into three groups:
11732 * - regular: there are !numa tasks
11733 * - remote: there are numa tasks that run on the 'wrong' node
11734 * - all: there is no distinction
11735 *
11736 * In order to avoid migrating ideally placed numa tasks,
11737 * ignore those when there's better options.
11738 *
11739 * If we ignore the actual busiest queue to migrate another
11740 * task, the next balance pass can still reduce the busiest
11741 * queue by moving tasks around inside the node.
11742 *
11743 * If we cannot move enough load due to this classification
11744 * the next pass will adjust the group classification and
11745 * allow migration of more tasks.
11746 *
11747 * Both cases only affect the total convergence complexity.
11748 */
11749 if (rt > env->fbq_type)
11750 continue;
11751
11752 nr_running = rq->cfs.h_nr_running;
11753 if (!nr_running)
11754 continue;
11755
11756 capacity = capacity_of(i);
11757
11758 /*
11759 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11760 * eventually lead to active_balancing high->low capacity.
11761 * Higher per-CPU capacity is considered better than balancing
11762 * average load.
11763 */
11764 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11765 rq->misfit_reason == MISFIT_PERF &&
11766 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11767 nr_running == 1)
11768 continue;
11769
11770 /*
11771 * Make sure we only pull tasks from a CPU of lower priority
11772 * when balancing between SMT siblings.
11773 *
11774 * If balancing between cores, let lower priority CPUs help
11775 * SMT cores with more than one busy sibling.
11776 */
11777 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11778 continue;
11779
11780 switch (env->migration_type) {
11781 case migrate_load:
11782 /*
11783 * When comparing with load imbalance, use cpu_load()
11784 * which is not scaled with the CPU capacity.
11785 */
11786 load = cpu_load(rq);
11787
11788 if (nr_running == 1 && load > env->imbalance &&
11789 !check_cpu_capacity(rq, env->sd))
11790 break;
11791
11792 /*
11793 * For the load comparisons with the other CPUs,
11794 * consider the cpu_load() scaled with the CPU
11795 * capacity, so that the load can be moved away
11796 * from the CPU that is potentially running at a
11797 * lower capacity.
11798 *
11799 * Thus we're looking for max(load_i / capacity_i),
11800 * crosswise multiplication to rid ourselves of the
11801 * division works out to:
11802 * load_i * capacity_j > load_j * capacity_i;
11803 * where j is our previous maximum.
11804 */
11805 if (load * busiest_capacity > busiest_load * capacity) {
11806 busiest_load = load;
11807 busiest_capacity = capacity;
11808 busiest = rq;
11809 }
11810 break;
11811
11812 case migrate_util:
11813 util = cpu_util_cfs_boost(i);
11814
11815 /*
11816 * Don't try to pull utilization from a CPU with one
11817 * running task. Whatever its utilization, we will fail
11818 * detach the task.
11819 */
11820 if (nr_running <= 1)
11821 continue;
11822
11823 if (busiest_util < util) {
11824 busiest_util = util;
11825 busiest = rq;
11826 }
11827 break;
11828
11829 case migrate_task:
11830 if (busiest_nr < nr_running) {
11831 busiest_nr = nr_running;
11832 busiest = rq;
11833 }
11834 break;
11835
11836 case migrate_misfit:
11837 /*
11838 * For ASYM_CPUCAPACITY domains with misfit tasks we
11839 * simply seek the "biggest" misfit task.
11840 */
11841 if (rq->misfit_task_load > busiest_load) {
11842 busiest_load = rq->misfit_task_load;
11843 busiest = rq;
11844 }
11845
11846 break;
11847
11848 }
11849 }
11850
11851 return busiest;
11852 }
11853
11854 /*
11855 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11856 * so long as it is large enough.
11857 */
11858 #define MAX_PINNED_INTERVAL 512
11859
11860 static inline bool
asym_active_balance(struct lb_env * env)11861 asym_active_balance(struct lb_env *env)
11862 {
11863 /*
11864 * ASYM_PACKING needs to force migrate tasks from busy but lower
11865 * priority CPUs in order to pack all tasks in the highest priority
11866 * CPUs. When done between cores, do it only if the whole core if the
11867 * whole core is idle.
11868 *
11869 * If @env::src_cpu is an SMT core with busy siblings, let
11870 * the lower priority @env::dst_cpu help it. Do not follow
11871 * CPU priority.
11872 */
11873 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11874 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11875 !sched_use_asym_prio(env->sd, env->src_cpu));
11876 }
11877
11878 static inline bool
imbalanced_active_balance(struct lb_env * env)11879 imbalanced_active_balance(struct lb_env *env)
11880 {
11881 struct sched_domain *sd = env->sd;
11882
11883 /*
11884 * The imbalanced case includes the case of pinned tasks preventing a fair
11885 * distribution of the load on the system but also the even distribution of the
11886 * threads on a system with spare capacity
11887 */
11888 if ((env->migration_type == migrate_task) &&
11889 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11890 return 1;
11891
11892 return 0;
11893 }
11894
need_active_balance(struct lb_env * env)11895 static int need_active_balance(struct lb_env *env)
11896 {
11897 struct sched_domain *sd = env->sd;
11898
11899 if (asym_active_balance(env))
11900 return 1;
11901
11902 if (imbalanced_active_balance(env))
11903 return 1;
11904
11905 /*
11906 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11907 * It's worth migrating the task if the src_cpu's capacity is reduced
11908 * because of other sched_class or IRQs if more capacity stays
11909 * available on dst_cpu.
11910 */
11911 if (env->idle &&
11912 (env->src_rq->cfs.h_nr_running == 1)) {
11913 if ((check_cpu_capacity(env->src_rq, sd)) &&
11914 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11915 return 1;
11916 }
11917
11918 if (env->migration_type == migrate_misfit)
11919 return 1;
11920
11921 return 0;
11922 }
11923
11924 static int active_load_balance_cpu_stop(void *data);
11925
should_we_balance(struct lb_env * env)11926 static int should_we_balance(struct lb_env *env)
11927 {
11928 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11929 struct sched_group *sg = env->sd->groups;
11930 int cpu, idle_smt = -1;
11931
11932 /*
11933 * Ensure the balancing environment is consistent; can happen
11934 * when the softirq triggers 'during' hotplug.
11935 */
11936 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11937 return 0;
11938
11939 /*
11940 * In the newly idle case, we will allow all the CPUs
11941 * to do the newly idle load balance.
11942 *
11943 * However, we bail out if we already have tasks or a wakeup pending,
11944 * to optimize wakeup latency.
11945 */
11946 if (env->idle == CPU_NEWLY_IDLE) {
11947 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11948 return 0;
11949 return 1;
11950 }
11951
11952 cpumask_copy(swb_cpus, group_balance_mask(sg));
11953 /* Try to find first idle CPU */
11954 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11955 if (!idle_cpu(cpu))
11956 continue;
11957
11958 /*
11959 * Don't balance to idle SMT in busy core right away when
11960 * balancing cores, but remember the first idle SMT CPU for
11961 * later consideration. Find CPU on an idle core first.
11962 */
11963 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11964 if (idle_smt == -1)
11965 idle_smt = cpu;
11966 /*
11967 * If the core is not idle, and first SMT sibling which is
11968 * idle has been found, then its not needed to check other
11969 * SMT siblings for idleness:
11970 */
11971 #ifdef CONFIG_SCHED_SMT
11972 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11973 #endif
11974 continue;
11975 }
11976
11977 /*
11978 * Are we the first idle core in a non-SMT domain or higher,
11979 * or the first idle CPU in a SMT domain?
11980 */
11981 return cpu == env->dst_cpu;
11982 }
11983
11984 /* Are we the first idle CPU with busy siblings? */
11985 if (idle_smt != -1)
11986 return idle_smt == env->dst_cpu;
11987
11988 /* Are we the first CPU of this group ? */
11989 return group_balance_cpu(sg) == env->dst_cpu;
11990 }
11991
11992 /*
11993 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11994 * tasks if there is an imbalance.
11995 */
sched_balance_rq(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11996 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11997 struct sched_domain *sd, enum cpu_idle_type idle,
11998 int *continue_balancing)
11999 {
12000 int ld_moved, cur_ld_moved, active_balance = 0;
12001 struct sched_domain *sd_parent = sd->parent;
12002 struct sched_group *group;
12003 struct rq *busiest;
12004 struct rq_flags rf;
12005 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
12006 struct lb_env env = {
12007 .sd = sd,
12008 .dst_cpu = this_cpu,
12009 .dst_rq = this_rq,
12010 .dst_grpmask = group_balance_mask(sd->groups),
12011 .idle = idle,
12012 .loop_break = SCHED_NR_MIGRATE_BREAK,
12013 .cpus = cpus,
12014 .fbq_type = all,
12015 .tasks = LIST_HEAD_INIT(env.tasks),
12016 };
12017
12018 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
12019
12020 schedstat_inc(sd->lb_count[idle]);
12021
12022 redo:
12023 if (!should_we_balance(&env)) {
12024 *continue_balancing = 0;
12025 goto out_balanced;
12026 }
12027
12028 group = sched_balance_find_src_group(&env);
12029 if (!group) {
12030 schedstat_inc(sd->lb_nobusyg[idle]);
12031 goto out_balanced;
12032 }
12033
12034 busiest = sched_balance_find_src_rq(&env, group);
12035 if (!busiest) {
12036 schedstat_inc(sd->lb_nobusyq[idle]);
12037 goto out_balanced;
12038 }
12039
12040 WARN_ON_ONCE(busiest == env.dst_rq);
12041
12042 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
12043
12044 env.src_cpu = busiest->cpu;
12045 env.src_rq = busiest;
12046
12047 ld_moved = 0;
12048 /* Clear this flag as soon as we find a pullable task */
12049 env.flags |= LBF_ALL_PINNED;
12050 if (busiest->nr_running > 1) {
12051 /*
12052 * Attempt to move tasks. If sched_balance_find_src_group has found
12053 * an imbalance but busiest->nr_running <= 1, the group is
12054 * still unbalanced. ld_moved simply stays zero, so it is
12055 * correctly treated as an imbalance.
