1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 #include <linux/memcontrol.h>
4 #include <linux/swap.h>
5 #include <linux/mm_inline.h>
6 #include <linux/pagewalk.h>
7 #include <linux/backing-dev.h>
8 #include <linux/swap_cgroup.h>
9 #include <linux/eventfd.h>
10 #include <linux/poll.h>
11 #include <linux/sort.h>
12 #include <linux/file.h>
13 #include <linux/seq_buf.h>
14
15 #include "internal.h"
16 #include "swap.h"
17 #include "memcontrol-v1.h"
18
19 /*
20 * Cgroups above their limits are maintained in a RB-Tree, independent of
21 * their hierarchy representation
22 */
23
24 struct mem_cgroup_tree_per_node {
25 struct rb_root rb_root;
26 struct rb_node *rb_rightmost;
27 spinlock_t lock;
28 };
29
30 struct mem_cgroup_tree {
31 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
32 };
33
34 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
35
36 /*
37 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
38 * limit reclaim to prevent infinite loops, if they ever occur.
39 */
40 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
41 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
42
43 /* Stuffs for move charges at task migration. */
44 /*
45 * Types of charges to be moved.
46 */
47 #define MOVE_ANON 0x1ULL
48 #define MOVE_FILE 0x2ULL
49 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
50
51 /* "mc" and its members are protected by cgroup_mutex */
52 static struct move_charge_struct {
53 spinlock_t lock; /* for from, to */
54 struct mm_struct *mm;
55 struct mem_cgroup *from;
56 struct mem_cgroup *to;
57 unsigned long flags;
58 unsigned long precharge;
59 unsigned long moved_charge;
60 unsigned long moved_swap;
61 struct task_struct *moving_task; /* a task moving charges */
62 wait_queue_head_t waitq; /* a waitq for other context */
63 } mc = {
64 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
65 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
66 };
67
68 /* for OOM */
69 struct mem_cgroup_eventfd_list {
70 struct list_head list;
71 struct eventfd_ctx *eventfd;
72 };
73
74 /*
75 * cgroup_event represents events which userspace want to receive.
76 */
77 struct mem_cgroup_event {
78 /*
79 * memcg which the event belongs to.
80 */
81 struct mem_cgroup *memcg;
82 /*
83 * eventfd to signal userspace about the event.
84 */
85 struct eventfd_ctx *eventfd;
86 /*
87 * Each of these stored in a list by the cgroup.
88 */
89 struct list_head list;
90 /*
91 * register_event() callback will be used to add new userspace
92 * waiter for changes related to this event. Use eventfd_signal()
93 * on eventfd to send notification to userspace.
94 */
95 int (*register_event)(struct mem_cgroup *memcg,
96 struct eventfd_ctx *eventfd, const char *args);
97 /*
98 * unregister_event() callback will be called when userspace closes
99 * the eventfd or on cgroup removing. This callback must be set,
100 * if you want provide notification functionality.
101 */
102 void (*unregister_event)(struct mem_cgroup *memcg,
103 struct eventfd_ctx *eventfd);
104 /*
105 * All fields below needed to unregister event when
106 * userspace closes eventfd.
107 */
108 poll_table pt;
109 wait_queue_head_t *wqh;
110 wait_queue_entry_t wait;
111 struct work_struct remove;
112 };
113
114 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
115 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
116 #define MEMFILE_ATTR(val) ((val) & 0xffff)
117
118 enum {
119 RES_USAGE,
120 RES_LIMIT,
121 RES_MAX_USAGE,
122 RES_FAILCNT,
123 RES_SOFT_LIMIT,
124 };
125
126 #ifdef CONFIG_LOCKDEP
127 static struct lockdep_map memcg_oom_lock_dep_map = {
128 .name = "memcg_oom_lock",
129 };
130 #endif
131
132 DEFINE_SPINLOCK(memcg_oom_lock);
133
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)134 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
135 struct mem_cgroup_tree_per_node *mctz,
136 unsigned long new_usage_in_excess)
137 {
138 struct rb_node **p = &mctz->rb_root.rb_node;
139 struct rb_node *parent = NULL;
140 struct mem_cgroup_per_node *mz_node;
141 bool rightmost = true;
142
143 if (mz->on_tree)
144 return;
145
146 mz->usage_in_excess = new_usage_in_excess;
147 if (!mz->usage_in_excess)
148 return;
149 while (*p) {
150 parent = *p;
151 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
152 tree_node);
153 if (mz->usage_in_excess < mz_node->usage_in_excess) {
154 p = &(*p)->rb_left;
155 rightmost = false;
156 } else {
157 p = &(*p)->rb_right;
158 }
159 }
160
161 if (rightmost)
162 mctz->rb_rightmost = &mz->tree_node;
163
164 rb_link_node(&mz->tree_node, parent, p);
165 rb_insert_color(&mz->tree_node, &mctz->rb_root);
166 mz->on_tree = true;
167 }
168
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)169 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
170 struct mem_cgroup_tree_per_node *mctz)
171 {
172 if (!mz->on_tree)
173 return;
174
175 if (&mz->tree_node == mctz->rb_rightmost)
176 mctz->rb_rightmost = rb_prev(&mz->tree_node);
177
178 rb_erase(&mz->tree_node, &mctz->rb_root);
179 mz->on_tree = false;
180 }
181
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)182 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
183 struct mem_cgroup_tree_per_node *mctz)
184 {
185 unsigned long flags;
186
187 spin_lock_irqsave(&mctz->lock, flags);
188 __mem_cgroup_remove_exceeded(mz, mctz);
189 spin_unlock_irqrestore(&mctz->lock, flags);
190 }
191
soft_limit_excess(struct mem_cgroup * memcg)192 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
193 {
194 unsigned long nr_pages = page_counter_read(&memcg->memory);
195 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
196 unsigned long excess = 0;
197
198 if (nr_pages > soft_limit)
199 excess = nr_pages - soft_limit;
200
201 return excess;
202 }
203
memcg1_update_tree(struct mem_cgroup * memcg,int nid)204 static void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
205 {
206 unsigned long excess;
207 struct mem_cgroup_per_node *mz;
208 struct mem_cgroup_tree_per_node *mctz;
209
210 if (lru_gen_enabled()) {
211 if (soft_limit_excess(memcg))
212 lru_gen_soft_reclaim(memcg, nid);
213 return;
214 }
215
216 mctz = soft_limit_tree.rb_tree_per_node[nid];
217 if (!mctz)
218 return;
219 /*
220 * Necessary to update all ancestors when hierarchy is used.
221 * because their event counter is not touched.
222 */
223 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
224 mz = memcg->nodeinfo[nid];
225 excess = soft_limit_excess(memcg);
226 /*
227 * We have to update the tree if mz is on RB-tree or
228 * mem is over its softlimit.
229 */
230 if (excess || mz->on_tree) {
231 unsigned long flags;
232
233 spin_lock_irqsave(&mctz->lock, flags);
234 /* if on-tree, remove it */
235 if (mz->on_tree)
236 __mem_cgroup_remove_exceeded(mz, mctz);
237 /*
238 * Insert again. mz->usage_in_excess will be updated.
239 * If excess is 0, no tree ops.
240 */
241 __mem_cgroup_insert_exceeded(mz, mctz, excess);
242 spin_unlock_irqrestore(&mctz->lock, flags);
243 }
244 }
245 }
246
memcg1_remove_from_trees(struct mem_cgroup * memcg)247 void memcg1_remove_from_trees(struct mem_cgroup *memcg)
248 {
249 struct mem_cgroup_tree_per_node *mctz;
250 struct mem_cgroup_per_node *mz;
251 int nid;
252
253 for_each_node(nid) {
254 mz = memcg->nodeinfo[nid];
255 mctz = soft_limit_tree.rb_tree_per_node[nid];
256 if (mctz)
257 mem_cgroup_remove_exceeded(mz, mctz);
258 }
259 }
260
261 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)262 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
263 {
264 struct mem_cgroup_per_node *mz;
265
266 retry:
267 mz = NULL;
268 if (!mctz->rb_rightmost)
269 goto done; /* Nothing to reclaim from */
270
271 mz = rb_entry(mctz->rb_rightmost,
272 struct mem_cgroup_per_node, tree_node);
273 /*
274 * Remove the node now but someone else can add it back,
275 * we will to add it back at the end of reclaim to its correct
276 * position in the tree.
277 */
278 __mem_cgroup_remove_exceeded(mz, mctz);
279 if (!soft_limit_excess(mz->memcg) ||
280 !css_tryget(&mz->memcg->css))
281 goto retry;
282 done:
283 return mz;
284 }
285
286 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)287 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
288 {
289 struct mem_cgroup_per_node *mz;
290
291 spin_lock_irq(&mctz->lock);
292 mz = __mem_cgroup_largest_soft_limit_node(mctz);
293 spin_unlock_irq(&mctz->lock);
294 return mz;
295 }
296
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)297 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
298 pg_data_t *pgdat,
299 gfp_t gfp_mask,
300 unsigned long *total_scanned)
301 {
302 struct mem_cgroup *victim = NULL;
303 int total = 0;
304 int loop = 0;
305 unsigned long excess;
306 unsigned long nr_scanned;
307 struct mem_cgroup_reclaim_cookie reclaim = {
308 .pgdat = pgdat,
309 };
310
311 excess = soft_limit_excess(root_memcg);
312
313 while (1) {
314 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
315 if (!victim) {
316 loop++;
317 if (loop >= 2) {
318 /*
319 * If we have not been able to reclaim
320 * anything, it might because there are
321 * no reclaimable pages under this hierarchy
322 */
323 if (!total)
324 break;
325 /*
326 * We want to do more targeted reclaim.
327 * excess >> 2 is not to excessive so as to
328 * reclaim too much, nor too less that we keep
329 * coming back to reclaim from this cgroup
330 */
331 if (total >= (excess >> 2) ||
332 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
333 break;
334 }
335 continue;
336 }
337 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
338 pgdat, &nr_scanned);
339 *total_scanned += nr_scanned;
340 if (!soft_limit_excess(root_memcg))
341 break;
342 }
343 mem_cgroup_iter_break(root_memcg, victim);
344 return total;
345 }
346
memcg1_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)347 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
348 gfp_t gfp_mask,
349 unsigned long *total_scanned)
350 {
351 unsigned long nr_reclaimed = 0;
352 struct mem_cgroup_per_node *mz, *next_mz = NULL;
353 unsigned long reclaimed;
354 int loop = 0;
355 struct mem_cgroup_tree_per_node *mctz;
356 unsigned long excess;
357
358 if (lru_gen_enabled())
359 return 0;
360
361 if (order > 0)
362 return 0;
363
364 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
365
366 /*
367 * Do not even bother to check the largest node if the root
368 * is empty. Do it lockless to prevent lock bouncing. Races
369 * are acceptable as soft limit is best effort anyway.
370 */
371 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
372 return 0;
373
374 /*
375 * This loop can run a while, specially if mem_cgroup's continuously
376 * keep exceeding their soft limit and putting the system under
377 * pressure
378 */
379 do {
380 if (next_mz)
381 mz = next_mz;
382 else
383 mz = mem_cgroup_largest_soft_limit_node(mctz);
384 if (!mz)
385 break;
386
387 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
388 gfp_mask, total_scanned);
389 nr_reclaimed += reclaimed;
390 spin_lock_irq(&mctz->lock);
391
392 /*
393 * If we failed to reclaim anything from this memory cgroup
394 * it is time to move on to the next cgroup
395 */
396 next_mz = NULL;
397 if (!reclaimed)
398 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
399
400 excess = soft_limit_excess(mz->memcg);
401 /*
402 * One school of thought says that we should not add
403 * back the node to the tree if reclaim returns 0.
404 * But our reclaim could return 0, simply because due
405 * to priority we are exposing a smaller subset of
406 * memory to reclaim from. Consider this as a longer
407 * term TODO.
