1
2 // SPDX-License-Identifier: GPL-2.0-only
3 /*
4 * linux/mm/memory.c
5 *
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 */
8
9 /*
10 * demand-loading started 01.12.91 - seems it is high on the list of
11 * things wanted, and it should be easy to implement. - Linus
12 */
13
14 /*
15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16 * pages started 02.12.91, seems to work. - Linus.
17 *
18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19 * would have taken more than the 6M I have free, but it worked well as
20 * far as I could see.
21 *
22 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23 */
24
25 /*
26 * Real VM (paging to/from disk) started 18.12.91. Much more work and
27 * thought has to go into this. Oh, well..
28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
29 * Found it. Everything seems to work now.
30 * 20.12.91 - Ok, making the swap-device changeable like the root.
31 */
32
33 /*
34 * 05.04.94 - Multi-page memory management added for v1.1.
35 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 *
37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
38 * (Gerhard.Wichert@pdb.siemens.de)
39 *
40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 */
42
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/pgsize_migration.h>
64 #include <linux/writeback.h>
65 #include <linux/memcontrol.h>
66 #include <linux/mmu_notifier.h>
67 #include <linux/swapops.h>
68 #include <linux/elf.h>
69 #include <linux/gfp.h>
70 #include <linux/migrate.h>
71 #include <linux/string.h>
72 #include <linux/memory-tiers.h>
73 #include <linux/debugfs.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/dax.h>
76 #include <linux/oom.h>
77 #include <linux/numa.h>
78 #include <linux/perf_event.h>
79 #include <linux/ptrace.h>
80 #include <linux/vmalloc.h>
81 #include <linux/sched/sysctl.h>
82
83 #include <trace/events/kmem.h>
84 #include <trace/hooks/mm.h>
85
86 #include <asm/io.h>
87 #include <asm/mmu_context.h>
88 #include <asm/pgalloc.h>
89 #include <linux/uaccess.h>
90 #include <asm/tlb.h>
91 #include <asm/tlbflush.h>
92
93 #include "pgalloc-track.h"
94 #include "internal.h"
95 #include "swap.h"
96
97 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
98 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
99 #endif
100
101 #ifndef CONFIG_NUMA
102 unsigned long max_mapnr;
103 EXPORT_SYMBOL(max_mapnr);
104
105 struct page *mem_map;
106 EXPORT_SYMBOL(mem_map);
107 #endif
108
109 static vm_fault_t do_fault(struct vm_fault *vmf);
110 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
111 static bool vmf_pte_changed(struct vm_fault *vmf);
112
113 /*
114 * Return true if the original pte was a uffd-wp pte marker (so the pte was
115 * wr-protected).
116 */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)117 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
118 {
119 if (!userfaultfd_wp(vmf->vma))
120 return false;
121 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
122 return false;
123
124 return pte_marker_uffd_wp(vmf->orig_pte);
125 }
126
127 /*
128 * A number of key systems in x86 including ioremap() rely on the assumption
129 * that high_memory defines the upper bound on direct map memory, then end
130 * of ZONE_NORMAL.
131 */
132 void *high_memory;
133 EXPORT_SYMBOL(high_memory);
134
135 /*
136 * Randomize the address space (stacks, mmaps, brk, etc.).
137 *
138 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
139 * as ancient (libc5 based) binaries can segfault. )
140 */
141 int randomize_va_space __read_mostly =
142 #ifdef CONFIG_COMPAT_BRK
143 1;
144 #else
145 2;
146 #endif
147
148 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)149 static inline bool arch_wants_old_prefaulted_pte(void)
150 {
151 /*
152 * Transitioning a PTE from 'old' to 'young' can be expensive on
153 * some architectures, even if it's performed in hardware. By
154 * default, "false" means prefaulted entries will be 'young'.
155 */
156 return false;
157 }
158 #endif
159
disable_randmaps(char * s)160 static int __init disable_randmaps(char *s)
161 {
162 randomize_va_space = 0;
163 return 1;
164 }
165 __setup("norandmaps", disable_randmaps);
166
167 unsigned long zero_pfn __read_mostly;
168 EXPORT_SYMBOL(zero_pfn);
169
170 unsigned long highest_memmap_pfn __read_mostly;
171
172 /*
173 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
174 */
init_zero_pfn(void)175 static int __init init_zero_pfn(void)
176 {
177 zero_pfn = page_to_pfn(ZERO_PAGE(0));
178 return 0;
179 }
180 early_initcall(init_zero_pfn);
181
mm_trace_rss_stat(struct mm_struct * mm,int member)182 void mm_trace_rss_stat(struct mm_struct *mm, int member)
183 {
184 trace_rss_stat(mm, member);
185 }
186 EXPORT_SYMBOL_GPL(mm_trace_rss_stat);
187
188 /*
189 * Note: this doesn't free the actual pages themselves. That
190 * has been handled earlier when unmapping all the memory regions.
191 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)192 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
193 unsigned long addr)
194 {
195 pgtable_t token = pmd_pgtable(*pmd);
196 pmd_clear(pmd);
197 pte_free_tlb(tlb, token, addr);
198 mm_dec_nr_ptes(tlb->mm);
199 }
200
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)201 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
202 unsigned long addr, unsigned long end,
203 unsigned long floor, unsigned long ceiling)
204 {
205 pmd_t *pmd;
206 unsigned long next;
207 unsigned long start;
208
209 start = addr;
210 pmd = pmd_offset(pud, addr);
211 do {
212 next = pmd_addr_end(addr, end);
213 if (pmd_none_or_clear_bad(pmd))
214 continue;
215 free_pte_range(tlb, pmd, addr);
216 } while (pmd++, addr = next, addr != end);
217
218 start &= PUD_MASK;
219 if (start < floor)
220 return;
221 if (ceiling) {
222 ceiling &= PUD_MASK;
223 if (!ceiling)
224 return;
225 }
226 if (end - 1 > ceiling - 1)
227 return;
228
229 pmd = pmd_offset(pud, start);
230 pud_clear(pud);
231 pmd_free_tlb(tlb, pmd, start);
232 mm_dec_nr_pmds(tlb->mm);
233 }
234
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)235 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
236 unsigned long addr, unsigned long end,
237 unsigned long floor, unsigned long ceiling)
238 {
239 pud_t *pud;
240 unsigned long next;
241 unsigned long start;
242
243 start = addr;
244 pud = pud_offset(p4d, addr);
245 do {
246 next = pud_addr_end(addr, end);
247 if (pud_none_or_clear_bad(pud))
248 continue;
249 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
250 } while (pud++, addr = next, addr != end);
251
252 start &= P4D_MASK;
253 if (start < floor)
254 return;
255 if (ceiling) {
256 ceiling &= P4D_MASK;
257 if (!ceiling)
258 return;
259 }
260 if (end - 1 > ceiling - 1)
261 return;
262
263 pud = pud_offset(p4d, start);
264 p4d_clear(p4d);
265 pud_free_tlb(tlb, pud, start);
266 mm_dec_nr_puds(tlb->mm);
267 }
268
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)269 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
270 unsigned long addr, unsigned long end,
271 unsigned long floor, unsigned long ceiling)
272 {
273 p4d_t *p4d;
274 unsigned long next;
275 unsigned long start;
276
277 start = addr;
278 p4d = p4d_offset(pgd, addr);
279 do {
280 next = p4d_addr_end(addr, end);
281 if (p4d_none_or_clear_bad(p4d))
282 continue;
283 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
284 } while (p4d++, addr = next, addr != end);
285
286 start &= PGDIR_MASK;
287 if (start < floor)
288 return;
289 if (ceiling) {
290 ceiling &= PGDIR_MASK;
291 if (!ceiling)
292 return;
293 }
294 if (end - 1 > ceiling - 1)
295 return;
296
297 p4d = p4d_offset(pgd, start);
298 pgd_clear(pgd);
299 p4d_free_tlb(tlb, p4d, start);
300 }
301
302 /*
303 * This function frees user-level page tables of a process.
304 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)305 void free_pgd_range(struct mmu_gather *tlb,
306 unsigned long addr, unsigned long end,
307 unsigned long floor, unsigned long ceiling)
308 {
309 pgd_t *pgd;
310 unsigned long next;
311
312 /*
313 * The next few lines have given us lots of grief...
314 *
315 * Why are we testing PMD* at this top level? Because often
316 * there will be no work to do at all, and we'd prefer not to
317 * go all the way down to the bottom just to discover that.
318 *
319 * Why all these "- 1"s? Because 0 represents both the bottom
320 * of the address space and the top of it (using -1 for the
321 * top wouldn't help much: the masks would do the wrong thing).
322 * The rule is that addr 0 and floor 0 refer to the bottom of
323 * the address space, but end 0 and ceiling 0 refer to the top
324 * Comparisons need to use "end - 1" and "ceiling - 1" (though
325 * that end 0 case should be mythical).
326 *
327 * Wherever addr is brought up or ceiling brought down, we must
328 * be careful to reject "the opposite 0" before it confuses the
329 * subsequent tests. But what about where end is brought down
330 * by PMD_SIZE below? no, end can't go down to 0 there.
331 *
332 * Whereas we round start (addr) and ceiling down, by different
333 * masks at different levels, in order to test whether a table
334 * now has no other vmas using it, so can be freed, we don't
335 * bother to round floor or end up - the tests don't need that.
336 */
337
338 addr &= PMD_MASK;
339 if (addr < floor) {
340 addr += PMD_SIZE;
341 if (!addr)
342 return;
343 }
344 if (ceiling) {
345 ceiling &= PMD_MASK;
346 if (!ceiling)
347 return;
348 }
349 if (end - 1 > ceiling - 1)
350 end -= PMD_SIZE;
351 if (addr > end - 1)
352 return;
353 /*
354 * We add page table cache pages with PAGE_SIZE,
355 * (see pte_free_tlb()), flush the tlb if we need
356 */
357 tlb_change_page_size(tlb, PAGE_SIZE);
358 pgd = pgd_offset(tlb->mm, addr);
359 do {
360 next = pgd_addr_end(addr, end);
361 if (pgd_none_or_clear_bad(pgd))
362 continue;
363 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
364 } while (pgd++, addr = next, addr != end);
365 }
366
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)367 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
368 struct vm_area_struct *vma, unsigned long floor,
369 unsigned long ceiling, bool mm_wr_locked)
370 {
371 struct unlink_vma_file_batch vb;
372
373 do {
374 unsigned long addr = vma->vm_start;
375 struct vm_area_struct *next;
376
377 /*
378 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
379 * be 0. This will underflow and is okay.
380 */
381 next = mas_find(mas, ceiling - 1);
382 if (unlikely(xa_is_zero(next)))
383 next = NULL;
384
385 /*
386 * Hide vma from rmap and truncate_pagecache before freeing
387 * pgtables
388 */
389 if (mm_wr_locked)
390 vma_start_write(vma);
391 unlink_anon_vmas(vma);
392
393 if (is_vm_hugetlb_page(vma)) {
394 unlink_file_vma(vma);
395 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
396 floor, next ? next->vm_start : ceiling);
397 } else {
398 unlink_file_vma_batch_init(&vb);
399 unlink_file_vma_batch_add(&vb, vma);
400
401 /*
402 * Optimization: gather nearby vmas into one call down
403 */
404 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
405 && !is_vm_hugetlb_page(next)) {
406 vma = next;
407 next = mas_find(mas, ceiling - 1);
408 if (unlikely(xa_is_zero(next)))
409 next = NULL;
410 if (mm_wr_locked)
411 vma_start_write(vma);
412 unlink_anon_vmas(vma);
413 unlink_file_vma_batch_add(&vb, vma);
414 }
415 unlink_file_vma_batch_final(&vb);
416 free_pgd_range(tlb, addr, vma->vm_end,
417 floor, next ? next->vm_start : ceiling);
418 }
419 vma = next;
420 } while (vma);
421 }
422
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)423 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
424 {
425 spinlock_t *ptl = pmd_lock(mm, pmd);
426
427 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
428 mm_inc_nr_ptes(mm);
429 /*
430 * Ensure all pte setup (eg. pte page lock and page clearing) are
431 * visible before the pte is made visible to other CPUs by being
432 * put into page tables.
433 *
434 * The other side of the story is the pointer chasing in the page
435 * table walking code (when walking the page table without locking;
436 * ie. most of the time). Fortunately, these data accesses consist
437 * of a chain of data-dependent loads, meaning most CPUs (alpha
438 * being the notable exception) will already guarantee loads are
439 * seen in-order. See the alpha page table accessors for the
440 * smp_rmb() barriers in page table walking code.
441 */
442 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
443 pmd_populate(mm, pmd, *pte);
444 *pte = NULL;
445 }
446 spin_unlock(ptl);
447 }
448
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)449 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
450 {
451 pgtable_t new = pte_alloc_one(mm);
452 if (!new)
453 return -ENOMEM;
454
455 pmd_install(mm, pmd, &new);
456 if (new)
457 pte_free(mm, new);
458 return 0;
459 }
460
__pte_alloc_kernel(pmd_t * pmd)461 int __pte_alloc_kernel(pmd_t *pmd)
462 {
463 pte_t *new = pte_alloc_one_kernel(&init_mm);
464 if (!new)
465 return -ENOMEM;
466
467 spin_lock(&init_mm.page_table_lock);
468 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
469 smp_wmb(); /* See comment in pmd_install() */
470 pmd_populate_kernel(&init_mm, pmd, new);
471 new = NULL;
472 }
473 spin_unlock(&init_mm.page_table_lock);
474 if (new)
475 pte_free_kernel(&init_mm, new);
476 return 0;
477 }
478
init_rss_vec(int * rss)479 static inline void init_rss_vec(int *rss)
480 {
481 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482 }
483
add_mm_rss_vec(struct mm_struct * mm,int * rss)484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
485 {
486 int i;
487
488 for (i = 0; i < NR_MM_COUNTERS; i++)
489 if (rss[i])
490 add_mm_counter(mm, i, rss[i]);
491 }
492
493 /*
494 * This function is called to print an error when a bad pte
495 * is found. For example, we might have a PFN-mapped pte in
496 * a region that doesn't allow it.
497 *
498 * The calling function must still handle the error.
499 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)500 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
501 pte_t pte, struct page *page)
502 {
503 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
504 p4d_t *p4d = p4d_offset(pgd, addr);
505 pud_t *pud = pud_offset(p4d, addr);
506 pmd_t *pmd = pmd_offset(pud, addr);
507 struct address_space *mapping;
508 pgoff_t index;
509 static unsigned long resume;
510 static unsigned long nr_shown;
511 static unsigned long nr_unshown;
512
513 /*
514 * Allow a burst of 60 reports, then keep quiet for that minute;
515 * or allow a steady drip of one report per second.
516 */
517 if (nr_shown == 60) {
518 if (time_before(jiffies, resume)) {
519 nr_unshown++;
520 return;
521 }
522 if (nr_unshown) {
523 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
524 nr_unshown);
525 nr_unshown = 0;
526 }
527 nr_shown = 0;
528 }
529 if (nr_shown++ == 0)
530 resume = jiffies + 60 * HZ;
531
532 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
533 index = linear_page_index(vma, addr);
534
535 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
536 current->comm,
537 (long long)pte_val(pte), (long long)pmd_val(*pmd));
538 if (page)
539 dump_page(page, "bad pte");
540 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
541 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
542 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
543 vma->vm_file,
544 vma->vm_ops ? vma->vm_ops->fault : NULL,
545 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
546 mapping ? mapping->a_ops->read_folio : NULL);
547 dump_stack();
548 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
549 }
550
551 /*
552 * vm_normal_page -- This function gets the "struct page" associated with a pte.