12056 */
12057 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
12058
12059 more_balance:
12060 rq_lock_irqsave(busiest, &rf);
12061 env.src_rq_rf = &rf;
12062 update_rq_clock(busiest);
12063
12064 /*
12065 * cur_ld_moved - load moved in current iteration
12066 * ld_moved - cumulative load moved across iterations
12067 */
12068 cur_ld_moved = detach_tasks(&env);
12069
12070 /*
12071 * We've detached some tasks from busiest_rq. Every
12072 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
12073 * unlock busiest->lock, and we are able to be sure
12074 * that nobody can manipulate the tasks in parallel.
12075 * See task_rq_lock() family for the details.
12076 */
12077
12078 rq_unlock(busiest, &rf);
12079
12080 if (cur_ld_moved) {
12081 attach_tasks(&env);
12082 ld_moved += cur_ld_moved;
12083 }
12084
12085 local_irq_restore(rf.flags);
12086
12087 if (env.flags & LBF_NEED_BREAK) {
12088 env.flags &= ~LBF_NEED_BREAK;
12089 goto more_balance;
12090 }
12091
12092 /*
12093 * Revisit (affine) tasks on src_cpu that couldn't be moved to
12094 * us and move them to an alternate dst_cpu in our sched_group
12095 * where they can run. The upper limit on how many times we
12096 * iterate on same src_cpu is dependent on number of CPUs in our
12097 * sched_group.
12098 *
12099 * This changes load balance semantics a bit on who can move
12100 * load to a given_cpu. In addition to the given_cpu itself
12101 * (or a ilb_cpu acting on its behalf where given_cpu is
12102 * nohz-idle), we now have balance_cpu in a position to move
12103 * load to given_cpu. In rare situations, this may cause
12104 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
12105 * _independently_ and at _same_ time to move some load to
12106 * given_cpu) causing excess load to be moved to given_cpu.
12107 * This however should not happen so much in practice and
12108 * moreover subsequent load balance cycles should correct the
12109 * excess load moved.
12110 */
12111 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
12112
12113 /* Prevent to re-select dst_cpu via env's CPUs */
12114 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
12115
12116 env.dst_rq = cpu_rq(env.new_dst_cpu);
12117 env.dst_cpu = env.new_dst_cpu;
12118 env.flags &= ~LBF_DST_PINNED;
12119 env.loop = 0;
12120 env.loop_break = SCHED_NR_MIGRATE_BREAK;
12121
12122 /*
12123 * Go back to "more_balance" rather than "redo" since we
12124 * need to continue with same src_cpu.
12125 */
12126 goto more_balance;
12127 }
12128
12129 /*
12130 * We failed to reach balance because of affinity.
12131 */
12132 if (sd_parent) {
12133 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
12134
12135 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
12136 *group_imbalance = 1;
12137 }
12138
12139 /* All tasks on this runqueue were pinned by CPU affinity */
12140 if (unlikely(env.flags & LBF_ALL_PINNED)) {
12141 __cpumask_clear_cpu(cpu_of(busiest), cpus);
12142 /*
12143 * Attempting to continue load balancing at the current
12144 * sched_domain level only makes sense if there are
12145 * active CPUs remaining as possible busiest CPUs to
12146 * pull load from which are not contained within the
12147 * destination group that is receiving any migrated
12148 * load.
12149 */
12150 if (!cpumask_subset(cpus, env.dst_grpmask)) {
12151 env.loop = 0;
12152 env.loop_break = SCHED_NR_MIGRATE_BREAK;
12153 goto redo;
12154 }
12155 goto out_all_pinned;
12156 }
12157 }
12158
12159 if (!ld_moved) {
12160 schedstat_inc(sd->lb_failed[idle]);
12161 /*
12162 * Increment the failure counter only on periodic balance.
12163 * We do not want newidle balance, which can be very
12164 * frequent, pollute the failure counter causing
12165 * excessive cache_hot migrations and active balances.
12166 *
12167 * Similarly for migration_misfit which is not related to
12168 * load/util migration, don't pollute nr_balance_failed.
12169 */
12170 if (idle != CPU_NEWLY_IDLE &&
12171 env.migration_type != migrate_misfit)
12172 sd->nr_balance_failed++;
12173
12174 if (need_active_balance(&env)) {
12175 unsigned long flags;
12176
12177 raw_spin_rq_lock_irqsave(busiest, flags);
12178
12179 /*
12180 * Don't kick the active_load_balance_cpu_stop,
12181 * if the curr task on busiest CPU can't be
12182 * moved to this_cpu:
12183 */
12184 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
12185 raw_spin_rq_unlock_irqrestore(busiest, flags);
12186 goto out_one_pinned;
12187 }
12188
12189 /* Record that we found at least one task that could run on this_cpu */
12190 env.flags &= ~LBF_ALL_PINNED;
12191
12192 /*
12193 * ->active_balance synchronizes accesses to
12194 * ->active_balance_work. Once set, it's cleared
12195 * only after active load balance is finished.
12196 */
12197 if (!busiest->active_balance) {
12198 busiest->active_balance = 1;
12199 busiest->push_cpu = this_cpu;
12200 active_balance = 1;
12201 }
12202
12203 preempt_disable();
12204 raw_spin_rq_unlock_irqrestore(busiest, flags);
12205 if (active_balance) {
12206 stop_one_cpu_nowait(cpu_of(busiest),
12207 active_load_balance_cpu_stop, busiest,
12208 &busiest->active_balance_work);
12209 }
12210 preempt_enable();
12211 }
12212 } else {
12213 sd->nr_balance_failed = 0;
12214 }
12215
12216 if (likely(!active_balance) || need_active_balance(&env)) {
12217 /* We were unbalanced, so reset the balancing interval */
12218 sd->balance_interval = sd->min_interval;
12219 }
12220
12221 goto out;
12222
12223 out_balanced:
12224 /*
12225 * We reach balance although we may have faced some affinity
12226 * constraints. Clear the imbalance flag only if other tasks got
12227 * a chance to move and fix the imbalance.
12228 */
12229 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
12230 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
12231
12232 if (*group_imbalance)
12233 *group_imbalance = 0;
12234 }
12235
12236 out_all_pinned:
12237 /*
12238 * We reach balance because all tasks are pinned at this level so
12239 * we can't migrate them. Let the imbalance flag set so parent level
12240 * can try to migrate them.
12241 */
12242 schedstat_inc(sd->lb_balanced[idle]);
12243
12244 sd->nr_balance_failed = 0;
12245
12246 out_one_pinned:
12247 ld_moved = 0;
12248
12249 /*
12250 * sched_balance_newidle() disregards balance intervals, so we could
12251 * repeatedly reach this code, which would lead to balance_interval
12252 * skyrocketing in a short amount of time. Skip the balance_interval
12253 * increase logic to avoid that.
12254 *
12255 * Similarly misfit migration which is not necessarily an indication of
12256 * the system being busy and requires lb to backoff to let it settle
12257 * down.
12258 */
12259 if (env.idle == CPU_NEWLY_IDLE ||
12260 env.migration_type == migrate_misfit)
12261 goto out;
12262
12263 /* tune up the balancing interval */
12264 if ((env.flags & LBF_ALL_PINNED &&
12265 sd->balance_interval < MAX_PINNED_INTERVAL) ||
12266 sd->balance_interval < sd->max_interval)
12267 sd->balance_interval *= 2;
12268 out:
12269 return ld_moved;
12270 }
12271
12272 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)12273 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
12274 {
12275 unsigned long interval = sd->balance_interval;
12276
12277 if (cpu_busy)
12278 interval *= sd->busy_factor;
12279
12280 /* scale ms to jiffies */
12281 interval = msecs_to_jiffies(interval);
12282
12283 /*
12284 * Reduce likelihood of busy balancing at higher domains racing with
12285 * balancing at lower domains by preventing their balancing periods
12286 * from being multiples of each other.