408 */
409 /* If excess == 0, no tree ops */
410 __mem_cgroup_insert_exceeded(mz, mctz, excess);
411 spin_unlock_irq(&mctz->lock);
412 css_put(&mz->memcg->css);
413 loop++;
414 /*
415 * Could not reclaim anything and there are no more
416 * mem cgroups to try or we seem to be looping without
417 * reclaiming anything.
418 */
419 if (!nr_reclaimed &&
420 (next_mz == NULL ||
421 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
422 break;
423 } while (!nr_reclaimed);
424 if (next_mz)
425 css_put(&next_mz->memcg->css);
426 return nr_reclaimed;
427 }
428
429 /*
430 * A routine for checking "mem" is under move_account() or not.
431 *
432 * Checking a cgroup is mc.from or mc.to or under hierarchy of
433 * moving cgroups. This is for waiting at high-memory pressure
434 * caused by "move".
435 */
mem_cgroup_under_move(struct mem_cgroup * memcg)436 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
437 {
438 struct mem_cgroup *from;
439 struct mem_cgroup *to;
440 bool ret = false;
441 /*
442 * Unlike task_move routines, we access mc.to, mc.from not under
443 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
444 */
445 spin_lock(&mc.lock);
446 from = mc.from;
447 to = mc.to;
448 if (!from)
449 goto unlock;
450
451 ret = mem_cgroup_is_descendant(from, memcg) ||
452 mem_cgroup_is_descendant(to, memcg);
453 unlock:
454 spin_unlock(&mc.lock);
455 return ret;
456 }
457
memcg1_wait_acct_move(struct mem_cgroup * memcg)458 bool memcg1_wait_acct_move(struct mem_cgroup *memcg)
459 {
460 if (mc.moving_task && current != mc.moving_task) {
461 if (mem_cgroup_under_move(memcg)) {
462 DEFINE_WAIT(wait);
463 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
464 /* moving charge context might have finished. */
465 if (mc.moving_task)
466 schedule();
467 finish_wait(&mc.waitq, &wait);
468 return true;
469 }
470 }
471 return false;
472 }
473
474 /**
475 * folio_memcg_lock - Bind a folio to its memcg.
476 * @folio: The folio.
477 *
478 * This function prevents unlocked LRU folios from being moved to
479 * another cgroup.
480 *
481 * It ensures lifetime of the bound memcg. The caller is responsible
482 * for the lifetime of the folio.
483 */
folio_memcg_lock(struct folio * folio)484 void folio_memcg_lock(struct folio *folio)
485 {
486 struct mem_cgroup *memcg;
487 unsigned long flags;
488
489 /*
490 * The RCU lock is held throughout the transaction. The fast
491 * path can get away without acquiring the memcg->move_lock
492 * because page moving starts with an RCU grace period.
493 */
494 rcu_read_lock();
495
496 if (mem_cgroup_disabled())
497 return;
498 again:
499 memcg = folio_memcg(folio);
500 if (unlikely(!memcg))
501 return;
502
503 #ifdef CONFIG_PROVE_LOCKING
504 local_irq_save(flags);
505 might_lock(&memcg->move_lock);
506 local_irq_restore(flags);
507 #endif
508
509 if (atomic_read(&memcg->moving_account) <= 0)
510 return;
511
512 spin_lock_irqsave(&memcg->move_lock, flags);
513 if (memcg != folio_memcg(folio)) {
514 spin_unlock_irqrestore(&memcg->move_lock, flags);
515 goto again;
516 }
517
518 /*
519 * When charge migration first begins, we can have multiple
520 * critical sections holding the fast-path RCU lock and one
521 * holding the slowpath move_lock. Track the task who has the
522 * move_lock for folio_memcg_unlock().
523 */
524 memcg->move_lock_task = current;
525 memcg->move_lock_flags = flags;
526 }
527
__folio_memcg_unlock(struct mem_cgroup * memcg)528 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
529 {
530 if (memcg && memcg->move_lock_task == current) {
531 unsigned long flags = memcg->move_lock_flags;
532
533 memcg->move_lock_task = NULL;
534 memcg->move_lock_flags = 0;
535
536 spin_unlock_irqrestore(&memcg->move_lock, flags);
537 }
538
539 rcu_read_unlock();
540 }
541
542 /**
543 * folio_memcg_unlock - Release the binding between a folio and its memcg.
544 * @folio: The folio.
545 *
546 * This releases the binding created by folio_memcg_lock(). This does
547 * not change the accounting of this folio to its memcg, but it does
548 * permit others to change it.
549 */
folio_memcg_unlock(struct folio * folio)550 void folio_memcg_unlock(struct folio *folio)
551 {
552 __folio_memcg_unlock(folio_memcg(folio));
553 }
554
555 #ifdef CONFIG_SWAP
556 /**
557 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
558 * @entry: swap entry to be moved
559 * @from: mem_cgroup which the entry is moved from
560 * @to: mem_cgroup which the entry is moved to
561 *
562 * It succeeds only when the swap_cgroup's record for this entry is the same
563 * as the mem_cgroup's id of @from.
564 *
565 * Returns 0 on success, -EINVAL on failure.
566 *
567 * The caller must have charged to @to, IOW, called page_counter_charge() about
568 * both res and memsw, and called css_get().
569 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)570 static int mem_cgroup_move_swap_account(swp_entry_t entry,
571 struct mem_cgroup *from, struct mem_cgroup *to)
572 {
573 unsigned short old_id, new_id;
574
575 old_id = mem_cgroup_id(from);
576 new_id = mem_cgroup_id(to);
577
578 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
579 mod_memcg_state(from, MEMCG_SWAP, -1);
580 mod_memcg_state(to, MEMCG_SWAP, 1);
581 return 0;
582 }
583 return -EINVAL;
584 }
585 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)586 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
587 struct mem_cgroup *from, struct mem_cgroup *to)
588 {
589 return -EINVAL;
590 }
591 #endif
592
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)593 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
594 struct cftype *cft)
595 {
596 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
597 }
598
599 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)600 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
601 struct cftype *cft, u64 val)
602 {
603 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
604
605 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
606 "Please report your usecase to linux-mm@kvack.org if you "
607 "depend on this functionality.\n");
608
609 if (val & ~MOVE_MASK)
610 return -EINVAL;
611
612 /*
613 * No kind of locking is needed in here, because ->can_attach() will
614 * check this value once in the beginning of the process, and then carry
615 * on with stale data. This means that changes to this value will only
616 * affect task migrations starting after the change.
617 */
618 memcg->move_charge_at_immigrate = val;
619 return 0;
620 }
621 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)622 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
623 struct cftype *cft, u64 val)
624 {
625 return -ENOSYS;
626 }
627 #endif
628
629 #ifdef CONFIG_MMU
630 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)631 static int mem_cgroup_do_precharge(unsigned long count)
632 {
633 int ret;
634
635 /* Try a single bulk charge without reclaim first, kswapd may wake */
636 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
637 if (!ret) {
638 mc.precharge += count;
639 return ret;
640 }
641
642 /* Try charges one by one with reclaim, but do not retry */
643 while (count--) {
644 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
645 if (ret)
646 return ret;
647 mc.precharge++;
648 cond_resched();
649 }
650 return 0;
651 }
652
653 union mc_target {
654 struct folio *folio;
655 swp_entry_t ent;
656 };
657
658 enum mc_target_type {
659 MC_TARGET_NONE = 0,
660 MC_TARGET_PAGE,
661 MC_TARGET_SWAP,
662 MC_TARGET_DEVICE,
663 };
664
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)665 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
666 unsigned long addr, pte_t ptent)
667 {
668 struct page *page = vm_normal_page(vma, addr, ptent);
669
670 if (!page)
671 return NULL;
672 if (PageAnon(page)) {
673 if (!(mc.flags & MOVE_ANON))
674 return NULL;
675 } else {
676 if (!(mc.flags & MOVE_FILE))
677 return NULL;
678 }
679 get_page(page);
680
681 return page;
682 }
683
684 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)685 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
686 pte_t ptent, swp_entry_t *entry)
687 {
688 struct page *page = NULL;
689 swp_entry_t ent = pte_to_swp_entry(ptent);
690
691 if (!(mc.flags & MOVE_ANON))
692 return NULL;
693
694 /*
695 * Handle device private pages that are not accessible by the CPU, but
696 * stored as special swap entries in the page table.
697 */
698 if (is_device_private_entry(ent)) {
699 page = pfn_swap_entry_to_page(ent);
700 if (!get_page_unless_zero(page))
701 return NULL;
702 return page;
703 }
704
705 if (non_swap_entry(ent))
706 return NULL;
707
708 /*
709 * Because swap_cache_get_folio() updates some statistics counter,
710 * we call find_get_page() with swapper_space directly.
711 */
712 page = find_get_page(swap_address_space(ent), swap_cache_index(ent));
713 entry->val = ent.val;
714
715 return page;
716 }
717 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)718 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
719 pte_t ptent, swp_entry_t *entry)
720 {
721 return NULL;
722 }
723 #endif
724
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)725 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
726 unsigned long addr, pte_t ptent)
727 {
728 unsigned long index;
729 struct folio *folio;
730
731 if (!vma->vm_file) /* anonymous vma */
732 return NULL;
733 if (!(mc.flags & MOVE_FILE))
734 return NULL;
735
736 /* folio is moved even if it's not RSS of this task(page-faulted). */
737 /* shmem/tmpfs may report page out on swap: account for that too. */
738 index = linear_page_index(vma, addr);
739 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
740 if (IS_ERR(folio))
741 return NULL;
742 return folio_file_page(folio, index);
743 }
744
745 static void memcg1_check_events(struct mem_cgroup *memcg, int nid);
746 static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages);
747
748 /**
749 * mem_cgroup_move_account - move account of the folio
750 * @folio: The folio.
751 * @compound: charge the page as compound or small page
752 * @from: mem_cgroup which the folio is moved from.
753 * @to: mem_cgroup which the folio is moved to. @from != @to.
754 *
755 * The folio must be locked and not on the LRU.
756 *
757 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
758 * from old cgroup.
759 */
mem_cgroup_move_account(struct folio * folio,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)760 int mem_cgroup_move_account(struct folio *folio,
761 bool compound,
762 struct mem_cgroup *from,
763 struct mem_cgroup *to)
764 {
765 struct lruvec *from_vec, *to_vec;
766 struct pglist_data *pgdat;
767 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
768 int nid, ret;
769
770 VM_BUG_ON(from == to);
771 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
772 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
773 VM_BUG_ON(compound && !folio_test_large(folio));
774
775 ret = -EINVAL;
776 if (folio_memcg(folio) != from)
777 goto out;
778
779 pgdat = folio_pgdat(folio);
780 from_vec = mem_cgroup_lruvec(from, pgdat);
781 to_vec = mem_cgroup_lruvec(to, pgdat);
782
783 folio_memcg_lock(folio);
784
785 if (folio_test_anon(folio)) {
786 if (folio_mapped(folio)) {
787 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
788 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
789 if (folio_test_pmd_mappable(folio)) {
790 __mod_lruvec_state(from_vec, NR_ANON_THPS,
791 -nr_pages);
792 __mod_lruvec_state(to_vec, NR_ANON_THPS,
793 nr_pages);
794 }
795 }
796 } else {
797 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
798 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
799
800 if (folio_test_swapbacked(folio)) {
801 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
802 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
803 }
804
805 if (folio_mapped(folio)) {
806 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
807 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
808 }
809
810 if (folio_test_dirty(folio)) {
811 struct address_space *mapping = folio_mapping(folio);
812
813 if (mapping_can_writeback(mapping)) {
814 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
815 -nr_pages);
816 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
817 nr_pages);
818 }
819 }
820 }
821
822 #ifdef CONFIG_SWAP
823 if (folio_test_swapcache(folio)) {
824 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
825 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
826 }
827 #endif
828 if (folio_test_writeback(folio)) {
829 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
830 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
831 }
832
833 /*
834 * All state has been migrated, let's switch to the new memcg.
835 *
836 * It is safe to change page's memcg here because the page
837 * is referenced, charged, isolated, and locked: we can't race
838 * with (un)charging, migration, LRU putback, or anything else
839 * that would rely on a stable page's memory cgroup.