553 *
554 * "Special" mappings do not wish to be associated with a "struct page" (either
555 * it doesn't exist, or it exists but they don't want to touch it). In this
556 * case, NULL is returned here. "Normal" mappings do have a struct page.
557 *
558 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
559 * pte bit, in which case this function is trivial. Secondly, an architecture
560 * may not have a spare pte bit, which requires a more complicated scheme,
561 * described below.
562 *
563 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
564 * special mapping (even if there are underlying and valid "struct pages").
565 * COWed pages of a VM_PFNMAP are always normal.
566 *
567 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
568 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
569 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
570 * mapping will always honor the rule
571 *
572 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
573 *
574 * And for normal mappings this is false.
575 *
576 * This restricts such mappings to be a linear translation from virtual address
577 * to pfn. To get around this restriction, we allow arbitrary mappings so long
578 * as the vma is not a COW mapping; in that case, we know that all ptes are
579 * special (because none can have been COWed).
580 *
581 *
582 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
583 *
584 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
585 * page" backing, however the difference is that _all_ pages with a struct
586 * page (that is, those where pfn_valid is true) are refcounted and considered
587 * normal pages by the VM. The only exception are zeropages, which are
588 * *never* refcounted.
589 *
590 * The disadvantage is that pages are refcounted (which can be slower and
591 * simply not an option for some PFNMAP users). The advantage is that we
592 * don't have to follow the strict linearity rule of PFNMAP mappings in
593 * order to support COWable mappings.
594 *
595 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)596 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
597 pte_t pte)
598 {
599 unsigned long pfn = pte_pfn(pte);
600
601 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
602 if (likely(!pte_special(pte)))
603 goto check_pfn;
604 if (vma->vm_ops && vma->vm_ops->find_special_page)
605 return vma->vm_ops->find_special_page(vma, addr);
606 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
607 return NULL;
608 if (is_zero_pfn(pfn))
609 return NULL;
610 if (pte_devmap(pte))
611 /*
612 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
613 * and will have refcounts incremented on their struct pages
614 * when they are inserted into PTEs, thus they are safe to
615 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
616 * do not have refcounts. Example of legacy ZONE_DEVICE is
617 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
618 */
619 return NULL;
620
621 print_bad_pte(vma, addr, pte, NULL);
622 return NULL;
623 }
624
625 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
626
627 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
628 if (vma->vm_flags & VM_MIXEDMAP) {
629 if (!pfn_valid(pfn))
630 return NULL;
631 if (is_zero_pfn(pfn))
632 return NULL;
633 goto out;
634 } else {
635 unsigned long off;
636 off = (addr - vma->vm_start) >> PAGE_SHIFT;
637 if (pfn == vma->vm_pgoff + off)
638 return NULL;
639 if (!is_cow_mapping(vma->vm_flags))
640 return NULL;
641 }
642 }
643
644 if (is_zero_pfn(pfn))
645 return NULL;
646
647 check_pfn:
648 if (unlikely(pfn > highest_memmap_pfn)) {
649 print_bad_pte(vma, addr, pte, NULL);
650 return NULL;
651 }
652
653 /*
654 * NOTE! We still have PageReserved() pages in the page tables.
655 * eg. VDSO mappings can cause them to exist.
656 */
657 out:
658 VM_WARN_ON_ONCE(is_zero_pfn(pfn));
659 return pfn_to_page(pfn);
660 }
661 EXPORT_SYMBOL_GPL(vm_normal_page);
662
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)663 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
664 pte_t pte)
665 {
666 struct page *page = vm_normal_page(vma, addr, pte);
667
668 if (page)
669 return page_folio(page);
670 return NULL;
671 }
672
673 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)674 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
675 pmd_t pmd)
676 {
677 unsigned long pfn = pmd_pfn(pmd);
678
679 /* Currently it's only used for huge pfnmaps */
680 if (unlikely(pmd_special(pmd)))
681 return NULL;
682
683 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
684 if (vma->vm_flags & VM_MIXEDMAP) {
685 if (!pfn_valid(pfn))
686 return NULL;
687 goto out;
688 } else {
689 unsigned long off;
690 off = (addr - vma->vm_start) >> PAGE_SHIFT;
691 if (pfn == vma->vm_pgoff + off)
692 return NULL;
693 if (!is_cow_mapping(vma->vm_flags))
694 return NULL;
695 }
696 }
697
698 if (pmd_devmap(pmd))
699 return NULL;
700 if (is_huge_zero_pmd(pmd))
701 return NULL;
702 if (unlikely(pfn > highest_memmap_pfn))
703 return NULL;
704
705 /*
706 * NOTE! We still have PageReserved() pages in the page tables.
707 * eg. VDSO mappings can cause them to exist.
708 */
709 out:
710 return pfn_to_page(pfn);
711 }
712
vm_normal_folio_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)713 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
714 unsigned long addr, pmd_t pmd)
715 {
716 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
717
718 if (page)
719 return page_folio(page);
720 return NULL;
721 }
722 EXPORT_SYMBOL_GPL(vm_normal_folio_pmd);
723 #endif
724
restore_exclusive_pte(struct vm_area_struct * vma,struct page * page,unsigned long address,pte_t * ptep)725 static void restore_exclusive_pte(struct vm_area_struct *vma,
726 struct page *page, unsigned long address,
727 pte_t *ptep)
728 {
729 struct folio *folio = page_folio(page);
730 pte_t orig_pte;
731 pte_t pte;
732 swp_entry_t entry;
733
734 orig_pte = ptep_get(ptep);
735 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
736 if (pte_swp_soft_dirty(orig_pte))
737 pte = pte_mksoft_dirty(pte);
738
739 entry = pte_to_swp_entry(orig_pte);
740 if (pte_swp_uffd_wp(orig_pte))
741 pte = pte_mkuffd_wp(pte);
742 else if (is_writable_device_exclusive_entry(entry))
743 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
744
745 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
746 PageAnonExclusive(page)), folio);
747
748 /*
749 * No need to take a page reference as one was already
750 * created when the swap entry was made.
751 */
752 if (folio_test_anon(folio))
753 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
754 else
755 /*
756 * Currently device exclusive access only supports anonymous
757 * memory so the entry shouldn't point to a filebacked page.
758 */
759 WARN_ON_ONCE(1);
760
761 set_pte_at(vma->vm_mm, address, ptep, pte);
762
763 /*
764 * No need to invalidate - it was non-present before. However
765 * secondary CPUs may have mappings that need invalidating.
766 */
767 update_mmu_cache(vma, address, ptep);
768 }
769
770 /*
771 * Tries to restore an exclusive pte if the page lock can be acquired without
772 * sleeping.
773 */
774 static int
try_restore_exclusive_pte(pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr)775 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
776 unsigned long addr)
777 {
778 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
779 struct page *page = pfn_swap_entry_to_page(entry);
780
781 if (trylock_page(page)) {
782 restore_exclusive_pte(vma, page, addr, src_pte);
783 unlock_page(page);
784 return 0;
785 }
786
787 return -EBUSY;
788 }
789
790 /*
791 * copy one vm_area from one task to the other. Assumes the page tables
792 * already present in the new task to be cleared in the whole range
793 * covered by this vma.
794 */
795
796 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)797 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
798 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
799 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
800 {
801 unsigned long vm_flags = dst_vma->vm_flags;
802 pte_t orig_pte = ptep_get(src_pte);
803 pte_t pte = orig_pte;
804 struct folio *folio;
805 struct page *page;
806 swp_entry_t entry = pte_to_swp_entry(orig_pte);
807
808 if (likely(!non_swap_entry(entry))) {
809 if (swap_duplicate(entry) < 0)
810 return -EIO;
811
812 /* make sure dst_mm is on swapoff's mmlist. */
813 if (unlikely(list_empty(&dst_mm->mmlist))) {
814 spin_lock(&mmlist_lock);
815 if (list_empty(&dst_mm->mmlist))
816 list_add(&dst_mm->mmlist,
817 &src_mm->mmlist);
818 spin_unlock(&mmlist_lock);
819 }
820 /* Mark the swap entry as shared. */
821 if (pte_swp_exclusive(orig_pte)) {
822 pte = pte_swp_clear_exclusive(orig_pte);
823 set_pte_at(src_mm, addr, src_pte, pte);
824 }
825 rss[MM_SWAPENTS]++;
826 } else if (is_migration_entry(entry)) {
827 folio = pfn_swap_entry_folio(entry);
828
829 rss[mm_counter(folio)]++;
830
831 if (!is_readable_migration_entry(entry) &&
832 is_cow_mapping(vm_flags)) {
833 /*
834 * COW mappings require pages in both parent and child
835 * to be set to read. A previously exclusive entry is
836 * now shared.
837 */
838 entry = make_readable_migration_entry(
839 swp_offset(entry));
840 pte = swp_entry_to_pte(entry);
841 if (pte_swp_soft_dirty(orig_pte))
842 pte = pte_swp_mksoft_dirty(pte);
843 if (pte_swp_uffd_wp(orig_pte))
844 pte = pte_swp_mkuffd_wp(pte);
845 set_pte_at(src_mm, addr, src_pte, pte);
846 }
847 } else if (is_device_private_entry(entry)) {
848 page = pfn_swap_entry_to_page(entry);
849 folio = page_folio(page);
850
851 /*
852 * Update rss count even for unaddressable pages, as
853 * they should treated just like normal pages in this
854 * respect.
855 *
856 * We will likely want to have some new rss counters
857 * for unaddressable pages, at some point. But for now
858 * keep things as they are.
859 */
860 folio_get(folio);
861 rss[mm_counter(folio)]++;
862 /* Cannot fail as these pages cannot get pinned. */
863 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
864
865 /*
866 * We do not preserve soft-dirty information, because so
867 * far, checkpoint/restore is the only feature that
868 * requires that. And checkpoint/restore does not work
869 * when a device driver is involved (you cannot easily
870 * save and restore device driver state).
871 */
872 if (is_writable_device_private_entry(entry) &&
873 is_cow_mapping(vm_flags)) {
874 entry = make_readable_device_private_entry(
875 swp_offset(entry));
876 pte = swp_entry_to_pte(entry);
877 if (pte_swp_uffd_wp(orig_pte))
878 pte = pte_swp_mkuffd_wp(pte);
879 set_pte_at(src_mm, addr, src_pte, pte);
880 }
881 } else if (is_device_exclusive_entry(entry)) {
882 /*
883 * Make device exclusive entries present by restoring the
884 * original entry then copying as for a present pte. Device
885 * exclusive entries currently only support private writable
886 * (ie. COW) mappings.
887 */
888 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
889 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
890 return -EBUSY;
891 return -ENOENT;
892 } else if (is_pte_marker_entry(entry)) {
893 pte_marker marker = copy_pte_marker(entry, dst_vma);
894
895 if (marker)
896 set_pte_at(dst_mm, addr, dst_pte,
897 make_pte_marker(marker));
898 return 0;
899 }
900 if (!userfaultfd_wp(dst_vma))
901 pte = pte_swp_clear_uffd_wp(pte);
902 set_pte_at(dst_mm, addr, dst_pte, pte);
903 return 0;
904 }
905
906 /*
907 * Copy a present and normal page.
908 *
909 * NOTE! The usual case is that this isn't required;
910 * instead, the caller can just increase the page refcount
911 * and re-use the pte the traditional way.
912 *
913 * And if we need a pre-allocated page but don't yet have
914 * one, return a negative error to let the preallocation
915 * code know so that it can do so outside the page table
916 * lock.
917 */
918 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)919 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
920 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
921 struct folio **prealloc, struct page *page)
922 {
923 struct folio *new_folio;
924 pte_t pte;
925
926 new_folio = *prealloc;
927 if (!new_folio)
928 return -EAGAIN;
929
930 /*
931 * We have a prealloc page, all good! Take it
932 * over and copy the page & arm it.
933 */
934
935 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
936 return -EHWPOISON;
937
938 *prealloc = NULL;
939 __folio_mark_uptodate(new_folio);
940 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
941 folio_add_lru_vma(new_folio, dst_vma);
942 rss[MM_ANONPAGES]++;
943
944 /* All done, just insert the new page copy in the child */
945 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
946 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
947 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
948 /* Uffd-wp needs to be delivered to dest pte as well */
949 pte = pte_mkuffd_wp(pte);
950 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
951 return 0;
952 }
953
__copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int nr)954 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
955 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
956 pte_t pte, unsigned long addr, int nr)
957 {
958 struct mm_struct *src_mm = src_vma->vm_mm;
959
960 /* If it's a COW mapping, write protect it both processes. */
961 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
962 wrprotect_ptes(src_mm, addr, src_pte, nr);
963 pte = pte_wrprotect(pte);
964 }
965
966 /* If it's a shared mapping, mark it clean in the child. */
967 if (src_vma->vm_flags & VM_SHARED)
968 pte = pte_mkclean(pte);
969 pte = pte_mkold(pte);
970
971 if (!userfaultfd_wp(dst_vma))
972 pte = pte_clear_uffd_wp(pte);
973
974 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
975 }
976
977 /*
978 * Copy one present PTE, trying to batch-process subsequent PTEs that map
979 * consecutive pages of the same folio by copying them as well.
980 *
981 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
982 * Otherwise, returns the number of copied PTEs (at least 1).
983 */
984 static inline int
copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int max_nr,int * rss,struct folio ** prealloc)985 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
986 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
987 int max_nr, int *rss, struct folio **prealloc)
988 {
989 struct page *page;
990 struct folio *folio;
991 bool any_writable;
992 fpb_t flags = 0;
993 int err, nr;
994
995 page = vm_normal_page(src_vma, addr, pte);
996 if (unlikely(!page))
997 goto copy_pte;
998
999 folio = page_folio(page);
1000
1001 /*
1002 * If we likely have to copy, just don't bother with batching. Make
1003 * sure that the common "small folio" case is as fast as possible
1004 * by keeping the batching logic separate.
1005 */
1006 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1007 if (src_vma->vm_flags & VM_SHARED)
1008 flags |= FPB_IGNORE_DIRTY;
1009 if (!vma_soft_dirty_enabled(src_vma))
1010 flags |= FPB_IGNORE_SOFT_DIRTY;
1011
1012 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1013 &any_writable, NULL, NULL);
1014 folio_ref_add(folio, nr);
1015 if (folio_test_anon(folio)) {
1016 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1017 nr, src_vma))) {
1018 folio_ref_sub(folio, nr);
1019 return -EAGAIN;
1020 }
1021 rss[MM_ANONPAGES] += nr;
1022 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1023 } else {
1024 folio_dup_file_rmap_ptes(folio, page, nr);
1025 rss[mm_counter_file(folio)] += nr;
1026 }
1027 if (any_writable)
1028 pte = pte_mkwrite(pte, src_vma);
1029 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1030 addr, nr);
1031 return nr;
1032 }
1033
1034 folio_get(folio);
1035 if (folio_test_anon(folio)) {
1036 /*
1037 * If this page may have been pinned by the parent process,
1038 * copy the page immediately for the child so that we'll always
1039 * guarantee the pinned page won't be randomly replaced in the
1040 * future.
