1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/mm_types.h>
24 #include <linux/khugepaged.h>
25 #include <linux/freezer.h>
26 #include <linux/pfn_t.h>
27 #include <linux/mman.h>
28 #include <linux/memremap.h>
29 #include <linux/pagemap.h>
30 #include <linux/debugfs.h>
31 #include <linux/migrate.h>
32 #include <linux/hashtable.h>
33 #include <linux/userfaultfd_k.h>
34 #include <linux/page_idle.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/oom.h>
37 #include <linux/numa.h>
38 #include <linux/page_owner.h>
39 #include <linux/sched/sysctl.h>
40 #include <linux/memory-tiers.h>
41 #include <linux/compat.h>
42 #include <linux/pgalloc_tag.h>
43 #include <linux/pagewalk.h>
44
45 #include <asm/tlb.h>
46 #include <asm/pgalloc.h>
47 #include "internal.h"
48 #include "swap.h"
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/thp.h>
52
53 #undef CREATE_TRACE_POINTS
54 #include <trace/hooks/mm.h>
55
56 /*
57 * By default, transparent hugepage support is disabled in order to avoid
58 * risking an increased memory footprint for applications that are not
59 * guaranteed to benefit from it. When transparent hugepage support is
60 * enabled, it is for all mappings, and khugepaged scans all mappings.
61 * Defrag is invoked by khugepaged hugepage allocations and by page faults
62 * for all hugepage allocations.
63 */
64 unsigned long transparent_hugepage_flags __read_mostly =
65 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
66 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
67 #endif
68 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
69 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
70 #endif
71 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
72 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
73 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
74
75 static struct shrinker *deferred_split_shrinker;
76 static unsigned long deferred_split_count(struct shrinker *shrink,
77 struct shrink_control *sc);
78 static unsigned long deferred_split_scan(struct shrinker *shrink,
79 struct shrink_control *sc);
80 static bool split_underused_thp = true;
81
82 static atomic_t huge_zero_refcount;
83 struct folio *huge_zero_folio __read_mostly;
84 unsigned long huge_zero_pfn __read_mostly = ~0UL;
85 unsigned long huge_anon_orders_always __read_mostly;
86 unsigned long huge_anon_orders_madvise __read_mostly;
87 unsigned long huge_anon_orders_inherit __read_mostly;
88 static bool anon_orders_configured __initdata;
89
__thp_vma_allowable_orders(struct vm_area_struct * vma,unsigned long vm_flags,unsigned long tva_flags,unsigned long orders)90 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
91 unsigned long vm_flags,
92 unsigned long tva_flags,
93 unsigned long orders)
94 {
95 bool smaps = tva_flags & TVA_SMAPS;
96 bool in_pf = tva_flags & TVA_IN_PF;
97 bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
98 unsigned long supported_orders;
99
100 /* Check the intersection of requested and supported orders. */
101 if (vma_is_anonymous(vma))
102 supported_orders = THP_ORDERS_ALL_ANON;
103 else if (vma_is_special_huge(vma))
104 supported_orders = THP_ORDERS_ALL_SPECIAL;
105 else
106 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
107
108 orders &= supported_orders;
109 trace_android_vh_thp_vma_allowable_orders(vma, &orders);
110 if (!orders)
111 return 0;
112
113 if (!vma->vm_mm) /* vdso */
114 return 0;
115
116 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags))
117 return 0;
118
119 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
120 if (vma_is_dax(vma))
121 return in_pf ? orders : 0;
122
123 /*
124 * khugepaged special VMA and hugetlb VMA.
125 * Must be checked after dax since some dax mappings may have
126 * VM_MIXEDMAP set.
127 */
128 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
129 return 0;
130
131 /*
132 * Check alignment for file vma and size for both file and anon vma by
133 * filtering out the unsuitable orders.
134 *
135 * Skip the check for page fault. Huge fault does the check in fault
136 * handlers.
137 */
138 if (!in_pf) {
139 int order = highest_order(orders);
140 unsigned long addr;
141
142 while (orders) {
143 addr = vma->vm_end - (PAGE_SIZE << order);
144 if (thp_vma_suitable_order(vma, addr, order))
145 break;
146 order = next_order(&orders, order);
147 }
148
149 if (!orders)
150 return 0;
151 }
152
153 /*
154 * Enabled via shmem mount options or sysfs settings.
155 * Must be done before hugepage flags check since shmem has its
156 * own flags.
157 */
158 if (!in_pf && shmem_file(vma->vm_file))
159 return shmem_allowable_huge_orders(file_inode(vma->vm_file),
160 vma, vma->vm_pgoff, 0,
161 !enforce_sysfs);
162
163 if (!vma_is_anonymous(vma)) {
164 /*
165 * Enforce sysfs THP requirements as necessary. Anonymous vmas
166 * were already handled in thp_vma_allowable_orders().
167 */
168 if (enforce_sysfs &&
169 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
170 !hugepage_global_always())))
171 return 0;
172
173 /*
174 * Trust that ->huge_fault() handlers know what they are doing
175 * in fault path.
176 */
177 if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
178 return orders;
179 /* Only regular file is valid in collapse path */
180 if (((!in_pf || smaps)) && file_thp_enabled(vma))
181 return orders;
182 return 0;
183 }
184
185 if (vma_is_temporary_stack(vma))
186 return 0;
187
188 /*
189 * THPeligible bit of smaps should show 1 for proper VMAs even
190 * though anon_vma is not initialized yet.
191 *
192 * Allow page fault since anon_vma may be not initialized until
193 * the first page fault.
194 */
195 if (!vma->anon_vma)
196 return (smaps || in_pf) ? orders : 0;
197
198 return orders;
199 }
200
get_huge_zero_page(void)201 static bool get_huge_zero_page(void)
202 {
203 struct folio *zero_folio;
204 retry:
205 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
206 return true;
207
208 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
209 HPAGE_PMD_ORDER);
210 if (!zero_folio) {
211 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
212 return false;
213 }
214 /* Ensure zero folio won't have large_rmappable flag set. */
215 folio_clear_large_rmappable(zero_folio);
216 preempt_disable();
217 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
218 preempt_enable();
219 folio_put(zero_folio);
220 goto retry;
221 }
222 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
223
224 /* We take additional reference here. It will be put back by shrinker */
225 atomic_set(&huge_zero_refcount, 2);
226 preempt_enable();
227 count_vm_event(THP_ZERO_PAGE_ALLOC);
228 return true;
229 }
230
put_huge_zero_page(void)231 static void put_huge_zero_page(void)
232 {
233 /*
234 * Counter should never go to zero here. Only shrinker can put
235 * last reference.
236 */
237 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
238 }
239
mm_get_huge_zero_folio(struct mm_struct * mm)240 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
241 {
242 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
243 return READ_ONCE(huge_zero_folio);
244
245 if (!get_huge_zero_page())
246 return NULL;
247
248 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
249 put_huge_zero_page();
250
251 return READ_ONCE(huge_zero_folio);
252 }
253
mm_put_huge_zero_folio(struct mm_struct * mm)254 void mm_put_huge_zero_folio(struct mm_struct *mm)
255 {
256 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
257 put_huge_zero_page();
258 }
259
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)260 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
261 struct shrink_control *sc)
262 {
263 /* we can free zero page only if last reference remains */
264 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
265 }
266
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)267 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
268 struct shrink_control *sc)
269 {
270 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
271 struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
272 BUG_ON(zero_folio == NULL);
273 WRITE_ONCE(huge_zero_pfn, ~0UL);
274 folio_put(zero_folio);
275 return HPAGE_PMD_NR;
276 }
277
278 return 0;
279 }
280
281 static struct shrinker *huge_zero_page_shrinker;
282
283 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)284 static ssize_t enabled_show(struct kobject *kobj,
285 struct kobj_attribute *attr, char *buf)
286 {
287 const char *output;
288
289 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
290 output = "[always] madvise never";
291 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
292 &transparent_hugepage_flags))
293 output = "always [madvise] never";
294 else
295 output = "always madvise [never]";
296
297 return sysfs_emit(buf, "%s\n", output);
298 }
299
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)300 static ssize_t enabled_store(struct kobject *kobj,
301 struct kobj_attribute *attr,
302 const char *buf, size_t count)
303 {
304 ssize_t ret = count;
305
306 if (sysfs_streq(buf, "always")) {
307 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
308 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
309 } else if (sysfs_streq(buf, "madvise")) {
310 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
311 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
312 } else if (sysfs_streq(buf, "never")) {
313 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
314 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
315 } else
316 ret = -EINVAL;
317
318 if (ret > 0) {
319 int err = start_stop_khugepaged();
320 if (err)
321 ret = err;
322 }
323 return ret;
324 }
325
326 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
327
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)328 ssize_t single_hugepage_flag_show(struct kobject *kobj,
329 struct kobj_attribute *attr, char *buf,
330 enum transparent_hugepage_flag flag)
331 {
332 return sysfs_emit(buf, "%d\n",
333 !!test_bit(flag, &transparent_hugepage_flags));
334 }
335
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)336 ssize_t single_hugepage_flag_store(struct kobject *kobj,
337 struct kobj_attribute *attr,
338 const char *buf, size_t count,
339 enum transparent_hugepage_flag flag)
340 {
341 unsigned long value;
342 int ret;
343
344 ret = kstrtoul(buf, 10, &value);
345 if (ret < 0)
346 return ret;
347 if (value > 1)
348 return -EINVAL;
349
350 if (value)
351 set_bit(flag, &transparent_hugepage_flags);
352 else
353 clear_bit(flag, &transparent_hugepage_flags);
354
355 return count;
356 }
357
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)358 static ssize_t defrag_show(struct kobject *kobj,
359 struct kobj_attribute *attr, char *buf)
360 {
361 const char *output;
362
363 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
364 &transparent_hugepage_flags))
365 output = "[always] defer defer+madvise madvise never";
366 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
367 &transparent_hugepage_flags))
368 output = "always [defer] defer+madvise madvise never";
369 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
370 &transparent_hugepage_flags))
371 output = "always defer [defer+madvise] madvise never";
372 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
373 &transparent_hugepage_flags))
374 output = "always defer defer+madvise [madvise] never";
375 else
376 output = "always defer defer+madvise madvise [never]";
377
378 return sysfs_emit(buf, "%s\n", output);
379 }
380
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)381 static ssize_t defrag_store(struct kobject *kobj,
382 struct kobj_attribute *attr,
383 const char *buf, size_t count)
384 {
385 if (sysfs_streq(buf, "always")) {
386 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
387 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
388 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
389 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
390 } else if (sysfs_streq(buf, "defer+madvise")) {
391 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
392 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
393 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
394 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
395 } else if (sysfs_streq(buf, "defer")) {
396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
398 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
399 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
400 } else if (sysfs_streq(buf, "madvise")) {
401 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
403 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
404 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
405 } else if (sysfs_streq(buf, "never")) {
406 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
407 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
408 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
409 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
410 } else
411 return -EINVAL;
412
413 return count;
414 }
415 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
416
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)417 static ssize_t use_zero_page_show(struct kobject *kobj,
418 struct kobj_attribute *attr, char *buf)
419 {
420 return single_hugepage_flag_show(kobj, attr, buf,
421 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
422 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)423 static ssize_t use_zero_page_store(struct kobject *kobj,
424 struct kobj_attribute *attr, const char *buf, size_t count)
425 {
426 return single_hugepage_flag_store(kobj, attr, buf, count,
427 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
428 }
429 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
430
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)431 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
432 struct kobj_attribute *attr, char *buf)
433 {
434 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
435 }
436 static struct kobj_attribute hpage_pmd_size_attr =
437 __ATTR_RO(hpage_pmd_size);
438
split_underused_thp_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)439 static ssize_t split_underused_thp_show(struct kobject *kobj,
440 struct kobj_attribute *attr, char *buf)
441 {
442 return sysfs_emit(buf, "%d\n", split_underused_thp);
443 }
444
split_underused_thp_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)445 static ssize_t split_underused_thp_store(struct kobject *kobj,
446 struct kobj_attribute *attr,
447 const char *buf, size_t count)
448 {
449 int err = kstrtobool(buf, &split_underused_thp);
450
451 if (err < 0)
452 return err;
453
454 return count;
455 }
456
457 static struct kobj_attribute split_underused_thp_attr = __ATTR(
458 shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
459
460 static struct attribute *hugepage_attr[] = {
461 &enabled_attr.attr,
462 &defrag_attr.attr,
463 &use_zero_page_attr.attr,
464 &hpage_pmd_size_attr.attr,
465 #ifdef CONFIG_SHMEM
466 &shmem_enabled_attr.attr,
467 #endif
468 &split_underused_thp_attr.attr,
469 NULL,
470 };
471
472 static const struct attribute_group hugepage_attr_group = {
473 .attrs = hugepage_attr,
474 };
475
476 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
477 static void thpsize_release(struct kobject *kobj);
478 static DEFINE_SPINLOCK(huge_anon_orders_lock);
479 static LIST_HEAD(thpsize_list);
480
anon_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)481 static ssize_t anon_enabled_show(struct kobject *kobj,
482 struct kobj_attribute *attr, char *buf)
483 {
484 int order = to_thpsize(kobj)->order;
485 const char *output;
486
487 if (test_bit(order, &huge_anon_orders_always))
488 output = "[always] inherit madvise never";
489 else if (test_bit(order, &huge_anon_orders_inherit))
490 output = "always [inherit] madvise never";
491 else if (test_bit(order, &huge_anon_orders_madvise))
492 output = "always inherit [madvise] never";
493 else
494 output = "always inherit madvise [never]";
495
496 return sysfs_emit(buf, "%s\n", output);
497 }
498
anon_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)499 static ssize_t anon_enabled_store(struct kobject *kobj,
500 struct kobj_attribute *attr,
501 const char *buf, size_t count)
502 {
503 int order = to_thpsize(kobj)->order;
504 ssize_t ret = count;
505
506 if (sysfs_streq(buf, "always")) {
507 spin_lock(&huge_anon_orders_lock);
508 clear_bit(order, &huge_anon_orders_inherit);
509 clear_bit(order, &huge_anon_orders_madvise);
510 set_bit(order, &huge_anon_orders_always);
511 spin_unlock(&huge_anon_orders_lock);
512 } else if (sysfs_streq(buf, "inherit")) {
513 spin_lock(&huge_anon_orders_lock);
514 clear_bit(order, &huge_anon_orders_always);
515 clear_bit(order, &huge_anon_orders_madvise);
516 set_bit(order, &huge_anon_orders_inherit);
517 spin_unlock(&huge_anon_orders_lock);
518 } else if (sysfs_streq(buf, "madvise")) {
519 spin_lock(&huge_anon_orders_lock);
520 clear_bit(order, &huge_anon_orders_always);
521 clear_bit(order, &huge_anon_orders_inherit);
522 set_bit(order, &huge_anon_orders_madvise);
523 spin_unlock(&huge_anon_orders_lock);
524 } else if (sysfs_streq(buf, "never")) {
525 spin_lock(&huge_anon_orders_lock);
526 clear_bit(order, &huge_anon_orders_always);
527 clear_bit(order, &huge_anon_orders_inherit);
528 clear_bit(order, &huge_anon_orders_madvise);
529 spin_unlock(&huge_anon_orders_lock);
530 } else
531 ret = -EINVAL;
532
533 if (ret > 0) {
534 int err;
535
536 err = start_stop_khugepaged();
537 if (err)
538 ret = err;
539 }
540 return ret;
541 }
542
543 static struct kobj_attribute anon_enabled_attr =
544 __ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
545
546 static struct attribute *anon_ctrl_attrs[] = {
547 &anon_enabled_attr.attr,
548 NULL,
549 };
550
551 static const struct attribute_group anon_ctrl_attr_grp = {
552 .attrs = anon_ctrl_attrs,
553 };
554
555 static struct attribute *file_ctrl_attrs[] = {
556 #ifdef CONFIG_SHMEM
557 &thpsize_shmem_enabled_attr.attr,
558 #endif
559 NULL,
560 };
561
562 static const struct attribute_group file_ctrl_attr_grp = {
563 .attrs = file_ctrl_attrs,
564 };
565
566 static struct attribute *any_ctrl_attrs[] = {
567 NULL,
568 };
569
570 static const struct attribute_group any_ctrl_attr_grp = {
571 .attrs = any_ctrl_attrs,
572 };
573
574 static const struct kobj_type thpsize_ktype = {
575 .release = &thpsize_release,
576 .sysfs_ops = &kobj_sysfs_ops,
577 };
578
579 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
580 EXPORT_SYMBOL_GPL(mthp_stats);
581
sum_mthp_stat(int order,enum mthp_stat_item item)582 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
583 {
584 unsigned long sum = 0;
585 int cpu;
586
587 for_each_possible_cpu(cpu) {
588 struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
589
590 sum += this->stats[order][item];
591 }
592
593 return sum;
594 }
595
596 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \
597 static ssize_t _name##_show(struct kobject *kobj, \
598 struct kobj_attribute *attr, char *buf) \
599 { \
600 int order = to_thpsize(kobj)->order; \
601 \
602 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \
603 } \
604 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
605
606 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
607 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
608 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
609 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
610 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
611 #ifdef CONFIG_SHMEM
612 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
613 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
614 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
615 #endif
616 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
617 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
618 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
619 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
620 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
621
622 static struct attribute *anon_stats_attrs[] = {
623 &anon_fault_alloc_attr.attr,
624 &anon_fault_fallback_attr.attr,
625 &anon_fault_fallback_charge_attr.attr,
626 #ifndef CONFIG_SHMEM
627 &swpout_attr.attr,
628 &swpout_fallback_attr.attr,
629 #endif
630 &split_deferred_attr.attr,
631 &nr_anon_attr.attr,
632 &nr_anon_partially_mapped_attr.attr,
633 NULL,
634 };
635
636 static struct attribute_group anon_stats_attr_grp = {
637 .name = "stats",
638 .attrs = anon_stats_attrs,
639 };
640
641 static struct attribute *file_stats_attrs[] = {
642 #ifdef CONFIG_SHMEM
643 &shmem_alloc_attr.attr,
644 &shmem_fallback_attr.attr,
645 &shmem_fallback_charge_attr.attr,
646 #endif
647 NULL,
648 };
649
650 static struct attribute_group file_stats_attr_grp = {
651 .name = "stats",
652 .attrs = file_stats_attrs,
653 };
654
655 static struct attribute *any_stats_attrs[] = {
656 #ifdef CONFIG_SHMEM
657 &swpout_attr.attr,
658 &swpout_fallback_attr.attr,
659 #endif
660 &split_attr.attr,
661 &split_failed_attr.attr,
662 NULL,
663 };
664
665 static struct attribute_group any_stats_attr_grp = {
666 .name = "stats",
667 .attrs = any_stats_attrs,
668 };
669
sysfs_add_group(struct kobject * kobj,const struct attribute_group * grp)670 static int sysfs_add_group(struct kobject *kobj,
671 const struct attribute_group *grp)
672 {
673 int ret = -ENOENT;
674
675 /*
676 * If the group is named, try to merge first, assuming the subdirectory
677 * was already created. This avoids the warning emitted by
678 * sysfs_create_group() if the directory already exists.