12287 */
12288 if (cpu_busy)
12289 interval -= 1;
12290
12291 interval = clamp(interval, 1UL, max_load_balance_interval);
12292
12293 return interval;
12294 }
12295
12296 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)12297 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
12298 {
12299 unsigned long interval, next;
12300
12301 /* used by idle balance, so cpu_busy = 0 */
12302 interval = get_sd_balance_interval(sd, 0);
12303 next = sd->last_balance + interval;
12304
12305 if (time_after(*next_balance, next))
12306 *next_balance = next;
12307 }
12308
12309 /*
12310 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
12311 * running tasks off the busiest CPU onto idle CPUs. It requires at
12312 * least 1 task to be running on each physical CPU where possible, and
12313 * avoids physical / logical imbalances.
12314 */
active_load_balance_cpu_stop(void * data)12315 static int active_load_balance_cpu_stop(void *data)
12316 {
12317 struct rq *busiest_rq = data;
12318 int busiest_cpu = cpu_of(busiest_rq);
12319 int target_cpu = busiest_rq->push_cpu;
12320 struct rq *target_rq = cpu_rq(target_cpu);
12321 struct sched_domain *sd;
12322 struct task_struct *p = NULL;
12323 struct rq_flags rf;
12324
12325 rq_lock_irq(busiest_rq, &rf);
12326 /*
12327 * Between queueing the stop-work and running it is a hole in which
12328 * CPUs can become inactive. We should not move tasks from or to
12329 * inactive CPUs.
12330 */
12331 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12332 goto out_unlock;
12333
12334 /* Make sure the requested CPU hasn't gone down in the meantime: */
12335 if (unlikely(busiest_cpu != smp_processor_id() ||
12336 !busiest_rq->active_balance))
12337 goto out_unlock;
12338
12339 /* Is there any task to move? */
12340 if (busiest_rq->nr_running <= 1)
12341 goto out_unlock;
12342
12343 /*
12344 * This condition is "impossible", if it occurs
12345 * we need to fix it. Originally reported by
12346 * Bjorn Helgaas on a 128-CPU setup.
12347 */
12348 WARN_ON_ONCE(busiest_rq == target_rq);
12349
12350 /* Search for an sd spanning us and the target CPU. */
12351 rcu_read_lock();
12352 for_each_domain(target_cpu, sd) {
12353 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12354 break;
12355 }
12356
12357 if (likely(sd)) {
12358 struct lb_env env = {
12359 .sd = sd,
12360 .dst_cpu = target_cpu,
12361 .dst_rq = target_rq,
12362 .src_cpu = busiest_rq->cpu,
12363 .src_rq = busiest_rq,
12364 .idle = CPU_IDLE,
12365 .flags = LBF_ACTIVE_LB,
12366 .src_rq_rf = &rf,
12367 };
12368
12369 schedstat_inc(sd->alb_count);
12370 update_rq_clock(busiest_rq);
12371
12372 p = detach_one_task(&env);
12373 if (p) {
12374 schedstat_inc(sd->alb_pushed);
12375 /* Active balancing done, reset the failure counter. */
12376 sd->nr_balance_failed = 0;
12377 } else {
12378 schedstat_inc(sd->alb_failed);
12379 }
12380 }
12381 rcu_read_unlock();
12382 out_unlock:
12383 busiest_rq->active_balance = 0;
12384 rq_unlock(busiest_rq, &rf);
12385
12386 if (p)
12387 attach_one_task(target_rq, p);
12388
12389 local_irq_enable();
12390
12391 return 0;
12392 }
12393
12394 /*
12395 * This flag serializes load-balancing passes over large domains
12396 * (above the NODE topology level) - only one load-balancing instance
12397 * may run at a time, to reduce overhead on very large systems with
12398 * lots of CPUs and large NUMA distances.
12399 *
12400 * - Note that load-balancing passes triggered while another one
12401 * is executing are skipped and not re-tried.
12402 *
12403 * - Also note that this does not serialize rebalance_domains()
12404 * execution, as non-SD_SERIALIZE domains will still be
12405 * load-balanced in parallel.
12406 */
12407 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12408
12409 /*
12410 * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12411 * This trades load-balance latency on larger machines for less cross talk.
12412 */
update_max_interval(void)12413 void update_max_interval(void)
12414 {
12415 max_load_balance_interval = HZ*num_online_cpus()/10;
12416 }
12417
update_newidle_cost(struct sched_domain * sd,u64 cost)12418 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12419 {
12420 if (cost > sd->max_newidle_lb_cost) {
12421 /*
12422 * Track max cost of a domain to make sure to not delay the
12423 * next wakeup on the CPU.
12424 *
12425 * sched_balance_newidle() bumps the cost whenever newidle
12426 * balance fails, and we don't want things to grow out of
12427 * control. Use the sysctl_sched_migration_cost as the upper
12428 * limit, plus a litle extra to avoid off by ones.
12429 */
12430 sd->max_newidle_lb_cost =
12431 min(cost, sysctl_sched_migration_cost + 200);
12432 sd->last_decay_max_lb_cost = jiffies;
12433 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12434 /*
12435 * Decay the newidle max times by ~1% per second to ensure that
12436 * it is not outdated and the current max cost is actually
12437 * shorter.
12438 */
12439 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12440 sd->last_decay_max_lb_cost = jiffies;
12441
12442 return true;
12443 }
12444
12445 return false;
12446 }
12447
12448 /*
12449 * It checks each scheduling domain to see if it is due to be balanced,
12450 * and initiates a balancing operation if so.
12451 *
12452 * Balancing parameters are set up in init_sched_domains.
12453 */
sched_balance_domains(struct rq * rq,enum cpu_idle_type idle)12454 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12455 {
12456 int continue_balancing = 1;
12457 int cpu = rq->cpu;
12458 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12459 unsigned long interval;
12460 struct sched_domain *sd;
12461 /* Earliest time when we have to do rebalance again */
12462 unsigned long next_balance = jiffies + 60*HZ;
12463 int update_next_balance = 0;
12464 int need_serialize, need_decay = 0;
12465 u64 max_cost = 0;
12466
12467 trace_android_rvh_sched_rebalance_domains(rq, &continue_balancing);
12468 if (!continue_balancing)
12469 return;
12470
12471 rcu_read_lock();
12472 for_each_domain(cpu, sd) {
12473 /*
12474 * Decay the newidle max times here because this is a regular
12475 * visit to all the domains.
12476 */
12477 need_decay = update_newidle_cost(sd, 0);
12478 max_cost += sd->max_newidle_lb_cost;
12479
12480 /*
12481 * Stop the load balance at this level. There is another
12482 * CPU in our sched group which is doing load balancing more
12483 * actively.
12484 */
12485 if (!continue_balancing) {
12486 if (need_decay)
12487 continue;
12488 break;
12489 }
12490
12491 interval = get_sd_balance_interval(sd, busy);
12492
12493 need_serialize = sd->flags & SD_SERIALIZE;
12494 if (need_serialize) {
12495 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12496 goto out;
12497 }
12498
12499 if (time_after_eq(jiffies, sd->last_balance + interval)) {
12500 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12501 /*
12502 * The LBF_DST_PINNED logic could have changed
12503 * env->dst_cpu, so we can't know our idle
12504 * state even if we migrated tasks. Update it.
12505 */
12506 idle = idle_cpu(cpu);
12507 busy = !idle && !sched_idle_cpu(cpu);
12508 }
12509 sd->last_balance = jiffies;
12510 interval = get_sd_balance_interval(sd, busy);
12511 }
12512 if (need_serialize)
12513 atomic_set_release(&sched_balance_running, 0);
12514 out:
12515 if (time_after(next_balance, sd->last_balance + interval)) {
12516 next_balance = sd->last_balance + interval;
12517 update_next_balance = 1;
12518 }
12519 }
12520 if (need_decay) {
12521 /*
12522 * Ensure the rq-wide value also decays but keep it at a
12523 * reasonable floor to avoid funnies with rq->avg_idle.
12524 */
12525 rq->max_idle_balance_cost =
12526 max((u64)sysctl_sched_migration_cost, max_cost);
12527 }
12528 rcu_read_unlock();
12529
12530 /*
12531 * next_balance will be updated only when there is a need.
12532 * When the cpu is attached to null domain for ex, it will not be
12533 * updated.
12534 */
12535 if (likely(update_next_balance))
12536 rq->next_balance = next_balance;
12537
12538 }
12539
on_null_domain(struct rq * rq)12540 static inline int on_null_domain(struct rq *rq)
12541 {
12542 return unlikely(!rcu_dereference_sched(rq->sd));
12543 }
12544
12545 #ifdef CONFIG_NO_HZ_COMMON
12546 /*
12547 * NOHZ idle load balancing (ILB) details:
12548 *
12549 * - When one of the busy CPUs notices that there may be an idle rebalancing
12550 * needed, they will kick the idle load balancer, which then does idle
12551 * load balancing for all the idle CPUs.
12552 *
12553 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
12554 * anywhere yet.