1041 */
1042 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1043 /* Page may be pinned, we have to copy. */
1044 folio_put(folio);
1045 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1046 addr, rss, prealloc, page);
1047 return err ? err : 1;
1048 }
1049 rss[MM_ANONPAGES]++;
1050 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1051 } else {
1052 folio_dup_file_rmap_pte(folio, page);
1053 rss[mm_counter_file(folio)]++;
1054 }
1055
1056 copy_pte:
1057 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1058 return 1;
1059 }
1060
folio_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr,bool need_zero)1061 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1062 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1063 {
1064 struct folio *new_folio;
1065
1066 if (need_zero)
1067 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1068 else
1069 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1070 addr, false);
1071
1072 if (!new_folio)
1073 return NULL;
1074
1075 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1076 folio_put(new_folio);
1077 return NULL;
1078 }
1079 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1080
1081 return new_folio;
1082 }
1083
1084 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1085 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1086 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1087 unsigned long end)
1088 {
1089 struct mm_struct *dst_mm = dst_vma->vm_mm;
1090 struct mm_struct *src_mm = src_vma->vm_mm;
1091 pte_t *orig_src_pte, *orig_dst_pte;
1092 pte_t *src_pte, *dst_pte;
1093 pmd_t dummy_pmdval;
1094 pte_t ptent;
1095 spinlock_t *src_ptl, *dst_ptl;
1096 int progress, max_nr, ret = 0;
1097 int rss[NR_MM_COUNTERS];
1098 swp_entry_t entry = (swp_entry_t){0};
1099 struct folio *prealloc = NULL;
1100 int nr;
1101
1102 again:
1103 progress = 0;
1104 init_rss_vec(rss);
1105
1106 /*
1107 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1108 * error handling here, assume that exclusive mmap_lock on dst and src
1109 * protects anon from unexpected THP transitions; with shmem and file
1110 * protected by mmap_lock-less collapse skipping areas with anon_vma
1111 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1112 * can remove such assumptions later, but this is good enough for now.
1113 */
1114 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1115 if (!dst_pte) {
1116 ret = -ENOMEM;
1117 goto out;
1118 }
1119
1120 /*
1121 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1122 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1123 * the PTE page is stable, and there is no need to get pmdval and do
1124 * pmd_same() check.
1125 */
1126 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1127 &src_ptl);
1128 if (!src_pte) {
1129 pte_unmap_unlock(dst_pte, dst_ptl);
1130 /* ret == 0 */
1131 goto out;
1132 }
1133 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1134 orig_src_pte = src_pte;
1135 orig_dst_pte = dst_pte;
1136 arch_enter_lazy_mmu_mode();
1137
1138 do {
1139 nr = 1;
1140
1141 /*
1142 * We are holding two locks at this point - either of them
1143 * could generate latencies in another task on another CPU.
1144 */
1145 if (progress >= 32) {
1146 progress = 0;
1147 if (need_resched() ||
1148 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1149 break;
1150 }
1151 ptent = ptep_get(src_pte);
1152 if (pte_none(ptent)) {
1153 progress++;
1154 continue;
1155 }
1156 if (unlikely(!pte_present(ptent))) {
1157 ret = copy_nonpresent_pte(dst_mm, src_mm,
1158 dst_pte, src_pte,
1159 dst_vma, src_vma,
1160 addr, rss);
1161 if (ret == -EIO) {
1162 entry = pte_to_swp_entry(ptep_get(src_pte));
1163 break;
1164 } else if (ret == -EBUSY) {
1165 break;
1166 } else if (!ret) {
1167 progress += 8;
1168 continue;
1169 }
1170 ptent = ptep_get(src_pte);
1171 VM_WARN_ON_ONCE(!pte_present(ptent));
1172
1173 /*
1174 * Device exclusive entry restored, continue by copying
1175 * the now present pte.
1176 */
1177 WARN_ON_ONCE(ret != -ENOENT);
1178 }
1179 /* copy_present_ptes() will clear `*prealloc' if consumed */
1180 max_nr = (end - addr) / PAGE_SIZE;
1181 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1182 ptent, addr, max_nr, rss, &prealloc);
1183 /*
1184 * If we need a pre-allocated page for this pte, drop the
1185 * locks, allocate, and try again.
1186 * If copy failed due to hwpoison in source page, break out.
1187 */
1188 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1189 break;
1190 if (unlikely(prealloc)) {
1191 /*
1192 * pre-alloc page cannot be reused by next time so as
1193 * to strictly follow mempolicy (e.g., alloc_page_vma()
1194 * will allocate page according to address). This
1195 * could only happen if one pinned pte changed.
1196 */
1197 folio_put(prealloc);
1198 prealloc = NULL;
1199 }
1200 nr = ret;
1201 progress += 8 * nr;
1202 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1203 addr != end);
1204
1205 arch_leave_lazy_mmu_mode();
1206 pte_unmap_unlock(orig_src_pte, src_ptl);
1207 add_mm_rss_vec(dst_mm, rss);
1208 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1209 cond_resched();
1210
1211 if (ret == -EIO) {
1212 VM_WARN_ON_ONCE(!entry.val);
1213 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1214 ret = -ENOMEM;
1215 goto out;
1216 }
1217 entry.val = 0;
1218 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1219 goto out;
1220 } else if (ret == -EAGAIN) {
1221 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1222 if (!prealloc)
1223 return -ENOMEM;
1224 } else if (ret < 0) {
1225 VM_WARN_ON_ONCE(1);
1226 }
1227
1228 /* We've captured and resolved the error. Reset, try again. */
1229 ret = 0;
1230
1231 if (addr != end)
1232 goto again;
1233 out:
1234 if (unlikely(prealloc))
1235 folio_put(prealloc);
1236 return ret;
1237 }
1238
1239 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1240 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1241 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1242 unsigned long end)
1243 {
1244 struct mm_struct *dst_mm = dst_vma->vm_mm;
1245 struct mm_struct *src_mm = src_vma->vm_mm;
1246 pmd_t *src_pmd, *dst_pmd;
1247 unsigned long next;
1248
1249 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1250 if (!dst_pmd)
1251 return -ENOMEM;
1252 src_pmd = pmd_offset(src_pud, addr);
1253 do {
1254 next = pmd_addr_end(addr, end);
1255 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1256 || pmd_devmap(*src_pmd)) {
1257 int err;
1258 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1259 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1260 addr, dst_vma, src_vma);
1261 if (err == -ENOMEM)
1262 return -ENOMEM;
1263 if (!err)
1264 continue;
1265 /* fall through */
1266 }
1267 if (pmd_none_or_clear_bad(src_pmd))
1268 continue;
1269 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1270 addr, next))
1271 return -ENOMEM;
1272 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1273 return 0;
1274 }
1275
1276 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1277 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1278 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1279 unsigned long end)
1280 {
1281 struct mm_struct *dst_mm = dst_vma->vm_mm;
1282 struct mm_struct *src_mm = src_vma->vm_mm;
1283 pud_t *src_pud, *dst_pud;
1284 unsigned long next;
1285
1286 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1287 if (!dst_pud)
1288 return -ENOMEM;
1289 src_pud = pud_offset(src_p4d, addr);
1290 do {
1291 next = pud_addr_end(addr, end);
1292 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1293 int err;
1294
1295 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1296 err = copy_huge_pud(dst_mm, src_mm,
1297 dst_pud, src_pud, addr, src_vma);
1298 if (err == -ENOMEM)
1299 return -ENOMEM;
1300 if (!err)
1301 continue;
1302 /* fall through */
1303 }
1304 if (pud_none_or_clear_bad(src_pud))
1305 continue;
1306 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1307 addr, next))
1308 return -ENOMEM;
1309 } while (dst_pud++, src_pud++, addr = next, addr != end);
1310 return 0;
1311 }
1312
1313 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1314 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1315 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1316 unsigned long end)
1317 {
1318 struct mm_struct *dst_mm = dst_vma->vm_mm;
1319 p4d_t *src_p4d, *dst_p4d;
1320 unsigned long next;
1321
1322 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1323 if (!dst_p4d)
1324 return -ENOMEM;
1325 src_p4d = p4d_offset(src_pgd, addr);
1326 do {
1327 next = p4d_addr_end(addr, end);
1328 if (p4d_none_or_clear_bad(src_p4d))
1329 continue;
1330 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1331 addr, next))
1332 return -ENOMEM;
1333 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1334 return 0;
1335 }
1336
1337 /*
1338 * Return true if the vma needs to copy the pgtable during this fork(). Return
1339 * false when we can speed up fork() by allowing lazy page faults later until
1340 * when the child accesses the memory range.
1341 */
1342 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1343 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1344 {
1345 /*
1346 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1347 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1348 * contains uffd-wp protection information, that's something we can't
1349 * retrieve from page cache, and skip copying will lose those info.
1350 */
1351 if (userfaultfd_wp(dst_vma))
1352 return true;
1353
1354 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1355 return true;
1356
1357 if (src_vma->anon_vma)
1358 return true;
1359
1360 /*
1361 * Don't copy ptes where a page fault will fill them correctly. Fork
1362 * becomes much lighter when there are big shared or private readonly
1363 * mappings. The tradeoff is that copy_page_range is more efficient
1364 * than faulting.
1365 */
1366 return false;
1367 }
1368
1369 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1370 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1371 {
1372 pgd_t *src_pgd, *dst_pgd;
1373 unsigned long addr = src_vma->vm_start;
1374 unsigned long end = src_vma->vm_end;
1375 struct mm_struct *dst_mm = dst_vma->vm_mm;
1376 struct mm_struct *src_mm = src_vma->vm_mm;
1377 struct mmu_notifier_range range;
1378 unsigned long next, pfn;
1379 bool is_cow;
1380 int ret;
1381
1382 if (!vma_needs_copy(dst_vma, src_vma))
1383 return 0;
1384
1385 if (is_vm_hugetlb_page(src_vma))
1386 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1387
1388 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1389 ret = track_pfn_copy(dst_vma, src_vma, &pfn);
1390 if (ret)
1391 return ret;
1392 }
1393
1394 /*
1395 * We need to invalidate the secondary MMU mappings only when
1396 * there could be a permission downgrade on the ptes of the
1397 * parent mm. And a permission downgrade will only happen if
1398 * is_cow_mapping() returns true.
1399 */
1400 is_cow = is_cow_mapping(src_vma->vm_flags);
1401
1402 if (is_cow) {
1403 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1404 0, src_mm, addr, end);
1405 mmu_notifier_invalidate_range_start(&range);
1406 /*
1407 * Disabling preemption is not needed for the write side, as
1408 * the read side doesn't spin, but goes to the mmap_lock.
1409 *
1410 * Use the raw variant of the seqcount_t write API to avoid
1411 * lockdep complaining about preemptibility.
1412 */
1413 vma_assert_write_locked(src_vma);
1414 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1415 }
1416
1417 ret = 0;
1418 dst_pgd = pgd_offset(dst_mm, addr);
1419 src_pgd = pgd_offset(src_mm, addr);
1420 do {
1421 next = pgd_addr_end(addr, end);
1422 if (pgd_none_or_clear_bad(src_pgd))
1423 continue;
1424 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1425 addr, next))) {
1426 ret = -ENOMEM;
1427 break;
1428 }
1429 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1430
1431 if (is_cow) {
1432 raw_write_seqcount_end(&src_mm->write_protect_seq);
1433 mmu_notifier_invalidate_range_end(&range);
1434 }
1435 if (ret && unlikely(src_vma->vm_flags & VM_PFNMAP))
1436 untrack_pfn_copy(dst_vma, pfn);
1437 return ret;
1438 }
1439
1440 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1441 static inline bool should_zap_cows(struct zap_details *details)
1442 {
1443 /* By default, zap all pages */
1444 if (!details)
1445 return true;
1446
1447 /* Or, we zap COWed pages only if the caller wants to */
1448 return details->even_cows;
1449 }
1450
1451 /* Decides whether we should zap this folio with the folio pointer specified */
should_zap_folio(struct zap_details * details,struct folio * folio)1452 static inline bool should_zap_folio(struct zap_details *details,
1453 struct folio *folio)
1454 {
1455 /* If we can make a decision without *folio.. */
1456 if (should_zap_cows(details))
1457 return true;
1458
1459 /* Otherwise we should only zap non-anon folios */
1460 return !folio_test_anon(folio);
1461 }
1462
zap_drop_markers(struct zap_details * details)1463 static inline bool zap_drop_markers(struct zap_details *details)
1464 {
1465 if (!details)
1466 return false;
1467
1468 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1469 }
1470
1471 /*
1472 * This function makes sure that we'll replace the none pte with an uffd-wp
1473 * swap special pte marker when necessary. Must be with the pgtable lock held.
1474 */
1475 static inline void
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,int nr,struct zap_details * details,pte_t pteval)1476 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1477 unsigned long addr, pte_t *pte, int nr,
1478 struct zap_details *details, pte_t pteval)
1479 {
1480 /* Zap on anonymous always means dropping everything */
1481 if (vma_is_anonymous(vma))
1482 return;
1483
1484 if (zap_drop_markers(details))
1485 return;
1486
1487 for (;;) {
1488 /* the PFN in the PTE is irrelevant. */
1489 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1490 if (--nr == 0)
1491 break;
1492 pte++;
1493 addr += PAGE_SIZE;
1494 }
1495 }
1496
zap_present_folio_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,struct folio * folio,struct page * page,pte_t * pte,pte_t ptent,unsigned int nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break)1497 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1498 struct vm_area_struct *vma, struct folio *folio,
1499 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1500 unsigned long addr, struct zap_details *details, int *rss,
1501 bool *force_flush, bool *force_break)
1502 {
1503 struct mm_struct *mm = tlb->mm;
1504 bool delay_rmap = false;
1505
1506 if (!folio_test_anon(folio)) {
1507 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1508 if (pte_dirty(ptent)) {
1509 folio_mark_dirty(folio);
1510 if (tlb_delay_rmap(tlb)) {
1511 delay_rmap = true;
1512 *force_flush = true;
1513 }
1514 }
1515 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1516 folio_mark_accessed(folio);
1517 rss[mm_counter(folio)] -= nr;
1518 } else {
1519 /* We don't need up-to-date accessed/dirty bits. */
1520 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1521 rss[MM_ANONPAGES] -= nr;
1522 }
1523 /* Checking a single PTE in a batch is sufficient. */
1524 arch_check_zapped_pte(vma, ptent);
1525 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1526 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1527 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1528 ptent);
1529
1530 if (!delay_rmap) {
1531 folio_remove_rmap_ptes(folio, page, nr, vma);
1532
1533 if (unlikely(folio_mapcount(folio) < 0))
1534 print_bad_pte(vma, addr, ptent, page);
1535 }
1536 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1537 *force_flush = true;
1538 *force_break = true;
1539 }
1540 }
1541
1542 /*
1543 * Zap or skip at least one present PTE, trying to batch-process subsequent
1544 * PTEs that map consecutive pages of the same folio.
1545 *
1546 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1547 */
zap_present_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break)1548 static inline int zap_present_ptes(struct mmu_gather *tlb,
1549 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1550 unsigned int max_nr, unsigned long addr,
1551 struct zap_details *details, int *rss, bool *force_flush,
1552 bool *force_break)
1553 {
1554 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1555 struct mm_struct *mm = tlb->mm;
1556 struct folio *folio;
1557 struct page *page;
1558 int nr;
1559
1560 page = vm_normal_page(vma, addr, ptent);
1561 if (!page) {
1562 /* We don't need up-to-date accessed/dirty bits. */
1563 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1564 arch_check_zapped_pte(vma, ptent);
1565 tlb_remove_tlb_entry(tlb, pte, addr);
1566 if (userfaultfd_pte_wp(vma, ptent))
1567 zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1568 details, ptent);
1569 ksm_might_unmap_zero_page(mm, ptent);
1570 return 1;
1571 }
1572
1573 folio = page_folio(page);
1574 if (unlikely(!should_zap_folio(details, folio)))
1575 return 1;
1576
1577 /*
1578 * Make sure that the common "small folio" case is as fast as possible
1579 * by keeping the batching logic separate.