679 */
680 if (grp->name)
681 ret = sysfs_merge_group(kobj, grp);
682 if (ret)
683 ret = sysfs_create_group(kobj, grp);
684
685 return ret;
686 }
687
thpsize_create(int order,struct kobject * parent)688 static struct thpsize *thpsize_create(int order, struct kobject *parent)
689 {
690 unsigned long size = (PAGE_SIZE << order) / SZ_1K;
691 struct thpsize *thpsize;
692 int ret = -ENOMEM;
693
694 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
695 if (!thpsize)
696 goto err;
697
698 thpsize->order = order;
699
700 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
701 "hugepages-%lukB", size);
702 if (ret) {
703 kfree(thpsize);
704 goto err;
705 }
706
707
708 ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
709 if (ret)
710 goto err_put;
711
712 ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
713 if (ret)
714 goto err_put;
715
716 if (BIT(order) & THP_ORDERS_ALL_ANON) {
717 ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
718 if (ret)
719 goto err_put;
720
721 ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
722 if (ret)
723 goto err_put;
724 }
725
726 if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
727 ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
728 if (ret)
729 goto err_put;
730
731 ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
732 if (ret)
733 goto err_put;
734 }
735
736 return thpsize;
737 err_put:
738 kobject_put(&thpsize->kobj);
739 err:
740 return ERR_PTR(ret);
741 }
742
thpsize_release(struct kobject * kobj)743 static void thpsize_release(struct kobject *kobj)
744 {
745 kfree(to_thpsize(kobj));
746 }
747
hugepage_init_sysfs(struct kobject ** hugepage_kobj)748 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
749 {
750 int err;
751 struct thpsize *thpsize;
752 unsigned long orders;
753 int order;
754
755 /*
756 * Default to setting PMD-sized THP to inherit the global setting and
757 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
758 * constant so we have to do this here.
759 */
760 if (!anon_orders_configured)
761 huge_anon_orders_inherit = BIT(PMD_ORDER);
762
763 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
764 if (unlikely(!*hugepage_kobj)) {
765 pr_err("failed to create transparent hugepage kobject\n");
766 return -ENOMEM;
767 }
768
769 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
770 if (err) {
771 pr_err("failed to register transparent hugepage group\n");
772 goto delete_obj;
773 }
774
775 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
776 if (err) {
777 pr_err("failed to register transparent hugepage group\n");
778 goto remove_hp_group;
779 }
780
781 orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
782 order = highest_order(orders);
783 while (orders) {
784 thpsize = thpsize_create(order, *hugepage_kobj);
785 if (IS_ERR(thpsize)) {
786 pr_err("failed to create thpsize for order %d\n", order);
787 err = PTR_ERR(thpsize);
788 goto remove_all;
789 }
790 list_add(&thpsize->node, &thpsize_list);
791 order = next_order(&orders, order);
792 }
793
794 return 0;
795
796 remove_all:
797 hugepage_exit_sysfs(*hugepage_kobj);
798 return err;
799 remove_hp_group:
800 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
801 delete_obj:
802 kobject_put(*hugepage_kobj);
803 return err;
804 }
805
hugepage_exit_sysfs(struct kobject * hugepage_kobj)806 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
807 {
808 struct thpsize *thpsize, *tmp;
809
810 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
811 list_del(&thpsize->node);
812 kobject_put(&thpsize->kobj);
813 }
814
815 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
816 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
817 kobject_put(hugepage_kobj);
818 }
819 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)820 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
821 {
822 return 0;
823 }
824
hugepage_exit_sysfs(struct kobject * hugepage_kobj)825 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
826 {
827 }
828 #endif /* CONFIG_SYSFS */
829
thp_shrinker_init(void)830 static int __init thp_shrinker_init(void)
831 {
832 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
833 if (!huge_zero_page_shrinker)
834 return -ENOMEM;
835
836 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
837 SHRINKER_MEMCG_AWARE |
838 SHRINKER_NONSLAB,
839 "thp-deferred_split");
840 if (!deferred_split_shrinker) {
841 shrinker_free(huge_zero_page_shrinker);
842 return -ENOMEM;
843 }
844
845 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
846 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
847 shrinker_register(huge_zero_page_shrinker);
848
849 deferred_split_shrinker->count_objects = deferred_split_count;
850 deferred_split_shrinker->scan_objects = deferred_split_scan;
851 shrinker_register(deferred_split_shrinker);
852
853 return 0;
854 }
855
thp_shrinker_exit(void)856 static void __init thp_shrinker_exit(void)
857 {
858 shrinker_free(huge_zero_page_shrinker);
859 shrinker_free(deferred_split_shrinker);
860 }
861
hugepage_init(void)862 static int __init hugepage_init(void)
863 {
864 int err;
865 struct kobject *hugepage_kobj;
866
867 if (!has_transparent_hugepage()) {
868 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
869 return -EINVAL;
870 }
871
872 /*
873 * hugepages can't be allocated by the buddy allocator
874 */
875 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
876
877 err = hugepage_init_sysfs(&hugepage_kobj);
878 if (err)
879 goto err_sysfs;
880
881 err = khugepaged_init();
882 if (err)
883 goto err_slab;
884
885 err = thp_shrinker_init();
886 if (err)
887 goto err_shrinker;
888
889 /*
890 * By default disable transparent hugepages on smaller systems,
891 * where the extra memory used could hurt more than TLB overhead
892 * is likely to save. The admin can still enable it through /sys.
893 */
894 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
895 transparent_hugepage_flags = 0;
896 return 0;
897 }
898
899 err = start_stop_khugepaged();
900 if (err)
901 goto err_khugepaged;
902
903 return 0;
904 err_khugepaged:
905 thp_shrinker_exit();
906 err_shrinker:
907 khugepaged_destroy();
908 err_slab:
909 hugepage_exit_sysfs(hugepage_kobj);
910 err_sysfs:
911 return err;
912 }
913 subsys_initcall(hugepage_init);
914
setup_transparent_hugepage(char * str)915 static int __init setup_transparent_hugepage(char *str)
916 {
917 int ret = 0;
918 if (!str)
919 goto out;
920 if (!strcmp(str, "always")) {
921 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
922 &transparent_hugepage_flags);
923 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
924 &transparent_hugepage_flags);
925 ret = 1;
926 } else if (!strcmp(str, "madvise")) {
927 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
928 &transparent_hugepage_flags);
929 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
930 &transparent_hugepage_flags);
931 ret = 1;
932 } else if (!strcmp(str, "never")) {
933 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
934 &transparent_hugepage_flags);
935 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
936 &transparent_hugepage_flags);
937 ret = 1;
938 }
939 out:
940 if (!ret)
941 pr_warn("transparent_hugepage= cannot parse, ignored\n");
942 return ret;
943 }
944 __setup("transparent_hugepage=", setup_transparent_hugepage);
945
get_order_from_str(const char * size_str)946 static inline int get_order_from_str(const char *size_str)
947 {
948 unsigned long size;
949 char *endptr;
950 int order;
951
952 size = memparse(size_str, &endptr);
953
954 if (!is_power_of_2(size))
955 goto err;
956 order = get_order(size);
957 if (BIT(order) & ~THP_ORDERS_ALL_ANON)
958 goto err;
959
960 return order;
961 err:
962 pr_err("invalid size %s in thp_anon boot parameter\n", size_str);
963 return -EINVAL;
964 }
965
966 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_anon(char * str)967 static int __init setup_thp_anon(char *str)
968 {
969 char *token, *range, *policy, *subtoken;
970 unsigned long always, inherit, madvise;
971 char *start_size, *end_size;
972 int start, end, nr;
973 char *p;
974
975 if (!str || strlen(str) + 1 > PAGE_SIZE)
976 goto err;
977 strcpy(str_dup, str);
978
979 always = huge_anon_orders_always;
980 madvise = huge_anon_orders_madvise;
981 inherit = huge_anon_orders_inherit;
982 p = str_dup;
983 while ((token = strsep(&p, ";")) != NULL) {
984 range = strsep(&token, ":");
985 policy = token;
986
987 if (!policy)
988 goto err;
989
990 while ((subtoken = strsep(&range, ",")) != NULL) {
991 if (strchr(subtoken, '-')) {
992 start_size = strsep(&subtoken, "-");
993 end_size = subtoken;
994
995 start = get_order_from_str(start_size);
996 end = get_order_from_str(end_size);
997 } else {
998 start = end = get_order_from_str(subtoken);
999 }
1000
1001 if (start < 0 || end < 0 || start > end)
1002 goto err;
1003
1004 nr = end - start + 1;
1005 if (!strcmp(policy, "always")) {
1006 bitmap_set(&always, start, nr);
1007 bitmap_clear(&inherit, start, nr);
1008 bitmap_clear(&madvise, start, nr);
1009 } else if (!strcmp(policy, "madvise")) {
1010 bitmap_set(&madvise, start, nr);
1011 bitmap_clear(&inherit, start, nr);
1012 bitmap_clear(&always, start, nr);
1013 } else if (!strcmp(policy, "inherit")) {
1014 bitmap_set(&inherit, start, nr);
1015 bitmap_clear(&madvise, start, nr);
1016 bitmap_clear(&always, start, nr);
1017 } else if (!strcmp(policy, "never")) {
1018 bitmap_clear(&inherit, start, nr);
1019 bitmap_clear(&madvise, start, nr);
1020 bitmap_clear(&always, start, nr);
1021 } else {
1022 pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1023 goto err;
1024 }
1025 }
1026 }
1027
1028 huge_anon_orders_always = always;
1029 huge_anon_orders_madvise = madvise;
1030 huge_anon_orders_inherit = inherit;
1031 anon_orders_configured = true;
1032 return 1;
1033
1034 err:
1035 pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1036 return 0;
1037 }
1038 __setup("thp_anon=", setup_thp_anon);
1039
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)1040 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1041 {
1042 if (likely(vma->vm_flags & VM_WRITE))
1043 pmd = pmd_mkwrite(pmd, vma);
1044 return pmd;
1045 }
1046
1047 #ifdef CONFIG_MEMCG
1048 static inline
get_deferred_split_queue(struct folio * folio)1049 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1050 {
1051 struct mem_cgroup *memcg = folio_memcg(folio);
1052 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1053
1054 if (memcg)
1055 return &memcg->deferred_split_queue;
1056 else
1057 return &pgdat->deferred_split_queue;
1058 }
1059 #else
1060 static inline
get_deferred_split_queue(struct folio * folio)1061 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1062 {
1063 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1064
1065 return &pgdat->deferred_split_queue;
1066 }
1067 #endif
1068
is_transparent_hugepage(const struct folio * folio)1069 static inline bool is_transparent_hugepage(const struct folio *folio)
1070 {
1071 if (!folio_test_large(folio))
1072 return false;
1073
1074 return is_huge_zero_folio(folio) ||
1075 folio_test_large_rmappable(folio);
1076 }
1077
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size,vm_flags_t vm_flags)1078 static unsigned long __thp_get_unmapped_area(struct file *filp,
1079 unsigned long addr, unsigned long len,
1080 loff_t off, unsigned long flags, unsigned long size,
1081 vm_flags_t vm_flags)
1082 {
1083 loff_t off_end = off + len;
1084 loff_t off_align = round_up(off, size);
1085 unsigned long len_pad, ret, off_sub;
1086
1087 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1088 return 0;
1089
1090 if (off_end <= off_align || (off_end - off_align) < size)
1091 return 0;
1092
1093 len_pad = len + size;
1094 if (len_pad < len || (off + len_pad) < off)
1095 return 0;
1096
1097 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
1098 off >> PAGE_SHIFT, flags, vm_flags);
1099
1100 /*
1101 * The failure might be due to length padding. The caller will retry
1102 * without the padding.
1103 */
1104 if (IS_ERR_VALUE(ret))
1105 return 0;
1106
1107 /*
1108 * Do not try to align to THP boundary if allocation at the address
1109 * hint succeeds.
1110 */
1111 if (ret == addr)
1112 return addr;
1113
1114 off_sub = (off - ret) & (size - 1);
1115
1116 if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub)
1117 return ret + size;
1118
1119 ret += off_sub;
1120 return ret;
1121 }
1122
thp_get_unmapped_area_vmflags(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)1123 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1124 unsigned long len, unsigned long pgoff, unsigned long flags,
1125 vm_flags_t vm_flags)
1126 {
1127 unsigned long ret;
1128 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1129
1130 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1131 if (ret)
1132 return ret;
1133
1134 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
1135 vm_flags);
1136 }
1137
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1138 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1139 unsigned long len, unsigned long pgoff, unsigned long flags)
1140 {
1141 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1142 }
1143 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1144
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)1145 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
1146 struct page *page, gfp_t gfp)
1147 {
1148 struct vm_area_struct *vma = vmf->vma;
1149 struct folio *folio = page_folio(page);
1150 pgtable_t pgtable;
1151 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1152 vm_fault_t ret = 0;
1153
1154 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1155
1156 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1157 folio_put(folio);
1158 count_vm_event(THP_FAULT_FALLBACK);
1159 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1160 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
1161 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1162 return VM_FAULT_FALLBACK;
1163 }
1164 folio_throttle_swaprate(folio, gfp);
1165
1166 pgtable = pte_alloc_one(vma->vm_mm);
1167 if (unlikely(!pgtable)) {
1168 ret = VM_FAULT_OOM;
1169 goto release;
1170 }
1171
1172 folio_zero_user(folio, vmf->address);
1173 /*
1174 * The memory barrier inside __folio_mark_uptodate makes sure that
1175 * folio_zero_user writes become visible before the set_pmd_at()
1176 * write.