840 *
841 * Note that folio_memcg_lock is a memcg lock, not a page lock,
842 * to save space. As soon as we switch page's memory cgroup to a
843 * new memcg that isn't locked, the above state can change
844 * concurrently again. Make sure we're truly done with it.
845 */
846 smp_mb();
847
848 css_get(&to->css);
849 css_put(&from->css);
850
851 /* Warning should never happen, so don't worry about refcount non-0 */
852 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
853 folio->memcg_data = (unsigned long)to;
854
855 __folio_memcg_unlock(from);
856
857 ret = 0;
858 nid = folio_nid(folio);
859
860 local_irq_disable();
861 memcg1_charge_statistics(to, nr_pages);
862 memcg1_check_events(to, nid);
863 memcg1_charge_statistics(from, -nr_pages);
864 memcg1_check_events(from, nid);
865 local_irq_enable();
866 out:
867 return ret;
868 }
869 EXPORT_SYMBOL_GPL(mem_cgroup_move_account);
870
871 /**
872 * get_mctgt_type - get target type of moving charge
873 * @vma: the vma the pte to be checked belongs
874 * @addr: the address corresponding to the pte to be checked
875 * @ptent: the pte to be checked
876 * @target: the pointer the target page or swap ent will be stored(can be NULL)
877 *
878 * Context: Called with pte lock held.
879 * Return:
880 * * MC_TARGET_NONE - If the pte is not a target for move charge.
881 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
882 * move charge. If @target is not NULL, the folio is stored in target->folio
883 * with extra refcnt taken (Caller should release it).
884 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
885 * target for charge migration. If @target is not NULL, the entry is
886 * stored in target->ent.
887 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
888 * thus not on the lru. For now such page is charged like a regular page
889 * would be as it is just special memory taking the place of a regular page.
890 * See Documentations/vm/hmm.txt and include/linux/hmm.h
891 */
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)892 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
893 unsigned long addr, pte_t ptent, union mc_target *target)
894 {
895 struct page *page = NULL;
896 struct folio *folio;
897 enum mc_target_type ret = MC_TARGET_NONE;
898 swp_entry_t ent = { .val = 0 };
899
900 if (pte_present(ptent))
901 page = mc_handle_present_pte(vma, addr, ptent);
902 else if (pte_none_mostly(ptent))
903 /*
904 * PTE markers should be treated as a none pte here, separated
905 * from other swap handling below.
906 */
907 page = mc_handle_file_pte(vma, addr, ptent);
908 else if (is_swap_pte(ptent))
909 page = mc_handle_swap_pte(vma, ptent, &ent);
910
911 if (page)
912 folio = page_folio(page);
913 if (target && page) {
914 if (!folio_trylock(folio)) {
915 folio_put(folio);
916 return ret;
917 }
918 /*
919 * page_mapped() must be stable during the move. This
920 * pte is locked, so if it's present, the page cannot
921 * become unmapped. If it isn't, we have only partial
922 * control over the mapped state: the page lock will
923 * prevent new faults against pagecache and swapcache,
924 * so an unmapped page cannot become mapped. However,
925 * if the page is already mapped elsewhere, it can
926 * unmap, and there is nothing we can do about it.
927 * Alas, skip moving the page in this case.
928 */
929 if (!pte_present(ptent) && page_mapped(page)) {
930 folio_unlock(folio);
931 folio_put(folio);
932 return ret;
933 }
934 }
935
936 if (!page && !ent.val)
937 return ret;
938 if (page) {
939 /*
940 * Do only loose check w/o serialization.
941 * mem_cgroup_move_account() checks the page is valid or
942 * not under LRU exclusion.
943 */
944 if (folio_memcg(folio) == mc.from) {
945 ret = MC_TARGET_PAGE;
946 if (folio_is_device_private(folio) ||
947 folio_is_device_coherent(folio))
948 ret = MC_TARGET_DEVICE;
949 if (target)
950 target->folio = folio;
951 }
952 if (!ret || !target) {
953 if (target)
954 folio_unlock(folio);
955 folio_put(folio);
956 }
957 }
958 /*
959 * There is a swap entry and a page doesn't exist or isn't charged.
960 * But we cannot move a tail-page in a THP.
961 */
962 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
963 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
964 ret = MC_TARGET_SWAP;
965 if (target)
966 target->ent = ent;
967 }
968 return ret;
969 }
970
971 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
972 /*
973 * We don't consider PMD mapped swapping or file mapped pages because THP does
974 * not support them for now.
975 * Caller should make sure that pmd_trans_huge(pmd) is true.
976 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)977 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
978 unsigned long addr, pmd_t pmd, union mc_target *target)
979 {
980 struct page *page = NULL;
981 struct folio *folio;
982 enum mc_target_type ret = MC_TARGET_NONE;
983
984 if (unlikely(is_swap_pmd(pmd))) {
985 VM_BUG_ON(thp_migration_supported() &&
986 !is_pmd_migration_entry(pmd));
987 return ret;
988 }
989 page = pmd_page(pmd);
990 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
991 folio = page_folio(page);
992 if (!(mc.flags & MOVE_ANON))
993 return ret;
994 if (folio_memcg(folio) == mc.from) {
995 ret = MC_TARGET_PAGE;
996 if (target) {
997 folio_get(folio);
998 if (!folio_trylock(folio)) {
999 folio_put(folio);
1000 return MC_TARGET_NONE;
1001 }
1002 target->folio = folio;
1003 }
1004 }
1005 return ret;
1006 }
1007 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)1008 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
1009 unsigned long addr, pmd_t pmd, union mc_target *target)
1010 {
1011 return MC_TARGET_NONE;
1012 }
1013 #endif
1014
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1015 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
1016 unsigned long addr, unsigned long end,
1017 struct mm_walk *walk)
1018 {
1019 struct vm_area_struct *vma = walk->vma;
1020 pte_t *pte;
1021 spinlock_t *ptl;
1022
1023 ptl = pmd_trans_huge_lock(pmd, vma);
1024 if (ptl) {
1025 /*
1026 * Note their can not be MC_TARGET_DEVICE for now as we do not
1027 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
1028 * this might change.
1029 */
1030 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
1031 mc.precharge += HPAGE_PMD_NR;
1032 spin_unlock(ptl);
1033 return 0;
1034 }
1035
1036 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1037 if (!pte)
1038 return 0;
1039 for (; addr != end; pte++, addr += PAGE_SIZE)
1040 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
1041 mc.precharge++; /* increment precharge temporarily */
1042 pte_unmap_unlock(pte - 1, ptl);
1043 cond_resched();
1044
1045 return 0;
1046 }
1047
1048 static const struct mm_walk_ops precharge_walk_ops = {
1049 .pmd_entry = mem_cgroup_count_precharge_pte_range,
1050 .walk_lock = PGWALK_RDLOCK,
1051 };
1052
mem_cgroup_count_precharge(struct mm_struct * mm)1053 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
1054 {
1055 unsigned long precharge;
1056
1057 mmap_read_lock(mm);
1058 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
1059 mmap_read_unlock(mm);
1060
1061 precharge = mc.precharge;
1062 mc.precharge = 0;
1063
1064 return precharge;
1065 }
1066
mem_cgroup_precharge_mc(struct mm_struct * mm)1067 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
1068 {
1069 unsigned long precharge = mem_cgroup_count_precharge(mm);
1070
1071 VM_BUG_ON(mc.moving_task);
1072 mc.moving_task = current;
1073 return mem_cgroup_do_precharge(precharge);
1074 }
1075
1076 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)1077 static void __mem_cgroup_clear_mc(void)
1078 {
1079 struct mem_cgroup *from = mc.from;
1080 struct mem_cgroup *to = mc.to;
1081
1082 /* we must uncharge all the leftover precharges from mc.to */
1083 if (mc.precharge) {
1084 mem_cgroup_cancel_charge(mc.to, mc.precharge);
1085 mc.precharge = 0;
1086 }
1087 /*
1088 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
1089 * we must uncharge here.
1090 */
1091 if (mc.moved_charge) {
1092 mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
1093 mc.moved_charge = 0;
1094 }
1095 /* we must fixup refcnts and charges */
1096 if (mc.moved_swap) {
1097 /* uncharge swap account from the old cgroup */
1098 if (!mem_cgroup_is_root(mc.from))
1099 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
1100
1101 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
1102
1103 /*
1104 * we charged both to->memory and to->memsw, so we
1105 * should uncharge to->memory.
1106 */
1107 if (!mem_cgroup_is_root(mc.to))
1108 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
1109
1110 mc.moved_swap = 0;
1111 }
1112 memcg1_oom_recover(from);
1113 memcg1_oom_recover(to);
1114 wake_up_all(&mc.waitq);
1115 }
1116
mem_cgroup_clear_mc(void)1117 static void mem_cgroup_clear_mc(void)
1118 {
1119 struct mm_struct *mm = mc.mm;
1120
1121 /*
1122 * we must clear moving_task before waking up waiters at the end of
1123 * task migration.
1124 */
1125 mc.moving_task = NULL;
1126 __mem_cgroup_clear_mc();
1127 spin_lock(&mc.lock);
1128 mc.from = NULL;
1129 mc.to = NULL;
1130 mc.mm = NULL;
1131 spin_unlock(&mc.lock);
1132
1133 mmput(mm);
1134 }
1135
memcg1_can_attach(struct cgroup_taskset * tset)1136 int memcg1_can_attach(struct cgroup_taskset *tset)
1137 {
1138 struct cgroup_subsys_state *css;
1139 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
1140 struct mem_cgroup *from;
1141 struct task_struct *leader, *p;
1142 struct mm_struct *mm;
1143 unsigned long move_flags;
1144 int ret = 0;
1145
1146 /* charge immigration isn't supported on the default hierarchy */
1147 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1148 return 0;
1149
1150 /*
1151 * Multi-process migrations only happen on the default hierarchy
1152 * where charge immigration is not used. Perform charge
1153 * immigration if @tset contains a leader and whine if there are
1154 * multiple.
1155 */
1156 p = NULL;
1157 cgroup_taskset_for_each_leader(leader, css, tset) {
1158 WARN_ON_ONCE(p);
1159 p = leader;
1160 memcg = mem_cgroup_from_css(css);
1161 }
1162 if (!p)
1163 return 0;
1164
1165 /*
1166 * We are now committed to this value whatever it is. Changes in this
1167 * tunable will only affect upcoming migrations, not the current one.
1168 * So we need to save it, and keep it going.
1169 */
1170 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
1171 if (!move_flags)
1172 return 0;
1173
1174 from = mem_cgroup_from_task(p);
1175
1176 VM_BUG_ON(from == memcg);
1177
1178 mm = get_task_mm(p);
1179 if (!mm)
1180 return 0;
1181 /* We move charges only when we move a owner of the mm */
1182 if (mm->owner == p) {
1183 VM_BUG_ON(mc.from);
1184 VM_BUG_ON(mc.to);
1185 VM_BUG_ON(mc.precharge);
1186 VM_BUG_ON(mc.moved_charge);
1187 VM_BUG_ON(mc.moved_swap);
1188
1189 spin_lock(&mc.lock);
1190 mc.mm = mm;
1191 mc.from = from;
1192 mc.to = memcg;
1193 mc.flags = move_flags;
1194 spin_unlock(&mc.lock);
1195 /* We set mc.moving_task later */
1196
1197 ret = mem_cgroup_precharge_mc(mm);
1198 if (ret)
1199 mem_cgroup_clear_mc();
1200 } else {
1201 mmput(mm);
1202 }
1203 return ret;
1204 }
1205
memcg1_cancel_attach(struct cgroup_taskset * tset)1206 void memcg1_cancel_attach(struct cgroup_taskset *tset)
1207 {
1208 if (mc.to)
1209 mem_cgroup_clear_mc();
1210 }
1211
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1212 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
1213 unsigned long addr, unsigned long end,
1214 struct mm_walk *walk)
1215 {
1216 int ret = 0;
1217 struct vm_area_struct *vma = walk->vma;
1218 pte_t *pte;
1219 spinlock_t *ptl;
1220 enum mc_target_type target_type;
1221 union mc_target target;
1222 struct folio *folio;
1223 bool tried_split_before = false;
1224
1225 retry_pmd:
1226 ptl = pmd_trans_huge_lock(pmd, vma);
1227 if (ptl) {
1228 if (mc.precharge < HPAGE_PMD_NR) {
1229 spin_unlock(ptl);
1230 return 0;
1231 }
1232 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
1233 if (target_type == MC_TARGET_PAGE) {
1234 folio = target.folio;
1235 /*
1236 * Deferred split queue locking depends on memcg,
1237 * and unqueue is unsafe unless folio refcount is 0:
1238 * split or skip if on the queue? first try to split.