1580 */
1581 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1582 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1583 NULL, NULL, NULL);
1584
1585 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1586 addr, details, rss, force_flush,
1587 force_break);
1588 return nr;
1589 }
1590 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1591 details, rss, force_flush, force_break);
1592 return 1;
1593 }
1594
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1595 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1596 struct vm_area_struct *vma, pmd_t *pmd,
1597 unsigned long addr, unsigned long end,
1598 struct zap_details *details)
1599 {
1600 bool force_flush = false, force_break = false;
1601 struct mm_struct *mm = tlb->mm;
1602 int rss[NR_MM_COUNTERS];
1603 spinlock_t *ptl;
1604 pte_t *start_pte;
1605 pte_t *pte;
1606 swp_entry_t entry;
1607 int nr;
1608 bool bypass = false;
1609
1610 tlb_change_page_size(tlb, PAGE_SIZE);
1611 init_rss_vec(rss);
1612 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1613 if (!pte)
1614 return addr;
1615
1616 flush_tlb_batched_pending(mm);
1617 arch_enter_lazy_mmu_mode();
1618 do {
1619 pte_t ptent = ptep_get(pte);
1620 struct folio *folio;
1621 struct page *page;
1622 int max_nr;
1623
1624 nr = 1;
1625 if (pte_none(ptent))
1626 continue;
1627
1628 if (need_resched())
1629 break;
1630
1631 if (pte_present(ptent)) {
1632 max_nr = (end - addr) / PAGE_SIZE;
1633 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1634 addr, details, rss, &force_flush,
1635 &force_break);
1636 if (unlikely(force_break)) {
1637 addr += nr * PAGE_SIZE;
1638 break;
1639 }
1640 continue;
1641 }
1642
1643 entry = pte_to_swp_entry(ptent);
1644 if (is_device_private_entry(entry) ||
1645 is_device_exclusive_entry(entry)) {
1646 page = pfn_swap_entry_to_page(entry);
1647 folio = page_folio(page);
1648 if (unlikely(!should_zap_folio(details, folio)))
1649 continue;
1650 /*
1651 * Both device private/exclusive mappings should only
1652 * work with anonymous page so far, so we don't need to
1653 * consider uffd-wp bit when zap. For more information,
1654 * see zap_install_uffd_wp_if_needed().
1655 */
1656 WARN_ON_ONCE(!vma_is_anonymous(vma));
1657 rss[mm_counter(folio)]--;
1658 if (is_device_private_entry(entry))
1659 folio_remove_rmap_pte(folio, page, vma);
1660 folio_put(folio);
1661 } else if (!non_swap_entry(entry)) {
1662 max_nr = (end - addr) / PAGE_SIZE;
1663 nr = swap_pte_batch(pte, max_nr, ptent);
1664 /* Genuine swap entries, hence a private anon pages */
1665 if (!should_zap_cows(details))
1666 continue;
1667 rss[MM_SWAPENTS] -= nr;
1668 trace_android_vh_swapmem_gather_add_bypass(mm, entry, nr, &bypass);
1669 if (bypass)
1670 goto skip;
1671 free_swap_and_cache_nr(entry, nr);
1672 } else if (is_migration_entry(entry)) {
1673 folio = pfn_swap_entry_folio(entry);
1674 if (!should_zap_folio(details, folio))
1675 continue;
1676 rss[mm_counter(folio)]--;
1677 } else if (pte_marker_entry_uffd_wp(entry)) {
1678 /*
1679 * For anon: always drop the marker; for file: only
1680 * drop the marker if explicitly requested.
1681 */
1682 if (!vma_is_anonymous(vma) &&
1683 !zap_drop_markers(details))
1684 continue;
1685 } else if (is_guard_swp_entry(entry)) {
1686 /*
1687 * Ordinary zapping should not remove guard PTE
1688 * markers. Only do so if we should remove PTE markers
1689 * in general.
1690 */
1691 if (!zap_drop_markers(details))
1692 continue;
1693 } else if (is_hwpoison_entry(entry) ||
1694 is_poisoned_swp_entry(entry)) {
1695 if (!should_zap_cows(details))
1696 continue;
1697 } else {
1698 /* We should have covered all the swap entry types */
1699 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1700 WARN_ON_ONCE(1);
1701 }
1702 skip:
1703 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1704 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1705 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1706
1707 add_mm_rss_vec(mm, rss);
1708 arch_leave_lazy_mmu_mode();
1709
1710 /* Do the actual TLB flush before dropping ptl */
1711 if (force_flush) {
1712 tlb_flush_mmu_tlbonly(tlb);
1713 tlb_flush_rmaps(tlb, vma);
1714 }
1715 pte_unmap_unlock(start_pte, ptl);
1716
1717 /*
1718 * If we forced a TLB flush (either due to running out of
1719 * batch buffers or because we needed to flush dirty TLB
1720 * entries before releasing the ptl), free the batched
1721 * memory too. Come back again if we didn't do everything.
1722 */
1723 if (force_flush)
1724 tlb_flush_mmu(tlb);
1725
1726 return addr;
1727 }
1728
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1729 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1730 struct vm_area_struct *vma, pud_t *pud,
1731 unsigned long addr, unsigned long end,
1732 struct zap_details *details)
1733 {
1734 pmd_t *pmd;
1735 unsigned long next;
1736
1737 pmd = pmd_offset(pud, addr);
1738 do {
1739 next = pmd_addr_end(addr, end);
1740 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1741 if (next - addr != HPAGE_PMD_SIZE)
1742 __split_huge_pmd(vma, pmd, addr, false, NULL);
1743 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1744 addr = next;
1745 continue;
1746 }
1747 /* fall through */
1748 } else if (details && details->single_folio &&
1749 folio_test_pmd_mappable(details->single_folio) &&
1750 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1751 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1752 /*
1753 * Take and drop THP pmd lock so that we cannot return
1754 * prematurely, while zap_huge_pmd() has cleared *pmd,
1755 * but not yet decremented compound_mapcount().
1756 */
1757 spin_unlock(ptl);
1758 }
1759 if (pmd_none(*pmd)) {
1760 addr = next;
1761 continue;
1762 }
1763 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1764 if (addr != next)
1765 pmd--;
1766 } while (pmd++, cond_resched(), addr != end);
1767
1768 return addr;
1769 }
1770
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1771 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1772 struct vm_area_struct *vma, p4d_t *p4d,
1773 unsigned long addr, unsigned long end,
1774 struct zap_details *details)
1775 {
1776 pud_t *pud;
1777 unsigned long next;
1778
1779 pud = pud_offset(p4d, addr);
1780 do {
1781 next = pud_addr_end(addr, end);
1782 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1783 if (next - addr != HPAGE_PUD_SIZE) {
1784 mmap_assert_locked(tlb->mm);
1785 split_huge_pud(vma, pud, addr);
1786 } else if (zap_huge_pud(tlb, vma, pud, addr))
1787 goto next;
1788 /* fall through */
1789 }
1790 if (pud_none_or_clear_bad(pud))
1791 continue;
1792 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1793 next:
1794 cond_resched();
1795 } while (pud++, addr = next, addr != end);
1796
1797 return addr;
1798 }
1799
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1800 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1801 struct vm_area_struct *vma, pgd_t *pgd,
1802 unsigned long addr, unsigned long end,
1803 struct zap_details *details)
1804 {
1805 p4d_t *p4d;
1806 unsigned long next;
1807
1808 p4d = p4d_offset(pgd, addr);
1809 do {
1810 next = p4d_addr_end(addr, end);
1811 if (p4d_none_or_clear_bad(p4d))
1812 continue;
1813 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1814 } while (p4d++, addr = next, addr != end);
1815
1816 return addr;
1817 }
1818
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1819 void unmap_page_range(struct mmu_gather *tlb,
1820 struct vm_area_struct *vma,
1821 unsigned long addr, unsigned long end,
1822 struct zap_details *details)
1823 {
1824 pgd_t *pgd;
1825 unsigned long next;
1826
1827 BUG_ON(addr >= end);
1828 tlb_start_vma(tlb, vma);
1829 pgd = pgd_offset(vma->vm_mm, addr);
1830 do {
1831 next = pgd_addr_end(addr, end);
1832 if (pgd_none_or_clear_bad(pgd))
1833 continue;
1834 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1835 } while (pgd++, addr = next, addr != end);
1836 tlb_end_vma(tlb, vma);
1837 }
1838
1839
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details,bool mm_wr_locked)1840 static void unmap_single_vma(struct mmu_gather *tlb,
1841 struct vm_area_struct *vma, unsigned long start_addr,
1842 unsigned long end_addr,
1843 struct zap_details *details, bool mm_wr_locked)
1844 {
1845 unsigned long start = max(vma->vm_start, start_addr);
1846 unsigned long end;
1847
1848 if (start >= vma->vm_end)
1849 return;
1850 end = min(vma->vm_end, end_addr);
1851 if (end <= vma->vm_start)
1852 return;
1853
1854 if (vma->vm_file)
1855 uprobe_munmap(vma, start, end);
1856
1857 if (unlikely(vma->vm_flags & VM_PFNMAP))
1858 untrack_pfn(vma, 0, 0, mm_wr_locked);
1859
1860 if (start != end) {
1861 if (unlikely(is_vm_hugetlb_page(vma))) {
1862 /*
1863 * It is undesirable to test vma->vm_file as it
1864 * should be non-null for valid hugetlb area.
1865 * However, vm_file will be NULL in the error
1866 * cleanup path of mmap_region. When
1867 * hugetlbfs ->mmap method fails,
1868 * mmap_region() nullifies vma->vm_file
1869 * before calling this function to clean up.
1870 * Since no pte has actually been setup, it is
1871 * safe to do nothing in this case.
1872 */
1873 if (vma->vm_file) {
1874 zap_flags_t zap_flags = details ?
1875 details->zap_flags : 0;
1876 __unmap_hugepage_range(tlb, vma, start, end,
1877 NULL, zap_flags);
1878 }
1879 } else
1880 unmap_page_range(tlb, vma, start, end, details);
1881 }
1882 }
1883
1884 /**
1885 * unmap_vmas - unmap a range of memory covered by a list of vma's
1886 * @tlb: address of the caller's struct mmu_gather
1887 * @mas: the maple state
1888 * @vma: the starting vma
1889 * @start_addr: virtual address at which to start unmapping
1890 * @end_addr: virtual address at which to end unmapping
1891 * @tree_end: The maximum index to check
1892 * @mm_wr_locked: lock flag
1893 *
1894 * Unmap all pages in the vma list.
1895 *
1896 * Only addresses between `start' and `end' will be unmapped.
1897 *
1898 * The VMA list must be sorted in ascending virtual address order.
1899 *
1900 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1901 * range after unmap_vmas() returns. So the only responsibility here is to
1902 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1903 * drops the lock and schedules.
1904 */
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end,bool mm_wr_locked)1905 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1906 struct vm_area_struct *vma, unsigned long start_addr,
1907 unsigned long end_addr, unsigned long tree_end,
1908 bool mm_wr_locked)
1909 {
1910 struct mmu_notifier_range range;
1911 struct zap_details details = {
1912 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1913 /* Careful - we need to zap private pages too! */
1914 .even_cows = true,
1915 };
1916
1917 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1918 start_addr, end_addr);
1919 mmu_notifier_invalidate_range_start(&range);
1920 do {
1921 unsigned long start = start_addr;
1922 unsigned long end = end_addr;
1923 hugetlb_zap_begin(vma, &start, &end);
1924 unmap_single_vma(tlb, vma, start, end, &details,
1925 mm_wr_locked);
1926 hugetlb_zap_end(vma, &details);
1927 vma = mas_find(mas, tree_end - 1);
1928 } while (vma && likely(!xa_is_zero(vma)));
1929 mmu_notifier_invalidate_range_end(&range);
1930 }
1931
1932 /**
1933 * zap_page_range_single - remove user pages in a given range
1934 * @vma: vm_area_struct holding the applicable pages
1935 * @address: starting address of pages to zap
1936 * @size: number of bytes to zap
1937 * @details: details of shared cache invalidation
1938 *
1939 * The range must fit into one VMA.
1940 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1941 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1942 unsigned long size, struct zap_details *details)
1943 {
1944 const unsigned long end = address + size;
1945 struct mmu_notifier_range range;
1946 struct mmu_gather tlb;
1947
1948 lru_add_drain();
1949 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1950 address, end);
1951 hugetlb_zap_begin(vma, &range.start, &range.end);
1952 tlb_gather_mmu(&tlb, vma->vm_mm);
1953 update_hiwater_rss(vma->vm_mm);
1954 mmu_notifier_invalidate_range_start(&range);
1955 /*
1956 * unmap 'address-end' not 'range.start-range.end' as range
1957 * could have been expanded for hugetlb pmd sharing.
1958 */
1959 unmap_single_vma(&tlb, vma, address, end, details, false);
1960 mmu_notifier_invalidate_range_end(&range);
1961 tlb_finish_mmu(&tlb);
1962 hugetlb_zap_end(vma, details);
1963 }
1964 EXPORT_SYMBOL_GPL(zap_page_range_single);
1965
1966 /**
1967 * zap_vma_ptes - remove ptes mapping the vma
1968 * @vma: vm_area_struct holding ptes to be zapped
1969 * @address: starting address of pages to zap
1970 * @size: number of bytes to zap
1971 *
1972 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1973 *
1974 * The entire address range must be fully contained within the vma.
1975 *
1976 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1977 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1978 unsigned long size)
1979 {
1980 if (!range_in_vma(vma, address, address + size) ||
1981 !(vma->vm_flags & VM_PFNMAP))
1982 return;
1983
1984 zap_page_range_single(vma, address, size, NULL);
1985 }
1986 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1987
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1988 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1989 {
1990 pgd_t *pgd;
1991 p4d_t *p4d;
1992 pud_t *pud;
1993 pmd_t *pmd;
1994
1995 pgd = pgd_offset(mm, addr);
1996 p4d = p4d_alloc(mm, pgd, addr);
1997 if (!p4d)
1998 return NULL;
1999 pud = pud_alloc(mm, p4d, addr);
2000 if (!pud)
2001 return NULL;
2002 pmd = pmd_alloc(mm, pud, addr);
2003 if (!pmd)
2004 return NULL;
2005
2006 VM_BUG_ON(pmd_trans_huge(*pmd));
2007 return pmd;
2008 }
2009
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2010 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2011 spinlock_t **ptl)
2012 {
2013 pmd_t *pmd = walk_to_pmd(mm, addr);
2014
2015 if (!pmd)
2016 return NULL;
2017 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2018 }
2019
vm_mixed_zeropage_allowed(struct vm_area_struct * vma)2020 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2021 {
2022 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2023 /*
2024 * Whoever wants to forbid the zeropage after some zeropages
2025 * might already have been mapped has to scan the page tables and
2026 * bail out on any zeropages. Zeropages in COW mappings can
2027 * be unshared using FAULT_FLAG_UNSHARE faults.