1177 */
1178 __folio_mark_uptodate(folio);
1179
1180 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1181 if (unlikely(!pmd_none(*vmf->pmd))) {
1182 goto unlock_release;
1183 } else {
1184 pmd_t entry;
1185
1186 ret = check_stable_address_space(vma->vm_mm);
1187 if (ret)
1188 goto unlock_release;
1189
1190 /* Deliver the page fault to userland */
1191 if (userfaultfd_missing(vma)) {
1192 spin_unlock(vmf->ptl);
1193 folio_put(folio);
1194 pte_free(vma->vm_mm, pgtable);
1195 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1196 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1197 return ret;
1198 }
1199
1200 entry = mk_huge_pmd(page, vma->vm_page_prot);
1201 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1202 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1203 folio_add_lru_vma(folio, vma);
1204 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1205 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1206 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1207 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1208 mm_inc_nr_ptes(vma->vm_mm);
1209 deferred_split_folio(folio, false);
1210 spin_unlock(vmf->ptl);
1211 count_vm_event(THP_FAULT_ALLOC);
1212 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1213 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1214 }
1215
1216 return 0;
1217 unlock_release:
1218 spin_unlock(vmf->ptl);
1219 release:
1220 if (pgtable)
1221 pte_free(vma->vm_mm, pgtable);
1222 folio_put(folio);
1223 return ret;
1224
1225 }
1226
1227 /*
1228 * always: directly stall for all thp allocations
1229 * defer: wake kswapd and fail if not immediately available
1230 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1231 * fail if not immediately available
1232 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1233 * available
1234 * never: never stall for any thp allocation
1235 */
vma_thp_gfp_mask(struct vm_area_struct * vma)1236 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1237 {
1238 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1239
1240 /* Always do synchronous compaction */
1241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1242 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1243
1244 /* Kick kcompactd and fail quickly */
1245 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1246 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1247
1248 /* Synchronous compaction if madvised, otherwise kick kcompactd */
1249 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1250 return GFP_TRANSHUGE_LIGHT |
1251 (vma_madvised ? __GFP_DIRECT_RECLAIM :
1252 __GFP_KSWAPD_RECLAIM);
1253
1254 /* Only do synchronous compaction if madvised */
1255 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1256 return GFP_TRANSHUGE_LIGHT |
1257 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1258
1259 return GFP_TRANSHUGE_LIGHT;
1260 }
1261
1262 /* Caller must hold page table lock. */
set_huge_zero_folio(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct folio * zero_folio)1263 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1264 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1265 struct folio *zero_folio)
1266 {
1267 pmd_t entry;
1268 if (!pmd_none(*pmd))
1269 return;
1270 entry = mk_pmd(&zero_folio->page, vma->vm_page_prot);
1271 entry = pmd_mkhuge(entry);
1272 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1273 set_pmd_at(mm, haddr, pmd, entry);
1274 mm_inc_nr_ptes(mm);
1275 }
1276
do_huge_pmd_anonymous_page(struct vm_fault * vmf)1277 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1278 {
1279 struct vm_area_struct *vma = vmf->vma;
1280 gfp_t gfp;
1281 struct folio *folio;
1282 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1283 vm_fault_t ret;
1284 bool bypass = false;
1285
1286 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1287 return VM_FAULT_FALLBACK;
1288 ret = vmf_anon_prepare(vmf);
1289 if (ret)
1290 return ret;
1291 khugepaged_enter_vma(vma, vma->vm_flags);
1292
1293 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1294 !mm_forbids_zeropage(vma->vm_mm) &&
1295 transparent_hugepage_use_zero_page()) {
1296 pgtable_t pgtable;
1297 struct folio *zero_folio;
1298 vm_fault_t ret;
1299
1300 pgtable = pte_alloc_one(vma->vm_mm);
1301 if (unlikely(!pgtable))
1302 return VM_FAULT_OOM;
1303 zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1304 if (unlikely(!zero_folio)) {
1305 pte_free(vma->vm_mm, pgtable);
1306 count_vm_event(THP_FAULT_FALLBACK);
1307 return VM_FAULT_FALLBACK;
1308 }
1309 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1310 ret = 0;
1311 if (pmd_none(*vmf->pmd)) {
1312 ret = check_stable_address_space(vma->vm_mm);
1313 if (ret) {
1314 spin_unlock(vmf->ptl);
1315 pte_free(vma->vm_mm, pgtable);
1316 } else if (userfaultfd_missing(vma)) {
1317 spin_unlock(vmf->ptl);
1318 pte_free(vma->vm_mm, pgtable);
1319 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1320 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1321 } else {
1322 set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1323 haddr, vmf->pmd, zero_folio);
1324 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1325 spin_unlock(vmf->ptl);
1326 }
1327 } else {
1328 spin_unlock(vmf->ptl);
1329 pte_free(vma->vm_mm, pgtable);
1330 }
1331 return ret;
1332 }
1333 gfp = vma_thp_gfp_mask(vma);
1334 trace_android_vh_customize_pmd_gfp_bypass(&gfp, &bypass);
1335 if (bypass)
1336 return VM_FAULT_FALLBACK;
1337 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
1338 if (unlikely(!folio)) {
1339 count_vm_event(THP_FAULT_FALLBACK);
1340 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
1341 return VM_FAULT_FALLBACK;
1342 }
1343 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
1344 }
1345
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)1346 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1347 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1348 pgtable_t pgtable)
1349 {
1350 struct mm_struct *mm = vma->vm_mm;
1351 pmd_t entry;
1352 spinlock_t *ptl;
1353
1354 ptl = pmd_lock(mm, pmd);
1355 if (!pmd_none(*pmd)) {
1356 if (write) {
1357 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1358 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1359 goto out_unlock;
1360 }
1361 entry = pmd_mkyoung(*pmd);
1362 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1363 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1364 update_mmu_cache_pmd(vma, addr, pmd);
1365 }
1366
1367 goto out_unlock;
1368 }
1369
1370 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1371 if (pfn_t_devmap(pfn))
1372 entry = pmd_mkdevmap(entry);
1373 else
1374 entry = pmd_mkspecial(entry);
1375 if (write) {
1376 entry = pmd_mkyoung(pmd_mkdirty(entry));
1377 entry = maybe_pmd_mkwrite(entry, vma);
1378 }
1379
1380 if (pgtable) {
1381 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1382 mm_inc_nr_ptes(mm);
1383 pgtable = NULL;
1384 }
1385
1386 set_pmd_at(mm, addr, pmd, entry);
1387 update_mmu_cache_pmd(vma, addr, pmd);
1388
1389 out_unlock:
1390 spin_unlock(ptl);
1391 if (pgtable)
1392 pte_free(mm, pgtable);
1393 }
1394
1395 /**
1396 * vmf_insert_pfn_pmd - insert a pmd size pfn
1397 * @vmf: Structure describing the fault
1398 * @pfn: pfn to insert
1399 * @write: whether it's a write fault
1400 *
1401 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1402 *
1403 * Return: vm_fault_t value.
1404 */
vmf_insert_pfn_pmd(struct vm_fault * vmf,pfn_t pfn,bool write)1405 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1406 {
1407 unsigned long addr = vmf->address & PMD_MASK;
1408 struct vm_area_struct *vma = vmf->vma;
1409 pgprot_t pgprot = vma->vm_page_prot;
1410 pgtable_t pgtable = NULL;
1411
1412 /*
1413 * If we had pmd_special, we could avoid all these restrictions,
1414 * but we need to be consistent with PTEs and architectures that
1415 * can't support a 'special' bit.
1416 */
1417 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1418 !pfn_t_devmap(pfn));
1419 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1420 (VM_PFNMAP|VM_MIXEDMAP));
1421 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1422
1423 if (addr < vma->vm_start || addr >= vma->vm_end)
1424 return VM_FAULT_SIGBUS;
1425
1426 if (arch_needs_pgtable_deposit()) {
1427 pgtable = pte_alloc_one(vma->vm_mm);
1428 if (!pgtable)
1429 return VM_FAULT_OOM;
1430 }
1431
1432 track_pfn_insert(vma, &pgprot, pfn);
1433
1434 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1435 return VM_FAULT_NOPAGE;
1436 }
1437 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1438
1439 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)1440 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1441 {
1442 if (likely(vma->vm_flags & VM_WRITE))
1443 pud = pud_mkwrite(pud);
1444 return pud;
1445 }
1446
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,bool write)1447 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1448 pud_t *pud, pfn_t pfn, bool write)
1449 {
1450 struct mm_struct *mm = vma->vm_mm;
1451 pgprot_t prot = vma->vm_page_prot;
1452 pud_t entry;
1453 spinlock_t *ptl;
1454
1455 ptl = pud_lock(mm, pud);
1456 if (!pud_none(*pud)) {
1457 if (write) {
1458 if (WARN_ON_ONCE(pud_pfn(*pud) != pfn_t_to_pfn(pfn)))
1459 goto out_unlock;
1460 entry = pud_mkyoung(*pud);
1461 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1462 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1463 update_mmu_cache_pud(vma, addr, pud);
1464 }
1465 goto out_unlock;
1466 }
1467
1468 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1469 if (pfn_t_devmap(pfn))
1470 entry = pud_mkdevmap(entry);
1471 else
1472 entry = pud_mkspecial(entry);
1473 if (write) {
1474 entry = pud_mkyoung(pud_mkdirty(entry));
1475 entry = maybe_pud_mkwrite(entry, vma);
1476 }
1477 set_pud_at(mm, addr, pud, entry);
1478 update_mmu_cache_pud(vma, addr, pud);
1479
1480 out_unlock:
1481 spin_unlock(ptl);
1482 }
1483
1484 /**
1485 * vmf_insert_pfn_pud - insert a pud size pfn
1486 * @vmf: Structure describing the fault
1487 * @pfn: pfn to insert
1488 * @write: whether it's a write fault
1489 *
1490 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1491 *
1492 * Return: vm_fault_t value.
1493 */
vmf_insert_pfn_pud(struct vm_fault * vmf,pfn_t pfn,bool write)1494 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1495 {
1496 unsigned long addr = vmf->address & PUD_MASK;
1497 struct vm_area_struct *vma = vmf->vma;
1498 pgprot_t pgprot = vma->vm_page_prot;
1499
1500 /*
1501 * If we had pud_special, we could avoid all these restrictions,
1502 * but we need to be consistent with PTEs and architectures that
1503 * can't support a 'special' bit.
1504 */
1505 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1506 !pfn_t_devmap(pfn));
1507 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1508 (VM_PFNMAP|VM_MIXEDMAP));
1509 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1510
1511 if (addr < vma->vm_start || addr >= vma->vm_end)
1512 return VM_FAULT_SIGBUS;
1513
1514 track_pfn_insert(vma, &pgprot, pfn);
1515
1516 insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1517 return VM_FAULT_NOPAGE;
1518 }
1519 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1520 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1521
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,bool write)1522 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1523 pmd_t *pmd, bool write)
1524 {
1525 pmd_t _pmd;
1526
1527 _pmd = pmd_mkyoung(*pmd);
1528 if (write)
1529 _pmd = pmd_mkdirty(_pmd);
1530 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1531 pmd, _pmd, write))
1532 update_mmu_cache_pmd(vma, addr, pmd);
1533 }
1534
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)1535 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1536 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1537 {
1538 unsigned long pfn = pmd_pfn(*pmd);
1539 struct mm_struct *mm = vma->vm_mm;
1540 struct page *page;
1541 int ret;
1542
1543 assert_spin_locked(pmd_lockptr(mm, pmd));
1544
1545 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1546 return NULL;
1547
1548 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1549 /* pass */;
1550 else
1551 return NULL;
1552
1553 if (flags & FOLL_TOUCH)
1554 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1555
1556 /*
1557 * device mapped pages can only be returned if the
1558 * caller will manage the page reference count.
1559 */
1560 if (!(flags & (FOLL_GET | FOLL_PIN)))
1561 return ERR_PTR(-EEXIST);
1562
1563 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1564 *pgmap = get_dev_pagemap(pfn, *pgmap);
1565 if (!*pgmap)
1566 return ERR_PTR(-EFAULT);
1567 page = pfn_to_page(pfn);
1568 ret = try_grab_folio(page_folio(page), 1, flags);
1569 if (ret)
1570 page = ERR_PTR(ret);
1571
1572 return page;
1573 }
1574
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1575 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1576 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1577 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1578 {
1579 spinlock_t *dst_ptl, *src_ptl;
1580 struct page *src_page;
1581 struct folio *src_folio;
1582 pmd_t pmd;
1583 pgtable_t pgtable = NULL;
1584 int ret = -ENOMEM;
1585
1586 pmd = pmdp_get_lockless(src_pmd);
1587 if (unlikely(pmd_present(pmd) && pmd_special(pmd))) {
1588 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1589 src_ptl = pmd_lockptr(src_mm, src_pmd);
1590 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1591 /*
1592 * No need to recheck the pmd, it can't change with write
1593 * mmap lock held here.
1594 *
1595 * Meanwhile, making sure it's not a CoW VMA with writable
1596 * mapping, otherwise it means either the anon page wrongly
1597 * applied special bit, or we made the PRIVATE mapping be
1598 * able to wrongly write to the backend MMIO.
1599 */
1600 VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1601 goto set_pmd;
1602 }
1603
1604 /* Skip if can be re-fill on fault */
1605 if (!vma_is_anonymous(dst_vma))
1606 return 0;
1607
1608 pgtable = pte_alloc_one(dst_mm);
1609 if (unlikely(!pgtable))
1610 goto out;
1611
1612 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1613 src_ptl = pmd_lockptr(src_mm, src_pmd);
1614 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1615
1616 ret = -EAGAIN;
1617 pmd = *src_pmd;
1618
1619 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1620 if (unlikely(is_swap_pmd(pmd))) {
1621 swp_entry_t entry = pmd_to_swp_entry(pmd);
1622
1623 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1624 if (!is_readable_migration_entry(entry)) {
1625 entry = make_readable_migration_entry(
1626 swp_offset(entry));
1627 pmd = swp_entry_to_pmd(entry);
1628 if (pmd_swp_soft_dirty(*src_pmd))
1629 pmd = pmd_swp_mksoft_dirty(pmd);
1630 if (pmd_swp_uffd_wp(*src_pmd))
1631 pmd = pmd_swp_mkuffd_wp(pmd);
1632 set_pmd_at(src_mm, addr, src_pmd, pmd);
1633 }
1634 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1635 mm_inc_nr_ptes(dst_mm);
1636 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1637 if (!userfaultfd_wp(dst_vma))
1638 pmd = pmd_swp_clear_uffd_wp(pmd);
1639 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1640 ret = 0;
1641 goto out_unlock;
1642 }
1643 #endif
1644
1645 if (unlikely(!pmd_trans_huge(pmd))) {
1646 pte_free(dst_mm, pgtable);
1647 goto out_unlock;
1648 }
1649 /*
1650 * When page table lock is held, the huge zero pmd should not be
1651 * under splitting since we don't split the page itself, only pmd to
1652 * a page table.
1653 */
1654 if (is_huge_zero_pmd(pmd)) {
1655 /*
1656 * mm_get_huge_zero_folio() will never allocate a new
1657 * folio here, since we already have a zero page to
1658 * copy. It just takes a reference.