12555 */
find_new_ilb(void)12556 static inline int find_new_ilb(void)
12557 {
12558 const struct cpumask *hk_mask;
12559 int ilb_cpu;
12560 int new_ilb = nr_cpu_ids;
12561
12562 trace_android_rvh_find_new_ilb(nohz.idle_cpus_mask, &new_ilb);
12563 if (new_ilb != nr_cpu_ids)
12564 return new_ilb;
12565
12566 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
12567
12568 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12569
12570 if (ilb_cpu == smp_processor_id())
12571 continue;
12572
12573 if (idle_cpu(ilb_cpu))
12574 return ilb_cpu;
12575 }
12576
12577 return -1;
12578 }
12579
12580 /*
12581 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12582 * SMP function call (IPI).
12583 *
12584 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
12585 */
kick_ilb(unsigned int flags)12586 static void kick_ilb(unsigned int flags)
12587 {
12588 int ilb_cpu;
12589
12590 /*
12591 * Increase nohz.next_balance only when if full ilb is triggered but
12592 * not if we only update stats.
12593 */
12594 if (flags & NOHZ_BALANCE_KICK)
12595 nohz.next_balance = jiffies+1;
12596
12597 ilb_cpu = find_new_ilb();
12598 if (ilb_cpu < 0)
12599 return;
12600
12601 /*
12602 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12603 * i.e. all bits in flags are already set in ilb_cpu.
12604 */
12605 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12606 return;
12607
12608 /*
12609 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12610 * the first flag owns it; cleared by nohz_csd_func().
12611 */
12612 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12613 if (flags & NOHZ_KICK_MASK)
12614 return;
12615
12616 /*
12617 * This way we generate an IPI on the target CPU which
12618 * is idle, and the softirq performing NOHZ idle load balancing
12619 * will be run before returning from the IPI.
12620 */
12621 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12622 }
12623
12624 /*
12625 * Current decision point for kicking the idle load balancer in the presence
12626 * of idle CPUs in the system.
12627 */
nohz_balancer_kick(struct rq * rq)12628 static void nohz_balancer_kick(struct rq *rq)
12629 {
12630 unsigned long now = jiffies;
12631 struct sched_domain_shared *sds;
12632 struct sched_domain *sd;
12633 int nr_busy, i, cpu = rq->cpu;
12634 unsigned int flags = 0;
12635 int done = 0;
12636
12637 if (unlikely(rq->idle_balance))
12638 return;
12639
12640 /*
12641 * We may be recently in ticked or tickless idle mode. At the first
12642 * busy tick after returning from idle, we will update the busy stats.
12643 */
12644 nohz_balance_exit_idle(rq);
12645
12646 /*
12647 * None are in tickless mode and hence no need for NOHZ idle load
12648 * balancing:
12649 */
12650 if (likely(!atomic_read(&nohz.nr_cpus)))
12651 return;
12652
12653 if (READ_ONCE(nohz.has_blocked) &&
12654 time_after(now, READ_ONCE(nohz.next_blocked)))
12655 flags = NOHZ_STATS_KICK;
12656
12657 if (time_before(now, nohz.next_balance))
12658 goto out;
12659
12660 trace_android_rvh_sched_nohz_balancer_kick(rq, &flags, &done);
12661 if (done)
12662 goto out;
12663
12664 if (rq->nr_running >= 2) {
12665 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12666 goto out;
12667 }
12668
12669 rcu_read_lock();
12670
12671 sd = rcu_dereference(rq->sd);
12672 if (sd) {
12673 /*
12674 * If there's a runnable CFS task and the current CPU has reduced
12675 * capacity, kick the ILB to see if there's a better CPU to run on:
12676 */
12677 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
12678 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12679 goto unlock;
12680 }
12681 }
12682
12683 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12684 if (sd) {
12685 /*
12686 * When ASYM_PACKING; see if there's a more preferred CPU
12687 * currently idle; in which case, kick the ILB to move tasks
12688 * around.
12689 *
12690 * When balancing between cores, all the SMT siblings of the
12691 * preferred CPU must be idle.
12692 */
12693 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12694 if (sched_asym(sd, i, cpu)) {
12695 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12696 goto unlock;
12697 }
12698 }
12699 }
12700
12701 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12702 if (sd) {
12703 /*
12704 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12705 * to run the misfit task on.
12706 */
12707 if (check_misfit_status(rq)) {
12708 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12709 goto unlock;
12710 }
12711
12712 /*
12713 * For asymmetric systems, we do not want to nicely balance
12714 * cache use, instead we want to embrace asymmetry and only
12715 * ensure tasks have enough CPU capacity.
12716 *
12717 * Skip the LLC logic because it's not relevant in that case.
12718 */
12719 goto unlock;
12720 }
12721
12722 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12723 if (sds) {
12724 /*
12725 * If there is an imbalance between LLC domains (IOW we could
12726 * increase the overall cache utilization), we need a less-loaded LLC
12727 * domain to pull some load from. Likewise, we may need to spread
12728 * load within the current LLC domain (e.g. packed SMT cores but
12729 * other CPUs are idle). We can't really know from here how busy
12730 * the others are - so just get a NOHZ balance going if it looks
12731 * like this LLC domain has tasks we could move.
12732 */
12733 nr_busy = atomic_read(&sds->nr_busy_cpus);
12734 if (nr_busy > 1) {
12735 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12736 goto unlock;
12737 }
12738 }
12739 unlock:
12740 rcu_read_unlock();
12741 out:
12742 if (READ_ONCE(nohz.needs_update))
12743 flags |= NOHZ_NEXT_KICK;
12744
12745 if (flags)
12746 kick_ilb(flags);
12747 }
12748
set_cpu_sd_state_busy(int cpu)12749 static void set_cpu_sd_state_busy(int cpu)
12750 {
12751 struct sched_domain *sd;
12752
12753 rcu_read_lock();
12754 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12755
12756 if (!sd || !sd->nohz_idle)
12757 goto unlock;
12758 sd->nohz_idle = 0;
12759
12760 atomic_inc(&sd->shared->nr_busy_cpus);
12761 unlock:
12762 rcu_read_unlock();
12763 }
12764
nohz_balance_exit_idle(struct rq * rq)12765 void nohz_balance_exit_idle(struct rq *rq)
12766 {
12767 SCHED_WARN_ON(rq != this_rq());
12768
12769 if (likely(!rq->nohz_tick_stopped))
12770 return;
12771
12772 rq->nohz_tick_stopped = 0;
12773 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12774 atomic_dec(&nohz.nr_cpus);
12775
12776 set_cpu_sd_state_busy(rq->cpu);
12777 }
12778
set_cpu_sd_state_idle(int cpu)12779 static void set_cpu_sd_state_idle(int cpu)
12780 {
12781 struct sched_domain *sd;
12782
12783 rcu_read_lock();
12784 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12785
12786 if (!sd || sd->nohz_idle)
12787 goto unlock;
12788 sd->nohz_idle = 1;
12789
12790 atomic_dec(&sd->shared->nr_busy_cpus);
12791 unlock:
12792 rcu_read_unlock();
12793 }
12794
12795 /*
12796 * This routine will record that the CPU is going idle with tick stopped.
12797 * This info will be used in performing idle load balancing in the future.
12798 */
nohz_balance_enter_idle(int cpu)12799 void nohz_balance_enter_idle(int cpu)
12800 {
12801 struct rq *rq = cpu_rq(cpu);
12802
12803 SCHED_WARN_ON(cpu != smp_processor_id());
12804
12805 /* If this CPU is going down, then nothing needs to be done: */
12806 if (!cpu_active(cpu))
12807 return;
12808
12809 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
12810 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12811 return;
12812
12813 /*
12814 * Can be set safely without rq->lock held
12815 * If a clear happens, it will have evaluated last additions because
12816 * rq->lock is held during the check and the clear
12817 */
12818 rq->has_blocked_load = 1;
12819
12820 /*
12821 * The tick is still stopped but load could have been added in the
12822 * meantime. We set the nohz.has_blocked flag to trig a check of the
12823 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12824 * of nohz.has_blocked can only happen after checking the new load
12825 */
12826 if (rq->nohz_tick_stopped)
12827 goto out;
12828
12829 /* If we're a completely isolated CPU, we don't play: */
12830 if (on_null_domain(rq))
12831 return;
12832
12833 rq->nohz_tick_stopped = 1;
12834
12835 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12836 atomic_inc(&nohz.nr_cpus);
12837
12838 /*
12839 * Ensures that if nohz_idle_balance() fails to observe our
12840 * @idle_cpus_mask store, it must observe the @has_blocked
12841 * and @needs_update stores.
12842 */
12843 smp_mb__after_atomic();
12844
12845 set_cpu_sd_state_idle(cpu);
12846
12847 WRITE_ONCE(nohz.needs_update, 1);
12848 out:
12849 /*
12850 * Each time a cpu enter idle, we assume that it has blocked load and
12851 * enable the periodic update of the load of idle CPUs
12852 */
12853 WRITE_ONCE(nohz.has_blocked, 1);
12854 }
12855
update_nohz_stats(struct rq * rq)12856 static bool update_nohz_stats(struct rq *rq)
12857 {
12858 unsigned int cpu = rq->cpu;
12859
12860 if (!rq->has_blocked_load)
12861 return false;
12862
12863 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12864 return false;
12865
12866 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12867 return true;
12868
12869 sched_balance_update_blocked_averages(cpu);
12870
12871 return rq->has_blocked_load;
12872 }
12873
12874 /*
12875 * Internal function that runs load balance for all idle CPUs. The load balance
12876 * can be a simple update of blocked load or a complete load balance with
12877 * tasks movement depending of flags.