2028 */
2029 if (mm_forbids_zeropage(vma->vm_mm))
2030 return false;
2031 /* zeropages in COW mappings are common and unproblematic. */
2032 if (is_cow_mapping(vma->vm_flags))
2033 return true;
2034 /* Mappings that do not allow for writable PTEs are unproblematic. */
2035 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2036 return true;
2037 /*
2038 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2039 * find the shared zeropage and longterm-pin it, which would
2040 * be problematic as soon as the zeropage gets replaced by a different
2041 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2042 * now differ to what GUP looked up. FSDAX is incompatible to
2043 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2044 * check_vma_flags).
2045 */
2046 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2047 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2048 }
2049
validate_page_before_insert(struct vm_area_struct * vma,struct page * page)2050 static int validate_page_before_insert(struct vm_area_struct *vma,
2051 struct page *page)
2052 {
2053 struct folio *folio = page_folio(page);
2054
2055 if (!folio_ref_count(folio))
2056 return -EINVAL;
2057 if (unlikely(is_zero_folio(folio))) {
2058 if (!vm_mixed_zeropage_allowed(vma))
2059 return -EINVAL;
2060 return 0;
2061 }
2062 if (folio_test_anon(folio) || folio_test_slab(folio) ||
2063 page_has_type(page))
2064 return -EINVAL;
2065 flush_dcache_folio(folio);
2066 return 0;
2067 }
2068
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)2069 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2070 unsigned long addr, struct page *page, pgprot_t prot)
2071 {
2072 struct folio *folio = page_folio(page);
2073 pte_t pteval;
2074
2075 if (!pte_none(ptep_get(pte)))
2076 return -EBUSY;
2077 /* Ok, finally just insert the thing.. */
2078 pteval = mk_pte(page, prot);
2079 if (unlikely(is_zero_folio(folio))) {
2080 pteval = pte_mkspecial(pteval);
2081 } else {
2082 folio_get(folio);
2083 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2084 folio_add_file_rmap_pte(folio, page, vma);
2085 }
2086 set_pte_at(vma->vm_mm, addr, pte, pteval);
2087 return 0;
2088 }
2089
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)2090 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2091 struct page *page, pgprot_t prot)
2092 {
2093 int retval;
2094 pte_t *pte;
2095 spinlock_t *ptl;
2096
2097 retval = validate_page_before_insert(vma, page);
2098 if (retval)
2099 goto out;
2100 retval = -ENOMEM;
2101 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2102 if (!pte)
2103 goto out;
2104 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2105 pte_unmap_unlock(pte, ptl);
2106 out:
2107 return retval;
2108 }
2109
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)2110 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2111 unsigned long addr, struct page *page, pgprot_t prot)
2112 {
2113 int err;
2114
2115 err = validate_page_before_insert(vma, page);
2116 if (err)
2117 return err;
2118 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2119 }
2120
2121 /* insert_pages() amortizes the cost of spinlock operations
2122 * when inserting pages in a loop.
2123 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)2124 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2125 struct page **pages, unsigned long *num, pgprot_t prot)
2126 {
2127 pmd_t *pmd = NULL;
2128 pte_t *start_pte, *pte;
2129 spinlock_t *pte_lock;
2130 struct mm_struct *const mm = vma->vm_mm;
2131 unsigned long curr_page_idx = 0;
2132 unsigned long remaining_pages_total = *num;
2133 unsigned long pages_to_write_in_pmd;
2134 int ret;
2135 more:
2136 ret = -EFAULT;
2137 pmd = walk_to_pmd(mm, addr);
2138 if (!pmd)
2139 goto out;
2140
2141 pages_to_write_in_pmd = min_t(unsigned long,
2142 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2143
2144 /* Allocate the PTE if necessary; takes PMD lock once only. */
2145 ret = -ENOMEM;
2146 if (pte_alloc(mm, pmd))
2147 goto out;
2148
2149 while (pages_to_write_in_pmd) {
2150 int pte_idx = 0;
2151 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2152
2153 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2154 if (!start_pte) {
2155 ret = -EFAULT;
2156 goto out;
2157 }
2158 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2159 int err = insert_page_in_batch_locked(vma, pte,
2160 addr, pages[curr_page_idx], prot);
2161 if (unlikely(err)) {
2162 pte_unmap_unlock(start_pte, pte_lock);
2163 ret = err;
2164 remaining_pages_total -= pte_idx;
2165 goto out;
2166 }
2167 addr += PAGE_SIZE;
2168 ++curr_page_idx;
2169 }
2170 pte_unmap_unlock(start_pte, pte_lock);
2171 pages_to_write_in_pmd -= batch_size;
2172 remaining_pages_total -= batch_size;
2173 }
2174 if (remaining_pages_total)
2175 goto more;
2176 ret = 0;
2177 out:
2178 *num = remaining_pages_total;
2179 return ret;
2180 }
2181
2182 /**
2183 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2184 * @vma: user vma to map to
2185 * @addr: target start user address of these pages
2186 * @pages: source kernel pages
2187 * @num: in: number of pages to map. out: number of pages that were *not*
2188 * mapped. (0 means all pages were successfully mapped).
2189 *
2190 * Preferred over vm_insert_page() when inserting multiple pages.
2191 *
2192 * In case of error, we may have mapped a subset of the provided
2193 * pages. It is the caller's responsibility to account for this case.
2194 *
2195 * The same restrictions apply as in vm_insert_page().
2196 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)2197 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2198 struct page **pages, unsigned long *num)
2199 {
2200 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2201
2202 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2203 return -EFAULT;
2204 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2205 BUG_ON(mmap_read_trylock(vma->vm_mm));
2206 BUG_ON(vma->vm_flags & VM_PFNMAP);
2207 vm_flags_set(vma, VM_MIXEDMAP);
2208 }
2209 /* Defer page refcount checking till we're about to map that page. */
2210 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2211 }
2212 EXPORT_SYMBOL(vm_insert_pages);
2213
2214 /**
2215 * vm_insert_page - insert single page into user vma
2216 * @vma: user vma to map to
2217 * @addr: target user address of this page
2218 * @page: source kernel page
2219 *
2220 * This allows drivers to insert individual pages they've allocated
2221 * into a user vma. The zeropage is supported in some VMAs,
2222 * see vm_mixed_zeropage_allowed().
2223 *
2224 * The page has to be a nice clean _individual_ kernel allocation.
2225 * If you allocate a compound page, you need to have marked it as
2226 * such (__GFP_COMP), or manually just split the page up yourself
2227 * (see split_page()).
2228 *
2229 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2230 * took an arbitrary page protection parameter. This doesn't allow
2231 * that. Your vma protection will have to be set up correctly, which
2232 * means that if you want a shared writable mapping, you'd better
2233 * ask for a shared writable mapping!
2234 *
2235 * The page does not need to be reserved.
2236 *
2237 * Usually this function is called from f_op->mmap() handler
2238 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2239 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2240 * function from other places, for example from page-fault handler.
2241 *
2242 * Return: %0 on success, negative error code otherwise.
2243 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2244 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2245 struct page *page)
2246 {
2247 if (addr < vma->vm_start || addr >= vma->vm_end)
2248 return -EFAULT;
2249 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2250 BUG_ON(mmap_read_trylock(vma->vm_mm));
2251 BUG_ON(vma->vm_flags & VM_PFNMAP);
2252 vm_flags_set(vma, VM_MIXEDMAP);
2253 }
2254 return insert_page(vma, addr, page, vma->vm_page_prot);
2255 }
2256 EXPORT_SYMBOL(vm_insert_page);
2257
2258 /*
2259 * __vm_map_pages - maps range of kernel pages into user vma
2260 * @vma: user vma to map to
2261 * @pages: pointer to array of source kernel pages
2262 * @num: number of pages in page array
2263 * @offset: user's requested vm_pgoff
2264 *
2265 * This allows drivers to map range of kernel pages into a user vma.
2266 * The zeropage is supported in some VMAs, see
2267 * vm_mixed_zeropage_allowed().
2268 *
2269 * Return: 0 on success and error code otherwise.
2270 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2271 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2272 unsigned long num, unsigned long offset)
2273 {
2274 unsigned long count = vma_pages(vma);
2275 unsigned long uaddr = vma->vm_start;
2276 int ret, i;
2277
2278 /* Fail if the user requested offset is beyond the end of the object */
2279 if (offset >= num)
2280 return -ENXIO;
2281
2282 /* Fail if the user requested size exceeds available object size */
2283 if (count > num - offset)
2284 return -ENXIO;
2285
2286 for (i = 0; i < count; i++) {
2287 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2288 if (ret < 0)
2289 return ret;
2290 uaddr += PAGE_SIZE;
2291 }
2292
2293 return 0;
2294 }
2295
2296 /**
2297 * vm_map_pages - maps range of kernel pages starts with non zero offset
2298 * @vma: user vma to map to
2299 * @pages: pointer to array of source kernel pages
2300 * @num: number of pages in page array
2301 *
2302 * Maps an object consisting of @num pages, catering for the user's
2303 * requested vm_pgoff
2304 *
2305 * If we fail to insert any page into the vma, the function will return
2306 * immediately leaving any previously inserted pages present. Callers
2307 * from the mmap handler may immediately return the error as their caller
2308 * will destroy the vma, removing any successfully inserted pages. Other
2309 * callers should make their own arrangements for calling unmap_region().
2310 *
2311 * Context: Process context. Called by mmap handlers.
2312 * Return: 0 on success and error code otherwise.
2313 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2314 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2315 unsigned long num)
2316 {
2317 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2318 }
2319 EXPORT_SYMBOL(vm_map_pages);
2320
2321 /**
2322 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2323 * @vma: user vma to map to
2324 * @pages: pointer to array of source kernel pages
2325 * @num: number of pages in page array
2326 *
2327 * Similar to vm_map_pages(), except that it explicitly sets the offset
2328 * to 0. This function is intended for the drivers that did not consider
2329 * vm_pgoff.
2330 *
2331 * Context: Process context. Called by mmap handlers.
2332 * Return: 0 on success and error code otherwise.
2333 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2334 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2335 unsigned long num)
2336 {
2337 return __vm_map_pages(vma, pages, num, 0);
2338 }
2339 EXPORT_SYMBOL(vm_map_pages_zero);
2340
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2341 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2342 pfn_t pfn, pgprot_t prot, bool mkwrite)
2343 {
2344 struct mm_struct *mm = vma->vm_mm;
2345 pte_t *pte, entry;
2346 spinlock_t *ptl;
2347
2348 pte = get_locked_pte(mm, addr, &ptl);
2349 if (!pte)
2350 return VM_FAULT_OOM;
2351 entry = ptep_get(pte);
2352 if (!pte_none(entry)) {
2353 if (mkwrite) {
2354 /*
2355 * For read faults on private mappings the PFN passed
2356 * in may not match the PFN we have mapped if the
2357 * mapped PFN is a writeable COW page. In the mkwrite
2358 * case we are creating a writable PTE for a shared
2359 * mapping and we expect the PFNs to match. If they
2360 * don't match, we are likely racing with block
2361 * allocation and mapping invalidation so just skip the
2362 * update.
2363 */
2364 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2365 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2366 goto out_unlock;
2367 }
2368 entry = pte_mkyoung(entry);
2369 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2370 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2371 update_mmu_cache(vma, addr, pte);
2372 }
2373 goto out_unlock;
2374 }
2375
2376 /* Ok, finally just insert the thing.. */
2377 if (pfn_t_devmap(pfn))
2378 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2379 else
2380 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2381
2382 if (mkwrite) {
2383 entry = pte_mkyoung(entry);
2384 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2385 }
2386
2387 set_pte_at(mm, addr, pte, entry);
2388 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2389
2390 out_unlock:
2391 pte_unmap_unlock(pte, ptl);
2392 return VM_FAULT_NOPAGE;
2393 }
2394
2395 /**
2396 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2397 * @vma: user vma to map to
2398 * @addr: target user address of this page
2399 * @pfn: source kernel pfn
2400 * @pgprot: pgprot flags for the inserted page
2401 *
2402 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2403 * to override pgprot on a per-page basis.
2404 *
2405 * This only makes sense for IO mappings, and it makes no sense for
2406 * COW mappings. In general, using multiple vmas is preferable;
2407 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2408 * impractical.
2409 *
2410 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2411 * caching- and encryption bits different than those of @vma->vm_page_prot,
2412 * because the caching- or encryption mode may not be known at mmap() time.
2413 *
2414 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2415 * to set caching and encryption bits for those vmas (except for COW pages).
2416 * This is ensured by core vm only modifying these page table entries using
2417 * functions that don't touch caching- or encryption bits, using pte_modify()
2418 * if needed. (See for example mprotect()).
2419 *
2420 * Also when new page-table entries are created, this is only done using the
2421 * fault() callback, and never using the value of vma->vm_page_prot,
2422 * except for page-table entries that point to anonymous pages as the result
2423 * of COW.
2424 *
2425 * Context: Process context. May allocate using %GFP_KERNEL.
2426 * Return: vm_fault_t value.
2427 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2428 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2429 unsigned long pfn, pgprot_t pgprot)
2430 {
2431 /*
2432 * Technically, architectures with pte_special can avoid all these
2433 * restrictions (same for remap_pfn_range). However we would like
2434 * consistency in testing and feature parity among all, so we should
2435 * try to keep these invariants in place for everybody.
2436 */
2437 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2438 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2439 (VM_PFNMAP|VM_MIXEDMAP));
2440 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2441 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2442
2443 if (addr < vma->vm_start || addr >= vma->vm_end)
2444 return VM_FAULT_SIGBUS;
2445
2446 if (!pfn_modify_allowed(pfn, pgprot))
2447 return VM_FAULT_SIGBUS;
2448
2449 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2450
2451 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2452 false);
2453 }
2454 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2455
2456 /**
2457 * vmf_insert_pfn - insert single pfn into user vma
2458 * @vma: user vma to map to
2459 * @addr: target user address of this page
2460 * @pfn: source kernel pfn
2461 *
2462 * Similar to vm_insert_page, this allows drivers to insert individual pages
2463 * they've allocated into a user vma. Same comments apply.
2464 *
2465 * This function should only be called from a vm_ops->fault handler, and
2466 * in that case the handler should return the result of this function.
2467 *
2468 * vma cannot be a COW mapping.
2469 *
2470 * As this is called only for pages that do not currently exist, we
2471 * do not need to flush old virtual caches or the TLB.
2472 *
2473 * Context: Process context. May allocate using %GFP_KERNEL.
2474 * Return: vm_fault_t value.
2475 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2476 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2477 unsigned long pfn)
2478 {
2479 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2480 }
2481 EXPORT_SYMBOL(vmf_insert_pfn);
2482
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn,bool mkwrite)2483 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2484 {
2485 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2486 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2487 return false;
2488 /* these checks mirror the abort conditions in vm_normal_page */
2489 if (vma->vm_flags & VM_MIXEDMAP)
2490 return true;
2491 if (pfn_t_devmap(pfn))
2492 return true;
2493 if (pfn_t_special(pfn))
2494 return true;
2495 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2496 return true;
2497 return false;
2498 }
2499
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)2500 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2501 unsigned long addr, pfn_t pfn, bool mkwrite)
2502 {
2503 pgprot_t pgprot = vma->vm_page_prot;
2504 int err;
2505
2506 if (!vm_mixed_ok(vma, pfn, mkwrite))
2507 return VM_FAULT_SIGBUS;
2508
2509 if (addr < vma->vm_start || addr >= vma->vm_end)
2510 return VM_FAULT_SIGBUS;
2511
2512 track_pfn_insert(vma, &pgprot, pfn);
2513
2514 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2515 return VM_FAULT_SIGBUS;
2516
2517 /*
2518 * If we don't have pte special, then we have to use the pfn_valid()
2519 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2520 * refcount the page if pfn_valid is true (hence insert_page rather
2521 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2522 * without pte special, it would there be refcounted as a normal page.