1659 */
1660 mm_get_huge_zero_folio(dst_mm);
1661 goto out_zero_page;
1662 }
1663
1664 src_page = pmd_page(pmd);
1665 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1666 src_folio = page_folio(src_page);
1667
1668 folio_get(src_folio);
1669 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1670 /* Page maybe pinned: split and retry the fault on PTEs. */
1671 folio_put(src_folio);
1672 pte_free(dst_mm, pgtable);
1673 spin_unlock(src_ptl);
1674 spin_unlock(dst_ptl);
1675 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1676 return -EAGAIN;
1677 }
1678 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1679 out_zero_page:
1680 mm_inc_nr_ptes(dst_mm);
1681 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1682 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1683 if (!userfaultfd_wp(dst_vma))
1684 pmd = pmd_clear_uffd_wp(pmd);
1685 pmd = pmd_wrprotect(pmd);
1686 set_pmd:
1687 pmd = pmd_mkold(pmd);
1688 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1689
1690 ret = 0;
1691 out_unlock:
1692 spin_unlock(src_ptl);
1693 spin_unlock(dst_ptl);
1694 out:
1695 return ret;
1696 }
1697
1698 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,bool write)1699 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1700 pud_t *pud, bool write)
1701 {
1702 pud_t _pud;
1703
1704 _pud = pud_mkyoung(*pud);
1705 if (write)
1706 _pud = pud_mkdirty(_pud);
1707 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1708 pud, _pud, write))
1709 update_mmu_cache_pud(vma, addr, pud);
1710 }
1711
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1712 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1713 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1714 struct vm_area_struct *vma)
1715 {
1716 spinlock_t *dst_ptl, *src_ptl;
1717 pud_t pud;
1718 int ret;
1719
1720 dst_ptl = pud_lock(dst_mm, dst_pud);
1721 src_ptl = pud_lockptr(src_mm, src_pud);
1722 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1723
1724 ret = -EAGAIN;
1725 pud = *src_pud;
1726 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1727 goto out_unlock;
1728
1729 /*
1730 * TODO: once we support anonymous pages, use
1731 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1732 */
1733 if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1734 pudp_set_wrprotect(src_mm, addr, src_pud);
1735 pud = pud_wrprotect(pud);
1736 }
1737 pud = pud_mkold(pud);
1738 set_pud_at(dst_mm, addr, dst_pud, pud);
1739
1740 ret = 0;
1741 out_unlock:
1742 spin_unlock(src_ptl);
1743 spin_unlock(dst_ptl);
1744 return ret;
1745 }
1746
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1747 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1748 {
1749 bool write = vmf->flags & FAULT_FLAG_WRITE;
1750
1751 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1752 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1753 goto unlock;
1754
1755 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1756 unlock:
1757 spin_unlock(vmf->ptl);
1758 }
1759 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1760
huge_pmd_set_accessed(struct vm_fault * vmf)1761 void huge_pmd_set_accessed(struct vm_fault *vmf)
1762 {
1763 bool write = vmf->flags & FAULT_FLAG_WRITE;
1764
1765 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1766 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1767 goto unlock;
1768
1769 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1770
1771 unlock:
1772 spin_unlock(vmf->ptl);
1773 }
1774
do_huge_pmd_wp_page(struct vm_fault * vmf)1775 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1776 {
1777 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1778 struct vm_area_struct *vma = vmf->vma;
1779 struct folio *folio;
1780 struct page *page;
1781 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1782 pmd_t orig_pmd = vmf->orig_pmd;
1783
1784 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1785 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1786
1787 if (is_huge_zero_pmd(orig_pmd))
1788 goto fallback;
1789
1790 spin_lock(vmf->ptl);
1791
1792 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1793 spin_unlock(vmf->ptl);
1794 return 0;
1795 }
1796
1797 page = pmd_page(orig_pmd);
1798 folio = page_folio(page);
1799 VM_BUG_ON_PAGE(!PageHead(page), page);
1800
1801 /* Early check when only holding the PT lock. */
1802 if (PageAnonExclusive(page))
1803 goto reuse;
1804
1805 if (!folio_trylock(folio)) {
1806 folio_get(folio);
1807 spin_unlock(vmf->ptl);
1808 folio_lock(folio);
1809 spin_lock(vmf->ptl);
1810 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1811 spin_unlock(vmf->ptl);
1812 folio_unlock(folio);
1813 folio_put(folio);
1814 return 0;
1815 }
1816 folio_put(folio);
1817 }
1818
1819 /* Recheck after temporarily dropping the PT lock. */
1820 if (PageAnonExclusive(page)) {
1821 folio_unlock(folio);
1822 goto reuse;
1823 }
1824
1825 /*
1826 * See do_wp_page(): we can only reuse the folio exclusively if
1827 * there are no additional references. Note that we always drain
1828 * the LRU cache immediately after adding a THP.
1829 */
1830 if (folio_ref_count(folio) >
1831 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1832 goto unlock_fallback;
1833 if (folio_test_swapcache(folio))
1834 folio_free_swap(folio);
1835 if (folio_ref_count(folio) == 1) {
1836 pmd_t entry;
1837
1838 folio_move_anon_rmap(folio, vma);
1839 SetPageAnonExclusive(page);
1840 folio_unlock(folio);
1841 reuse:
1842 if (unlikely(unshare)) {
1843 spin_unlock(vmf->ptl);
1844 return 0;
1845 }
1846 entry = pmd_mkyoung(orig_pmd);
1847 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1848 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1849 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1850 spin_unlock(vmf->ptl);
1851 return 0;
1852 }
1853
1854 unlock_fallback:
1855 folio_unlock(folio);
1856 spin_unlock(vmf->ptl);
1857 fallback:
1858 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1859 return VM_FAULT_FALLBACK;
1860 }
1861
can_change_pmd_writable(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)1862 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1863 unsigned long addr, pmd_t pmd)
1864 {
1865 struct page *page;
1866
1867 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1868 return false;
1869
1870 /* Don't touch entries that are not even readable (NUMA hinting). */
1871 if (pmd_protnone(pmd))
1872 return false;
1873
1874 /* Do we need write faults for softdirty tracking? */
1875 if (pmd_needs_soft_dirty_wp(vma, pmd))
1876 return false;
1877
1878 /* Do we need write faults for uffd-wp tracking? */
1879 if (userfaultfd_huge_pmd_wp(vma, pmd))
1880 return false;
1881
1882 if (!(vma->vm_flags & VM_SHARED)) {
1883 /* See can_change_pte_writable(). */
1884 page = vm_normal_page_pmd(vma, addr, pmd);
1885 return page && PageAnon(page) && PageAnonExclusive(page);
1886 }
1887
1888 /* See can_change_pte_writable(). */
1889 return pmd_dirty(pmd);
1890 }
1891
1892 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf)1893 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1894 {
1895 struct vm_area_struct *vma = vmf->vma;
1896 struct folio *folio;
1897 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1898 int nid = NUMA_NO_NODE;
1899 int target_nid, last_cpupid;
1900 pmd_t pmd, old_pmd;
1901 bool writable = false;
1902 int flags = 0;
1903
1904 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1905 old_pmd = pmdp_get(vmf->pmd);
1906
1907 if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
1908 spin_unlock(vmf->ptl);
1909 return 0;
1910 }
1911
1912 pmd = pmd_modify(old_pmd, vma->vm_page_prot);
1913
1914 /*
1915 * Detect now whether the PMD could be writable; this information
1916 * is only valid while holding the PT lock.
1917 */
1918 writable = pmd_write(pmd);
1919 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1920 can_change_pmd_writable(vma, vmf->address, pmd))
1921 writable = true;
1922
1923 folio = vm_normal_folio_pmd(vma, haddr, pmd);
1924 if (!folio)
1925 goto out_map;
1926
1927 nid = folio_nid(folio);
1928
1929 target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
1930 &last_cpupid);
1931 if (target_nid == NUMA_NO_NODE)
1932 goto out_map;
1933 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
1934 flags |= TNF_MIGRATE_FAIL;
1935 goto out_map;
1936 }
1937 /* The folio is isolated and isolation code holds a folio reference. */
1938 spin_unlock(vmf->ptl);
1939 writable = false;
1940
1941 if (!migrate_misplaced_folio(folio, vma, target_nid)) {
1942 flags |= TNF_MIGRATED;
1943 nid = target_nid;
1944 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1945 return 0;
1946 }
1947
1948 flags |= TNF_MIGRATE_FAIL;
1949 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1950 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
1951 spin_unlock(vmf->ptl);
1952 return 0;
1953 }
1954 out_map:
1955 /* Restore the PMD */
1956 pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
1957 pmd = pmd_mkyoung(pmd);
1958 if (writable)
1959 pmd = pmd_mkwrite(pmd, vma);
1960 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1961 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1962 spin_unlock(vmf->ptl);
1963
1964 if (nid != NUMA_NO_NODE)
1965 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1966 return 0;
1967 }
1968
1969 /*
1970 * Return true if we do MADV_FREE successfully on entire pmd page.
1971 * Otherwise, return false.
1972 */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1973 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1974 pmd_t *pmd, unsigned long addr, unsigned long next)
1975 {
1976 spinlock_t *ptl;
1977 pmd_t orig_pmd;
1978 struct folio *folio;
1979 struct mm_struct *mm = tlb->mm;
1980 bool ret = false;
1981
1982 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1983
1984 ptl = pmd_trans_huge_lock(pmd, vma);
1985 if (!ptl)
1986 goto out_unlocked;
1987
1988 orig_pmd = *pmd;
1989 if (is_huge_zero_pmd(orig_pmd))
1990 goto out;
1991
1992 if (unlikely(!pmd_present(orig_pmd))) {
1993 VM_BUG_ON(thp_migration_supported() &&
1994 !is_pmd_migration_entry(orig_pmd));
1995 goto out;
1996 }
1997
1998 folio = pmd_folio(orig_pmd);
1999 /*
2000 * If other processes are mapping this folio, we couldn't discard
2001 * the folio unless they all do MADV_FREE so let's skip the folio.
2002 */
2003 if (folio_likely_mapped_shared(folio))
2004 goto out;
2005
2006 if (!folio_trylock(folio))
2007 goto out;
2008
2009 /*
2010 * If user want to discard part-pages of THP, split it so MADV_FREE
2011 * will deactivate only them.
2012 */
2013 if (next - addr != HPAGE_PMD_SIZE) {
2014 folio_get(folio);
2015 spin_unlock(ptl);
2016 split_folio(folio);
2017 folio_unlock(folio);
2018 folio_put(folio);
2019 goto out_unlocked;
2020 }
2021
2022 if (folio_test_dirty(folio))
2023 folio_clear_dirty(folio);
2024 folio_unlock(folio);
2025
2026 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2027 pmdp_invalidate(vma, addr, pmd);
2028 orig_pmd = pmd_mkold(orig_pmd);
2029 orig_pmd = pmd_mkclean(orig_pmd);
2030
2031 set_pmd_at(mm, addr, pmd, orig_pmd);
2032 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2033 }
2034
2035 folio_mark_lazyfree(folio);
2036 ret = true;
2037 out:
2038 spin_unlock(ptl);
2039 out_unlocked:
2040 return ret;
2041 }
2042
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)2043 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2044 {
2045 pgtable_t pgtable;
2046
2047 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2048 pte_free(mm, pgtable);
2049 mm_dec_nr_ptes(mm);
2050 }
2051
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)2052 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2053 pmd_t *pmd, unsigned long addr)
2054 {
2055 pmd_t orig_pmd;
2056 spinlock_t *ptl;
2057
2058 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2059
2060 ptl = __pmd_trans_huge_lock(pmd, vma);
2061 if (!ptl)
2062 return 0;
2063 /*
2064 * For architectures like ppc64 we look at deposited pgtable
2065 * when calling pmdp_huge_get_and_clear. So do the
2066 * pgtable_trans_huge_withdraw after finishing pmdp related
2067 * operations.
2068 */
2069 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2070 tlb->fullmm);
2071 arch_check_zapped_pmd(vma, orig_pmd);
2072 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2073 if (vma_is_special_huge(vma)) {
2074 if (arch_needs_pgtable_deposit())
2075 zap_deposited_table(tlb->mm, pmd);
2076 spin_unlock(ptl);
2077 } else if (is_huge_zero_pmd(orig_pmd)) {
2078 zap_deposited_table(tlb->mm, pmd);
2079 spin_unlock(ptl);
2080 } else {
2081 struct folio *folio = NULL;
2082 int flush_needed = 1;
2083
2084 if (pmd_present(orig_pmd)) {
2085 struct page *page = pmd_page(orig_pmd);
2086
2087 folio = page_folio(page);
2088 folio_remove_rmap_pmd(folio, page, vma);
2089 WARN_ON_ONCE(folio_mapcount(folio) < 0);
2090 VM_BUG_ON_PAGE(!PageHead(page), page);
2091 } else if (thp_migration_supported()) {
2092 swp_entry_t entry;
2093
2094 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
2095 entry = pmd_to_swp_entry(orig_pmd);
2096 folio = pfn_swap_entry_folio(entry);
2097 flush_needed = 0;
2098 } else
2099 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2100
2101 if (folio_test_anon(folio)) {
2102 zap_deposited_table(tlb->mm, pmd);
2103 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2104 } else {
2105 if (arch_needs_pgtable_deposit())
2106 zap_deposited_table(tlb->mm, pmd);
2107 add_mm_counter(tlb->mm, mm_counter_file(folio),
2108 -HPAGE_PMD_NR);
2109 }
2110
2111 spin_unlock(ptl);
2112 if (flush_needed)
2113 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2114 }
2115 return 1;
2116 }
2117
2118 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)2119 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2120 spinlock_t *old_pmd_ptl,
2121 struct vm_area_struct *vma)
2122 {
2123 /*
2124 * With split pmd lock we also need to move preallocated
2125 * PTE page table if new_pmd is on different PMD page table.
2126 *
2127 * We also don't deposit and withdraw tables for file pages.
2128 */
2129 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2130 }
2131 #endif
2132
move_soft_dirty_pmd(pmd_t pmd)2133 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2134 {
2135 #ifdef CONFIG_MEM_SOFT_DIRTY
2136 if (unlikely(is_pmd_migration_entry(pmd)))
2137 pmd = pmd_swp_mksoft_dirty(pmd);
2138 else if (pmd_present(pmd))
2139 pmd = pmd_mksoft_dirty(pmd);
2140 #endif
2141 return pmd;
2142 }
2143
clear_uffd_wp_pmd(pmd_t pmd)2144 static pmd_t clear_uffd_wp_pmd(pmd_t pmd)
2145 {
2146 if (pmd_present(pmd))
2147 pmd = pmd_clear_uffd_wp(pmd);
2148 else if (is_swap_pmd(pmd))
2149 pmd = pmd_swp_clear_uffd_wp(pmd);
2150
2151 return pmd;
2152 }
2153
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)2154 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2155 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2156 {
2157 spinlock_t *old_ptl, *new_ptl;
2158 pmd_t pmd;
2159 struct mm_struct *mm = vma->vm_mm;
2160 bool force_flush = false;
2161
2162 /*
2163 * The destination pmd shouldn't be established, free_pgtables()
2164 * should have released it; but move_page_tables() might have already
2165 * inserted a page table, if racing against shmem/file collapse.
2166 */
2167 if (!pmd_none(*new_pmd)) {
2168 VM_BUG_ON(pmd_trans_huge(*new_pmd));
2169 return false;
2170 }
2171
2172 /*
2173 * We don't have to worry about the ordering of src and dst
2174 * ptlocks because exclusive mmap_lock prevents deadlock.
2175 */
2176 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2177 if (old_ptl) {
2178 new_ptl = pmd_lockptr(mm, new_pmd);
2179 if (new_ptl != old_ptl)
2180 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2181 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2182 if (pmd_present(pmd))
2183 force_flush = true;
2184 VM_BUG_ON(!pmd_none(*new_pmd));
2185
2186 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2187 pgtable_t pgtable;
2188 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2189 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2190 }
2191 pmd = move_soft_dirty_pmd(pmd);
2192 if (vma_has_uffd_without_event_remap(vma))
2193 pmd = clear_uffd_wp_pmd(pmd);
2194 set_pmd_at(mm, new_addr, new_pmd, pmd);
2195 if (force_flush)
2196 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2197 if (new_ptl != old_ptl)
2198 spin_unlock(new_ptl);
2199 spin_unlock(old_ptl);
2200 return true;
2201 }
2202 return false;
2203 }
2204
2205 /*
2206 * Returns
2207 * - 0 if PMD could not be locked
2208 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2209 * or if prot_numa but THP migration is not supported
2210 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
2211 */
change_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2212 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2213 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2214 unsigned long cp_flags)
2215 {
2216 struct mm_struct *mm = vma->vm_mm;
2217 spinlock_t *ptl;
2218 pmd_t oldpmd, entry;
2219 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2220 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2221 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2222 int ret = 1;
2223
2224 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2225
2226 if (prot_numa && !thp_migration_supported())
2227 return 1;
2228
2229 ptl = __pmd_trans_huge_lock(pmd, vma);
2230 if (!ptl)
2231 return 0;
2232
2233 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2234 if (is_swap_pmd(*pmd)) {
2235 swp_entry_t entry = pmd_to_swp_entry(*pmd);
2236 struct folio *folio = pfn_swap_entry_folio(entry);
2237 pmd_t newpmd;
2238
2239 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2240 if (is_writable_migration_entry(entry)) {
2241 /*
2242 * A protection check is difficult so
2243 * just be safe and disable write
2244 */
2245 if (folio_test_anon(folio))
2246 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2247 else
2248 entry = make_readable_migration_entry(swp_offset(entry));
2249 newpmd = swp_entry_to_pmd(entry);
2250 if (pmd_swp_soft_dirty(*pmd))
2251 newpmd = pmd_swp_mksoft_dirty(newpmd);
2252 } else {
2253 newpmd = *pmd;
2254 }
2255
2256 if (uffd_wp)
2257 newpmd = pmd_swp_mkuffd_wp(newpmd);
2258 else if (uffd_wp_resolve)
2259 newpmd = pmd_swp_clear_uffd_wp(newpmd);
2260 if (!pmd_same(*pmd, newpmd))
2261 set_pmd_at(mm, addr, pmd, newpmd);
2262 goto unlock;
2263 }
2264 #endif
2265
2266 if (prot_numa) {
2267 struct folio *folio;
2268 bool toptier;
2269 /*
2270 * Avoid trapping faults against the zero page. The read-only
2271 * data is likely to be read-cached on the local CPU and
2272 * local/remote hits to the zero page are not interesting.