1239 */
1240 if (!list_empty(&folio->_deferred_list)) {
1241 spin_unlock(ptl);
1242 if (!tried_split_before)
1243 split_folio(folio);
1244 folio_unlock(folio);
1245 folio_put(folio);
1246 if (tried_split_before)
1247 return 0;
1248 tried_split_before = true;
1249 goto retry_pmd;
1250 }
1251 /*
1252 * So long as that pmd lock is held, the folio cannot
1253 * be racily added to the _deferred_list, because
1254 * __folio_remove_rmap() will find !partially_mapped.
1255 */
1256 if (folio_isolate_lru(folio)) {
1257 if (!mem_cgroup_move_account(folio, true,
1258 mc.from, mc.to)) {
1259 mc.precharge -= HPAGE_PMD_NR;
1260 mc.moved_charge += HPAGE_PMD_NR;
1261 }
1262 folio_putback_lru(folio);
1263 }
1264 folio_unlock(folio);
1265 folio_put(folio);
1266 } else if (target_type == MC_TARGET_DEVICE) {
1267 folio = target.folio;
1268 if (!mem_cgroup_move_account(folio, true,
1269 mc.from, mc.to)) {
1270 mc.precharge -= HPAGE_PMD_NR;
1271 mc.moved_charge += HPAGE_PMD_NR;
1272 }
1273 folio_unlock(folio);
1274 folio_put(folio);
1275 }
1276 spin_unlock(ptl);
1277 return 0;
1278 }
1279
1280 retry:
1281 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1282 if (!pte)
1283 return 0;
1284 for (; addr != end; addr += PAGE_SIZE) {
1285 pte_t ptent = ptep_get(pte++);
1286 bool device = false;
1287 swp_entry_t ent;
1288
1289 if (!mc.precharge)
1290 break;
1291
1292 switch (get_mctgt_type(vma, addr, ptent, &target)) {
1293 case MC_TARGET_DEVICE:
1294 device = true;
1295 fallthrough;
1296 case MC_TARGET_PAGE:
1297 folio = target.folio;
1298 /*
1299 * We can have a part of the split pmd here. Moving it
1300 * can be done but it would be too convoluted so simply
1301 * ignore such a partial THP and keep it in original
1302 * memcg. There should be somebody mapping the head.
1303 */
1304 if (folio_test_large(folio))
1305 goto put;
1306 if (!device && !folio_isolate_lru(folio))
1307 goto put;
1308 if (!mem_cgroup_move_account(folio, false,
1309 mc.from, mc.to)) {
1310 mc.precharge--;
1311 /* we uncharge from mc.from later. */
1312 mc.moved_charge++;
1313 }
1314 if (!device)
1315 folio_putback_lru(folio);
1316 put: /* get_mctgt_type() gets & locks the page */
1317 folio_unlock(folio);
1318 folio_put(folio);
1319 break;
1320 case MC_TARGET_SWAP:
1321 ent = target.ent;
1322 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
1323 mc.precharge--;
1324 mem_cgroup_id_get_many(mc.to, 1);
1325 /* we fixup other refcnts and charges later. */
1326 mc.moved_swap++;
1327 }
1328 break;
1329 default:
1330 break;
1331 }
1332 }
1333 pte_unmap_unlock(pte - 1, ptl);
1334 cond_resched();
1335
1336 if (addr != end) {
1337 /*
1338 * We have consumed all precharges we got in can_attach().
1339 * We try charge one by one, but don't do any additional
1340 * charges to mc.to if we have failed in charge once in attach()
1341 * phase.
1342 */
1343 ret = mem_cgroup_do_precharge(1);
1344 if (!ret)
1345 goto retry;
1346 }
1347
1348 return ret;
1349 }
1350
1351 static const struct mm_walk_ops charge_walk_ops = {
1352 .pmd_entry = mem_cgroup_move_charge_pte_range,
1353 .walk_lock = PGWALK_RDLOCK,
1354 };
1355
mem_cgroup_move_charge(void)1356 static void mem_cgroup_move_charge(void)
1357 {
1358 lru_add_drain_all();
1359 /*
1360 * Signal folio_memcg_lock() to take the memcg's move_lock
1361 * while we're moving its pages to another memcg. Then wait
1362 * for already started RCU-only updates to finish.
1363 */
1364 atomic_inc(&mc.from->moving_account);
1365 synchronize_rcu();
1366 retry:
1367 if (unlikely(!mmap_read_trylock(mc.mm))) {
1368 /*
1369 * Someone who are holding the mmap_lock might be waiting in
1370 * waitq. So we cancel all extra charges, wake up all waiters,
1371 * and retry. Because we cancel precharges, we might not be able
1372 * to move enough charges, but moving charge is a best-effort
1373 * feature anyway, so it wouldn't be a big problem.
1374 */
1375 __mem_cgroup_clear_mc();
1376 cond_resched();
1377 goto retry;
1378 }
1379 /*
1380 * When we have consumed all precharges and failed in doing
1381 * additional charge, the page walk just aborts.
1382 */
1383 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
1384 mmap_read_unlock(mc.mm);
1385 atomic_dec(&mc.from->moving_account);
1386 }
1387
memcg1_move_task(void)1388 void memcg1_move_task(void)
1389 {
1390 if (mc.to) {
1391 mem_cgroup_move_charge();
1392 mem_cgroup_clear_mc();
1393 }
1394 }
1395
1396 #else /* !CONFIG_MMU */
memcg1_can_attach(struct cgroup_taskset * tset)1397 int memcg1_can_attach(struct cgroup_taskset *tset)
1398 {
1399 return 0;
1400 }
memcg1_cancel_attach(struct cgroup_taskset * tset)1401 void memcg1_cancel_attach(struct cgroup_taskset *tset)
1402 {
1403 }
memcg1_move_task(void)1404 void memcg1_move_task(void)
1405 {
1406 }
1407 #endif
1408
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)1409 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
1410 {
1411 struct mem_cgroup_threshold_ary *t;
1412 unsigned long usage;
1413 int i;
1414
1415 rcu_read_lock();
1416 if (!swap)
1417 t = rcu_dereference(memcg->thresholds.primary);
1418 else
1419 t = rcu_dereference(memcg->memsw_thresholds.primary);
1420
1421 if (!t)
1422 goto unlock;
1423
1424 usage = mem_cgroup_usage(memcg, swap);
1425
1426 /*
1427 * current_threshold points to threshold just below or equal to usage.
1428 * If it's not true, a threshold was crossed after last
1429 * call of __mem_cgroup_threshold().
1430 */
1431 i = t->current_threshold;
1432
1433 /*
1434 * Iterate backward over array of thresholds starting from
1435 * current_threshold and check if a threshold is crossed.
1436 * If none of thresholds below usage is crossed, we read
1437 * only one element of the array here.
1438 */
1439 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
1440 eventfd_signal(t->entries[i].eventfd);
1441
1442 /* i = current_threshold + 1 */
1443 i++;
1444
1445 /*
1446 * Iterate forward over array of thresholds starting from
1447 * current_threshold+1 and check if a threshold is crossed.
1448 * If none of thresholds above usage is crossed, we read
1449 * only one element of the array here.
1450 */
1451 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
1452 eventfd_signal(t->entries[i].eventfd);
1453
1454 /* Update current_threshold */
1455 t->current_threshold = i - 1;
1456 unlock:
1457 rcu_read_unlock();
1458 }
1459
mem_cgroup_threshold(struct mem_cgroup * memcg)1460 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
1461 {
1462 while (memcg) {
1463 __mem_cgroup_threshold(memcg, false);
1464 if (do_memsw_account())
1465 __mem_cgroup_threshold(memcg, true);
1466
1467 memcg = parent_mem_cgroup(memcg);
1468 }
1469 }
1470
1471 /* Cgroup1: threshold notifications & softlimit tree updates */
1472 struct memcg1_events_percpu {
1473 unsigned long nr_page_events;
1474 unsigned long targets[MEM_CGROUP_NTARGETS];
1475 };
1476
memcg1_charge_statistics(struct mem_cgroup * memcg,int nr_pages)1477 static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages)
1478 {
1479 /* pagein of a big page is an event. So, ignore page size */
1480 if (nr_pages > 0)
1481 __count_memcg_events(memcg, PGPGIN, 1);
1482 else {
1483 __count_memcg_events(memcg, PGPGOUT, 1);
1484 nr_pages = -nr_pages; /* for event */
1485 }
1486
1487 __this_cpu_add(memcg->events_percpu->nr_page_events, nr_pages);
1488 }
1489
1490 #define THRESHOLDS_EVENTS_TARGET 128
1491 #define SOFTLIMIT_EVENTS_TARGET 1024
1492
memcg1_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)1493 static bool memcg1_event_ratelimit(struct mem_cgroup *memcg,
1494 enum mem_cgroup_events_target target)
1495 {
1496 unsigned long val, next;
1497
1498 val = __this_cpu_read(memcg->events_percpu->nr_page_events);
1499 next = __this_cpu_read(memcg->events_percpu->targets[target]);
1500 /* from time_after() in jiffies.h */
1501 if ((long)(next - val) < 0) {
1502 switch (target) {
1503 case MEM_CGROUP_TARGET_THRESH:
1504 next = val + THRESHOLDS_EVENTS_TARGET;
1505 break;
1506 case MEM_CGROUP_TARGET_SOFTLIMIT:
1507 next = val + SOFTLIMIT_EVENTS_TARGET;
1508 break;
1509 default:
1510 break;
1511 }
1512 __this_cpu_write(memcg->events_percpu->targets[target], next);
1513 return true;
1514 }
1515 return false;
1516 }
1517
1518 /*
1519 * Check events in order.
1520 *
1521 */
memcg1_check_events(struct mem_cgroup * memcg,int nid)1522 static void memcg1_check_events(struct mem_cgroup *memcg, int nid)
1523 {
1524 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1525 return;
1526
1527 /* threshold event is triggered in finer grain than soft limit */
1528 if (unlikely(memcg1_event_ratelimit(memcg,
1529 MEM_CGROUP_TARGET_THRESH))) {
1530 bool do_softlimit;
1531
1532 do_softlimit = memcg1_event_ratelimit(memcg,
1533 MEM_CGROUP_TARGET_SOFTLIMIT);
1534 mem_cgroup_threshold(memcg);
1535 if (unlikely(do_softlimit))
1536 memcg1_update_tree(memcg, nid);
1537 }
1538 }
1539
memcg1_commit_charge(struct folio * folio,struct mem_cgroup * memcg)1540 void memcg1_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
1541 {
1542 unsigned long flags;
1543
1544 local_irq_save(flags);
1545 memcg1_charge_statistics(memcg, folio_nr_pages(folio));
1546 memcg1_check_events(memcg, folio_nid(folio));
1547 local_irq_restore(flags);
1548 }
1549
memcg1_swapout(struct folio * folio,struct mem_cgroup * memcg)1550 void memcg1_swapout(struct folio *folio, struct mem_cgroup *memcg)
1551 {
1552 /*
1553 * Interrupts should be disabled here because the caller holds the
1554 * i_pages lock which is taken with interrupts-off. It is
1555 * important here to have the interrupts disabled because it is the
1556 * only synchronisation we have for updating the per-CPU variables.