2523 */
2524 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2525 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2526 struct page *page;
2527
2528 /*
2529 * At this point we are committed to insert_page()
2530 * regardless of whether the caller specified flags that
2531 * result in pfn_t_has_page() == false.
2532 */
2533 page = pfn_to_page(pfn_t_to_pfn(pfn));
2534 err = insert_page(vma, addr, page, pgprot);
2535 } else {
2536 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2537 }
2538
2539 if (err == -ENOMEM)
2540 return VM_FAULT_OOM;
2541 if (err < 0 && err != -EBUSY)
2542 return VM_FAULT_SIGBUS;
2543
2544 return VM_FAULT_NOPAGE;
2545 }
2546
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2547 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2548 pfn_t pfn)
2549 {
2550 return __vm_insert_mixed(vma, addr, pfn, false);
2551 }
2552 EXPORT_SYMBOL(vmf_insert_mixed);
2553
2554 /*
2555 * If the insertion of PTE failed because someone else already added a
2556 * different entry in the mean time, we treat that as success as we assume
2557 * the same entry was actually inserted.
2558 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2559 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2560 unsigned long addr, pfn_t pfn)
2561 {
2562 return __vm_insert_mixed(vma, addr, pfn, true);
2563 }
2564
2565 /*
2566 * maps a range of physical memory into the requested pages. the old
2567 * mappings are removed. any references to nonexistent pages results
2568 * in null mappings (currently treated as "copy-on-access")
2569 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2570 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2571 unsigned long addr, unsigned long end,
2572 unsigned long pfn, pgprot_t prot)
2573 {
2574 pte_t *pte, *mapped_pte;
2575 spinlock_t *ptl;
2576 int err = 0;
2577
2578 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2579 if (!pte)
2580 return -ENOMEM;
2581 arch_enter_lazy_mmu_mode();
2582 do {
2583 BUG_ON(!pte_none(ptep_get(pte)));
2584 if (!pfn_modify_allowed(pfn, prot)) {
2585 err = -EACCES;
2586 break;
2587 }
2588 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2589 pfn++;
2590 } while (pte++, addr += PAGE_SIZE, addr != end);
2591 arch_leave_lazy_mmu_mode();
2592 pte_unmap_unlock(mapped_pte, ptl);
2593 return err;
2594 }
2595
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2596 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2597 unsigned long addr, unsigned long end,
2598 unsigned long pfn, pgprot_t prot)
2599 {
2600 pmd_t *pmd;
2601 unsigned long next;
2602 int err;
2603
2604 pfn -= addr >> PAGE_SHIFT;
2605 pmd = pmd_alloc(mm, pud, addr);
2606 if (!pmd)
2607 return -ENOMEM;
2608 VM_BUG_ON(pmd_trans_huge(*pmd));
2609 do {
2610 next = pmd_addr_end(addr, end);
2611 err = remap_pte_range(mm, pmd, addr, next,
2612 pfn + (addr >> PAGE_SHIFT), prot);
2613 if (err)
2614 return err;
2615 } while (pmd++, addr = next, addr != end);
2616 return 0;
2617 }
2618
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2619 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2620 unsigned long addr, unsigned long end,
2621 unsigned long pfn, pgprot_t prot)
2622 {
2623 pud_t *pud;
2624 unsigned long next;
2625 int err;
2626
2627 pfn -= addr >> PAGE_SHIFT;
2628 pud = pud_alloc(mm, p4d, addr);
2629 if (!pud)
2630 return -ENOMEM;
2631 do {
2632 next = pud_addr_end(addr, end);
2633 err = remap_pmd_range(mm, pud, addr, next,
2634 pfn + (addr >> PAGE_SHIFT), prot);
2635 if (err)
2636 return err;
2637 } while (pud++, addr = next, addr != end);
2638 return 0;
2639 }
2640
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2641 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2642 unsigned long addr, unsigned long end,
2643 unsigned long pfn, pgprot_t prot)
2644 {
2645 p4d_t *p4d;
2646 unsigned long next;
2647 int err;
2648
2649 pfn -= addr >> PAGE_SHIFT;
2650 p4d = p4d_alloc(mm, pgd, addr);
2651 if (!p4d)
2652 return -ENOMEM;
2653 do {
2654 next = p4d_addr_end(addr, end);
2655 err = remap_pud_range(mm, p4d, addr, next,
2656 pfn + (addr >> PAGE_SHIFT), prot);
2657 if (err)
2658 return err;
2659 } while (p4d++, addr = next, addr != end);
2660 return 0;
2661 }
2662
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2663 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2664 unsigned long pfn, unsigned long size, pgprot_t prot)
2665 {
2666 pgd_t *pgd;
2667 unsigned long next;
2668 unsigned long end = addr + PAGE_ALIGN(size);
2669 struct mm_struct *mm = vma->vm_mm;
2670 int err;
2671
2672 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2673 return -EINVAL;
2674
2675 /*
2676 * Physically remapped pages are special. Tell the
2677 * rest of the world about it:
2678 * VM_IO tells people not to look at these pages
2679 * (accesses can have side effects).
2680 * VM_PFNMAP tells the core MM that the base pages are just
2681 * raw PFN mappings, and do not have a "struct page" associated
2682 * with them.
2683 * VM_DONTEXPAND
2684 * Disable vma merging and expanding with mremap().
2685 * VM_DONTDUMP
2686 * Omit vma from core dump, even when VM_IO turned off.
2687 *
2688 * There's a horrible special case to handle copy-on-write
2689 * behaviour that some programs depend on. We mark the "original"
2690 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2691 * See vm_normal_page() for details.
2692 */
2693 if (is_cow_mapping(vma->vm_flags)) {
2694 if (addr != vma->vm_start || end != vma->vm_end)
2695 return -EINVAL;
2696 vma->vm_pgoff = pfn;
2697 }
2698
2699 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2700
2701 BUG_ON(addr >= end);
2702 pfn -= addr >> PAGE_SHIFT;
2703 pgd = pgd_offset(mm, addr);
2704 flush_cache_range(vma, addr, end);
2705 do {
2706 next = pgd_addr_end(addr, end);
2707 err = remap_p4d_range(mm, pgd, addr, next,
2708 pfn + (addr >> PAGE_SHIFT), prot);
2709 if (err)
2710 return err;
2711 } while (pgd++, addr = next, addr != end);
2712
2713 return 0;
2714 }
2715
2716 /*
2717 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2718 * must have pre-validated the caching bits of the pgprot_t.
2719 */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2720 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2721 unsigned long pfn, unsigned long size, pgprot_t prot)
2722 {
2723 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2724
2725 if (!error)
2726 return 0;
2727
2728 /*
2729 * A partial pfn range mapping is dangerous: it does not
2730 * maintain page reference counts, and callers may free
2731 * pages due to the error. So zap it early.
2732 */
2733 zap_page_range_single(vma, addr, size, NULL);
2734 return error;
2735 }
2736
2737 /**
2738 * remap_pfn_range - remap kernel memory to userspace
2739 * @vma: user vma to map to
2740 * @addr: target page aligned user address to start at
2741 * @pfn: page frame number of kernel physical memory address
2742 * @size: size of mapping area
2743 * @prot: page protection flags for this mapping
2744 *
2745 * Note: this is only safe if the mm semaphore is held when called.
2746 *
2747 * Return: %0 on success, negative error code otherwise.
2748 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2749 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2750 unsigned long pfn, unsigned long size, pgprot_t prot)
2751 {
2752 int err;
2753
2754 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2755 if (err)
2756 return -EINVAL;
2757
2758 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2759 if (err)
2760 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2761 return err;
2762 }
2763 EXPORT_SYMBOL(remap_pfn_range);
2764
2765 /**
2766 * vm_iomap_memory - remap memory to userspace
2767 * @vma: user vma to map to
2768 * @start: start of the physical memory to be mapped
2769 * @len: size of area
2770 *
2771 * This is a simplified io_remap_pfn_range() for common driver use. The
2772 * driver just needs to give us the physical memory range to be mapped,
2773 * we'll figure out the rest from the vma information.
2774 *
2775 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2776 * whatever write-combining details or similar.
2777 *
2778 * Return: %0 on success, negative error code otherwise.
2779 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2780 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2781 {
2782 unsigned long vm_len, pfn, pages;
2783
2784 /* Check that the physical memory area passed in looks valid */
2785 if (start + len < start)
2786 return -EINVAL;
2787 /*
2788 * You *really* shouldn't map things that aren't page-aligned,
2789 * but we've historically allowed it because IO memory might
2790 * just have smaller alignment.
2791 */
2792 len += start & ~PAGE_MASK;
2793 pfn = start >> PAGE_SHIFT;
2794 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2795 if (pfn + pages < pfn)
2796 return -EINVAL;
2797
2798 /* We start the mapping 'vm_pgoff' pages into the area */
2799 if (vma->vm_pgoff > pages)
2800 return -EINVAL;
2801 pfn += vma->vm_pgoff;
2802 pages -= vma->vm_pgoff;
2803
2804 /* Can we fit all of the mapping? */
2805 vm_len = vma->vm_end - vma->vm_start;
2806 if (vm_len >> PAGE_SHIFT > pages)
2807 return -EINVAL;
2808
2809 /* Ok, let it rip */
2810 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2811 }
2812 EXPORT_SYMBOL(vm_iomap_memory);
2813
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2814 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2815 unsigned long addr, unsigned long end,
2816 pte_fn_t fn, void *data, bool create,
2817 pgtbl_mod_mask *mask)
2818 {
2819 pte_t *pte, *mapped_pte;
2820 int err = 0;
2821 spinlock_t *ptl;
2822
2823 if (create) {
2824 mapped_pte = pte = (mm == &init_mm) ?
2825 pte_alloc_kernel_track(pmd, addr, mask) :
2826 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2827 if (!pte)
2828 return -ENOMEM;
2829 } else {
2830 mapped_pte = pte = (mm == &init_mm) ?
2831 pte_offset_kernel(pmd, addr) :
2832 pte_offset_map_lock(mm, pmd, addr, &ptl);
2833 if (!pte)
2834 return -EINVAL;
2835 }
2836
2837 arch_enter_lazy_mmu_mode();
2838
2839 if (fn) {
2840 do {
2841 if (create || !pte_none(ptep_get(pte))) {
2842 err = fn(pte, addr, data);
2843 if (err)
2844 break;
2845 }
2846 } while (pte++, addr += PAGE_SIZE, addr != end);
2847 }
2848 *mask |= PGTBL_PTE_MODIFIED;
2849
2850 arch_leave_lazy_mmu_mode();
2851
2852 if (mm != &init_mm)
2853 pte_unmap_unlock(mapped_pte, ptl);
2854 return err;
2855 }
2856
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2857 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2858 unsigned long addr, unsigned long end,
2859 pte_fn_t fn, void *data, bool create,
2860 pgtbl_mod_mask *mask)
2861 {
2862 pmd_t *pmd;
2863 unsigned long next;
2864 int err = 0;
2865
2866 BUG_ON(pud_leaf(*pud));
2867
2868 if (create) {
2869 pmd = pmd_alloc_track(mm, pud, addr, mask);
2870 if (!pmd)
2871 return -ENOMEM;
2872 } else {
2873 pmd = pmd_offset(pud, addr);
2874 }
2875 do {
2876 next = pmd_addr_end(addr, end);
2877 if (pmd_none(*pmd) && !create)
2878 continue;
2879 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2880 return -EINVAL;
2881 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2882 if (!create)
2883 continue;
2884 pmd_clear_bad(pmd);
2885 }
2886 err = apply_to_pte_range(mm, pmd, addr, next,
2887 fn, data, create, mask);
2888 if (err)
2889 break;
2890 } while (pmd++, addr = next, addr != end);
2891
2892 return err;
2893 }
2894
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2895 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2896 unsigned long addr, unsigned long end,
2897 pte_fn_t fn, void *data, bool create,
2898 pgtbl_mod_mask *mask)
2899 {
2900 pud_t *pud;
2901 unsigned long next;
2902 int err = 0;
2903
2904 if (create) {
2905 pud = pud_alloc_track(mm, p4d, addr, mask);
2906 if (!pud)
2907 return -ENOMEM;
2908 } else {
2909 pud = pud_offset(p4d, addr);
2910 }
2911 do {
2912 next = pud_addr_end(addr, end);
2913 if (pud_none(*pud) && !create)
2914 continue;
2915 if (WARN_ON_ONCE(pud_leaf(*pud)))
2916 return -EINVAL;
2917 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2918 if (!create)
2919 continue;
2920 pud_clear_bad(pud);
2921 }
2922 err = apply_to_pmd_range(mm, pud, addr, next,
2923 fn, data, create, mask);
2924 if (err)
2925 break;
2926 } while (pud++, addr = next, addr != end);
2927
2928 return err;
2929 }
2930
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2931 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2932 unsigned long addr, unsigned long end,
2933 pte_fn_t fn, void *data, bool create,
2934 pgtbl_mod_mask *mask)
2935 {
2936 p4d_t *p4d;
2937 unsigned long next;
2938 int err = 0;
2939
2940 if (create) {
2941 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2942 if (!p4d)
2943 return -ENOMEM;
2944 } else {
2945 p4d = p4d_offset(pgd, addr);
2946 }
2947 do {
2948 next = p4d_addr_end(addr, end);
2949 if (p4d_none(*p4d) && !create)
2950 continue;
2951 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2952 return -EINVAL;
2953 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2954 if (!create)
2955 continue;
2956 p4d_clear_bad(p4d);
2957 }
2958 err = apply_to_pud_range(mm, p4d, addr, next,
2959 fn, data, create, mask);
2960 if (err)
2961 break;
2962 } while (p4d++, addr = next, addr != end);
2963
2964 return err;
2965 }
2966
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2967 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2968 unsigned long size, pte_fn_t fn,
2969 void *data, bool create)
2970 {
2971 pgd_t *pgd;
2972 unsigned long start = addr, next;
2973 unsigned long end = addr + size;
2974 pgtbl_mod_mask mask = 0;
2975 int err = 0;
2976
2977 if (WARN_ON(addr >= end))
2978 return -EINVAL;
2979
2980 pgd = pgd_offset(mm, addr);
2981 do {
2982 next = pgd_addr_end(addr, end);
2983 if (pgd_none(*pgd) && !create)
2984 continue;
2985 if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
2986 err = -EINVAL;
2987 break;
2988 }
2989 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2990 if (!create)
2991 continue;
2992 pgd_clear_bad(pgd);
2993 }
2994 err = apply_to_p4d_range(mm, pgd, addr, next,
2995 fn, data, create, &mask);
2996 if (err)
2997 break;
2998 } while (pgd++, addr = next, addr != end);
2999
3000 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3001 arch_sync_kernel_mappings(start, start + size);
3002
3003 return err;
3004 }
3005
3006 /*
3007 * Scan a region of virtual memory, filling in page tables as necessary
3008 * and calling a provided function on each leaf page table.