2273 */
2274 if (is_huge_zero_pmd(*pmd))
2275 goto unlock;
2276
2277 if (pmd_protnone(*pmd))
2278 goto unlock;
2279
2280 folio = pmd_folio(*pmd);
2281 toptier = node_is_toptier(folio_nid(folio));
2282 /*
2283 * Skip scanning top tier node if normal numa
2284 * balancing is disabled
2285 */
2286 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2287 toptier)
2288 goto unlock;
2289
2290 if (folio_use_access_time(folio))
2291 folio_xchg_access_time(folio,
2292 jiffies_to_msecs(jiffies));
2293 }
2294 /*
2295 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2296 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2297 * which is also under mmap_read_lock(mm):
2298 *
2299 * CPU0: CPU1:
2300 * change_huge_pmd(prot_numa=1)
2301 * pmdp_huge_get_and_clear_notify()
2302 * madvise_dontneed()
2303 * zap_pmd_range()
2304 * pmd_trans_huge(*pmd) == 0 (without ptl)
2305 * // skip the pmd
2306 * set_pmd_at();
2307 * // pmd is re-established
2308 *
2309 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2310 * which may break userspace.
2311 *
2312 * pmdp_invalidate_ad() is required to make sure we don't miss
2313 * dirty/young flags set by hardware.
2314 */
2315 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2316
2317 entry = pmd_modify(oldpmd, newprot);
2318 if (uffd_wp)
2319 entry = pmd_mkuffd_wp(entry);
2320 else if (uffd_wp_resolve)
2321 /*
2322 * Leave the write bit to be handled by PF interrupt
2323 * handler, then things like COW could be properly
2324 * handled.
2325 */
2326 entry = pmd_clear_uffd_wp(entry);
2327
2328 /* See change_pte_range(). */
2329 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2330 can_change_pmd_writable(vma, addr, entry))
2331 entry = pmd_mkwrite(entry, vma);
2332
2333 ret = HPAGE_PMD_NR;
2334 set_pmd_at(mm, addr, pmd, entry);
2335
2336 if (huge_pmd_needs_flush(oldpmd, entry))
2337 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2338 unlock:
2339 spin_unlock(ptl);
2340 return ret;
2341 }
2342
2343 /*
2344 * Returns:
2345 *
2346 * - 0: if pud leaf changed from under us
2347 * - 1: if pud can be skipped
2348 * - HPAGE_PUD_NR: if pud was successfully processed
2349 */
2350 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
change_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pudp,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2351 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2352 pud_t *pudp, unsigned long addr, pgprot_t newprot,
2353 unsigned long cp_flags)
2354 {
2355 struct mm_struct *mm = vma->vm_mm;
2356 pud_t oldpud, entry;
2357 spinlock_t *ptl;
2358
2359 tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2360
2361 /* NUMA balancing doesn't apply to dax */
2362 if (cp_flags & MM_CP_PROT_NUMA)
2363 return 1;
2364
2365 /*
2366 * Huge entries on userfault-wp only works with anonymous, while we
2367 * don't have anonymous PUDs yet.
2368 */
2369 if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2370 return 1;
2371
2372 ptl = __pud_trans_huge_lock(pudp, vma);
2373 if (!ptl)
2374 return 0;
2375
2376 /*
2377 * Can't clear PUD or it can race with concurrent zapping. See
2378 * change_huge_pmd().
2379 */
2380 oldpud = pudp_invalidate(vma, addr, pudp);
2381 entry = pud_modify(oldpud, newprot);
2382 set_pud_at(mm, addr, pudp, entry);
2383 tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2384
2385 spin_unlock(ptl);
2386 return HPAGE_PUD_NR;
2387 }
2388 #endif
2389
2390 #ifdef CONFIG_USERFAULTFD
2391 /*
2392 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2393 * the caller, but it must return after releasing the page_table_lock.
2394 * Just move the page from src_pmd to dst_pmd if possible.
2395 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2396 * repeated by the caller, or other errors in case of failure.
2397 */
move_pages_huge_pmd(struct mm_struct * mm,pmd_t * dst_pmd,pmd_t * src_pmd,pmd_t dst_pmdval,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr)2398 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2399 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2400 unsigned long dst_addr, unsigned long src_addr)
2401 {
2402 pmd_t _dst_pmd, src_pmdval;
2403 struct page *src_page;
2404 struct folio *src_folio;
2405 struct anon_vma *src_anon_vma;
2406 spinlock_t *src_ptl, *dst_ptl;
2407 pgtable_t src_pgtable;
2408 struct mmu_notifier_range range;
2409 int err = 0;
2410
2411 src_pmdval = *src_pmd;
2412 src_ptl = pmd_lockptr(mm, src_pmd);
2413
2414 lockdep_assert_held(src_ptl);
2415 vma_assert_locked(src_vma);
2416 vma_assert_locked(dst_vma);
2417
2418 /* Sanity checks before the operation */
2419 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2420 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2421 spin_unlock(src_ptl);
2422 return -EINVAL;
2423 }
2424
2425 if (!pmd_trans_huge(src_pmdval)) {
2426 spin_unlock(src_ptl);
2427 if (is_pmd_migration_entry(src_pmdval)) {
2428 pmd_migration_entry_wait(mm, &src_pmdval);
2429 return -EAGAIN;
2430 }
2431 return -ENOENT;
2432 }
2433
2434 src_page = pmd_page(src_pmdval);
2435
2436 if (!is_huge_zero_pmd(src_pmdval)) {
2437 if (unlikely(!PageAnonExclusive(src_page))) {
2438 spin_unlock(src_ptl);
2439 return -EBUSY;
2440 }
2441
2442 src_folio = page_folio(src_page);
2443 folio_get(src_folio);
2444 } else
2445 src_folio = NULL;
2446
2447 spin_unlock(src_ptl);
2448
2449 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2450 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2451 src_addr + HPAGE_PMD_SIZE);
2452 mmu_notifier_invalidate_range_start(&range);
2453
2454 if (src_folio) {
2455 folio_lock(src_folio);
2456
2457 /*
2458 * split_huge_page walks the anon_vma chain without the page
2459 * lock. Serialize against it with the anon_vma lock, the page
2460 * lock is not enough.
2461 */
2462 src_anon_vma = folio_get_anon_vma(src_folio);
2463 if (!src_anon_vma) {
2464 err = -EAGAIN;
2465 goto unlock_folio;
2466 }
2467 anon_vma_lock_write(src_anon_vma);
2468 } else
2469 src_anon_vma = NULL;
2470
2471 dst_ptl = pmd_lockptr(mm, dst_pmd);
2472 double_pt_lock(src_ptl, dst_ptl);
2473 if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2474 !pmd_same(*dst_pmd, dst_pmdval))) {
2475 err = -EAGAIN;
2476 goto unlock_ptls;
2477 }
2478 if (src_folio) {
2479 if (folio_maybe_dma_pinned(src_folio) ||
2480 !PageAnonExclusive(&src_folio->page)) {
2481 err = -EBUSY;
2482 goto unlock_ptls;
2483 }
2484
2485 if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2486 WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2487 err = -EBUSY;
2488 goto unlock_ptls;
2489 }
2490
2491 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2492 /* Folio got pinned from under us. Put it back and fail the move. */
2493 if (folio_maybe_dma_pinned(src_folio)) {
2494 set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2495 err = -EBUSY;
2496 goto unlock_ptls;
2497 }
2498
2499 folio_move_anon_rmap(src_folio, dst_vma);
2500 src_folio->index = linear_page_index(dst_vma, dst_addr);
2501
2502 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2503 /* Follow mremap() behavior and treat the entry dirty after the move */
2504 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2505 } else {
2506 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2507 _dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot);
2508 }
2509 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2510
2511 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2512 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2513 unlock_ptls:
2514 double_pt_unlock(src_ptl, dst_ptl);
2515 if (src_anon_vma) {
2516 anon_vma_unlock_write(src_anon_vma);
2517 put_anon_vma(src_anon_vma);
2518 }
2519 unlock_folio:
2520 /* unblock rmap walks */
2521 if (src_folio)
2522 folio_unlock(src_folio);
2523 mmu_notifier_invalidate_range_end(&range);
2524 if (src_folio)
2525 folio_put(src_folio);
2526 return err;
2527 }
2528 #endif /* CONFIG_USERFAULTFD */
2529
2530 /*
2531 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2532 *
2533 * Note that if it returns page table lock pointer, this routine returns without
2534 * unlocking page table lock. So callers must unlock it.
2535 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)2536 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2537 {
2538 spinlock_t *ptl;
2539 ptl = pmd_lock(vma->vm_mm, pmd);
2540 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2541 pmd_devmap(*pmd)))
2542 return ptl;
2543 spin_unlock(ptl);
2544 return NULL;
2545 }
2546 EXPORT_SYMBOL_GPL(__pmd_trans_huge_lock);
2547
2548 /*
2549 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2550 *
2551 * Note that if it returns page table lock pointer, this routine returns without
2552 * unlocking page table lock. So callers must unlock it.
2553 */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)2554 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2555 {
2556 spinlock_t *ptl;
2557
2558 ptl = pud_lock(vma->vm_mm, pud);
2559 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2560 return ptl;
2561 spin_unlock(ptl);
2562 return NULL;
2563 }
2564
2565 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)2566 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2567 pud_t *pud, unsigned long addr)
2568 {
2569 spinlock_t *ptl;
2570 pud_t orig_pud;
2571
2572 ptl = __pud_trans_huge_lock(pud, vma);
2573 if (!ptl)
2574 return 0;
2575
2576 orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2577 arch_check_zapped_pud(vma, orig_pud);
2578 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2579 if (vma_is_special_huge(vma)) {
2580 spin_unlock(ptl);
2581 /* No zero page support yet */
2582 } else {
2583 /* No support for anonymous PUD pages yet */
2584 BUG();
2585 }
2586 return 1;
2587 }
2588
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)2589 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2590 unsigned long haddr)
2591 {
2592 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2593 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2594 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2595 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2596
2597 count_vm_event(THP_SPLIT_PUD);
2598
2599 pudp_huge_clear_flush(vma, haddr, pud);
2600 }
2601
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2602 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2603 unsigned long address)
2604 {
2605 spinlock_t *ptl;
2606 struct mmu_notifier_range range;
2607
2608 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2609 address & HPAGE_PUD_MASK,
2610 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2611 mmu_notifier_invalidate_range_start(&range);
2612 ptl = pud_lock(vma->vm_mm, pud);
2613 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2614 goto out;
2615 __split_huge_pud_locked(vma, pud, range.start);
2616
2617 out:
2618 spin_unlock(ptl);
2619 mmu_notifier_invalidate_range_end(&range);
2620 }
2621 #else
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2622 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2623 unsigned long address)
2624 {
2625 }
2626 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2627
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2628 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2629 unsigned long haddr, pmd_t *pmd)
2630 {
2631 struct mm_struct *mm = vma->vm_mm;
2632 pgtable_t pgtable;
2633 pmd_t _pmd, old_pmd;
2634 unsigned long addr;
2635 pte_t *pte;
2636 int i;
2637
2638 /*
2639 * Leave pmd empty until pte is filled note that it is fine to delay
2640 * notification until mmu_notifier_invalidate_range_end() as we are
2641 * replacing a zero pmd write protected page with a zero pte write
2642 * protected page.
2643 *
2644 * See Documentation/mm/mmu_notifier.rst
2645 */
2646 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2647
2648 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2649 pmd_populate(mm, &_pmd, pgtable);
2650
2651 pte = pte_offset_map(&_pmd, haddr);
2652 VM_BUG_ON(!pte);
2653 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2654 pte_t entry;
2655
2656 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2657 entry = pte_mkspecial(entry);
2658 if (pmd_uffd_wp(old_pmd))
2659 entry = pte_mkuffd_wp(entry);
2660 VM_BUG_ON(!pte_none(ptep_get(pte)));
2661 set_pte_at(mm, addr, pte, entry);
2662 pte++;
2663 }
2664 pte_unmap(pte - 1);
2665 smp_wmb(); /* make pte visible before pmd */
2666 pmd_populate(mm, pmd, pgtable);
2667 }
2668
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2669 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2670 unsigned long haddr, bool freeze)
2671 {
2672 struct mm_struct *mm = vma->vm_mm;
2673 struct folio *folio;
2674 struct page *page;
2675 pgtable_t pgtable;
2676 pmd_t old_pmd, _pmd;
2677 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2678 bool anon_exclusive = false, dirty = false;
2679 unsigned long addr;
2680 pte_t *pte;
2681 int i;
2682
2683 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2684 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2685 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2686 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2687 && !pmd_devmap(*pmd));
2688
2689 count_vm_event(THP_SPLIT_PMD);
2690
2691 if (!vma_is_anonymous(vma)) {
2692 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2693 /*
2694 * We are going to unmap this huge page. So
2695 * just go ahead and zap it
2696 */
2697 if (arch_needs_pgtable_deposit())
2698 zap_deposited_table(mm, pmd);
2699 if (vma_is_special_huge(vma))
2700 return;
2701 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2702 swp_entry_t entry;
2703
2704 entry = pmd_to_swp_entry(old_pmd);
2705 folio = pfn_swap_entry_folio(entry);
2706 } else {
2707 page = pmd_page(old_pmd);
2708 folio = page_folio(page);
2709 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2710 folio_mark_dirty(folio);
2711 if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2712 folio_set_referenced(folio);
2713 folio_remove_rmap_pmd(folio, page, vma);
2714 folio_put(folio);
2715 }
2716 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2717 return;
2718 }
2719
2720 if (is_huge_zero_pmd(*pmd)) {
2721 /*
2722 * FIXME: Do we want to invalidate secondary mmu by calling
2723 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2724 * inside __split_huge_pmd() ?
2725 *
2726 * We are going from a zero huge page write protected to zero
2727 * small page also write protected so it does not seems useful
2728 * to invalidate secondary mmu at this time.
2729 */
2730 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2731 }
2732
2733 pmd_migration = is_pmd_migration_entry(*pmd);
2734 if (unlikely(pmd_migration)) {
2735 swp_entry_t entry;
2736
2737 old_pmd = *pmd;
2738 entry = pmd_to_swp_entry(old_pmd);
2739 page = pfn_swap_entry_to_page(entry);
2740 write = is_writable_migration_entry(entry);
2741 if (PageAnon(page))
2742 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2743 young = is_migration_entry_young(entry);
2744 dirty = is_migration_entry_dirty(entry);
2745 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2746 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2747 } else {
2748 /*
2749 * Up to this point the pmd is present and huge and userland has
2750 * the whole access to the hugepage during the split (which
2751 * happens in place). If we overwrite the pmd with the not-huge
2752 * version pointing to the pte here (which of course we could if
2753 * all CPUs were bug free), userland could trigger a small page
2754 * size TLB miss on the small sized TLB while the hugepage TLB
2755 * entry is still established in the huge TLB. Some CPU doesn't
2756 * like that. See
2757 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2758 * 383 on page 105. Intel should be safe but is also warns that
2759 * it's only safe if the permission and cache attributes of the
2760 * two entries loaded in the two TLB is identical (which should
2761 * be the case here). But it is generally safer to never allow
2762 * small and huge TLB entries for the same virtual address to be
2763 * loaded simultaneously. So instead of doing "pmd_populate();
2764 * flush_pmd_tlb_range();" we first mark the current pmd
2765 * notpresent (atomically because here the pmd_trans_huge must
2766 * remain set at all times on the pmd until the split is
2767 * complete for this pmd), then we flush the SMP TLB and finally
2768 * we write the non-huge version of the pmd entry with
2769 * pmd_populate.