1557 */
1558 preempt_disable_nested();
1559 VM_WARN_ON_IRQS_ENABLED();
1560 memcg1_charge_statistics(memcg, -folio_nr_pages(folio));
1561 preempt_enable_nested();
1562 memcg1_check_events(memcg, folio_nid(folio));
1563 }
1564
memcg1_charge_batch(struct mem_cgroup * memcg,unsigned long nr_memory,int nid)1565 void memcg1_charge_batch(struct mem_cgroup *memcg, unsigned long nr_memory, int nid)
1566 {
1567 unsigned long flags;
1568
1569 local_irq_save(flags);
1570 memcg1_charge_statistics(memcg, nr_memory);
1571 memcg1_check_events(memcg, nid);
1572 local_irq_restore(flags);
1573 }
1574 EXPORT_SYMBOL_GPL(memcg1_charge_batch);
1575
memcg1_uncharge_batch(struct mem_cgroup * memcg,unsigned long pgpgout,unsigned long nr_memory,int nid)1576 void memcg1_uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
1577 unsigned long nr_memory, int nid)
1578 {
1579 unsigned long flags;
1580
1581 local_irq_save(flags);
1582 __count_memcg_events(memcg, PGPGOUT, pgpgout);
1583 __this_cpu_add(memcg->events_percpu->nr_page_events, nr_memory);
1584 memcg1_check_events(memcg, nid);
1585 local_irq_restore(flags);
1586 }
1587
compare_thresholds(const void * a,const void * b)1588 static int compare_thresholds(const void *a, const void *b)
1589 {
1590 const struct mem_cgroup_threshold *_a = a;
1591 const struct mem_cgroup_threshold *_b = b;
1592
1593 if (_a->threshold > _b->threshold)
1594 return 1;
1595
1596 if (_a->threshold < _b->threshold)
1597 return -1;
1598
1599 return 0;
1600 }
1601
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)1602 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
1603 {
1604 struct mem_cgroup_eventfd_list *ev;
1605
1606 spin_lock(&memcg_oom_lock);
1607
1608 list_for_each_entry(ev, &memcg->oom_notify, list)
1609 eventfd_signal(ev->eventfd);
1610
1611 spin_unlock(&memcg_oom_lock);
1612 return 0;
1613 }
1614
mem_cgroup_oom_notify(struct mem_cgroup * memcg)1615 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
1616 {
1617 struct mem_cgroup *iter;
1618
1619 for_each_mem_cgroup_tree(iter, memcg)
1620 mem_cgroup_oom_notify_cb(iter);
1621 }
1622
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)1623 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
1624 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
1625 {
1626 struct mem_cgroup_thresholds *thresholds;
1627 struct mem_cgroup_threshold_ary *new;
1628 unsigned long threshold;
1629 unsigned long usage;
1630 int i, size, ret;
1631
1632 ret = page_counter_memparse(args, "-1", &threshold);
1633 if (ret)
1634 return ret;
1635
1636 mutex_lock(&memcg->thresholds_lock);
1637
1638 if (type == _MEM) {
1639 thresholds = &memcg->thresholds;
1640 usage = mem_cgroup_usage(memcg, false);
1641 } else if (type == _MEMSWAP) {
1642 thresholds = &memcg->memsw_thresholds;
1643 usage = mem_cgroup_usage(memcg, true);
1644 } else
1645 BUG();
1646
1647 /* Check if a threshold crossed before adding a new one */
1648 if (thresholds->primary)
1649 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
1650
1651 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
1652
1653 /* Allocate memory for new array of thresholds */
1654 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
1655 if (!new) {
1656 ret = -ENOMEM;
1657 goto unlock;
1658 }
1659 new->size = size;
1660
1661 /* Copy thresholds (if any) to new array */
1662 if (thresholds->primary)
1663 memcpy(new->entries, thresholds->primary->entries,
1664 flex_array_size(new, entries, size - 1));
1665
1666 /* Add new threshold */
1667 new->entries[size - 1].eventfd = eventfd;
1668 new->entries[size - 1].threshold = threshold;
1669
1670 /* Sort thresholds. Registering of new threshold isn't time-critical */
1671 sort(new->entries, size, sizeof(*new->entries),
1672 compare_thresholds, NULL);
1673
1674 /* Find current threshold */
1675 new->current_threshold = -1;
1676 for (i = 0; i < size; i++) {
1677 if (new->entries[i].threshold <= usage) {
1678 /*
1679 * new->current_threshold will not be used until
1680 * rcu_assign_pointer(), so it's safe to increment
1681 * it here.
1682 */
1683 ++new->current_threshold;
1684 } else
1685 break;
1686 }
1687
1688 /* Free old spare buffer and save old primary buffer as spare */
1689 kfree(thresholds->spare);
1690 thresholds->spare = thresholds->primary;
1691
1692 rcu_assign_pointer(thresholds->primary, new);
1693
1694 /* To be sure that nobody uses thresholds */
1695 synchronize_rcu();
1696
1697 unlock:
1698 mutex_unlock(&memcg->thresholds_lock);
1699
1700 return ret;
1701 }
1702
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)1703 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
1704 struct eventfd_ctx *eventfd, const char *args)
1705 {
1706 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
1707 }
1708
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)1709 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
1710 struct eventfd_ctx *eventfd, const char *args)
1711 {
1712 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
1713 }
1714
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)1715 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
1716 struct eventfd_ctx *eventfd, enum res_type type)
1717 {
1718 struct mem_cgroup_thresholds *thresholds;
1719 struct mem_cgroup_threshold_ary *new;
1720 unsigned long usage;
1721 int i, j, size, entries;
1722
1723 mutex_lock(&memcg->thresholds_lock);
1724
1725 if (type == _MEM) {
1726 thresholds = &memcg->thresholds;
1727 usage = mem_cgroup_usage(memcg, false);
1728 } else if (type == _MEMSWAP) {
1729 thresholds = &memcg->memsw_thresholds;
1730 usage = mem_cgroup_usage(memcg, true);
1731 } else
1732 BUG();
1733
1734 if (!thresholds->primary)
1735 goto unlock;
1736
1737 /* Check if a threshold crossed before removing */
1738 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
1739
1740 /* Calculate new number of threshold */
1741 size = entries = 0;
1742 for (i = 0; i < thresholds->primary->size; i++) {
1743 if (thresholds->primary->entries[i].eventfd != eventfd)
1744 size++;
1745 else
1746 entries++;
1747 }
1748
1749 new = thresholds->spare;
1750
1751 /* If no items related to eventfd have been cleared, nothing to do */
1752 if (!entries)
1753 goto unlock;
1754
1755 /* Set thresholds array to NULL if we don't have thresholds */
1756 if (!size) {
1757 kfree(new);
1758 new = NULL;
1759 goto swap_buffers;
1760 }
1761
1762 new->size = size;
1763
1764 /* Copy thresholds and find current threshold */
1765 new->current_threshold = -1;
1766 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
1767 if (thresholds->primary->entries[i].eventfd == eventfd)
1768 continue;
1769
1770 new->entries[j] = thresholds->primary->entries[i];
1771 if (new->entries[j].threshold <= usage) {
1772 /*
1773 * new->current_threshold will not be used
1774 * until rcu_assign_pointer(), so it's safe to increment
1775 * it here.
1776 */
1777 ++new->current_threshold;
1778 }
1779 j++;
1780 }
1781
1782 swap_buffers:
1783 /* Swap primary and spare array */
1784 thresholds->spare = thresholds->primary;
1785
1786 rcu_assign_pointer(thresholds->primary, new);
1787
1788 /* To be sure that nobody uses thresholds */
1789 synchronize_rcu();
1790
1791 /* If all events are unregistered, free the spare array */
1792 if (!new) {
1793 kfree(thresholds->spare);
1794 thresholds->spare = NULL;
1795 }
1796 unlock:
1797 mutex_unlock(&memcg->thresholds_lock);
1798 }
1799
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)1800 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
1801 struct eventfd_ctx *eventfd)
1802 {
1803 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
1804 }
1805
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)1806 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
1807 struct eventfd_ctx *eventfd)
1808 {
1809 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
1810 }
1811
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)1812 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
1813 struct eventfd_ctx *eventfd, const char *args)
1814 {
1815 struct mem_cgroup_eventfd_list *event;
1816
1817 event = kmalloc(sizeof(*event), GFP_KERNEL);
1818 if (!event)
1819 return -ENOMEM;
1820
1821 spin_lock(&memcg_oom_lock);
1822
1823 event->eventfd = eventfd;
1824 list_add(&event->list, &memcg->oom_notify);
1825
1826 /* already in OOM ? */
1827 if (memcg->under_oom)
1828 eventfd_signal(eventfd);
1829 spin_unlock(&memcg_oom_lock);
1830
1831 return 0;
1832 }
1833
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)1834 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
1835 struct eventfd_ctx *eventfd)
1836 {
1837 struct mem_cgroup_eventfd_list *ev, *tmp;
1838
1839 spin_lock(&memcg_oom_lock);
1840
1841 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
1842 if (ev->eventfd == eventfd) {
1843 list_del(&ev->list);
1844 kfree(ev);
1845 }
1846 }
1847
1848 spin_unlock(&memcg_oom_lock);
1849 }
1850
1851 /*
1852 * DO NOT USE IN NEW FILES.
1853 *
1854 * "cgroup.event_control" implementation.
1855 *
1856 * This is way over-engineered. It tries to support fully configurable
1857 * events for each user. Such level of flexibility is completely
1858 * unnecessary especially in the light of the planned unified hierarchy.
1859 *
1860 * Please deprecate this and replace with something simpler if at all
1861 * possible.
1862 */
1863
1864 /*
1865 * Unregister event and free resources.
1866 *
1867 * Gets called from workqueue.
1868 */
memcg_event_remove(struct work_struct * work)1869 static void memcg_event_remove(struct work_struct *work)
1870 {
1871 struct mem_cgroup_event *event =
1872 container_of(work, struct mem_cgroup_event, remove);
1873 struct mem_cgroup *memcg = event->memcg;
1874
1875 remove_wait_queue(event->wqh, &event->wait);
1876
1877 event->unregister_event(memcg, event->eventfd);
1878
1879 /* Notify userspace the event is going away. */
1880 eventfd_signal(event->eventfd);
1881
1882 eventfd_ctx_put(event->eventfd);
1883 kfree(event);
1884 css_put(&memcg->css);
1885 }
1886
1887 /*
1888 * Gets called on EPOLLHUP on eventfd when user closes it.
1889 *
1890 * Called with wqh->lock held and interrupts disabled.
1891 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1892 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
1893 int sync, void *key)
1894 {
1895 struct mem_cgroup_event *event =
1896 container_of(wait, struct mem_cgroup_event, wait);
1897 struct mem_cgroup *memcg = event->memcg;
1898 __poll_t flags = key_to_poll(key);
1899
1900 if (flags & EPOLLHUP) {
1901 /*
1902 * If the event has been detached at cgroup removal, we
1903 * can simply return knowing the other side will cleanup
1904 * for us.
1905 *
1906 * We can't race against event freeing since the other
1907 * side will require wqh->lock via remove_wait_queue(),
1908 * which we hold.
1909 */
1910 spin_lock(&memcg->event_list_lock);
1911 if (!list_empty(&event->list)) {
1912 list_del_init(&event->list);
1913 /*
1914 * We are in atomic context, but cgroup_event_remove()
1915 * may sleep, so we have to call it in workqueue.
1916 */
1917 schedule_work(&event->remove);
1918 }
1919 spin_unlock(&memcg->event_list_lock);
1920 }
1921
1922 return 0;
1923 }
1924
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)1925 static void memcg_event_ptable_queue_proc(struct file *file,
1926 wait_queue_head_t *wqh, poll_table *pt)
1927 {
1928 struct mem_cgroup_event *event =
1929 container_of(pt, struct mem_cgroup_event, pt);
1930
1931 event->wqh = wqh;
1932 add_wait_queue(wqh, &event->wait);
1933 }
1934
1935 /*
1936 * DO NOT USE IN NEW FILES.
1937 *
1938 * Parse input and register new cgroup event handler.
1939 *
1940 * Input must be in format '<event_fd> <control_fd> <args>'.
1941 * Interpretation of args is defined by control file implementation.