3009 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3010 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3011 unsigned long size, pte_fn_t fn, void *data)
3012 {
3013 return __apply_to_page_range(mm, addr, size, fn, data, true);
3014 }
3015 EXPORT_SYMBOL_GPL(apply_to_page_range);
3016
3017 /*
3018 * Scan a region of virtual memory, calling a provided function on
3019 * each leaf page table where it exists.
3020 *
3021 * Unlike apply_to_page_range, this does _not_ fill in page tables
3022 * where they are absent.
3023 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3024 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3025 unsigned long size, pte_fn_t fn, void *data)
3026 {
3027 return __apply_to_page_range(mm, addr, size, fn, data, false);
3028 }
3029 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
3030
3031 /*
3032 * handle_pte_fault chooses page fault handler according to an entry which was
3033 * read non-atomically. Before making any commitment, on those architectures
3034 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3035 * parts, do_swap_page must check under lock before unmapping the pte and
3036 * proceeding (but do_wp_page is only called after already making such a check;
3037 * and do_anonymous_page can safely check later on).
3038 */
pte_unmap_same(struct vm_fault * vmf)3039 static inline int pte_unmap_same(struct vm_fault *vmf)
3040 {
3041 int same = 1;
3042 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3043 if (sizeof(pte_t) > sizeof(unsigned long)) {
3044 spin_lock(vmf->ptl);
3045 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3046 spin_unlock(vmf->ptl);
3047 }
3048 #endif
3049 pte_unmap(vmf->pte);
3050 vmf->pte = NULL;
3051 return same;
3052 }
3053
3054 /*
3055 * Return:
3056 * 0: copied succeeded
3057 * -EHWPOISON: copy failed due to hwpoison in source page
3058 * -EAGAIN: copied failed (some other reason)
3059 */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)3060 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3061 struct vm_fault *vmf)
3062 {
3063 int ret;
3064 void *kaddr;
3065 void __user *uaddr;
3066 struct vm_area_struct *vma = vmf->vma;
3067 struct mm_struct *mm = vma->vm_mm;
3068 unsigned long addr = vmf->address;
3069
3070 if (likely(src)) {
3071 if (copy_mc_user_highpage(dst, src, addr, vma))
3072 return -EHWPOISON;
3073 return 0;
3074 }
3075
3076 /*
3077 * If the source page was a PFN mapping, we don't have
3078 * a "struct page" for it. We do a best-effort copy by
3079 * just copying from the original user address. If that
3080 * fails, we just zero-fill it. Live with it.
3081 */
3082 kaddr = kmap_local_page(dst);
3083 pagefault_disable();
3084 uaddr = (void __user *)(addr & PAGE_MASK);
3085
3086 /*
3087 * On architectures with software "accessed" bits, we would
3088 * take a double page fault, so mark it accessed here.
3089 */
3090 vmf->pte = NULL;
3091 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3092 pte_t entry;
3093
3094 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3095 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3096 /*
3097 * Other thread has already handled the fault
3098 * and update local tlb only
3099 */
3100 if (vmf->pte)
3101 update_mmu_tlb(vma, addr, vmf->pte);
3102 ret = -EAGAIN;
3103 goto pte_unlock;
3104 }
3105
3106 entry = pte_mkyoung(vmf->orig_pte);
3107 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3108 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3109 }
3110
3111 /*
3112 * This really shouldn't fail, because the page is there
3113 * in the page tables. But it might just be unreadable,
3114 * in which case we just give up and fill the result with
3115 * zeroes.
3116 */
3117 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3118 if (vmf->pte)
3119 goto warn;
3120
3121 /* Re-validate under PTL if the page is still mapped */
3122 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3123 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3124 /* The PTE changed under us, update local tlb */
3125 if (vmf->pte)
3126 update_mmu_tlb(vma, addr, vmf->pte);
3127 ret = -EAGAIN;
3128 goto pte_unlock;
3129 }
3130
3131 /*
3132 * The same page can be mapped back since last copy attempt.
3133 * Try to copy again under PTL.
3134 */
3135 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3136 /*
3137 * Give a warn in case there can be some obscure
3138 * use-case
3139 */
3140 warn:
3141 WARN_ON_ONCE(1);
3142 clear_page(kaddr);
3143 }
3144 }
3145
3146 ret = 0;
3147
3148 pte_unlock:
3149 if (vmf->pte)
3150 pte_unmap_unlock(vmf->pte, vmf->ptl);
3151 pagefault_enable();
3152 kunmap_local(kaddr);
3153 flush_dcache_page(dst);
3154
3155 return ret;
3156 }
3157
__get_fault_gfp_mask(struct vm_area_struct * vma)3158 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3159 {
3160 struct file *vm_file = vma->vm_file;
3161
3162 if (vm_file)
3163 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3164
3165 /*
3166 * Special mappings (e.g. VDSO) do not have any file so fake
3167 * a default GFP_KERNEL for them.
3168 */
3169 return GFP_KERNEL;
3170 }
3171
3172 /*
3173 * Notify the address space that the page is about to become writable so that
3174 * it can prohibit this or wait for the page to get into an appropriate state.
3175 *
3176 * We do this without the lock held, so that it can sleep if it needs to.
3177 */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)3178 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3179 {
3180 vm_fault_t ret;
3181 unsigned int old_flags = vmf->flags;
3182
3183 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3184
3185 if (vmf->vma->vm_file &&
3186 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3187 return VM_FAULT_SIGBUS;
3188
3189 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3190 /* Restore original flags so that caller is not surprised */
3191 vmf->flags = old_flags;
3192 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3193 return ret;
3194 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3195 folio_lock(folio);
3196 if (!folio->mapping) {
3197 folio_unlock(folio);
3198 return 0; /* retry */
3199 }
3200 ret |= VM_FAULT_LOCKED;
3201 } else
3202 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3203 return ret;
3204 }
3205
3206 /*
3207 * Handle dirtying of a page in shared file mapping on a write fault.
3208 *
3209 * The function expects the page to be locked and unlocks it.
3210 */
fault_dirty_shared_page(struct vm_fault * vmf)3211 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3212 {
3213 struct vm_area_struct *vma = vmf->vma;
3214 struct address_space *mapping;
3215 struct folio *folio = page_folio(vmf->page);
3216 bool dirtied;
3217 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3218
3219 dirtied = folio_mark_dirty(folio);
3220 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3221 /*
3222 * Take a local copy of the address_space - folio.mapping may be zeroed
3223 * by truncate after folio_unlock(). The address_space itself remains
3224 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3225 * release semantics to prevent the compiler from undoing this copying.
3226 */
3227 mapping = folio_raw_mapping(folio);
3228 folio_unlock(folio);
3229
3230 if (!page_mkwrite)
3231 file_update_time(vma->vm_file);
3232
3233 /*
3234 * Throttle page dirtying rate down to writeback speed.
3235 *
3236 * mapping may be NULL here because some device drivers do not
3237 * set page.mapping but still dirty their pages
3238 *
3239 * Drop the mmap_lock before waiting on IO, if we can. The file
3240 * is pinning the mapping, as per above.
3241 */
3242 if ((dirtied || page_mkwrite) && mapping) {
3243 struct file *fpin;
3244
3245 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3246 balance_dirty_pages_ratelimited(mapping);
3247 if (fpin) {
3248 fput(fpin);
3249 return VM_FAULT_COMPLETED;
3250 }
3251 }
3252
3253 return 0;
3254 }
3255
3256 /*
3257 * Handle write page faults for pages that can be reused in the current vma
3258 *
3259 * This can happen either due to the mapping being with the VM_SHARED flag,
3260 * or due to us being the last reference standing to the page. In either
3261 * case, all we need to do here is to mark the page as writable and update
3262 * any related book-keeping.
3263 */
wp_page_reuse(struct vm_fault * vmf,struct folio * folio)3264 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3265 __releases(vmf->ptl)
3266 {
3267 struct vm_area_struct *vma = vmf->vma;
3268 pte_t entry;
3269
3270 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3271 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3272
3273 if (folio) {
3274 VM_BUG_ON(folio_test_anon(folio) &&
3275 !PageAnonExclusive(vmf->page));
3276 /*
3277 * Clear the folio's cpupid information as the existing
3278 * information potentially belongs to a now completely
3279 * unrelated process.
3280 */
3281 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3282 }
3283
3284 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3285 entry = pte_mkyoung(vmf->orig_pte);
3286 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3287 trace_android_vh_wp_page_reuse(vmf, folio);
3288 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3289 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3290 pte_unmap_unlock(vmf->pte, vmf->ptl);
3291 count_vm_event(PGREUSE);
3292 }
3293
3294 /*
3295 * We could add a bitflag somewhere, but for now, we know that all
3296 * vm_ops that have a ->map_pages have been audited and don't need
3297 * the mmap_lock to be held.
3298 */
vmf_can_call_fault(const struct vm_fault * vmf)3299 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3300 {
3301 struct vm_area_struct *vma = vmf->vma;
3302
3303 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3304 return 0;
3305 vma_end_read(vma);
3306 return VM_FAULT_RETRY;
3307 }
3308
3309 /**
3310 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3311 * @vmf: The vm_fault descriptor passed from the fault handler.
3312 *
3313 * When preparing to insert an anonymous page into a VMA from a
3314 * fault handler, call this function rather than anon_vma_prepare().
3315 * If this vma does not already have an associated anon_vma and we are
3316 * only protected by the per-VMA lock, the caller must retry with the
3317 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3318 * determine if this VMA can share its anon_vma, and that's not safe to
3319 * do with only the per-VMA lock held for this VMA.
3320 *
3321 * Return: 0 if fault handling can proceed. Any other value should be
3322 * returned to the caller.
3323 */
__vmf_anon_prepare(struct vm_fault * vmf)3324 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3325 {
3326 struct vm_area_struct *vma = vmf->vma;
3327 vm_fault_t ret = 0;
3328
3329 if (likely(vma->anon_vma))
3330 return 0;
3331 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3332 if (!mmap_read_trylock(vma->vm_mm))
3333 return VM_FAULT_RETRY;
3334 }
3335 if (__anon_vma_prepare(vma))
3336 ret = VM_FAULT_OOM;
3337 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3338 mmap_read_unlock(vma->vm_mm);
3339 return ret;
3340 }
3341
3342 /*
3343 * Handle the case of a page which we actually need to copy to a new page,
3344 * either due to COW or unsharing.
3345 *
3346 * Called with mmap_lock locked and the old page referenced, but
3347 * without the ptl held.
3348 *
3349 * High level logic flow:
3350 *
3351 * - Allocate a page, copy the content of the old page to the new one.
3352 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3353 * - Take the PTL. If the pte changed, bail out and release the allocated page
3354 * - If the pte is still the way we remember it, update the page table and all
3355 * relevant references. This includes dropping the reference the page-table
3356 * held to the old page, as well as updating the rmap.
3357 * - In any case, unlock the PTL and drop the reference we took to the old page.
3358 */
wp_page_copy(struct vm_fault * vmf)3359 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3360 {
3361 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3362 struct vm_area_struct *vma = vmf->vma;
3363 struct mm_struct *mm = vma->vm_mm;
3364 struct folio *old_folio = NULL;
3365 struct folio *new_folio = NULL;
3366 pte_t entry;
3367 int page_copied = 0;
3368 struct mmu_notifier_range range;
3369 vm_fault_t ret;
3370 bool pfn_is_zero;
3371
3372 delayacct_wpcopy_start();
3373
3374 if (vmf->page)
3375 old_folio = page_folio(vmf->page);
3376 ret = vmf_anon_prepare(vmf);
3377 if (unlikely(ret))
3378 goto out;
3379
3380 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3381 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3382 if (!new_folio)
3383 goto oom;
3384
3385 if (!pfn_is_zero) {
3386 int err;
3387
3388 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3389 if (err) {
3390 /*
3391 * COW failed, if the fault was solved by other,
3392 * it's fine. If not, userspace would re-fault on
3393 * the same address and we will handle the fault
3394 * from the second attempt.
3395 * The -EHWPOISON case will not be retried.
3396 */
3397 folio_put(new_folio);
3398 if (old_folio)
3399 folio_put(old_folio);
3400
3401 delayacct_wpcopy_end();
3402 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3403 }
3404 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3405 }
3406
3407 __folio_mark_uptodate(new_folio);
3408
3409 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3410 vmf->address & PAGE_MASK,
3411 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3412 mmu_notifier_invalidate_range_start(&range);
3413
3414 /*
3415 * Re-check the pte - we dropped the lock
3416 */
3417 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3418 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3419 if (old_folio) {
3420 if (!folio_test_anon(old_folio)) {
3421 dec_mm_counter(mm, mm_counter_file(old_folio));
3422 inc_mm_counter(mm, MM_ANONPAGES);
3423 }
3424 } else {
3425 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3426 inc_mm_counter(mm, MM_ANONPAGES);
3427 }
3428 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3429 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3430 entry = pte_sw_mkyoung(entry);
3431 if (unlikely(unshare)) {
3432 if (pte_soft_dirty(vmf->orig_pte))
3433 entry = pte_mksoft_dirty(entry);
3434 if (pte_uffd_wp(vmf->orig_pte))
3435 entry = pte_mkuffd_wp(entry);
3436 } else {
3437 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3438 }
3439
3440 /*
3441 * Clear the pte entry and flush it first, before updating the
3442 * pte with the new entry, to keep TLBs on different CPUs in
3443 * sync. This code used to set the new PTE then flush TLBs, but
3444 * that left a window where the new PTE could be loaded into
3445 * some TLBs while the old PTE remains in others.
3446 */
3447 ptep_clear_flush(vma, vmf->address, vmf->pte);
3448 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3449 folio_add_lru_vma(new_folio, vma);
3450 BUG_ON(unshare && pte_write(entry));
3451 set_pte_at(mm, vmf->address, vmf->pte, entry);
3452 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3453 if (old_folio) {
3454 /*
3455 * Only after switching the pte to the new page may
3456 * we remove the mapcount here. Otherwise another
3457 * process may come and find the rmap count decremented
3458 * before the pte is switched to the new page, and
3459 * "reuse" the old page writing into it while our pte
3460 * here still points into it and can be read by other
3461 * threads.
3462 *
3463 * The critical issue is to order this
3464 * folio_remove_rmap_pte() with the ptp_clear_flush
3465 * above. Those stores are ordered by (if nothing else,)
3466 * the barrier present in the atomic_add_negative
3467 * in folio_remove_rmap_pte();
3468 *
3469 * Then the TLB flush in ptep_clear_flush ensures that
3470 * no process can access the old page before the
3471 * decremented mapcount is visible. And the old page
3472 * cannot be reused until after the decremented
3473 * mapcount is visible. So transitively, TLBs to
3474 * old page will be flushed before it can be reused.