2770 */
2771 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2772 page = pmd_page(old_pmd);
2773 folio = page_folio(page);
2774 if (pmd_dirty(old_pmd)) {
2775 dirty = true;
2776 folio_set_dirty(folio);
2777 }
2778 write = pmd_write(old_pmd);
2779 young = pmd_young(old_pmd);
2780 soft_dirty = pmd_soft_dirty(old_pmd);
2781 uffd_wp = pmd_uffd_wp(old_pmd);
2782
2783 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2784 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2785
2786 /*
2787 * Without "freeze", we'll simply split the PMD, propagating the
2788 * PageAnonExclusive() flag for each PTE by setting it for
2789 * each subpage -- no need to (temporarily) clear.
2790 *
2791 * With "freeze" we want to replace mapped pages by
2792 * migration entries right away. This is only possible if we
2793 * managed to clear PageAnonExclusive() -- see
2794 * set_pmd_migration_entry().
2795 *
2796 * In case we cannot clear PageAnonExclusive(), split the PMD
2797 * only and let try_to_migrate_one() fail later.
2798 *
2799 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2800 */
2801 anon_exclusive = PageAnonExclusive(page);
2802 if (freeze && anon_exclusive &&
2803 folio_try_share_anon_rmap_pmd(folio, page))
2804 freeze = false;
2805 if (!freeze) {
2806 rmap_t rmap_flags = RMAP_NONE;
2807
2808 folio_ref_add(folio, HPAGE_PMD_NR - 1);
2809 if (anon_exclusive)
2810 rmap_flags |= RMAP_EXCLUSIVE;
2811 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2812 vma, haddr, rmap_flags);
2813 }
2814 }
2815
2816 /*
2817 * Withdraw the table only after we mark the pmd entry invalid.
2818 * This's critical for some architectures (Power).
2819 */
2820 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2821 pmd_populate(mm, &_pmd, pgtable);
2822
2823 pte = pte_offset_map(&_pmd, haddr);
2824 VM_BUG_ON(!pte);
2825
2826 /*
2827 * Note that NUMA hinting access restrictions are not transferred to
2828 * avoid any possibility of altering permissions across VMAs.
2829 */
2830 if (freeze || pmd_migration) {
2831 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2832 pte_t entry;
2833 swp_entry_t swp_entry;
2834
2835 if (write)
2836 swp_entry = make_writable_migration_entry(
2837 page_to_pfn(page + i));
2838 else if (anon_exclusive)
2839 swp_entry = make_readable_exclusive_migration_entry(
2840 page_to_pfn(page + i));
2841 else
2842 swp_entry = make_readable_migration_entry(
2843 page_to_pfn(page + i));
2844 if (young)
2845 swp_entry = make_migration_entry_young(swp_entry);
2846 if (dirty)
2847 swp_entry = make_migration_entry_dirty(swp_entry);
2848 entry = swp_entry_to_pte(swp_entry);
2849 if (soft_dirty)
2850 entry = pte_swp_mksoft_dirty(entry);
2851 if (uffd_wp)
2852 entry = pte_swp_mkuffd_wp(entry);
2853
2854 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2855 set_pte_at(mm, addr, pte + i, entry);
2856 }
2857 } else {
2858 pte_t entry;
2859
2860 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
2861 if (write)
2862 entry = pte_mkwrite(entry, vma);
2863 if (!young)
2864 entry = pte_mkold(entry);
2865 /* NOTE: this may set soft-dirty too on some archs */
2866 if (dirty)
2867 entry = pte_mkdirty(entry);
2868 if (soft_dirty)
2869 entry = pte_mksoft_dirty(entry);
2870 if (uffd_wp)
2871 entry = pte_mkuffd_wp(entry);
2872
2873 for (i = 0; i < HPAGE_PMD_NR; i++)
2874 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2875
2876 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
2877 }
2878 pte_unmap(pte);
2879
2880 if (!pmd_migration)
2881 folio_remove_rmap_pmd(folio, page, vma);
2882 if (freeze)
2883 put_page(page);
2884
2885 smp_wmb(); /* make pte visible before pmd */
2886 pmd_populate(mm, pmd, pgtable);
2887 }
2888
split_huge_pmd_locked(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,bool freeze,struct folio * folio)2889 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
2890 pmd_t *pmd, bool freeze, struct folio *folio)
2891 {
2892 bool pmd_migration = is_pmd_migration_entry(*pmd);
2893
2894 VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio));
2895 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
2896 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2897 VM_BUG_ON(freeze && !folio);
2898
2899 /*
2900 * When the caller requests to set up a migration entry, we
2901 * require a folio to check the PMD against. Otherwise, there
2902 * is a risk of replacing the wrong folio.
2903 */
2904 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || pmd_migration) {
2905 /*
2906 * Do not apply pmd_folio() to a migration entry; and folio lock
2907 * guarantees that it must be of the wrong folio anyway.
2908 */
2909 if (folio && (pmd_migration || folio != pmd_folio(*pmd)))
2910 return;
2911 __split_huge_pmd_locked(vma, pmd, address, freeze);
2912 }
2913 }
2914
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct folio * folio)2915 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2916 unsigned long address, bool freeze, struct folio *folio)
2917 {
2918 spinlock_t *ptl;
2919 struct mmu_notifier_range range;
2920
2921 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2922 address & HPAGE_PMD_MASK,
2923 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2924 mmu_notifier_invalidate_range_start(&range);
2925 ptl = pmd_lock(vma->vm_mm, pmd);
2926 split_huge_pmd_locked(vma, range.start, pmd, freeze, folio);
2927 spin_unlock(ptl);
2928 mmu_notifier_invalidate_range_end(&range);
2929 }
2930
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct folio * folio)2931 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2932 bool freeze, struct folio *folio)
2933 {
2934 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2935
2936 if (!pmd)
2937 return;
2938
2939 __split_huge_pmd(vma, pmd, address, freeze, folio);
2940 }
2941
split_huge_pmd_if_needed(struct vm_area_struct * vma,unsigned long address)2942 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2943 {
2944 /*
2945 * If the new address isn't hpage aligned and it could previously
2946 * contain an hugepage: check if we need to split an huge pmd.
2947 */
2948 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2949 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2950 ALIGN(address, HPAGE_PMD_SIZE)))
2951 split_huge_pmd_address(vma, address, false, NULL);
2952 }
2953
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2954 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2955 unsigned long start,
2956 unsigned long end,
2957 long adjust_next)
2958 {
2959 /* Check if we need to split start first. */
2960 split_huge_pmd_if_needed(vma, start);
2961
2962 /* Check if we need to split end next. */
2963 split_huge_pmd_if_needed(vma, end);
2964
2965 /*
2966 * If we're also updating the next vma vm_start,
2967 * check if we need to split it.
2968 */
2969 if (adjust_next > 0) {
2970 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2971 unsigned long nstart = next->vm_start;
2972 nstart += adjust_next;
2973 split_huge_pmd_if_needed(next, nstart);
2974 }
2975 }
2976
unmap_folio(struct folio * folio)2977 static void unmap_folio(struct folio *folio)
2978 {
2979 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
2980 TTU_BATCH_FLUSH;
2981
2982 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2983
2984 if (folio_test_pmd_mappable(folio))
2985 ttu_flags |= TTU_SPLIT_HUGE_PMD;
2986
2987 /*
2988 * Anon pages need migration entries to preserve them, but file
2989 * pages can simply be left unmapped, then faulted back on demand.
2990 * If that is ever changed (perhaps for mlock), update remap_page().
2991 */
2992 if (folio_test_anon(folio))
2993 try_to_migrate(folio, ttu_flags);
2994 else
2995 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2996
2997 try_to_unmap_flush();
2998 }
2999
__discard_anon_folio_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)3000 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
3001 unsigned long addr, pmd_t *pmdp,
3002 struct folio *folio)
3003 {
3004 struct mm_struct *mm = vma->vm_mm;
3005 int ref_count, map_count;
3006 pmd_t orig_pmd = *pmdp;
3007
3008 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd))
3009 return false;
3010
3011 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
3012
3013 /*
3014 * Syncing against concurrent GUP-fast:
3015 * - clear PMD; barrier; read refcount
3016 * - inc refcount; barrier; read PMD
3017 */
3018 smp_mb();
3019
3020 ref_count = folio_ref_count(folio);
3021 map_count = folio_mapcount(folio);
3022
3023 /*
3024 * Order reads for folio refcount and dirty flag
3025 * (see comments in __remove_mapping()).
3026 */
3027 smp_rmb();
3028
3029 /*
3030 * If the folio or its PMD is redirtied at this point, or if there
3031 * are unexpected references, we will give up to discard this folio
3032 * and remap it.
3033 *
3034 * The only folio refs must be one from isolation plus the rmap(s).
3035 */
3036 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd) ||
3037 ref_count != map_count + 1) {
3038 set_pmd_at(mm, addr, pmdp, orig_pmd);
3039 return false;
3040 }
3041
3042 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3043 zap_deposited_table(mm, pmdp);
3044 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3045 if (vma->vm_flags & VM_LOCKED)
3046 mlock_drain_local();
3047 folio_put(folio);
3048
3049 return true;
3050 }
3051
unmap_huge_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)3052 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3053 pmd_t *pmdp, struct folio *folio)
3054 {
3055 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3056 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3057 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3058
3059 if (folio_test_anon(folio) && !folio_test_swapbacked(folio))
3060 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3061
3062 return false;
3063 }
3064
remap_page(struct folio * folio,unsigned long nr,int flags)3065 static void remap_page(struct folio *folio, unsigned long nr, int flags)
3066 {
3067 int i = 0;
3068
3069 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
3070 if (!folio_test_anon(folio))
3071 return;
3072 for (;;) {
3073 remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3074 i += folio_nr_pages(folio);
3075 if (i >= nr)
3076 break;
3077 folio = folio_next(folio);
3078 }
3079 }
3080
lru_add_page_tail(struct folio * folio,struct page * tail,struct lruvec * lruvec,struct list_head * list)3081 static void lru_add_page_tail(struct folio *folio, struct page *tail,
3082 struct lruvec *lruvec, struct list_head *list)
3083 {
3084 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3085 VM_BUG_ON_FOLIO(PageLRU(tail), folio);
3086 lockdep_assert_held(&lruvec->lru_lock);
3087
3088 if (list) {
3089 /* page reclaim is reclaiming a huge page */
3090 VM_WARN_ON(folio_test_lru(folio));
3091 get_page(tail);
3092 list_add_tail(&tail->lru, list);
3093 } else {
3094 /* head is still on lru (and we have it frozen) */
3095 VM_WARN_ON(!folio_test_lru(folio));
3096 if (folio_test_unevictable(folio))
3097 tail->mlock_count = 0;
3098 else
3099 list_add_tail(&tail->lru, &folio->lru);
3100 SetPageLRU(tail);
3101 }
3102 }
3103
__split_huge_page_tail(struct folio * folio,int tail,struct lruvec * lruvec,struct list_head * list,unsigned int new_order)3104 static void __split_huge_page_tail(struct folio *folio, int tail,
3105 struct lruvec *lruvec, struct list_head *list,
3106 unsigned int new_order)
3107 {
3108 struct page *head = &folio->page;
3109 struct page *page_tail = head + tail;
3110 /*
3111 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3112 * Don't pass it around before clear_compound_head().
3113 */
3114 struct folio *new_folio = (struct folio *)page_tail;
3115
3116 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3117
3118 /*
3119 * Clone page flags before unfreezing refcount.
3120 *
3121 * After successful get_page_unless_zero() might follow flags change,
3122 * for example lock_page() which set PG_waiters.
3123 *
3124 * Note that for mapped sub-pages of an anonymous THP,
3125 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3126 * the migration entry instead from where remap_page() will restore it.
3127 * We can still have PG_anon_exclusive set on effectively unmapped and
3128 * unreferenced sub-pages of an anonymous THP: we can simply drop
3129 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3130 */
3131 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3132 page_tail->flags |= (head->flags &
3133 ((1L << PG_referenced) |
3134 (1L << PG_swapbacked) |
3135 (1L << PG_swapcache) |
3136 (1L << PG_mlocked) |
3137 (1L << PG_uptodate) |
3138 (1L << PG_active) |
3139 (1L << PG_workingset) |
3140 (1L << PG_locked) |
3141 (1L << PG_unevictable) |
3142 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
3143 (1L << PG_arch_2) |
3144 #endif
3145 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
3146 (1L << PG_arch_3) |
3147 #endif
3148 (1L << PG_dirty) |
3149 LRU_GEN_MASK | LRU_REFS_MASK));
3150
3151 /* ->mapping in first and second tail page is replaced by other uses */
3152 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3153 page_tail);
3154 page_tail->mapping = head->mapping;
3155 page_tail->index = head->index + tail;
3156
3157 /*
3158 * page->private should not be set in tail pages. Fix up and warn once
3159 * if private is unexpectedly set.
3160 */
3161 if (unlikely(page_tail->private)) {
3162 VM_WARN_ON_ONCE_PAGE(true, page_tail);
3163 page_tail->private = 0;
3164 }
3165 if (folio_test_swapcache(folio))
3166 new_folio->swap.val = folio->swap.val + tail;
3167
3168 /* Page flags must be visible before we make the page non-compound. */
3169 smp_wmb();
3170
3171 /*
3172 * Clear PageTail before unfreezing page refcount.
3173 *
3174 * After successful get_page_unless_zero() might follow put_page()
3175 * which needs correct compound_head().
3176 */
3177 clear_compound_head(page_tail);
3178 if (new_order) {
3179 prep_compound_page(page_tail, new_order);
3180 folio_set_large_rmappable(new_folio);
3181 }
3182
3183 /* Finally unfreeze refcount. Additional reference from page cache. */
3184 page_ref_unfreeze(page_tail,
3185 1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ?
3186 folio_nr_pages(new_folio) : 0));
3187
3188 if (folio_test_young(folio))
3189 folio_set_young(new_folio);
3190 if (folio_test_idle(folio))
3191 folio_set_idle(new_folio);
3192
3193 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3194
3195 /*
3196 * always add to the tail because some iterators expect new
3197 * pages to show after the currently processed elements - e.g.
3198 * migrate_pages
3199 */
3200 lru_add_page_tail(folio, page_tail, lruvec, list);
3201 }
3202
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end,unsigned int new_order)3203 static void __split_huge_page(struct page *page, struct list_head *list,
3204 pgoff_t end, unsigned int new_order)
3205 {
3206 struct folio *folio = page_folio(page);
3207 struct page *head = &folio->page;
3208 struct lruvec *lruvec;
3209 struct address_space *swap_cache = NULL;
3210 unsigned long offset = 0;
3211 int i, nr_dropped = 0;
3212 unsigned int new_nr = 1 << new_order;
3213 int order = folio_order(folio);
3214 unsigned int nr = 1 << order;
3215
3216 /* complete memcg works before add pages to LRU */
3217 split_page_memcg(head, order, new_order);
3218
3219 if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
3220 offset = swap_cache_index(folio->swap);
3221 swap_cache = swap_address_space(folio->swap);
3222 xa_lock(&swap_cache->i_pages);
3223 }
3224
3225 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3226 lruvec = folio_lruvec_lock(folio);
3227
3228 ClearPageHasHWPoisoned(head);
3229
3230 for (i = nr - new_nr; i >= new_nr; i -= new_nr) {
3231 __split_huge_page_tail(folio, i, lruvec, list, new_order);
3232 /* Some pages can be beyond EOF: drop them from page cache */
3233 if (head[i].index >= end) {
3234 struct folio *tail = page_folio(head + i);
3235
3236 if (shmem_mapping(folio->mapping))
3237 nr_dropped++;
3238 else if (folio_test_clear_dirty(tail))
3239 folio_account_cleaned(tail,
3240 inode_to_wb(folio->mapping->host));
3241 __filemap_remove_folio(tail, NULL);
3242 folio_put_refs(tail, folio_nr_pages(tail));
3243 } else if (!PageAnon(page)) {
3244 __xa_store(&folio->mapping->i_pages, head[i].index,
3245 head + i, 0);
3246 } else if (swap_cache) {
3247 __xa_store(&swap_cache->i_pages, offset + i,
3248 head + i, 0);
3249 }
3250 }
3251
3252 if (!new_order)
3253 ClearPageCompound(head);
3254 else {
3255 struct folio *new_folio = (struct folio *)head;
3256
3257 folio_set_order(new_folio, new_order);
3258 }
3259 unlock_page_lruvec(lruvec);
3260 /* Caller disabled irqs, so they are still disabled here */
3261
3262 split_page_owner(head, order, new_order);
3263 pgalloc_tag_split(folio, order, new_order);
3264
3265 /* See comment in __split_huge_page_tail() */
3266 if (folio_test_anon(folio)) {
3267 /* Additional pin to swap cache */
3268 if (folio_test_swapcache(folio)) {
3269 folio_ref_add(folio, 1 + new_nr);
3270 xa_unlock(&swap_cache->i_pages);
3271 } else {
3272 folio_ref_inc(folio);
3273 }
3274 } else {
3275 /* Additional pin to page cache */
3276 folio_ref_add(folio, 1 + new_nr);
3277 xa_unlock(&folio->mapping->i_pages);
3278 }
3279 local_irq_enable();
3280
3281 if (nr_dropped)
3282 shmem_uncharge(folio->mapping->host, nr_dropped);
3283 remap_page(folio, nr, PageAnon(head) ? RMP_USE_SHARED_ZEROPAGE : 0);
3284
3285 /*
3286 * set page to its compound_head when split to non order-0 pages, so
3287 * we can skip unlocking it below, since PG_locked is transferred to
3288 * the compound_head of the page and the caller will unlock it.