1942 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1943 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
1944 char *buf, size_t nbytes, loff_t off)
1945 {
1946 struct cgroup_subsys_state *css = of_css(of);
1947 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1948 struct mem_cgroup_event *event;
1949 struct cgroup_subsys_state *cfile_css;
1950 unsigned int efd, cfd;
1951 struct fd efile;
1952 struct fd cfile;
1953 struct dentry *cdentry;
1954 const char *name;
1955 char *endp;
1956 int ret;
1957
1958 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1959 return -EOPNOTSUPP;
1960
1961 buf = strstrip(buf);
1962
1963 efd = simple_strtoul(buf, &endp, 10);
1964 if (*endp != ' ')
1965 return -EINVAL;
1966 buf = endp + 1;
1967
1968 cfd = simple_strtoul(buf, &endp, 10);
1969 if (*endp == '\0')
1970 buf = endp;
1971 else if (*endp == ' ')
1972 buf = endp + 1;
1973 else
1974 return -EINVAL;
1975
1976 event = kzalloc(sizeof(*event), GFP_KERNEL);
1977 if (!event)
1978 return -ENOMEM;
1979
1980 event->memcg = memcg;
1981 INIT_LIST_HEAD(&event->list);
1982 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
1983 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
1984 INIT_WORK(&event->remove, memcg_event_remove);
1985
1986 efile = fdget(efd);
1987 if (!fd_file(efile)) {
1988 ret = -EBADF;
1989 goto out_kfree;
1990 }
1991
1992 event->eventfd = eventfd_ctx_fileget(fd_file(efile));
1993 if (IS_ERR(event->eventfd)) {
1994 ret = PTR_ERR(event->eventfd);
1995 goto out_put_efile;
1996 }
1997
1998 cfile = fdget(cfd);
1999 if (!fd_file(cfile)) {
2000 ret = -EBADF;
2001 goto out_put_eventfd;
2002 }
2003
2004 /* the process need read permission on control file */
2005 /* AV: shouldn't we check that it's been opened for read instead? */
2006 ret = file_permission(fd_file(cfile), MAY_READ);
2007 if (ret < 0)
2008 goto out_put_cfile;
2009
2010 /*
2011 * The control file must be a regular cgroup1 file. As a regular cgroup
2012 * file can't be renamed, it's safe to access its name afterwards.
2013 */
2014 cdentry = fd_file(cfile)->f_path.dentry;
2015 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
2016 ret = -EINVAL;
2017 goto out_put_cfile;
2018 }
2019
2020 /*
2021 * Determine the event callbacks and set them in @event. This used
2022 * to be done via struct cftype but cgroup core no longer knows
2023 * about these events. The following is crude but the whole thing
2024 * is for compatibility anyway.
2025 *
2026 * DO NOT ADD NEW FILES.
2027 */
2028 name = cdentry->d_name.name;
2029
2030 if (!strcmp(name, "memory.usage_in_bytes")) {
2031 event->register_event = mem_cgroup_usage_register_event;
2032 event->unregister_event = mem_cgroup_usage_unregister_event;
2033 } else if (!strcmp(name, "memory.oom_control")) {
2034 pr_warn_once("oom_control is deprecated and will be removed. "
2035 "Please report your usecase to linux-mm-@kvack.org"
2036 " if you depend on this functionality. \n");
2037 event->register_event = mem_cgroup_oom_register_event;
2038 event->unregister_event = mem_cgroup_oom_unregister_event;
2039 } else if (!strcmp(name, "memory.pressure_level")) {
2040 pr_warn_once("pressure_level is deprecated and will be removed. "
2041 "Please report your usecase to linux-mm-@kvack.org "
2042 "if you depend on this functionality. \n");
2043 event->register_event = vmpressure_register_event;
2044 event->unregister_event = vmpressure_unregister_event;
2045 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
2046 event->register_event = memsw_cgroup_usage_register_event;
2047 event->unregister_event = memsw_cgroup_usage_unregister_event;
2048 } else {
2049 ret = -EINVAL;
2050 goto out_put_cfile;
2051 }
2052
2053 /*
2054 * Verify @cfile should belong to @css. Also, remaining events are
2055 * automatically removed on cgroup destruction but the removal is
2056 * asynchronous, so take an extra ref on @css.
2057 */
2058 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
2059 &memory_cgrp_subsys);
2060 ret = -EINVAL;
2061 if (IS_ERR(cfile_css))
2062 goto out_put_cfile;
2063 if (cfile_css != css) {
2064 css_put(cfile_css);
2065 goto out_put_cfile;
2066 }
2067
2068 ret = event->register_event(memcg, event->eventfd, buf);
2069 if (ret)
2070 goto out_put_css;
2071
2072 vfs_poll(fd_file(efile), &event->pt);
2073
2074 spin_lock_irq(&memcg->event_list_lock);
2075 list_add(&event->list, &memcg->event_list);
2076 spin_unlock_irq(&memcg->event_list_lock);
2077
2078 fdput(cfile);
2079 fdput(efile);
2080
2081 return nbytes;
2082
2083 out_put_css:
2084 css_put(css);
2085 out_put_cfile:
2086 fdput(cfile);
2087 out_put_eventfd:
2088 eventfd_ctx_put(event->eventfd);
2089 out_put_efile:
2090 fdput(efile);
2091 out_kfree:
2092 kfree(event);
2093
2094 return ret;
2095 }
2096
memcg1_memcg_init(struct mem_cgroup * memcg)2097 void memcg1_memcg_init(struct mem_cgroup *memcg)
2098 {
2099 INIT_LIST_HEAD(&memcg->oom_notify);
2100 mutex_init(&memcg->thresholds_lock);
2101 spin_lock_init(&memcg->move_lock);
2102 INIT_LIST_HEAD(&memcg->event_list);
2103 spin_lock_init(&memcg->event_list_lock);
2104 }
2105
memcg1_css_offline(struct mem_cgroup * memcg)2106 void memcg1_css_offline(struct mem_cgroup *memcg)
2107 {
2108 struct mem_cgroup_event *event, *tmp;
2109
2110 /*
2111 * Unregister events and notify userspace.
2112 * Notify userspace about cgroup removing only after rmdir of cgroup
2113 * directory to avoid race between userspace and kernelspace.
2114 */
2115 spin_lock_irq(&memcg->event_list_lock);
2116 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
2117 list_del_init(&event->list);
2118 schedule_work(&event->remove);
2119 }
2120 spin_unlock_irq(&memcg->event_list_lock);
2121 }
2122
2123 /*
2124 * Check OOM-Killer is already running under our hierarchy.
2125 * If someone is running, return false.
2126 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)2127 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2128 {
2129 struct mem_cgroup *iter, *failed = NULL;
2130
2131 spin_lock(&memcg_oom_lock);
2132
2133 for_each_mem_cgroup_tree(iter, memcg) {
2134 if (iter->oom_lock) {
2135 /*
2136 * this subtree of our hierarchy is already locked
2137 * so we cannot give a lock.
2138 */
2139 failed = iter;
2140 mem_cgroup_iter_break(memcg, iter);
2141 break;
2142 } else
2143 iter->oom_lock = true;
2144 }
2145
2146 if (failed) {
2147 /*
2148 * OK, we failed to lock the whole subtree so we have
2149 * to clean up what we set up to the failing subtree
2150 */
2151 for_each_mem_cgroup_tree(iter, memcg) {
2152 if (iter == failed) {
2153 mem_cgroup_iter_break(memcg, iter);
2154 break;
2155 }
2156 iter->oom_lock = false;
2157 }
2158 } else
2159 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2160
2161 spin_unlock(&memcg_oom_lock);
2162
2163 return !failed;
2164 }
2165
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)2166 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2167 {
2168 struct mem_cgroup *iter;
2169
2170 spin_lock(&memcg_oom_lock);
2171 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
2172 for_each_mem_cgroup_tree(iter, memcg)
2173 iter->oom_lock = false;
2174 spin_unlock(&memcg_oom_lock);
2175 }
2176
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)2177 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2178 {
2179 struct mem_cgroup *iter;
2180
2181 spin_lock(&memcg_oom_lock);
2182 for_each_mem_cgroup_tree(iter, memcg)
2183 iter->under_oom++;
2184 spin_unlock(&memcg_oom_lock);
2185 }
2186
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)2187 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2188 {
2189 struct mem_cgroup *iter;
2190
2191 /*
2192 * Be careful about under_oom underflows because a child memcg
2193 * could have been added after mem_cgroup_mark_under_oom.
2194 */
2195 spin_lock(&memcg_oom_lock);
2196 for_each_mem_cgroup_tree(iter, memcg)
2197 if (iter->under_oom > 0)
2198 iter->under_oom--;
2199 spin_unlock(&memcg_oom_lock);
2200 }
2201
2202 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2203
2204 struct oom_wait_info {
2205 struct mem_cgroup *memcg;
2206 wait_queue_entry_t wait;
2207 };
2208
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)2209 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
2210 unsigned mode, int sync, void *arg)
2211 {
2212 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2213 struct mem_cgroup *oom_wait_memcg;
2214 struct oom_wait_info *oom_wait_info;
2215
2216 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2217 oom_wait_memcg = oom_wait_info->memcg;
2218
2219 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
2220 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
2221 return 0;
2222 return autoremove_wake_function(wait, mode, sync, arg);
2223 }
2224
memcg1_oom_recover(struct mem_cgroup * memcg)2225 void memcg1_oom_recover(struct mem_cgroup *memcg)
2226 {
2227 /*
2228 * For the following lockless ->under_oom test, the only required
2229 * guarantee is that it must see the state asserted by an OOM when
2230 * this function is called as a result of userland actions
2231 * triggered by the notification of the OOM. This is trivially
2232 * achieved by invoking mem_cgroup_mark_under_oom() before
2233 * triggering notification.
2234 */
2235 if (memcg && memcg->under_oom)
2236 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2237 }
2238
2239 /**
2240 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2241 * @handle: actually kill/wait or just clean up the OOM state
2242 *
2243 * This has to be called at the end of a page fault if the memcg OOM
2244 * handler was enabled.
2245 *
2246 * Memcg supports userspace OOM handling where failed allocations must
2247 * sleep on a waitqueue until the userspace task resolves the
2248 * situation. Sleeping directly in the charge context with all kinds
2249 * of locks held is not a good idea, instead we remember an OOM state
2250 * in the task and mem_cgroup_oom_synchronize() has to be called at
2251 * the end of the page fault to complete the OOM handling.
2252 *
2253 * Returns %true if an ongoing memcg OOM situation was detected and
2254 * completed, %false otherwise.
2255 */
mem_cgroup_oom_synchronize(bool handle)2256 bool mem_cgroup_oom_synchronize(bool handle)
2257 {
2258 struct mem_cgroup *memcg = current->memcg_in_oom;
2259 struct oom_wait_info owait;
2260 bool locked;
2261
2262 /* OOM is global, do not handle */
2263 if (!memcg)
2264 return false;
2265
2266 if (!handle)
2267 goto cleanup;
2268
2269 owait.memcg = memcg;
2270 owait.wait.flags = 0;
2271 owait.wait.func = memcg_oom_wake_function;
2272 owait.wait.private = current;
2273 INIT_LIST_HEAD(&owait.wait.entry);
2274
2275 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2276 mem_cgroup_mark_under_oom(memcg);
2277
2278 locked = mem_cgroup_oom_trylock(memcg);
2279
2280 if (locked)
2281 mem_cgroup_oom_notify(memcg);
2282
2283 schedule();
2284 mem_cgroup_unmark_under_oom(memcg);
2285 finish_wait(&memcg_oom_waitq, &owait.wait);
2286
2287 if (locked)
2288 mem_cgroup_oom_unlock(memcg);
2289 cleanup:
2290 current->memcg_in_oom = NULL;
2291 css_put(&memcg->css);
2292 return true;
2293 }
2294
2295
memcg1_oom_prepare(struct mem_cgroup * memcg,bool * locked)2296 bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked)
2297 {
2298 /*
2299 * We are in the middle of the charge context here, so we
2300 * don't want to block when potentially sitting on a callstack
2301 * that holds all kinds of filesystem and mm locks.