12878 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12879 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12880 {
12881 /* Earliest time when we have to do rebalance again */
12882 unsigned long now = jiffies;
12883 unsigned long next_balance = now + 60*HZ;
12884 bool has_blocked_load = false;
12885 int update_next_balance = 0;
12886 int this_cpu = this_rq->cpu;
12887 int balance_cpu;
12888 struct rq *rq;
12889
12890 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12891
12892 /*
12893 * We assume there will be no idle load after this update and clear
12894 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12895 * set the has_blocked flag and trigger another update of idle load.
12896 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12897 * setting the flag, we are sure to not clear the state and not
12898 * check the load of an idle cpu.
12899 *
12900 * Same applies to idle_cpus_mask vs needs_update.
12901 */
12902 if (flags & NOHZ_STATS_KICK)
12903 WRITE_ONCE(nohz.has_blocked, 0);
12904 if (flags & NOHZ_NEXT_KICK)
12905 WRITE_ONCE(nohz.needs_update, 0);
12906
12907 /*
12908 * Ensures that if we miss the CPU, we must see the has_blocked
12909 * store from nohz_balance_enter_idle().
12910 */
12911 smp_mb();
12912
12913 /*
12914 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12915 * chance for other idle cpu to pull load.
12916 */
12917 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
12918 if (!idle_cpu(balance_cpu))
12919 continue;
12920
12921 /*
12922 * If this CPU gets work to do, stop the load balancing
12923 * work being done for other CPUs. Next load
12924 * balancing owner will pick it up.
12925 */
12926 if (!idle_cpu(this_cpu) && need_resched()) {
12927 if (flags & NOHZ_STATS_KICK)
12928 has_blocked_load = true;
12929 if (flags & NOHZ_NEXT_KICK)
12930 WRITE_ONCE(nohz.needs_update, 1);
12931 goto abort;
12932 }
12933
12934 rq = cpu_rq(balance_cpu);
12935
12936 if (flags & NOHZ_STATS_KICK)
12937 has_blocked_load |= update_nohz_stats(rq);
12938
12939 /*
12940 * If time for next balance is due,
12941 * do the balance.
12942 */
12943 if (time_after_eq(jiffies, rq->next_balance)) {
12944 struct rq_flags rf;
12945
12946 rq_lock_irqsave(rq, &rf);
12947 update_rq_clock(rq);
12948 rq_unlock_irqrestore(rq, &rf);
12949
12950 if (flags & NOHZ_BALANCE_KICK)
12951 sched_balance_domains(rq, CPU_IDLE);
12952 }
12953
12954 if (time_after(next_balance, rq->next_balance)) {
12955 next_balance = rq->next_balance;
12956 update_next_balance = 1;
12957 }
12958 }
12959
12960 /*
12961 * next_balance will be updated only when there is a need.
12962 * When the CPU is attached to null domain for ex, it will not be
12963 * updated.
12964 */
12965 if (likely(update_next_balance))
12966 nohz.next_balance = next_balance;
12967
12968 if (flags & NOHZ_STATS_KICK)
12969 WRITE_ONCE(nohz.next_blocked,
12970 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12971
12972 abort:
12973 /* There is still blocked load, enable periodic update */
12974 if (has_blocked_load)
12975 WRITE_ONCE(nohz.has_blocked, 1);
12976 }
12977
12978 /*
12979 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12980 * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12981 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12982 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12983 {
12984 unsigned int flags = this_rq->nohz_idle_balance;
12985
12986 if (!flags)
12987 return false;
12988
12989 this_rq->nohz_idle_balance = 0;
12990
12991 if (idle != CPU_IDLE)
12992 return false;
12993
12994 _nohz_idle_balance(this_rq, flags);
12995
12996 return true;
12997 }
12998
12999 /*
13000 * Check if we need to directly run the ILB for updating blocked load before
13001 * entering idle state. Here we run ILB directly without issuing IPIs.
13002 *
13003 * Note that when this function is called, the tick may not yet be stopped on
13004 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
13005 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
13006 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
13007 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
13008 * called from this function on (this) CPU that's not yet in the mask. That's
13009 * OK because the goal of nohz_run_idle_balance() is to run ILB only for
13010 * updating the blocked load of already idle CPUs without waking up one of
13011 * those idle CPUs and outside the preempt disable / IRQ off phase of the local
13012 * cpu about to enter idle, because it can take a long time.
13013 */
nohz_run_idle_balance(int cpu)13014 void nohz_run_idle_balance(int cpu)
13015 {
13016 unsigned int flags;
13017
13018 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
13019
13020 /*
13021 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
13022 * (i.e. NOHZ_STATS_KICK set) and will do the same.
13023 */
13024 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
13025 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
13026 }
13027
nohz_newidle_balance(struct rq * this_rq)13028 static void nohz_newidle_balance(struct rq *this_rq)
13029 {
13030 int this_cpu = this_rq->cpu;
13031
13032 /*
13033 * This CPU doesn't want to be disturbed by scheduler
13034 * housekeeping
13035 */
13036 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
13037 return;
13038
13039 /* Will wake up very soon. No time for doing anything else*/
13040 if (this_rq->avg_idle < sysctl_sched_migration_cost)
13041 return;
13042
13043 /* Don't need to update blocked load of idle CPUs*/
13044 if (!READ_ONCE(nohz.has_blocked) ||
13045 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
13046 return;
13047
13048 /*
13049 * Set the need to trigger ILB in order to update blocked load
13050 * before entering idle state.
13051 */
13052 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
13053 }
13054
13055 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)13056 static inline void nohz_balancer_kick(struct rq *rq) { }
13057
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)13058 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
13059 {
13060 return false;
13061 }
13062
nohz_newidle_balance(struct rq * this_rq)13063 static inline void nohz_newidle_balance(struct rq *this_rq) { }
13064 #endif /* CONFIG_NO_HZ_COMMON */
13065
13066 /*
13067 * sched_balance_newidle is called by schedule() if this_cpu is about to become
13068 * idle. Attempts to pull tasks from other CPUs.
13069 *
13070 * Returns:
13071 * < 0 - we released the lock and there are !fair tasks present
13072 * 0 - failed, no new tasks
13073 * > 0 - success, new (fair) tasks present
13074 */
sched_balance_newidle(struct rq * this_rq,struct rq_flags * rf)13075 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
13076 {
13077 unsigned long next_balance = jiffies + HZ;
13078 int this_cpu = this_rq->cpu;
13079 int continue_balancing = 1;
13080 u64 t0, t1, curr_cost = 0;
13081 struct sched_domain *sd;
13082 int pulled_task = 0;
13083 int done = 0;
13084
13085 trace_android_rvh_sched_newidle_balance(this_rq, rf, &pulled_task, &done);
13086 if (done)
13087 return pulled_task;
13088
13089 update_misfit_status(NULL, this_rq);
13090
13091 /*
13092 * There is a task waiting to run. No need to search for one.
13093 * Return 0; the task will be enqueued when switching to idle.
13094 */
13095 if (this_rq->ttwu_pending)
13096 return 0;
13097
13098 /*
13099 * We must set idle_stamp _before_ calling sched_balance_rq()
13100 * for CPU_NEWLY_IDLE, such that we measure the this duration
13101 * as idle time.
13102 */
13103 this_rq->idle_stamp = rq_clock(this_rq);
13104
13105 /*
13106 * Do not pull tasks towards !active CPUs...
13107 */
13108 if (!cpu_active(this_cpu))
13109 return 0;
13110
13111 /*
13112 * This is OK, because current is on_cpu, which avoids it being picked
13113 * for load-balance and preemption/IRQs are still disabled avoiding
13114 * further scheduler activity on it and we're being very careful to
13115 * re-start the picking loop.
13116 */
13117 rq_unpin_lock(this_rq, rf);
13118
13119 rcu_read_lock();
13120 sd = rcu_dereference_check_sched_domain(this_rq->sd);
13121
13122 if (!get_rd_overloaded(this_rq->rd) ||
13123 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
13124
13125 if (sd)
13126 update_next_balance(sd, &next_balance);
13127 rcu_read_unlock();
13128
13129 goto out;
13130 }
13131 rcu_read_unlock();
13132
13133 raw_spin_rq_unlock(this_rq);
13134
13135 t0 = sched_clock_cpu(this_cpu);
13136 sched_balance_update_blocked_averages(this_cpu);
13137
13138 rcu_read_lock();
13139 for_each_domain(this_cpu, sd) {
13140 u64 domain_cost;
13141
13142 update_next_balance(sd, &next_balance);
13143
13144 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
13145 break;
13146
13147 if (sd->flags & SD_BALANCE_NEWIDLE) {
13148
13149 pulled_task = sched_balance_rq(this_cpu, this_rq,
13150 sd, CPU_NEWLY_IDLE,
13151 &continue_balancing);
13152
13153 t1 = sched_clock_cpu(this_cpu);
13154 domain_cost = t1 - t0;
13155 curr_cost += domain_cost;
13156 t0 = t1;
13157
13158 /*
13159 * Failing newidle means it is not effective;
13160 * bump the cost so we end up doing less of it.