3289 */
3290 if (new_order)
3291 page = compound_head(page);
3292
3293 for (i = 0; i < nr; i += new_nr) {
3294 struct page *subpage = head + i;
3295 struct folio *new_folio = page_folio(subpage);
3296 if (subpage == page)
3297 continue;
3298 folio_unlock(new_folio);
3299
3300 /*
3301 * Subpages may be freed if there wasn't any mapping
3302 * like if add_to_swap() is running on a lru page that
3303 * had its mapping zapped. And freeing these pages
3304 * requires taking the lru_lock so we do the put_page
3305 * of the tail pages after the split is complete.
3306 */
3307 free_page_and_swap_cache(subpage);
3308 }
3309 }
3310
3311 /* Racy check whether the huge page can be split */
can_split_folio(struct folio * folio,int caller_pins,int * pextra_pins)3312 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3313 {
3314 int extra_pins;
3315
3316 /* Additional pins from page cache */
3317 if (folio_test_anon(folio))
3318 extra_pins = folio_test_swapcache(folio) ?
3319 folio_nr_pages(folio) : 0;
3320 else
3321 extra_pins = folio_nr_pages(folio);
3322 if (pextra_pins)
3323 *pextra_pins = extra_pins;
3324 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3325 caller_pins;
3326 }
3327
3328 /*
3329 * This function splits a large folio into smaller folios of order @new_order.
3330 * @page can point to any page of the large folio to split. The split operation
3331 * does not change the position of @page.
3332 *
3333 * Prerequisites:
3334 *
3335 * 1) The caller must hold a reference on the @page's owning folio, also known
3336 * as the large folio.
3337 *
3338 * 2) The large folio must be locked.
3339 *
3340 * 3) The folio must not be pinned. Any unexpected folio references, including
3341 * GUP pins, will result in the folio not getting split; instead, the caller
3342 * will receive an -EAGAIN.
3343 *
3344 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
3345 * supported for non-file-backed folios, because folio->_deferred_list, which
3346 * is used by partially mapped folios, is stored in subpage 2, but an order-1
3347 * folio only has subpages 0 and 1. File-backed order-1 folios are supported,
3348 * since they do not use _deferred_list.
3349 *
3350 * After splitting, the caller's folio reference will be transferred to @page,
3351 * resulting in a raised refcount of @page after this call. The other pages may
3352 * be freed if they are not mapped.
3353 *
3354 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3355 *
3356 * Pages in @new_order will inherit the mapping, flags, and so on from the
3357 * huge page.
3358 *
3359 * Returns 0 if the huge page was split successfully.
3360 *
3361 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
3362 * the folio was concurrently removed from the page cache.
3363 *
3364 * Returns -EBUSY when trying to split the huge zeropage, if the folio is
3365 * under writeback, if fs-specific folio metadata cannot currently be
3366 * released, or if some unexpected race happened (e.g., anon VMA disappeared,
3367 * truncation).
3368 *
3369 * Callers should ensure that the order respects the address space mapping
3370 * min-order if one is set for non-anonymous folios.
3371 *
3372 * Returns -EINVAL when trying to split to an order that is incompatible
3373 * with the folio. Splitting to order 0 is compatible with all folios.
3374 */
split_huge_page_to_list_to_order(struct page * page,struct list_head * list,unsigned int new_order)3375 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3376 unsigned int new_order)
3377 {
3378 struct folio *folio = page_folio(page);
3379 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3380 /* reset xarray order to new order after split */
3381 XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order);
3382 bool is_anon = folio_test_anon(folio);
3383 struct address_space *mapping = NULL;
3384 struct anon_vma *anon_vma = NULL;
3385 int order = folio_order(folio);
3386 int extra_pins, ret;
3387 pgoff_t end;
3388 bool is_hzp;
3389 bool bypass = false;
3390
3391 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3392 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3393
3394 if (new_order >= folio_order(folio))
3395 return -EINVAL;
3396
3397 if (is_anon) {
3398 /* order-1 is not supported for anonymous THP. */
3399 if (new_order == 1) {
3400 VM_WARN_ONCE(1, "Cannot split to order-1 folio");
3401 return -EINVAL;
3402 }
3403 } else if (new_order) {
3404 /* Split shmem folio to non-zero order not supported */
3405 if (shmem_mapping(folio->mapping)) {
3406 VM_WARN_ONCE(1,
3407 "Cannot split shmem folio to non-0 order");
3408 return -EINVAL;
3409 }
3410 /*
3411 * No split if the file system does not support large folio.
3412 * Note that we might still have THPs in such mappings due to
3413 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
3414 * does not actually support large folios properly.
3415 */
3416 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3417 !mapping_large_folio_support(folio->mapping)) {
3418 VM_WARN_ONCE(1,
3419 "Cannot split file folio to non-0 order");
3420 return -EINVAL;
3421 }
3422 }
3423
3424 /* Only swapping a whole PMD-mapped folio is supported */
3425 if (folio_test_swapcache(folio) && new_order)
3426 return -EINVAL;
3427
3428 is_hzp = is_huge_zero_folio(folio);
3429 if (is_hzp) {
3430 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3431 return -EBUSY;
3432 }
3433
3434 if (folio_test_writeback(folio))
3435 return -EBUSY;
3436
3437 if (is_anon) {
3438 /*
3439 * The caller does not necessarily hold an mmap_lock that would
3440 * prevent the anon_vma disappearing so we first we take a
3441 * reference to it and then lock the anon_vma for write. This
3442 * is similar to folio_lock_anon_vma_read except the write lock
3443 * is taken to serialise against parallel split or collapse
3444 * operations.
3445 */
3446 anon_vma = folio_get_anon_vma(folio);
3447 if (!anon_vma) {
3448 ret = -EBUSY;
3449 goto out;
3450 }
3451 end = -1;
3452 mapping = NULL;
3453 anon_vma_lock_write(anon_vma);
3454 } else {
3455 unsigned int min_order;
3456 gfp_t gfp;
3457
3458 mapping = folio->mapping;
3459
3460 /* Truncated ? */
3461 if (!mapping) {
3462 ret = -EBUSY;
3463 goto out;
3464 }
3465
3466 min_order = mapping_min_folio_order(folio->mapping);
3467 if (new_order < min_order) {
3468 VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u",
3469 min_order);
3470 ret = -EINVAL;
3471 goto out;
3472 }
3473
3474 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3475 GFP_RECLAIM_MASK);
3476
3477 if (!filemap_release_folio(folio, gfp)) {
3478 ret = -EBUSY;
3479 goto out;
3480 }
3481
3482 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3483 if (xas_error(&xas)) {
3484 ret = xas_error(&xas);
3485 goto out;
3486 }
3487
3488 anon_vma = NULL;
3489 i_mmap_lock_read(mapping);
3490
3491 /*
3492 *__split_huge_page() may need to trim off pages beyond EOF:
3493 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3494 * which cannot be nested inside the page tree lock. So note
3495 * end now: i_size itself may be changed at any moment, but
3496 * folio lock is good enough to serialize the trimming.
3497 */
3498 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3499 if (shmem_mapping(mapping))
3500 end = shmem_fallocend(mapping->host, end);
3501 }
3502
3503 trace_android_vh_mm_split_huge_page_bypass(page, list, &ret, &bypass);
3504 if (bypass)
3505 goto out_unlock;
3506
3507 /*
3508 * Racy check if we can split the page, before unmap_folio() will
3509 * split PMDs
3510 */
3511 if (!can_split_folio(folio, 1, &extra_pins)) {
3512 ret = -EAGAIN;
3513 goto out_unlock;
3514 }
3515
3516 unmap_folio(folio);
3517
3518 /* block interrupt reentry in xa_lock and spinlock */
3519 local_irq_disable();
3520 if (mapping) {
3521 /*
3522 * Check if the folio is present in page cache.
3523 * We assume all tail are present too, if folio is there.
3524 */
3525 xas_lock(&xas);
3526 xas_reset(&xas);
3527 if (xas_load(&xas) != folio)
3528 goto fail;
3529 }
3530
3531 /* Prevent deferred_split_scan() touching ->_refcount */
3532 spin_lock(&ds_queue->split_queue_lock);
3533 if (folio_ref_freeze(folio, 1 + extra_pins)) {
3534 if (folio_order(folio) > 1 &&
3535 !list_empty(&folio->_deferred_list)) {
3536 ds_queue->split_queue_len--;
3537 if (folio_test_partially_mapped(folio)) {
3538 folio_clear_partially_mapped(folio);
3539 mod_mthp_stat(folio_order(folio),
3540 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3541 }
3542 /*
3543 * Reinitialize page_deferred_list after removing the
3544 * page from the split_queue, otherwise a subsequent
3545 * split will see list corruption when checking the
3546 * page_deferred_list.
3547 */
3548 list_del_init(&folio->_deferred_list);
3549 }
3550 spin_unlock(&ds_queue->split_queue_lock);
3551 if (mapping) {
3552 int nr = folio_nr_pages(folio);
3553
3554 xas_split(&xas, folio, folio_order(folio));
3555 if (folio_test_pmd_mappable(folio) &&
3556 new_order < HPAGE_PMD_ORDER) {
3557 if (folio_test_swapbacked(folio)) {
3558 __lruvec_stat_mod_folio(folio,
3559 NR_SHMEM_THPS, -nr);
3560 } else {
3561 __lruvec_stat_mod_folio(folio,
3562 NR_FILE_THPS, -nr);
3563 filemap_nr_thps_dec(mapping);
3564 }
3565 }
3566 }
3567
3568 if (is_anon) {
3569 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
3570 mod_mthp_stat(new_order, MTHP_STAT_NR_ANON, 1 << (order - new_order));
3571 }
3572 __split_huge_page(page, list, end, new_order);
3573 ret = 0;
3574 } else {
3575 spin_unlock(&ds_queue->split_queue_lock);
3576 fail:
3577 if (mapping)
3578 xas_unlock(&xas);
3579 local_irq_enable();
3580 remap_page(folio, folio_nr_pages(folio), 0);
3581 ret = -EAGAIN;
3582 }
3583
3584 out_unlock:
3585 if (anon_vma) {
3586 anon_vma_unlock_write(anon_vma);
3587 put_anon_vma(anon_vma);
3588 }
3589 if (mapping)
3590 i_mmap_unlock_read(mapping);
3591 out:
3592 xas_destroy(&xas);
3593 if (order == HPAGE_PMD_ORDER)
3594 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3595 count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
3596 return ret;
3597 }
3598
min_order_for_split(struct folio * folio)3599 int min_order_for_split(struct folio *folio)
3600 {
3601 if (folio_test_anon(folio))
3602 return 0;
3603
3604 if (!folio->mapping) {
3605 if (folio_test_pmd_mappable(folio))
3606 count_vm_event(THP_SPLIT_PAGE_FAILED);
3607 return -EBUSY;
3608 }
3609
3610 return mapping_min_folio_order(folio->mapping);
3611 }
3612
split_folio_to_list(struct folio * folio,struct list_head * list)3613 int split_folio_to_list(struct folio *folio, struct list_head *list)
3614 {
3615 int ret = min_order_for_split(folio);
3616
3617 if (ret < 0)
3618 return ret;
3619
3620 return split_huge_page_to_list_to_order(&folio->page, list, ret);
3621 }
3622
3623 /*
3624 * __folio_unqueue_deferred_split() is not to be called directly:
3625 * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
3626 * limits its calls to those folios which may have a _deferred_list for
3627 * queueing THP splits, and that list is (racily observed to be) non-empty.
3628 *
3629 * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
3630 * zero: because even when split_queue_lock is held, a non-empty _deferred_list
3631 * might be in use on deferred_split_scan()'s unlocked on-stack list.
3632 *
3633 * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
3634 * therefore important to unqueue deferred split before changing folio memcg.
3635 */
__folio_unqueue_deferred_split(struct folio * folio)3636 bool __folio_unqueue_deferred_split(struct folio *folio)
3637 {
3638 struct deferred_split *ds_queue;
3639 unsigned long flags;
3640 bool unqueued = false;
3641
3642 WARN_ON_ONCE(folio_ref_count(folio));
3643 WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio));
3644
3645 ds_queue = get_deferred_split_queue(folio);
3646 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3647 if (!list_empty(&folio->_deferred_list)) {
3648 ds_queue->split_queue_len--;
3649 if (folio_test_partially_mapped(folio)) {
3650 folio_clear_partially_mapped(folio);
3651 mod_mthp_stat(folio_order(folio),
3652 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3653 }
3654 list_del_init(&folio->_deferred_list);
3655 unqueued = true;
3656 }
3657 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3658
3659 return unqueued; /* useful for debug warnings */
3660 }
3661
3662 /* partially_mapped=false won't clear PG_partially_mapped folio flag */
deferred_split_folio(struct folio * folio,bool partially_mapped)3663 void deferred_split_folio(struct folio *folio, bool partially_mapped)
3664 {
3665 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3666 #ifdef CONFIG_MEMCG
3667 struct mem_cgroup *memcg = folio_memcg(folio);
3668 #endif
3669 unsigned long flags;
3670
3671 /*
3672 * Order 1 folios have no space for a deferred list, but we also
3673 * won't waste much memory by not adding them to the deferred list.
3674 */
3675 if (folio_order(folio) <= 1)
3676 return;
3677
3678 if (!partially_mapped && !split_underused_thp)
3679 return;
3680
3681 /*
3682 * Exclude swapcache: originally to avoid a corrupt deferred split
3683 * queue. Nowadays that is fully prevented by mem_cgroup_swapout();
3684 * but if page reclaim is already handling the same folio, it is
3685 * unnecessary to handle it again in the shrinker, so excluding
3686 * swapcache here may still be a useful optimization.
3687 */
3688 if (folio_test_swapcache(folio))
3689 return;
3690
3691 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3692 if (partially_mapped) {
3693 if (!folio_test_partially_mapped(folio)) {
3694 folio_set_partially_mapped(folio);
3695 if (folio_test_pmd_mappable(folio))
3696 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3697 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
3698 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
3699
3700 }
3701 } else {
3702 /* partially mapped folios cannot become non-partially mapped */
3703 VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
3704 }
3705 if (list_empty(&folio->_deferred_list)) {
3706 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3707 ds_queue->split_queue_len++;
3708 #ifdef CONFIG_MEMCG
3709 if (memcg)
3710 set_shrinker_bit(memcg, folio_nid(folio),
3711 deferred_split_shrinker->id);
3712 #endif
3713 }
3714 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3715 }
3716
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)3717 static unsigned long deferred_split_count(struct shrinker *shrink,
3718 struct shrink_control *sc)
3719 {
3720 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3721 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3722 bool bypass = false;
3723
3724 trace_android_vh_split_large_folio_bypass(&bypass);
3725 if (bypass)
3726 return 0;
3727 #ifdef CONFIG_MEMCG
3728 if (sc->memcg)
3729 ds_queue = &sc->memcg->deferred_split_queue;
3730 #endif
3731 return READ_ONCE(ds_queue->split_queue_len);
3732 }
3733
thp_underused(struct folio * folio)3734 static bool thp_underused(struct folio *folio)
3735 {
3736 int num_zero_pages = 0, num_filled_pages = 0;
3737 void *kaddr;
3738 int i;
3739
3740 if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
3741 return false;
3742
3743 for (i = 0; i < folio_nr_pages(folio); i++) {
3744 kaddr = kmap_local_folio(folio, i * PAGE_SIZE);
3745 if (!memchr_inv(kaddr, 0, PAGE_SIZE)) {
3746 num_zero_pages++;
3747 if (num_zero_pages > khugepaged_max_ptes_none) {
3748 kunmap_local(kaddr);
3749 return true;
3750 }
3751 } else {
3752 /*
3753 * Another path for early exit once the number
3754 * of non-zero filled pages exceeds threshold.