2302 *
2303 * cgroup1 allows disabling the OOM killer and waiting for outside
2304 * handling until the charge can succeed; remember the context and put
2305 * the task to sleep at the end of the page fault when all locks are
2306 * released.
2307 *
2308 * On the other hand, in-kernel OOM killer allows for an async victim
2309 * memory reclaim (oom_reaper) and that means that we are not solely
2310 * relying on the oom victim to make a forward progress and we can
2311 * invoke the oom killer here.
2312 *
2313 * Please note that mem_cgroup_out_of_memory might fail to find a
2314 * victim and then we have to bail out from the charge path.
2315 */
2316 if (READ_ONCE(memcg->oom_kill_disable)) {
2317 if (current->in_user_fault) {
2318 css_get(&memcg->css);
2319 current->memcg_in_oom = memcg;
2320 }
2321 return false;
2322 }
2323
2324 mem_cgroup_mark_under_oom(memcg);
2325
2326 *locked = mem_cgroup_oom_trylock(memcg);
2327
2328 if (*locked)
2329 mem_cgroup_oom_notify(memcg);
2330
2331 mem_cgroup_unmark_under_oom(memcg);
2332
2333 return true;
2334 }
2335
memcg1_oom_finish(struct mem_cgroup * memcg,bool locked)2336 void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked)
2337 {
2338 if (locked)
2339 mem_cgroup_oom_unlock(memcg);
2340 }
2341
2342 static DEFINE_MUTEX(memcg_max_mutex);
2343
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)2344 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2345 unsigned long max, bool memsw)
2346 {
2347 bool enlarge = false;
2348 bool drained = false;
2349 int ret;
2350 bool limits_invariant;
2351 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2352
2353 do {
2354 if (signal_pending(current)) {
2355 ret = -EINTR;
2356 break;
2357 }
2358
2359 mutex_lock(&memcg_max_mutex);
2360 /*
2361 * Make sure that the new limit (memsw or memory limit) doesn't
2362 * break our basic invariant rule memory.max <= memsw.max.
2363 */
2364 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
2365 max <= memcg->memsw.max;
2366 if (!limits_invariant) {
2367 mutex_unlock(&memcg_max_mutex);
2368 ret = -EINVAL;
2369 break;
2370 }
2371 if (max > counter->max)
2372 enlarge = true;
2373 ret = page_counter_set_max(counter, max);
2374 mutex_unlock(&memcg_max_mutex);
2375
2376 if (!ret)
2377 break;
2378
2379 if (!drained) {
2380 drain_all_stock(memcg);
2381 drained = true;
2382 continue;
2383 }
2384
2385 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
2386 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) {
2387 ret = -EBUSY;
2388 break;
2389 }
2390 } while (true);
2391
2392 if (!ret && enlarge)
2393 memcg1_oom_recover(memcg);
2394
2395 return ret;
2396 }
2397
2398 /*
2399 * Reclaims as many pages from the given memcg as possible.
2400 *
2401 * Caller is responsible for holding css reference for memcg.
2402 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)2403 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2404 {
2405 int nr_retries = MAX_RECLAIM_RETRIES;
2406
2407 /* we call try-to-free pages for make this cgroup empty */
2408 lru_add_drain_all();
2409
2410 drain_all_stock(memcg);
2411
2412 /* try to free all pages in this cgroup */
2413 while (nr_retries && page_counter_read(&memcg->memory)) {
2414 if (signal_pending(current))
2415 return -EINTR;
2416
2417 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
2418 MEMCG_RECLAIM_MAY_SWAP, NULL))
2419 nr_retries--;
2420 }
2421
2422 return 0;
2423 }
2424
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2425 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2426 char *buf, size_t nbytes,
2427 loff_t off)
2428 {
2429 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2430
2431 if (mem_cgroup_is_root(memcg))
2432 return -EINVAL;
2433 return mem_cgroup_force_empty(memcg) ?: nbytes;
2434 }
2435
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)2436 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2437 struct cftype *cft)
2438 {
2439 return 1;
2440 }
2441
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2442 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2443 struct cftype *cft, u64 val)
2444 {
2445 if (val == 1)
2446 return 0;
2447
2448 pr_warn_once("Non-hierarchical mode is deprecated. "
2449 "Please report your usecase to linux-mm@kvack.org if you "
2450 "depend on this functionality.\n");
2451
2452 return -EINVAL;
2453 }
2454
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2455 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2456 struct cftype *cft)
2457 {
2458 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2459 struct page_counter *counter;
2460
2461 switch (MEMFILE_TYPE(cft->private)) {
2462 case _MEM:
2463 counter = &memcg->memory;
2464 break;
2465 case _MEMSWAP:
2466 counter = &memcg->memsw;
2467 break;
2468 case _KMEM:
2469 counter = &memcg->kmem;
2470 break;
2471 case _TCP:
2472 counter = &memcg->tcpmem;
2473 break;
2474 default:
2475 BUG();
2476 }
2477
2478 switch (MEMFILE_ATTR(cft->private)) {
2479 case RES_USAGE:
2480 if (counter == &memcg->memory)
2481 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2482 if (counter == &memcg->memsw)
2483 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2484 return (u64)page_counter_read(counter) * PAGE_SIZE;
2485 case RES_LIMIT:
2486 return (u64)counter->max * PAGE_SIZE;
2487 case RES_MAX_USAGE:
2488 return (u64)counter->watermark * PAGE_SIZE;
2489 case RES_FAILCNT:
2490 return counter->failcnt;
2491 case RES_SOFT_LIMIT:
2492 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
2493 default:
2494 BUG();
2495 }
2496 }
2497
2498 /*
2499 * This function doesn't do anything useful. Its only job is to provide a read
2500 * handler for a file so that cgroup_file_mode() will add read permissions.
2501 */
mem_cgroup_dummy_seq_show(__always_unused struct seq_file * m,__always_unused void * v)2502 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
2503 __always_unused void *v)
2504 {
2505 return -EINVAL;
2506 }
2507
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)2508 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
2509 {
2510 int ret;
2511
2512 mutex_lock(&memcg_max_mutex);
2513
2514 ret = page_counter_set_max(&memcg->tcpmem, max);
2515 if (ret)
2516 goto out;
2517
2518 if (!memcg->tcpmem_active) {
2519 /*
2520 * The active flag needs to be written after the static_key
2521 * update. This is what guarantees that the socket activation
2522 * function is the last one to run. See mem_cgroup_sk_alloc()
2523 * for details, and note that we don't mark any socket as
2524 * belonging to this memcg until that flag is up.
2525 *
2526 * We need to do this, because static_keys will span multiple
2527 * sites, but we can't control their order. If we mark a socket
2528 * as accounted, but the accounting functions are not patched in
2529 * yet, we'll lose accounting.
2530 *
2531 * We never race with the readers in mem_cgroup_sk_alloc(),
2532 * because when this value change, the code to process it is not
2533 * patched in yet.
2534 */
2535 static_branch_inc(&memcg_sockets_enabled_key);
2536 memcg->tcpmem_active = true;
2537 }
2538 out:
2539 mutex_unlock(&memcg_max_mutex);
2540 return ret;
2541 }
2542
2543 /*
2544 * The user of this function is...
2545 * RES_LIMIT.
2546 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2547 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2548 char *buf, size_t nbytes, loff_t off)
2549 {
2550 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2551 unsigned long nr_pages;
2552 int ret;
2553
2554 buf = strstrip(buf);
2555 ret = page_counter_memparse(buf, "-1", &nr_pages);
2556 if (ret)
2557 return ret;
2558
2559 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2560 case RES_LIMIT:
2561 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2562 ret = -EINVAL;
2563 break;
2564 }
2565 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2566 case _MEM:
2567 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
2568 break;
2569 case _MEMSWAP:
2570 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
2571 break;
2572 case _KMEM:
2573 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
2574 "Writing any value to this file has no effect. "
2575 "Please report your usecase to linux-mm@kvack.org if you "
2576 "depend on this functionality.\n");
2577 ret = 0;
2578 break;
2579 case _TCP:
2580 pr_warn_once("kmem.tcp.limit_in_bytes is deprecated and will be removed. "
2581 "Please report your usecase to linux-mm@kvack.org if you "
2582 "depend on this functionality.\n");
2583 ret = memcg_update_tcp_max(memcg, nr_pages);
2584 break;
2585 }
2586 break;
2587 case RES_SOFT_LIMIT:
2588 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2589 ret = -EOPNOTSUPP;
2590 } else {
2591 pr_warn_once("soft_limit_in_bytes is deprecated and will be removed. "
2592 "Please report your usecase to linux-mm@kvack.org if you "
2593 "depend on this functionality.\n");
2594 WRITE_ONCE(memcg->soft_limit, nr_pages);
2595 ret = 0;
2596 }
2597 break;
2598 }
2599 return ret ?: nbytes;
2600 }
2601
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2602 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2603 size_t nbytes, loff_t off)
2604 {
2605 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2606 struct page_counter *counter;
2607
2608 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2609 case _MEM:
2610 counter = &memcg->memory;
2611 break;
2612 case _MEMSWAP:
2613 counter = &memcg->memsw;
2614 break;
2615 case _KMEM:
2616 counter = &memcg->kmem;
2617 break;
2618 case _TCP:
2619 counter = &memcg->tcpmem;
2620 break;
2621 default:
2622 BUG();
2623 }
2624
2625 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2626 case RES_MAX_USAGE:
2627 page_counter_reset_watermark(counter);
2628 break;
2629 case RES_FAILCNT:
2630 counter->failcnt = 0;
2631 break;
2632 default:
2633 BUG();
2634 }
2635
2636 return nbytes;
2637 }
2638
2639 #ifdef CONFIG_NUMA
2640
2641 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
2642 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
2643 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
2644
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)2645 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
2646 int nid, unsigned int lru_mask, bool tree)
2647 {
2648 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
2649 unsigned long nr = 0;
2650 enum lru_list lru;
2651
2652 VM_BUG_ON((unsigned)nid >= nr_node_ids);
2653
2654 for_each_lru(lru) {
2655 if (!(BIT(lru) & lru_mask))
2656 continue;
2657 if (tree)
2658 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
2659 else
2660 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
2661 }
2662 return nr;
2663 }
2664
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)2665 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
2666 unsigned int lru_mask,
2667 bool tree)
2668 {
2669 unsigned long nr = 0;
2670 enum lru_list lru;
2671
2672 for_each_lru(lru) {
2673 if (!(BIT(lru) & lru_mask))
2674 continue;
2675 if (tree)
2676 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
2677 else
2678 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
2679 }
2680 return nr;
2681 }
2682
memcg_numa_stat_show(struct seq_file * m,void * v)2683 static int memcg_numa_stat_show(struct seq_file *m, void *v)
2684 {
2685 struct numa_stat {
2686 const char *name;
2687 unsigned int lru_mask;
2688 };
2689
2690 static const struct numa_stat stats[] = {
2691 { "total", LRU_ALL },
2692 { "file", LRU_ALL_FILE },
2693 { "anon", LRU_ALL_ANON },
2694 { "unevictable", BIT(LRU_UNEVICTABLE) },
2695 };
2696 const struct numa_stat *stat;
2697 int nid;
2698 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
2699
2700 mem_cgroup_flush_stats(memcg);
2701
2702 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
2703 seq_printf(m, "%s=%lu", stat->name,
2704 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
2705 false));
2706 for_each_node_state(nid, N_MEMORY)
2707 seq_printf(m, " N%d=%lu", nid,
2708 mem_cgroup_node_nr_lru_pages(memcg, nid,
2709 stat->lru_mask, false));