13161 */
13162 if (!pulled_task)
13163 domain_cost = (3 * sd->max_newidle_lb_cost) / 2;
13164
13165 update_newidle_cost(sd, domain_cost);
13166 }
13167
13168 /*
13169 * Stop searching for tasks to pull if there are
13170 * now runnable tasks on this rq.
13171 */
13172 if (pulled_task || !continue_balancing)
13173 break;
13174 }
13175 rcu_read_unlock();
13176
13177 raw_spin_rq_lock(this_rq);
13178
13179 if (curr_cost > this_rq->max_idle_balance_cost)
13180 this_rq->max_idle_balance_cost = curr_cost;
13181
13182 /*
13183 * While browsing the domains, we released the rq lock, a task could
13184 * have been enqueued in the meantime. Since we're not going idle,
13185 * pretend we pulled a task.
13186 */
13187 if (this_rq->cfs.h_nr_running && !pulled_task)
13188 pulled_task = 1;
13189
13190 /* Is there a task of a high priority class? */
13191 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
13192 pulled_task = -1;
13193
13194 out:
13195 /* Move the next balance forward */
13196 if (time_after(this_rq->next_balance, next_balance))
13197 this_rq->next_balance = next_balance;
13198
13199 if (pulled_task)
13200 this_rq->idle_stamp = 0;
13201 else
13202 nohz_newidle_balance(this_rq);
13203
13204 rq_repin_lock(this_rq, rf);
13205
13206 return pulled_task;
13207 }
13208
13209 /*
13210 * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
13211 *
13212 * - directly from the local scheduler_tick() for periodic load balancing
13213 *
13214 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
13215 * through the SMP cross-call nohz_csd_func()
13216 */
sched_balance_softirq(void)13217 static __latent_entropy void sched_balance_softirq(void)
13218 {
13219 struct rq *this_rq = this_rq();
13220 enum cpu_idle_type idle = this_rq->idle_balance;
13221 /*
13222 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
13223 * balancing on behalf of the other idle CPUs whose ticks are
13224 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
13225 * give the idle CPUs a chance to load balance. Else we may
13226 * load balance only within the local sched_domain hierarchy
13227 * and abort nohz_idle_balance altogether if we pull some load.
13228 */
13229 if (nohz_idle_balance(this_rq, idle))
13230 return;
13231
13232 /* normal load balance */
13233 sched_balance_update_blocked_averages(this_rq->cpu);
13234 sched_balance_domains(this_rq, idle);
13235 }
13236
13237 /*
13238 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
13239 */
sched_balance_trigger(struct rq * rq)13240 void sched_balance_trigger(struct rq *rq)
13241 {
13242 /*
13243 * Don't need to rebalance while attached to NULL domain or
13244 * runqueue CPU is not active
13245 */
13246 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
13247 return;
13248
13249 if (time_after_eq(jiffies, rq->next_balance))
13250 raise_softirq(SCHED_SOFTIRQ);
13251
13252 nohz_balancer_kick(rq);
13253 }
13254
rq_online_fair(struct rq * rq)13255 static void rq_online_fair(struct rq *rq)
13256 {
13257 update_sysctl();
13258
13259 update_runtime_enabled(rq);
13260 }
13261
rq_offline_fair(struct rq * rq)13262 static void rq_offline_fair(struct rq *rq)
13263 {
13264 update_sysctl();
13265
13266 /* Ensure any throttled groups are reachable by pick_next_task */
13267 unthrottle_offline_cfs_rqs(rq);
13268
13269 /* Ensure that we remove rq contribution to group share: */
13270 clear_tg_offline_cfs_rqs(rq);
13271 }
13272
13273 #endif /* CONFIG_SMP */
13274
13275 #ifdef CONFIG_SCHED_CORE
13276 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)13277 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
13278 {
13279 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
13280 u64 slice = se->slice;
13281
13282 return (rtime * min_nr_tasks > slice);
13283 }
13284
13285 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)13286 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
13287 {
13288 if (!sched_core_enabled(rq))
13289 return;
13290
13291 /*
13292 * If runqueue has only one task which used up its slice and
13293 * if the sibling is forced idle, then trigger schedule to
13294 * give forced idle task a chance.
13295 *
13296 * sched_slice() considers only this active rq and it gets the
13297 * whole slice. But during force idle, we have siblings acting
13298 * like a single runqueue and hence we need to consider runnable
13299 * tasks on this CPU and the forced idle CPU. Ideally, we should
13300 * go through the forced idle rq, but that would be a perf hit.
13301 * We can assume that the forced idle CPU has at least
13302 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
13303 * if we need to give up the CPU.
13304 */
13305 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
13306 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
13307 resched_curr(rq);
13308 }
13309
13310 /*
13311 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
13312 */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)13313 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
13314 bool forceidle)
13315 {
13316 for_each_sched_entity(se) {
13317 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13318
13319 if (forceidle) {
13320 if (cfs_rq->forceidle_seq == fi_seq)
13321 break;
13322 cfs_rq->forceidle_seq = fi_seq;
13323 }
13324
13325 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
13326 }
13327 }
13328
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)13329 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
13330 {
13331 struct sched_entity *se = &p->se;
13332
13333 if (p->sched_class != &fair_sched_class)
13334 return;
13335
13336 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
13337 }
13338
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)13339 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
13340 bool in_fi)
13341 {
13342 struct rq *rq = task_rq(a);
13343 const struct sched_entity *sea = &a->se;
13344 const struct sched_entity *seb = &b->se;
13345 struct cfs_rq *cfs_rqa;
13346 struct cfs_rq *cfs_rqb;
13347 s64 delta;
13348
13349 SCHED_WARN_ON(task_rq(b)->core != rq->core);
13350
13351 #ifdef CONFIG_FAIR_GROUP_SCHED
13352 /*
13353 * Find an se in the hierarchy for tasks a and b, such that the se's
13354 * are immediate siblings.
13355 */
13356 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
13357 int sea_depth = sea->depth;
13358 int seb_depth = seb->depth;
13359
13360 if (sea_depth >= seb_depth)
13361 sea = parent_entity(sea);
13362 if (sea_depth <= seb_depth)
13363 seb = parent_entity(seb);
13364 }
13365
13366 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13367 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13368
13369 cfs_rqa = sea->cfs_rq;
13370 cfs_rqb = seb->cfs_rq;
13371 #else
13372 cfs_rqa = &task_rq(a)->cfs;
13373 cfs_rqb = &task_rq(b)->cfs;
13374 #endif
13375
13376 /*
13377 * Find delta after normalizing se's vruntime with its cfs_rq's
13378 * min_vruntime_fi, which would have been updated in prior calls
13379 * to se_fi_update().
13380 */
13381 delta = (s64)(sea->vruntime - seb->vruntime) +
13382 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13383
13384 return delta > 0;
13385 }
13386
task_is_throttled_fair(struct task_struct * p,int cpu)13387 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13388 {
13389 struct cfs_rq *cfs_rq;
13390
13391 #ifdef CONFIG_FAIR_GROUP_SCHED
13392 cfs_rq = task_group(p)->cfs_rq[cpu];
13393 #else
13394 cfs_rq = &cpu_rq(cpu)->cfs;
13395 #endif
13396 return throttled_hierarchy(cfs_rq);
13397 }
13398 #else
task_tick_core(struct rq * rq,struct task_struct * curr)13399 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13400 #endif
13401
13402 /*
13403 * scheduler tick hitting a task of our scheduling class.
13404 *
13405 * NOTE: This function can be called remotely by the tick offload that
13406 * goes along full dynticks. Therefore no local assumption can be made
13407 * and everything must be accessed through the @rq and @curr passed in
13408 * parameters.
13409 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)13410 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13411 {
13412 struct cfs_rq *cfs_rq;
13413 struct sched_entity *se = &curr->se;
13414
13415 for_each_sched_entity(se) {
13416 cfs_rq = cfs_rq_of(se);
13417 entity_tick(cfs_rq, se, queued);
13418 }
13419
13420 if (static_branch_unlikely(&sched_numa_balancing))
13421 task_tick_numa(rq, curr);
13422
13423 update_misfit_status(curr, rq);
13424 check_update_overutilized_status(task_rq(curr));
13425
13426 task_tick_core(rq, curr);
13427 }
13428
13429 /*
13430 * called on fork with the child task as argument from the parent's context
13431 * - child not yet on the tasklist
13432 * - preemption disabled
13433 */
task_fork_fair(struct task_struct * p)13434 static void task_fork_fair(struct task_struct *p)
13435 {
13436 set_task_max_allowed_capacity(p);
13437 }
13438
13439 /*
13440 * Priority of the task has changed. Check to see if we preempt
13441 * the current task.