3755 */
3756 num_filled_pages++;
3757 if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) {
3758 kunmap_local(kaddr);
3759 return false;
3760 }
3761 }
3762 kunmap_local(kaddr);
3763 }
3764 return false;
3765 }
3766
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)3767 static unsigned long deferred_split_scan(struct shrinker *shrink,
3768 struct shrink_control *sc)
3769 {
3770 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3771 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3772 unsigned long flags;
3773 LIST_HEAD(list);
3774 struct folio *folio, *next, *prev = NULL;
3775 int split = 0, removed = 0;
3776
3777 #ifdef CONFIG_MEMCG
3778 if (sc->memcg)
3779 ds_queue = &sc->memcg->deferred_split_queue;
3780 #endif
3781
3782 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3783 /* Take pin on all head pages to avoid freeing them under us */
3784 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3785 _deferred_list) {
3786 if (folio_try_get(folio)) {
3787 list_move(&folio->_deferred_list, &list);
3788 } else {
3789 /* We lost race with folio_put() */
3790 if (folio_test_partially_mapped(folio)) {
3791 folio_clear_partially_mapped(folio);
3792 mod_mthp_stat(folio_order(folio),
3793 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3794 }
3795 list_del_init(&folio->_deferred_list);
3796 ds_queue->split_queue_len--;
3797 }
3798 if (!--sc->nr_to_scan)
3799 break;
3800 }
3801 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3802
3803 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3804 bool did_split = false;
3805 bool underused = false;
3806
3807 if (!folio_test_partially_mapped(folio)) {
3808 underused = thp_underused(folio);
3809 if (!underused)
3810 goto next;
3811 }
3812 if (!folio_trylock(folio))
3813 goto next;
3814 if (!split_folio(folio)) {
3815 did_split = true;
3816 if (underused)
3817 count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
3818 split++;
3819 }
3820 folio_unlock(folio);
3821 next:
3822 /*
3823 * split_folio() removes folio from list on success.
3824 * Only add back to the queue if folio is partially mapped.
3825 * If thp_underused returns false, or if split_folio fails
3826 * in the case it was underused, then consider it used and
3827 * don't add it back to split_queue.
3828 */
3829 if (did_split) {
3830 ; /* folio already removed from list */
3831 } else if (!folio_test_partially_mapped(folio)) {
3832 list_del_init(&folio->_deferred_list);
3833 removed++;
3834 } else {
3835 /*
3836 * That unlocked list_del_init() above would be unsafe,
3837 * unless its folio is separated from any earlier folios
3838 * left on the list (which may be concurrently unqueued)
3839 * by one safe folio with refcount still raised.
3840 */
3841 swap(folio, prev);
3842 }
3843 if (folio)
3844 folio_put(folio);
3845 }
3846
3847 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3848 list_splice_tail(&list, &ds_queue->split_queue);
3849 ds_queue->split_queue_len -= removed;
3850 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3851
3852 if (prev)
3853 folio_put(prev);
3854
3855 /*
3856 * Stop shrinker if we didn't split any page, but the queue is empty.
3857 * This can happen if pages were freed under us.
3858 */
3859 if (!split && list_empty(&ds_queue->split_queue))
3860 return SHRINK_STOP;
3861 return split;
3862 }
3863
3864 #ifdef CONFIG_DEBUG_FS
split_huge_pages_all(void)3865 static void split_huge_pages_all(void)
3866 {
3867 struct zone *zone;
3868 struct page *page;
3869 struct folio *folio;
3870 unsigned long pfn, max_zone_pfn;
3871 unsigned long total = 0, split = 0;
3872
3873 pr_debug("Split all THPs\n");
3874 for_each_zone(zone) {
3875 if (!managed_zone(zone))
3876 continue;
3877 max_zone_pfn = zone_end_pfn(zone);
3878 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3879 int nr_pages;
3880
3881 page = pfn_to_online_page(pfn);
3882 if (!page || PageTail(page))
3883 continue;
3884 folio = page_folio(page);
3885 if (!folio_try_get(folio))
3886 continue;
3887
3888 if (unlikely(page_folio(page) != folio))
3889 goto next;
3890
3891 if (zone != folio_zone(folio))
3892 goto next;
3893
3894 if (!folio_test_large(folio)
3895 || folio_test_hugetlb(folio)
3896 || !folio_test_lru(folio))
3897 goto next;
3898
3899 total++;
3900 folio_lock(folio);
3901 nr_pages = folio_nr_pages(folio);
3902 if (!split_folio(folio))
3903 split++;
3904 pfn += nr_pages - 1;
3905 folio_unlock(folio);
3906 next:
3907 folio_put(folio);
3908 cond_resched();
3909 }
3910 }
3911
3912 pr_debug("%lu of %lu THP split\n", split, total);
3913 }
3914
vma_not_suitable_for_thp_split(struct vm_area_struct * vma)3915 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3916 {
3917 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3918 is_vm_hugetlb_page(vma);
3919 }
3920
split_huge_pages_pid(int pid,unsigned long vaddr_start,unsigned long vaddr_end,unsigned int new_order)3921 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3922 unsigned long vaddr_end, unsigned int new_order)
3923 {
3924 int ret = 0;
3925 struct task_struct *task;
3926 struct mm_struct *mm;
3927 unsigned long total = 0, split = 0;
3928 unsigned long addr;
3929
3930 vaddr_start &= PAGE_MASK;
3931 vaddr_end &= PAGE_MASK;
3932
3933 task = find_get_task_by_vpid(pid);
3934 if (!task) {
3935 ret = -ESRCH;
3936 goto out;
3937 }
3938
3939 /* Find the mm_struct */
3940 mm = get_task_mm(task);
3941 put_task_struct(task);
3942
3943 if (!mm) {
3944 ret = -EINVAL;
3945 goto out;
3946 }
3947
3948 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3949 pid, vaddr_start, vaddr_end);
3950
3951 mmap_read_lock(mm);
3952 /*
3953 * always increase addr by PAGE_SIZE, since we could have a PTE page
3954 * table filled with PTE-mapped THPs, each of which is distinct.
3955 */
3956 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3957 struct vm_area_struct *vma = vma_lookup(mm, addr);
3958 struct folio_walk fw;
3959 struct folio *folio;
3960 struct address_space *mapping;
3961 unsigned int target_order = new_order;
3962
3963 if (!vma)
3964 break;
3965
3966 /* skip special VMA and hugetlb VMA */
3967 if (vma_not_suitable_for_thp_split(vma)) {
3968 addr = vma->vm_end;
3969 continue;
3970 }
3971
3972 folio = folio_walk_start(&fw, vma, addr, 0);
3973 if (!folio)
3974 continue;
3975
3976 if (!is_transparent_hugepage(folio))
3977 goto next;
3978
3979 if (!folio_test_anon(folio)) {
3980 mapping = folio->mapping;
3981 target_order = max(new_order,
3982 mapping_min_folio_order(mapping));
3983 }
3984
3985 if (target_order >= folio_order(folio))
3986 goto next;
3987
3988 total++;
3989 /*
3990 * For folios with private, split_huge_page_to_list_to_order()
3991 * will try to drop it before split and then check if the folio
3992 * can be split or not. So skip the check here.
3993 */
3994 if (!folio_test_private(folio) &&
3995 !can_split_folio(folio, 0, NULL))
3996 goto next;
3997
3998 if (!folio_trylock(folio))
3999 goto next;
4000 folio_get(folio);
4001 folio_walk_end(&fw, vma);
4002
4003 if (!folio_test_anon(folio) && folio->mapping != mapping)
4004 goto unlock;
4005
4006 if (!split_folio_to_order(folio, target_order))
4007 split++;
4008
4009 unlock:
4010
4011 folio_unlock(folio);
4012 folio_put(folio);
4013
4014 cond_resched();
4015 continue;
4016 next:
4017 folio_walk_end(&fw, vma);
4018 cond_resched();
4019 }
4020 mmap_read_unlock(mm);
4021 mmput(mm);
4022
4023 pr_debug("%lu of %lu THP split\n", split, total);
4024
4025 out:
4026 return ret;
4027 }
4028
split_huge_pages_in_file(const char * file_path,pgoff_t off_start,pgoff_t off_end,unsigned int new_order)4029 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
4030 pgoff_t off_end, unsigned int new_order)
4031 {
4032 struct filename *file;
4033 struct file *candidate;
4034 struct address_space *mapping;
4035 int ret = -EINVAL;
4036 pgoff_t index;
4037 int nr_pages = 1;
4038 unsigned long total = 0, split = 0;
4039 unsigned int min_order;
4040 unsigned int target_order;
4041
4042 file = getname_kernel(file_path);
4043 if (IS_ERR(file))
4044 return ret;
4045
4046 candidate = file_open_name(file, O_RDONLY, 0);
4047 if (IS_ERR(candidate))
4048 goto out;
4049
4050 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
4051 file_path, off_start, off_end);
4052
4053 mapping = candidate->f_mapping;
4054 min_order = mapping_min_folio_order(mapping);
4055 target_order = max(new_order, min_order);
4056
4057 for (index = off_start; index < off_end; index += nr_pages) {
4058 struct folio *folio = filemap_get_folio(mapping, index);
4059
4060 nr_pages = 1;
4061 if (IS_ERR(folio))
4062 continue;
4063
4064 if (!folio_test_large(folio))
4065 goto next;
4066
4067 total++;
4068 nr_pages = folio_nr_pages(folio);
4069
4070 if (target_order >= folio_order(folio))
4071 goto next;
4072
4073 if (!folio_trylock(folio))
4074 goto next;
4075
4076 if (folio->mapping != mapping)
4077 goto unlock;
4078
4079 if (!split_folio_to_order(folio, target_order))
4080 split++;
4081
4082 unlock:
4083 folio_unlock(folio);
4084 next:
4085 folio_put(folio);
4086 cond_resched();
4087 }
4088
4089 filp_close(candidate, NULL);
4090 ret = 0;
4091
4092 pr_debug("%lu of %lu file-backed THP split\n", split, total);
4093 out:
4094 putname(file);
4095 return ret;
4096 }
4097
4098 #define MAX_INPUT_BUF_SZ 255
4099
split_huge_pages_write(struct file * file,const char __user * buf,size_t count,loff_t * ppops)4100 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4101 size_t count, loff_t *ppops)
4102 {
4103 static DEFINE_MUTEX(split_debug_mutex);
4104 ssize_t ret;
4105 /*
4106 * hold pid, start_vaddr, end_vaddr, new_order or
4107 * file_path, off_start, off_end, new_order
4108 */
4109 char input_buf[MAX_INPUT_BUF_SZ];
4110 int pid;
4111 unsigned long vaddr_start, vaddr_end;
4112 unsigned int new_order = 0;
4113
4114 ret = mutex_lock_interruptible(&split_debug_mutex);
4115 if (ret)
4116 return ret;
4117
4118 ret = -EFAULT;
4119
4120 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4121 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4122 goto out;
4123
4124 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4125
4126 if (input_buf[0] == '/') {
4127 char *tok;
4128 char *buf = input_buf;
4129 char file_path[MAX_INPUT_BUF_SZ];
4130 pgoff_t off_start = 0, off_end = 0;
4131 size_t input_len = strlen(input_buf);
4132
4133 tok = strsep(&buf, ",");
4134 if (tok) {
4135 strcpy(file_path, tok);
4136 } else {
4137 ret = -EINVAL;
4138 goto out;
4139 }
4140
4141 ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order);
4142 if (ret != 2 && ret != 3) {
4143 ret = -EINVAL;
4144 goto out;
4145 }
4146 ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order);
4147 if (!ret)
4148 ret = input_len;
4149
4150 goto out;
4151 }
4152
4153 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order);
4154 if (ret == 1 && pid == 1) {
4155 split_huge_pages_all();
4156 ret = strlen(input_buf);
4157 goto out;
4158 } else if (ret != 3 && ret != 4) {
4159 ret = -EINVAL;
4160 goto out;
4161 }
4162
4163 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order);
4164 if (!ret)
4165 ret = strlen(input_buf);
4166 out:
4167 mutex_unlock(&split_debug_mutex);
4168 return ret;
4169
4170 }
4171
4172 static const struct file_operations split_huge_pages_fops = {
4173 .owner = THIS_MODULE,
4174 .write = split_huge_pages_write,
4175 };
4176
split_huge_pages_debugfs(void)4177 static int __init split_huge_pages_debugfs(void)
4178 {
4179 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4180 &split_huge_pages_fops);
4181 return 0;
4182 }
4183 late_initcall(split_huge_pages_debugfs);
4184 #endif
4185
4186 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)4187 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4188 struct page *page)
4189 {
4190 struct folio *folio = page_folio(page);
4191 struct vm_area_struct *vma = pvmw->vma;
4192 struct mm_struct *mm = vma->vm_mm;
4193 unsigned long address = pvmw->address;
4194 bool anon_exclusive;
4195 pmd_t pmdval;
4196 swp_entry_t entry;
4197 pmd_t pmdswp;
4198
4199 if (!(pvmw->pmd && !pvmw->pte))
4200 return 0;
4201
4202 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4203 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4204
4205 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4206 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4207 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4208 set_pmd_at(mm, address, pvmw->pmd, pmdval);
4209 return -EBUSY;
4210 }
4211
4212 if (pmd_dirty(pmdval))
4213 folio_mark_dirty(folio);
4214 if (pmd_write(pmdval))
4215 entry = make_writable_migration_entry(page_to_pfn(page));
4216 else if (anon_exclusive)
4217 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4218 else
4219 entry = make_readable_migration_entry(page_to_pfn(page));
4220 if (pmd_young(pmdval))
4221 entry = make_migration_entry_young(entry);
4222 if (pmd_dirty(pmdval))
4223 entry = make_migration_entry_dirty(entry);
4224 pmdswp = swp_entry_to_pmd(entry);
4225 if (pmd_soft_dirty(pmdval))
4226 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4227 if (pmd_uffd_wp(pmdval))
4228 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4229 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4230 folio_remove_rmap_pmd(folio, page, vma);
4231 folio_put(folio);
4232 trace_set_migration_pmd(address, pmd_val(pmdswp));
4233
4234 return 0;
4235 }
4236
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)4237 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4238 {
4239 struct folio *folio = page_folio(new);
4240 struct vm_area_struct *vma = pvmw->vma;
4241 struct mm_struct *mm = vma->vm_mm;
4242 unsigned long address = pvmw->address;
4243 unsigned long haddr = address & HPAGE_PMD_MASK;
4244 pmd_t pmde;
4245 swp_entry_t entry;
4246
4247 if (!(pvmw->pmd && !pvmw->pte))
4248 return;
4249
4250 entry = pmd_to_swp_entry(*pvmw->pmd);
4251 folio_get(folio);
4252 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
4253 if (pmd_swp_soft_dirty(*pvmw->pmd))
4254 pmde = pmd_mksoft_dirty(pmde);
4255 if (is_writable_migration_entry(entry))
4256 pmde = pmd_mkwrite(pmde, vma);
4257 if (pmd_swp_uffd_wp(*pvmw->pmd))
4258 pmde = pmd_mkuffd_wp(pmde);
4259 if (!is_migration_entry_young(entry))
4260 pmde = pmd_mkold(pmde);
4261 /* NOTE: this may contain setting soft-dirty on some archs */
4262 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
4263 pmde = pmd_mkdirty(pmde);
4264
4265 if (folio_test_anon(folio)) {
4266 rmap_t rmap_flags = RMAP_NONE;
4267
4268 if (!is_readable_migration_entry(entry))
4269 rmap_flags |= RMAP_EXCLUSIVE;
4270
4271 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4272 } else {
4273 folio_add_file_rmap_pmd(folio, new, vma);
4274 }
4275 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4276 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4277
4278 /* No need to invalidate - it was non-present before */
4279 update_mmu_cache_pmd(vma, address, pvmw->pmd);
4280 trace_remove_migration_pmd(address, pmd_val(pmde));
4281 }
4282 #endif
4283