2710 seq_putc(m, '\n');
2711 }
2712
2713 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
2714
2715 seq_printf(m, "hierarchical_%s=%lu", stat->name,
2716 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
2717 true));
2718 for_each_node_state(nid, N_MEMORY)
2719 seq_printf(m, " N%d=%lu", nid,
2720 mem_cgroup_node_nr_lru_pages(memcg, nid,
2721 stat->lru_mask, true));
2722 seq_putc(m, '\n');
2723 }
2724
2725 return 0;
2726 }
2727 #endif /* CONFIG_NUMA */
2728
2729 static const unsigned int memcg1_stats[] = {
2730 NR_FILE_PAGES,
2731 NR_ANON_MAPPED,
2732 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2733 NR_ANON_THPS,
2734 #endif
2735 NR_SHMEM,
2736 NR_FILE_MAPPED,
2737 NR_FILE_DIRTY,
2738 NR_WRITEBACK,
2739 WORKINGSET_REFAULT_ANON,
2740 WORKINGSET_REFAULT_FILE,
2741 #ifdef CONFIG_SWAP
2742 MEMCG_SWAP,
2743 NR_SWAPCACHE,
2744 #endif
2745 };
2746
2747 static const char *const memcg1_stat_names[] = {
2748 "cache",
2749 "rss",
2750 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2751 "rss_huge",
2752 #endif
2753 "shmem",
2754 "mapped_file",
2755 "dirty",
2756 "writeback",
2757 "workingset_refault_anon",
2758 "workingset_refault_file",
2759 #ifdef CONFIG_SWAP
2760 "swap",
2761 "swapcached",
2762 #endif
2763 };
2764
2765 /* Universal VM events cgroup1 shows, original sort order */
2766 static const unsigned int memcg1_events[] = {
2767 PGPGIN,
2768 PGPGOUT,
2769 PGFAULT,
2770 PGMAJFAULT,
2771 };
2772
memcg1_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)2773 void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
2774 {
2775 unsigned long memory, memsw;
2776 struct mem_cgroup *mi;
2777 unsigned int i;
2778
2779 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
2780
2781 mem_cgroup_flush_stats(memcg);
2782
2783 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
2784 unsigned long nr;
2785
2786 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
2787 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
2788 }
2789
2790 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
2791 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
2792 memcg_events_local(memcg, memcg1_events[i]));
2793
2794 for (i = 0; i < NR_LRU_LISTS; i++)
2795 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
2796 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
2797 PAGE_SIZE);
2798
2799 /* Hierarchical information */
2800 memory = memsw = PAGE_COUNTER_MAX;
2801 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
2802 memory = min(memory, READ_ONCE(mi->memory.max));
2803 memsw = min(memsw, READ_ONCE(mi->memsw.max));
2804 }
2805 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
2806 (u64)memory * PAGE_SIZE);
2807 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
2808 (u64)memsw * PAGE_SIZE);
2809
2810 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
2811 unsigned long nr;
2812
2813 nr = memcg_page_state_output(memcg, memcg1_stats[i]);
2814 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
2815 (u64)nr);
2816 }
2817
2818 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
2819 seq_buf_printf(s, "total_%s %llu\n",
2820 vm_event_name(memcg1_events[i]),
2821 (u64)memcg_events(memcg, memcg1_events[i]));
2822
2823 for (i = 0; i < NR_LRU_LISTS; i++)
2824 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
2825 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
2826 PAGE_SIZE);
2827
2828 #ifdef CONFIG_DEBUG_VM
2829 {
2830 pg_data_t *pgdat;
2831 struct mem_cgroup_per_node *mz;
2832 unsigned long anon_cost = 0;
2833 unsigned long file_cost = 0;
2834
2835 for_each_online_pgdat(pgdat) {
2836 mz = memcg->nodeinfo[pgdat->node_id];
2837
2838 anon_cost += mz->lruvec.anon_cost;
2839 file_cost += mz->lruvec.file_cost;
2840 }
2841 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
2842 seq_buf_printf(s, "file_cost %lu\n", file_cost);
2843 }
2844 #endif
2845 }
2846
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)2847 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
2848 struct cftype *cft)
2849 {
2850 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2851
2852 return mem_cgroup_swappiness(memcg);
2853 }
2854
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2855 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
2856 struct cftype *cft, u64 val)
2857 {
2858 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2859
2860 if (val > MAX_SWAPPINESS)
2861 return -EINVAL;
2862
2863 if (!mem_cgroup_is_root(memcg))
2864 WRITE_ONCE(memcg->swappiness, val);
2865 else
2866 WRITE_ONCE(vm_swappiness, val);
2867
2868 return 0;
2869 }
2870
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)2871 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
2872 {
2873 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
2874
2875 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
2876 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
2877 seq_printf(sf, "oom_kill %lu\n",
2878 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
2879 return 0;
2880 }
2881
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2882 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
2883 struct cftype *cft, u64 val)
2884 {
2885 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2886
2887 pr_warn_once("oom_control is deprecated and will be removed. "
2888 "Please report your usecase to linux-mm-@kvack.org if you "
2889 "depend on this functionality. \n");
2890
2891 /* cannot set to root cgroup and only 0 and 1 are allowed */
2892 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
2893 return -EINVAL;
2894
2895 WRITE_ONCE(memcg->oom_kill_disable, val);
2896 if (!val)
2897 memcg1_oom_recover(memcg);
2898
2899 return 0;
2900 }
2901
2902 #ifdef CONFIG_SLUB_DEBUG
mem_cgroup_slab_show(struct seq_file * m,void * p)2903 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
2904 {
2905 /*
2906 * Deprecated.
2907 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
2908 */
2909 return 0;
2910 }
2911 #endif
2912
2913 struct cftype mem_cgroup_legacy_files[] = {
2914 {
2915 .name = "usage_in_bytes",
2916 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2917 .read_u64 = mem_cgroup_read_u64,
2918 },
2919 {
2920 .name = "max_usage_in_bytes",
2921 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2922 .write = mem_cgroup_reset,
2923 .read_u64 = mem_cgroup_read_u64,
2924 },
2925 {
2926 .name = "limit_in_bytes",
2927 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2928 .write = mem_cgroup_write,
2929 .read_u64 = mem_cgroup_read_u64,
2930 },
2931 {
2932 .name = "soft_limit_in_bytes",
2933 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2934 .write = mem_cgroup_write,
2935 .read_u64 = mem_cgroup_read_u64,
2936 },
2937 {
2938 .name = "failcnt",
2939 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2940 .write = mem_cgroup_reset,
2941 .read_u64 = mem_cgroup_read_u64,
2942 },
2943 {
2944 .name = "stat",
2945 .seq_show = memory_stat_show,
2946 },
2947 {
2948 .name = "force_empty",
2949 .write = mem_cgroup_force_empty_write,
2950 },
2951 {
2952 .name = "use_hierarchy",
2953 .write_u64 = mem_cgroup_hierarchy_write,
2954 .read_u64 = mem_cgroup_hierarchy_read,
2955 },
2956 {
2957 .name = "cgroup.event_control", /* XXX: for compat */
2958 .write = memcg_write_event_control,
2959 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
2960 },
2961 {
2962 .name = "swappiness",
2963 .read_u64 = mem_cgroup_swappiness_read,
2964 .write_u64 = mem_cgroup_swappiness_write,
2965 },
2966 {
2967 .name = "move_charge_at_immigrate",
2968 .read_u64 = mem_cgroup_move_charge_read,
2969 .write_u64 = mem_cgroup_move_charge_write,
2970 },
2971 {
2972 .name = "oom_control",
2973 .seq_show = mem_cgroup_oom_control_read,
2974 .write_u64 = mem_cgroup_oom_control_write,
2975 },
2976 {
2977 .name = "pressure_level",
2978 .seq_show = mem_cgroup_dummy_seq_show,
2979 },
2980 #ifdef CONFIG_NUMA
2981 {
2982 .name = "numa_stat",
2983 .seq_show = memcg_numa_stat_show,
2984 },
2985 #endif
2986 {
2987 .name = "kmem.limit_in_bytes",
2988 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
2989 .write = mem_cgroup_write,
2990 .read_u64 = mem_cgroup_read_u64,
2991 },
2992 {
2993 .name = "kmem.usage_in_bytes",
2994 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
2995 .read_u64 = mem_cgroup_read_u64,
2996 },
2997 {
2998 .name = "kmem.failcnt",
2999 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3000 .write = mem_cgroup_reset,
3001 .read_u64 = mem_cgroup_read_u64,
3002 },
3003 {
3004 .name = "kmem.max_usage_in_bytes",
3005 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3006 .write = mem_cgroup_reset,
3007 .read_u64 = mem_cgroup_read_u64,
3008 },
3009 #ifdef CONFIG_SLUB_DEBUG
3010 {
3011 .name = "kmem.slabinfo",
3012 .seq_show = mem_cgroup_slab_show,
3013 },
3014 #endif
3015 {
3016 .name = "kmem.tcp.limit_in_bytes",
3017 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
3018 .write = mem_cgroup_write,
3019 .read_u64 = mem_cgroup_read_u64,
3020 },
3021 {
3022 .name = "kmem.tcp.usage_in_bytes",
3023 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
3024 .read_u64 = mem_cgroup_read_u64,
3025 },
3026 {
3027 .name = "kmem.tcp.failcnt",
3028 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
3029 .write = mem_cgroup_reset,
3030 .read_u64 = mem_cgroup_read_u64,
3031 },
3032 {
3033 .name = "kmem.tcp.max_usage_in_bytes",
3034 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
3035 .write = mem_cgroup_reset,
3036 .read_u64 = mem_cgroup_read_u64,
3037 },
3038 { }, /* terminate */
3039 };
3040
3041 struct cftype memsw_files[] = {
3042 {
3043 .name = "memsw.usage_in_bytes",
3044 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3045 .read_u64 = mem_cgroup_read_u64,
3046 },
3047 {
3048 .name = "memsw.max_usage_in_bytes",
3049 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3050 .write = mem_cgroup_reset,
3051 .read_u64 = mem_cgroup_read_u64,
3052 },
3053 {
3054 .name = "memsw.limit_in_bytes",
3055 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3056 .write = mem_cgroup_write,
3057 .read_u64 = mem_cgroup_read_u64,
3058 },
3059 {
3060 .name = "memsw.failcnt",
3061 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3062 .write = mem_cgroup_reset,
3063 .read_u64 = mem_cgroup_read_u64,
3064 },
3065 { }, /* terminate */
3066 };
3067
memcg1_account_kmem(struct mem_cgroup * memcg,int nr_pages)3068 void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3069 {
3070 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3071 if (nr_pages > 0)
3072 page_counter_charge(&memcg->kmem, nr_pages);
3073 else
3074 page_counter_uncharge(&memcg->kmem, -nr_pages);
3075 }
3076 }
3077
memcg1_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)3078 bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
3079 gfp_t gfp_mask)
3080 {
3081 struct page_counter *fail;
3082
3083 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
3084 memcg->tcpmem_pressure = 0;
3085 return true;
3086 }
3087 memcg->tcpmem_pressure = 1;
3088 if (gfp_mask & __GFP_NOFAIL) {
3089 page_counter_charge(&memcg->tcpmem, nr_pages);
3090 return true;
3091 }
3092 return false;
3093 }
3094
memcg1_alloc_events(struct mem_cgroup * memcg)3095 bool memcg1_alloc_events(struct mem_cgroup *memcg)
3096 {
3097 memcg->events_percpu = alloc_percpu_gfp(struct memcg1_events_percpu,
3098 GFP_KERNEL_ACCOUNT);
3099 return !!memcg->events_percpu;
3100 }
3101
memcg1_free_events(struct mem_cgroup * memcg)3102 void memcg1_free_events(struct mem_cgroup *memcg)
3103 {
3104 if (memcg->events_percpu)
3105 free_percpu(memcg->events_percpu);
3106 }
3107
memcg1_init(void)3108 static int __init memcg1_init(void)
3109 {
3110 int node;
3111
3112 for_each_node(node) {
3113 struct mem_cgroup_tree_per_node *rtpn;
3114
3115 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
3116
3117 rtpn->rb_root = RB_ROOT;
3118 rtpn->rb_rightmost = NULL;
3119 spin_lock_init(&rtpn->lock);
3120 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3121 }
3122
3123 return 0;
3124 }
3125 subsys_initcall(memcg1_init);
3126