13442 */
13443 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)13444 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13445 {
13446 if (!task_on_rq_queued(p))
13447 return;
13448
13449 if (rq->cfs.nr_running == 1)
13450 return;
13451
13452 /*
13453 * Reschedule if we are currently running on this runqueue and
13454 * our priority decreased, or if we are not currently running on
13455 * this runqueue and our priority is higher than the current's
13456 */
13457 if (task_current_donor(rq, p)) {
13458 if (p->prio > oldprio)
13459 resched_curr(rq);
13460 } else
13461 wakeup_preempt(rq, p, 0);
13462 }
13463
13464 #ifdef CONFIG_FAIR_GROUP_SCHED
13465 /*
13466 * Propagate the changes of the sched_entity across the tg tree to make it
13467 * visible to the root
13468 */
propagate_entity_cfs_rq(struct sched_entity * se)13469 static void propagate_entity_cfs_rq(struct sched_entity *se)
13470 {
13471 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13472
13473 if (cfs_rq_throttled(cfs_rq))
13474 return;
13475
13476 if (!throttled_hierarchy(cfs_rq))
13477 list_add_leaf_cfs_rq(cfs_rq);
13478
13479 /* Start to propagate at parent */
13480 se = se->parent;
13481
13482 for_each_sched_entity(se) {
13483 cfs_rq = cfs_rq_of(se);
13484
13485 update_load_avg(cfs_rq, se, UPDATE_TG);
13486
13487 if (cfs_rq_throttled(cfs_rq))
13488 break;
13489
13490 if (!throttled_hierarchy(cfs_rq))
13491 list_add_leaf_cfs_rq(cfs_rq);
13492 }
13493 }
13494 #else
propagate_entity_cfs_rq(struct sched_entity * se)13495 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13496 #endif
13497
detach_entity_cfs_rq(struct sched_entity * se)13498 static void detach_entity_cfs_rq(struct sched_entity *se)
13499 {
13500 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13501
13502 #ifdef CONFIG_SMP
13503 /*
13504 * In case the task sched_avg hasn't been attached:
13505 * - A forked task which hasn't been woken up by wake_up_new_task().
13506 * - A task which has been woken up by try_to_wake_up() but is
13507 * waiting for actually being woken up by sched_ttwu_pending().
13508 */
13509 if (!se->avg.last_update_time)
13510 return;
13511 #endif
13512
13513 /* Catch up with the cfs_rq and remove our load when we leave */
13514 update_load_avg(cfs_rq, se, 0);
13515 detach_entity_load_avg(cfs_rq, se);
13516 update_tg_load_avg(cfs_rq);
13517 propagate_entity_cfs_rq(se);
13518 }
13519
attach_entity_cfs_rq(struct sched_entity * se)13520 static void attach_entity_cfs_rq(struct sched_entity *se)
13521 {
13522 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13523
13524 /* Synchronize entity with its cfs_rq */
13525 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13526 attach_entity_load_avg(cfs_rq, se);
13527 update_tg_load_avg(cfs_rq);
13528 propagate_entity_cfs_rq(se);
13529 }
13530
detach_task_cfs_rq(struct task_struct * p)13531 static void detach_task_cfs_rq(struct task_struct *p)
13532 {
13533 struct sched_entity *se = &p->se;
13534
13535 detach_entity_cfs_rq(se);
13536 }
13537
attach_task_cfs_rq(struct task_struct * p)13538 static void attach_task_cfs_rq(struct task_struct *p)
13539 {
13540 struct sched_entity *se = &p->se;
13541
13542 attach_entity_cfs_rq(se);
13543 }
13544
switched_from_fair(struct rq * rq,struct task_struct * p)13545 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13546 {
13547 detach_task_cfs_rq(p);
13548 }
13549
switched_to_fair(struct rq * rq,struct task_struct * p)13550 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13551 {
13552 SCHED_WARN_ON(p->se.sched_delayed);
13553
13554 attach_task_cfs_rq(p);
13555
13556 set_task_max_allowed_capacity(p);
13557
13558 if (task_on_rq_queued(p)) {
13559 /*
13560 * We were most likely switched from sched_rt, so
13561 * kick off the schedule if running, otherwise just see
13562 * if we can still preempt the current task.
13563 */
13564 if (task_current_donor(rq, p))
13565 resched_curr(rq);
13566 else
13567 wakeup_preempt(rq, p, 0);
13568 }
13569 }
13570
__set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13571 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13572 {
13573 struct sched_entity *se = &p->se;
13574
13575 #ifdef CONFIG_SMP
13576 if (task_on_rq_queued(p)) {
13577 /*
13578 * Move the next running task to the front of the list, so our
13579 * cfs_tasks list becomes MRU one.
13580 */
13581 list_move(&se->group_node, &rq->cfs_tasks);
13582 }
13583 #endif
13584 if (!first)
13585 return;
13586
13587 SCHED_WARN_ON(se->sched_delayed);
13588
13589 if (hrtick_enabled_fair(rq))
13590 hrtick_start_fair(rq, p);
13591
13592 update_misfit_status(p, rq);
13593 sched_fair_update_stop_tick(rq, p);
13594 }
13595
13596 /*
13597 * Account for a task changing its policy or group.
13598 *
13599 * This routine is mostly called to set cfs_rq->curr field when a task
13600 * migrates between groups/classes.
13601 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13602 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13603 {
13604 struct sched_entity *se = &p->se;
13605
13606 for_each_sched_entity(se) {
13607 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13608
13609 set_next_entity(cfs_rq, se);
13610 /* ensure bandwidth has been allocated on our new cfs_rq */
13611 account_cfs_rq_runtime(cfs_rq, 0);
13612 }
13613
13614 __set_next_task_fair(rq, p, first);
13615 }
13616
init_cfs_rq(struct cfs_rq * cfs_rq)13617 void init_cfs_rq(struct cfs_rq *cfs_rq)
13618 {
13619 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13620 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13621 #ifdef CONFIG_SMP
13622 raw_spin_lock_init(&cfs_rq->removed.lock);
13623 #endif
13624 }
13625
13626 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)13627 static void task_change_group_fair(struct task_struct *p)
13628 {
13629 /*
13630 * We couldn't detach or attach a forked task which
13631 * hasn't been woken up by wake_up_new_task().
13632 */
13633 if (READ_ONCE(p->__state) == TASK_NEW)
13634 return;
13635
13636 detach_task_cfs_rq(p);
13637
13638 #ifdef CONFIG_SMP
13639 /* Tell se's cfs_rq has been changed -- migrated */
13640 p->se.avg.last_update_time = 0;
13641 #endif
13642 set_task_rq(p, task_cpu(p));
13643 attach_task_cfs_rq(p);
13644 }
13645
free_fair_sched_group(struct task_group * tg)13646 void free_fair_sched_group(struct task_group *tg)
13647 {
13648 int i;
13649
13650 for_each_possible_cpu(i) {
13651 if (tg->cfs_rq)
13652 kfree(tg->cfs_rq[i]);
13653 if (tg->se)
13654 kfree(tg->se[i]);
13655 }
13656
13657 kfree(tg->cfs_rq);
13658 kfree(tg->se);
13659 }
13660
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13661 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13662 {
13663 struct sched_entity *se;
13664 struct cfs_rq *cfs_rq;
13665 int i;
13666
13667 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13668 if (!tg->cfs_rq)
13669 goto err;
13670 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13671 if (!tg->se)
13672 goto err;
13673
13674 tg->shares = NICE_0_LOAD;
13675
13676 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13677
13678 for_each_possible_cpu(i) {
13679 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13680 GFP_KERNEL, cpu_to_node(i));
13681 if (!cfs_rq)
13682 goto err;
13683
13684 se = kzalloc_node(sizeof(struct sched_entity_stats),
13685 GFP_KERNEL, cpu_to_node(i));
13686 if (!se)
13687 goto err_free_rq;
13688
13689 init_cfs_rq(cfs_rq);
13690 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13691 init_entity_runnable_average(se);
13692 }
13693
13694 return 1;
13695
13696 err_free_rq:
13697 kfree(cfs_rq);
13698 err:
13699 return 0;
13700 }
13701
online_fair_sched_group(struct task_group * tg)13702 void online_fair_sched_group(struct task_group *tg)
13703 {
13704 struct sched_entity *se;
13705 struct rq_flags rf;
13706 struct rq *rq;
13707 int i;
13708
13709 for_each_possible_cpu(i) {
13710 rq = cpu_rq(i);
13711 se = tg->se[i];
13712 rq_lock_irq(rq, &rf);
13713 update_rq_clock(rq);
13714 attach_entity_cfs_rq(se);
13715 sync_throttle(tg, i);
13716 rq_unlock_irq(rq, &rf);
13717 }
13718 }
13719
unregister_fair_sched_group(struct task_group * tg)13720 void unregister_fair_sched_group(struct task_group *tg)
13721 {
13722 int cpu;
13723
13724 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13725
13726 for_each_possible_cpu(cpu) {
13727 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13728 struct sched_entity *se = tg->se[cpu];
13729 struct rq *rq = cpu_rq(cpu);
13730
13731 if (se) {
13732 if (se->sched_delayed) {
13733 guard(rq_lock_irqsave)(rq);
13734 if (se->sched_delayed) {
13735 update_rq_clock(rq);
13736 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13737 }
13738 list_del_leaf_cfs_rq(cfs_rq);
13739 }
13740 remove_entity_load_avg(se);
13741 }
13742
13743 /*
13744 * Only empty task groups can be destroyed; so we can speculatively
13745 * check on_list without danger of it being re-added.
13746 */
13747 if (cfs_rq->on_list) {
13748 guard(rq_lock_irqsave)(rq);
13749 list_del_leaf_cfs_rq(cfs_rq);
13750 }
13751 }
13752 }
13753
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)13754 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13755 struct sched_entity *se, int cpu,
13756 struct sched_entity *parent)
13757 {
13758 struct rq *rq = cpu_rq(cpu);
13759
13760 cfs_rq->tg = tg;
13761 cfs_rq->rq = rq;
13762 init_cfs_rq_runtime(cfs_rq);
13763
13764 tg->cfs_rq[cpu] = cfs_rq;
13765 tg->se[cpu] = se;
13766
13767 /* se could be NULL for root_task_group */
13768 if (!se)
13769 return;
13770
13771 if (!parent) {
13772 se->cfs_rq = &rq->cfs;
13773 se->depth = 0;
13774 } else {
13775 se->cfs_rq = parent->my_q;
13776 se->depth = parent->depth + 1;
13777 }
13778
13779 se->my_q = cfs_rq;
13780 /* guarantee group entities always have weight */
13781 update_load_set(&se->load, NICE_0_LOAD);
13782 se->parent = parent;
13783 }
13784
13785 static DEFINE_MUTEX(shares_mutex);
13786
__sched_group_set_shares(struct task_group * tg,unsigned long shares)13787 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13788 {
13789 int i;
13790
13791 lockdep_assert_held(&shares_mutex);
13792
13793 /*
13794 * We can't change the weight of the root cgroup.
13795 */
13796 if (!tg->se[0])
13797 return -EINVAL;
13798
13799 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13800
13801 if (tg->shares == shares)
13802 return 0;
13803
13804 tg->shares = shares;
13805 for_each_possible_cpu(i) {
13806 struct rq *rq = cpu_rq(i);
13807 struct sched_entity *se = tg->se[i];
13808 struct rq_flags rf;
13809
13810 /* Propagate contribution to hierarchy */
13811 rq_lock_irqsave(rq, &rf);
13812 update_rq_clock(rq);
13813 for_each_sched_entity(se) {
13814 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13815 update_cfs_group(se);
13816 }
13817 rq_unlock_irqrestore(rq, &rf);
13818 }
13819
13820 return 0;
13821 }
13822
sched_group_set_shares(struct task_group * tg,unsigned long shares)13823 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13824 {
13825 int ret;
13826
13827 mutex_lock(&shares_mutex);
13828 if (tg_is_idle(tg))
13829 ret = -EINVAL;
13830 else
13831 ret = __sched_group_set_shares(tg, shares);
13832 mutex_unlock(&shares_mutex);
13833
13834 return ret;
13835 }
13836
sched_group_set_idle(struct task_group * tg,long idle)13837 int sched_group_set_idle(struct task_group *tg, long idle)
13838 {
13839 int i;
13840
13841 if (tg == &root_task_group)
13842 return -EINVAL;
13843
13844 if (idle < 0 || idle > 1)
13845 return -EINVAL;
13846
13847 mutex_lock(&shares_mutex);
13848
13849 if (tg->idle == idle) {
13850 mutex_unlock(&shares_mutex);
13851 return 0;
13852 }
13853
13854 tg->idle = idle;
13855
13856 for_each_possible_cpu(i) {
13857 struct rq *rq = cpu_rq(i);
13858 struct sched_entity *se = tg->se[i];
13859 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13860 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13861 long idle_task_delta;
13862 struct rq_flags rf;
13863
13864 rq_lock_irqsave(rq, &rf);
13865
13866 grp_cfs_rq->idle = idle;
13867 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13868 goto next_cpu;
13869
13870 if (se->on_rq) {
13871 parent_cfs_rq = cfs_rq_of(se);
13872 if (cfs_rq_is_idle(grp_cfs_rq))
13873 parent_cfs_rq->idle_nr_running++;
13874 else
13875 parent_cfs_rq->idle_nr_running--;
13876 }
13877
13878 idle_task_delta = grp_cfs_rq->h_nr_running -
13879 grp_cfs_rq->idle_h_nr_running;
13880 if (!cfs_rq_is_idle(grp_cfs_rq))
13881 idle_task_delta *= -1;
13882
13883 for_each_sched_entity(se) {
13884 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13885
13886 if (!se->on_rq)
13887 break;
13888
13889 cfs_rq->idle_h_nr_running += idle_task_delta;
13890
13891 /* Already accounted at parent level and above. */
13892 if (cfs_rq_is_idle(cfs_rq))
13893 break;
13894 }
13895
13896 next_cpu:
13897 rq_unlock_irqrestore(rq, &rf);
13898 }
13899
13900 /* Idle groups have minimum weight. */
13901 if (tg_is_idle(tg))
13902 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13903 else
13904 __sched_group_set_shares(tg, NICE_0_LOAD);
13905
13906 mutex_unlock(&shares_mutex);
13907 return 0;
13908 }
13909
13910 #endif /* CONFIG_FAIR_GROUP_SCHED */
13911
13912
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13913 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13914 {
13915 struct sched_entity *se = &task->se;
13916 unsigned int rr_interval = 0;
13917
13918 /*
13919 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13920 * idle runqueue:
13921 */
13922 if (rq->cfs.load.weight)
13923 rr_interval = NS_TO_JIFFIES(se->slice);
13924
13925 return rr_interval;
13926 }
13927
13928 /*
13929 * All the scheduling class methods:
13930 */
13931 DEFINE_SCHED_CLASS(fair) = {
13932
13933 .enqueue_task = enqueue_task_fair,
13934 .dequeue_task = dequeue_task_fair,
13935 .yield_task = yield_task_fair,
13936 .yield_to_task = yield_to_task_fair,
13937
13938 .wakeup_preempt = check_preempt_wakeup_fair,
13939
13940 .pick_task = pick_task_fair,
13941 .pick_next_task = __pick_next_task_fair,
13942 .put_prev_task = put_prev_task_fair,
13943 .set_next_task = set_next_task_fair,
13944
13945 #ifdef CONFIG_SMP
13946 .balance = balance_fair,
13947 .select_task_rq = select_task_rq_fair,
13948 .migrate_task_rq = migrate_task_rq_fair,
13949
13950 .rq_online = rq_online_fair,
13951 .rq_offline = rq_offline_fair,
13952
13953 .task_dead = task_dead_fair,
13954 .set_cpus_allowed = set_cpus_allowed_fair,
13955 #endif
13956
13957 .task_tick = task_tick_fair,
13958 .task_fork = task_fork_fair,
13959
13960 .reweight_task = reweight_task_fair,
13961 .prio_changed = prio_changed_fair,
13962 .switched_from = switched_from_fair,
13963 .switched_to = switched_to_fair,
13964
13965 .get_rr_interval = get_rr_interval_fair,
13966
13967 .update_curr = update_curr_fair,
13968
13969 #ifdef CONFIG_FAIR_GROUP_SCHED
13970 .task_change_group = task_change_group_fair,
13971 #endif
13972
13973 #ifdef CONFIG_SCHED_CORE
13974 .task_is_throttled = task_is_throttled_fair,
13975 #endif
13976
13977 #ifdef CONFIG_UCLAMP_TASK
13978 .uclamp_enabled = 1,
13979 #endif
13980 };
13981
13982 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)13983 void print_cfs_stats(struct seq_file *m, int cpu)
13984 {
13985 struct cfs_rq *cfs_rq, *pos;
13986
13987 rcu_read_lock();
13988 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13989 print_cfs_rq(m, cpu, cfs_rq);
13990 rcu_read_unlock();
13991 }
13992
13993 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13994 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13995 {
13996 int node;
13997 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13998 struct numa_group *ng;
13999
14000 rcu_read_lock();
14001 ng = rcu_dereference(p->numa_group);
14002 for_each_online_node(node) {
14003 if (p->numa_faults) {
14004 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
14005 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
14006 }
14007 if (ng) {
14008 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
14009 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
14010 }
14011 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
14012 }
14013 rcu_read_unlock();
14014 }
14015 #endif /* CONFIG_NUMA_BALANCING */
14016 #endif /* CONFIG_SCHED_DEBUG */
14017
init_sched_fair_class(void)14018 __init void init_sched_fair_class(void)
14019 {
14020 #ifdef CONFIG_SMP
14021 int i;
14022
14023 for_each_possible_cpu(i) {
14024 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
14025 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
14026 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
14027 GFP_KERNEL, cpu_to_node(i));
14028
14029 #ifdef CONFIG_CFS_BANDWIDTH
14030 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
14031 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
14032 #endif
14033 }
14034
14035 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
14036
14037 #ifdef CONFIG_NO_HZ_COMMON
14038 nohz.next_balance = jiffies;
14039 nohz.next_blocked = jiffies;
14040 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
14041 #endif
14042 #endif /* SMP */
14043
14044 }
14045