3475 */
3476 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3477 }
3478
3479 /* Free the old page.. */
3480 new_folio = old_folio;
3481 page_copied = 1;
3482 pte_unmap_unlock(vmf->pte, vmf->ptl);
3483 } else if (vmf->pte) {
3484 update_mmu_tlb(vma, vmf->address, vmf->pte);
3485 pte_unmap_unlock(vmf->pte, vmf->ptl);
3486 }
3487
3488 mmu_notifier_invalidate_range_end(&range);
3489
3490 if (new_folio)
3491 folio_put(new_folio);
3492 if (old_folio) {
3493 if (page_copied)
3494 free_swap_cache(old_folio);
3495 folio_put(old_folio);
3496 }
3497
3498 delayacct_wpcopy_end();
3499 return 0;
3500 oom:
3501 ret = VM_FAULT_OOM;
3502 out:
3503 if (old_folio)
3504 folio_put(old_folio);
3505
3506 delayacct_wpcopy_end();
3507 return ret;
3508 }
3509
3510 /**
3511 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3512 * writeable once the page is prepared
3513 *
3514 * @vmf: structure describing the fault
3515 * @folio: the folio of vmf->page
3516 *
3517 * This function handles all that is needed to finish a write page fault in a
3518 * shared mapping due to PTE being read-only once the mapped page is prepared.
3519 * It handles locking of PTE and modifying it.
3520 *
3521 * The function expects the page to be locked or other protection against
3522 * concurrent faults / writeback (such as DAX radix tree locks).
3523 *
3524 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3525 * we acquired PTE lock.
3526 */
finish_mkwrite_fault(struct vm_fault * vmf,struct folio * folio)3527 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3528 {
3529 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3530 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3531 &vmf->ptl);
3532 if (!vmf->pte)
3533 return VM_FAULT_NOPAGE;
3534 /*
3535 * We might have raced with another page fault while we released the
3536 * pte_offset_map_lock.
3537 */
3538 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3539 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3540 pte_unmap_unlock(vmf->pte, vmf->ptl);
3541 return VM_FAULT_NOPAGE;
3542 }
3543 wp_page_reuse(vmf, folio);
3544 return 0;
3545 }
3546
3547 /*
3548 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3549 * mapping
3550 */
wp_pfn_shared(struct vm_fault * vmf)3551 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3552 {
3553 struct vm_area_struct *vma = vmf->vma;
3554
3555 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3556 vm_fault_t ret;
3557
3558 pte_unmap_unlock(vmf->pte, vmf->ptl);
3559 ret = vmf_can_call_fault(vmf);
3560 if (ret)
3561 return ret;
3562
3563 vmf->flags |= FAULT_FLAG_MKWRITE;
3564 ret = vma->vm_ops->pfn_mkwrite(vmf);
3565 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3566 return ret;
3567 return finish_mkwrite_fault(vmf, NULL);
3568 }
3569 wp_page_reuse(vmf, NULL);
3570 return 0;
3571 }
3572
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3573 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3574 __releases(vmf->ptl)
3575 {
3576 struct vm_area_struct *vma = vmf->vma;
3577 vm_fault_t ret = 0;
3578
3579 folio_get(folio);
3580
3581 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3582 vm_fault_t tmp;
3583
3584 pte_unmap_unlock(vmf->pte, vmf->ptl);
3585 tmp = vmf_can_call_fault(vmf);
3586 if (tmp) {
3587 folio_put(folio);
3588 return tmp;
3589 }
3590
3591 tmp = do_page_mkwrite(vmf, folio);
3592 if (unlikely(!tmp || (tmp &
3593 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3594 folio_put(folio);
3595 return tmp;
3596 }
3597 tmp = finish_mkwrite_fault(vmf, folio);
3598 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3599 folio_unlock(folio);
3600 folio_put(folio);
3601 return tmp;
3602 }
3603 } else {
3604 wp_page_reuse(vmf, folio);
3605 folio_lock(folio);
3606 }
3607 ret |= fault_dirty_shared_page(vmf);
3608 folio_put(folio);
3609
3610 return ret;
3611 }
3612
wp_can_reuse_anon_folio(struct folio * folio,struct vm_area_struct * vma)3613 static bool wp_can_reuse_anon_folio(struct folio *folio,
3614 struct vm_area_struct *vma)
3615 {
3616 /*
3617 * We could currently only reuse a subpage of a large folio if no
3618 * other subpages of the large folios are still mapped. However,
3619 * let's just consistently not reuse subpages even if we could
3620 * reuse in that scenario, and give back a large folio a bit
3621 * sooner.
3622 */
3623 if (folio_test_large(folio))
3624 return false;
3625
3626 /*
3627 * We have to verify under folio lock: these early checks are
3628 * just an optimization to avoid locking the folio and freeing
3629 * the swapcache if there is little hope that we can reuse.
3630 *
3631 * KSM doesn't necessarily raise the folio refcount.
3632 */
3633 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3634 return false;
3635 if (!folio_test_lru(folio))
3636 /*
3637 * We cannot easily detect+handle references from
3638 * remote LRU caches or references to LRU folios.
3639 */
3640 lru_add_drain();
3641 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3642 return false;
3643 if (!folio_trylock(folio))
3644 return false;
3645 if (folio_test_swapcache(folio))
3646 folio_free_swap(folio);
3647 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3648 folio_unlock(folio);
3649 return false;
3650 }
3651 /*
3652 * Ok, we've got the only folio reference from our mapping
3653 * and the folio is locked, it's dark out, and we're wearing
3654 * sunglasses. Hit it.
3655 */
3656 folio_move_anon_rmap(folio, vma);
3657 folio_unlock(folio);
3658 return true;
3659 }
3660
3661 /*
3662 * This routine handles present pages, when
3663 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3664 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3665 * (FAULT_FLAG_UNSHARE)
3666 *
3667 * It is done by copying the page to a new address and decrementing the
3668 * shared-page counter for the old page.
3669 *
3670 * Note that this routine assumes that the protection checks have been
3671 * done by the caller (the low-level page fault routine in most cases).
3672 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3673 * done any necessary COW.
3674 *
3675 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3676 * though the page will change only once the write actually happens. This
3677 * avoids a few races, and potentially makes it more efficient.
3678 *
3679 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3680 * but allow concurrent faults), with pte both mapped and locked.
3681 * We return with mmap_lock still held, but pte unmapped and unlocked.
3682 */
do_wp_page(struct vm_fault * vmf)3683 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3684 __releases(vmf->ptl)
3685 {
3686 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3687 struct vm_area_struct *vma = vmf->vma;
3688 struct folio *folio = NULL;
3689 pte_t pte;
3690
3691 if (likely(!unshare)) {
3692 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3693 if (!userfaultfd_wp_async(vma)) {
3694 pte_unmap_unlock(vmf->pte, vmf->ptl);
3695 return handle_userfault(vmf, VM_UFFD_WP);
3696 }
3697
3698 /*
3699 * Nothing needed (cache flush, TLB invalidations,
3700 * etc.) because we're only removing the uffd-wp bit,
3701 * which is completely invisible to the user.
3702 */
3703 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3704
3705 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3706 /*
3707 * Update this to be prepared for following up CoW
3708 * handling
3709 */
3710 vmf->orig_pte = pte;
3711 }
3712
3713 /*
3714 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3715 * is flushed in this case before copying.
3716 */
3717 if (unlikely(userfaultfd_wp(vmf->vma) &&
3718 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3719 flush_tlb_page(vmf->vma, vmf->address);
3720 }
3721
3722 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3723
3724 if (vmf->page)
3725 folio = page_folio(vmf->page);
3726
3727 /*
3728 * Shared mapping: we are guaranteed to have VM_WRITE and
3729 * FAULT_FLAG_WRITE set at this point.
3730 */
3731 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3732 /*
3733 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3734 * VM_PFNMAP VMA.
3735 *
3736 * We should not cow pages in a shared writeable mapping.
3737 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3738 */
3739 if (!vmf->page)
3740 return wp_pfn_shared(vmf);
3741 return wp_page_shared(vmf, folio);
3742 }
3743
3744 trace_android_vh_do_wp_page(folio);
3745
3746 /*
3747 * Private mapping: create an exclusive anonymous page copy if reuse
3748 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3749 *
3750 * If we encounter a page that is marked exclusive, we must reuse
3751 * the page without further checks.
3752 */
3753 if (folio && folio_test_anon(folio) &&
3754 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3755 if (!PageAnonExclusive(vmf->page))
3756 SetPageAnonExclusive(vmf->page);
3757 if (unlikely(unshare)) {
3758 pte_unmap_unlock(vmf->pte, vmf->ptl);
3759 return 0;
3760 }
3761 wp_page_reuse(vmf, folio);
3762 return 0;
3763 }
3764 /*
3765 * Ok, we need to copy. Oh, well..
3766 */
3767 if (folio)
3768 folio_get(folio);
3769
3770 pte_unmap_unlock(vmf->pte, vmf->ptl);
3771 #ifdef CONFIG_KSM
3772 if (folio && folio_test_ksm(folio))
3773 count_vm_event(COW_KSM);
3774 #endif
3775 return wp_page_copy(vmf);
3776 }
3777
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3778 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3779 unsigned long start_addr, unsigned long end_addr,
3780 struct zap_details *details)
3781 {
3782 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3783 }
3784
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)3785 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3786 pgoff_t first_index,
3787 pgoff_t last_index,
3788 struct zap_details *details)
3789 {
3790 struct vm_area_struct *vma;
3791 pgoff_t vba, vea, zba, zea;
3792
3793 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3794 vba = vma->vm_pgoff;
3795 vea = vba + vma_pages(vma) - 1;
3796 zba = max(first_index, vba);
3797 zea = min(last_index, vea);
3798
3799 unmap_mapping_range_vma(vma,
3800 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3801 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3802 details);
3803 }
3804 }
3805
3806 /**
3807 * unmap_mapping_folio() - Unmap single folio from processes.
3808 * @folio: The locked folio to be unmapped.
3809 *
3810 * Unmap this folio from any userspace process which still has it mmaped.
3811 * Typically, for efficiency, the range of nearby pages has already been
3812 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3813 * truncation or invalidation holds the lock on a folio, it may find that
3814 * the page has been remapped again: and then uses unmap_mapping_folio()
3815 * to unmap it finally.
3816 */
unmap_mapping_folio(struct folio * folio)3817 void unmap_mapping_folio(struct folio *folio)
3818 {
3819 struct address_space *mapping = folio->mapping;
3820 struct zap_details details = { };
3821 pgoff_t first_index;
3822 pgoff_t last_index;
3823
3824 VM_BUG_ON(!folio_test_locked(folio));
3825
3826 first_index = folio->index;
3827 last_index = folio_next_index(folio) - 1;
3828
3829 details.even_cows = false;
3830 details.single_folio = folio;
3831 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3832
3833 i_mmap_lock_read(mapping);
3834 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3835 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3836 last_index, &details);
3837 i_mmap_unlock_read(mapping);
3838 }
3839
3840 /**
3841 * unmap_mapping_pages() - Unmap pages from processes.
3842 * @mapping: The address space containing pages to be unmapped.
3843 * @start: Index of first page to be unmapped.
3844 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3845 * @even_cows: Whether to unmap even private COWed pages.
3846 *
3847 * Unmap the pages in this address space from any userspace process which
3848 * has them mmaped. Generally, you want to remove COWed pages as well when
3849 * a file is being truncated, but not when invalidating pages from the page
3850 * cache.
3851 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3852 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3853 pgoff_t nr, bool even_cows)
3854 {
3855 struct zap_details details = { };
3856 pgoff_t first_index = start;
3857 pgoff_t last_index = start + nr - 1;
3858
3859 details.even_cows = even_cows;
3860 if (last_index < first_index)
3861 last_index = ULONG_MAX;
3862
3863 i_mmap_lock_read(mapping);
3864 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3865 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3866 last_index, &details);
3867 i_mmap_unlock_read(mapping);
3868 }
3869 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3870
3871 /**
3872 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3873 * address_space corresponding to the specified byte range in the underlying
3874 * file.
3875 *
3876 * @mapping: the address space containing mmaps to be unmapped.
3877 * @holebegin: byte in first page to unmap, relative to the start of
3878 * the underlying file. This will be rounded down to a PAGE_SIZE
3879 * boundary. Note that this is different from truncate_pagecache(), which
3880 * must keep the partial page. In contrast, we must get rid of
3881 * partial pages.
3882 * @holelen: size of prospective hole in bytes. This will be rounded
3883 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3884 * end of the file.
3885 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3886 * but 0 when invalidating pagecache, don't throw away private data.
3887 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3888 void unmap_mapping_range(struct address_space *mapping,
3889 loff_t const holebegin, loff_t const holelen, int even_cows)
3890 {
3891 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3892 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3893
3894 /* Check for overflow. */
3895 if (sizeof(holelen) > sizeof(hlen)) {
3896 long long holeend =
3897 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3898 if (holeend & ~(long long)ULONG_MAX)
3899 hlen = ULONG_MAX - hba + 1;
3900 }
3901
3902 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3903 }
3904 EXPORT_SYMBOL(unmap_mapping_range);
3905
3906 /*
3907 * Restore a potential device exclusive pte to a working pte entry
3908 */
remove_device_exclusive_entry(struct vm_fault * vmf)3909 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3910 {
3911 struct folio *folio = page_folio(vmf->page);
3912 struct vm_area_struct *vma = vmf->vma;
3913 struct mmu_notifier_range range;
3914 vm_fault_t ret;
3915
3916 /*
3917 * We need a reference to lock the folio because we don't hold
3918 * the PTL so a racing thread can remove the device-exclusive
3919 * entry and unmap it. If the folio is free the entry must
3920 * have been removed already. If it happens to have already
3921 * been re-allocated after being freed all we do is lock and
3922 * unlock it.
3923 */
3924 if (!folio_try_get(folio))
3925 return 0;
3926
3927 ret = folio_lock_or_retry(folio, vmf);
3928 if (ret) {
3929 folio_put(folio);
3930 return ret;
3931 }
3932 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3933 vma->vm_mm, vmf->address & PAGE_MASK,
3934 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3935 mmu_notifier_invalidate_range_start(&range);
3936
3937 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3938 &vmf->ptl);
3939 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3940 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3941
3942 if (vmf->pte)
3943 pte_unmap_unlock(vmf->pte, vmf->ptl);
3944 folio_unlock(folio);
3945 folio_put(folio);
3946
3947 mmu_notifier_invalidate_range_end(&range);
3948 return 0;
3949 }
3950
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)3951 static inline bool should_try_to_free_swap(struct folio *folio,
3952 struct vm_area_struct *vma,
3953 unsigned int fault_flags)
3954 {
3955 if (!folio_test_swapcache(folio))
3956 return false;
3957 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3958 folio_test_mlocked(folio))
3959 return true;
3960 /*
3961 * If we want to map a page that's in the swapcache writable, we
3962 * have to detect via the refcount if we're really the exclusive
3963 * user. Try freeing the swapcache to get rid of the swapcache
3964 * reference only in case it's likely that we'll be the exlusive user.
3965 */
3966 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3967 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
3968 }
3969
pte_marker_clear(struct vm_fault * vmf)3970 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3971 {
3972 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3973 vmf->address, &vmf->ptl);
3974 if (!vmf->pte)
3975 return 0;
3976 /*
3977 * Be careful so that we will only recover a special uffd-wp pte into a
3978 * none pte. Otherwise it means the pte could have changed, so retry.
3979 *
3980 * This should also cover the case where e.g. the pte changed
3981 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3982 * So is_pte_marker() check is not enough to safely drop the pte.
3983 */
3984 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3985 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3986 pte_unmap_unlock(vmf->pte, vmf->ptl);
3987 return 0;
3988 }
3989
do_pte_missing(struct vm_fault * vmf)3990 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3991 {
3992 if (vma_is_anonymous(vmf->vma))
3993 return do_anonymous_page(vmf);
3994 else
3995 return do_fault(vmf);
3996 }
3997
3998 /*
3999 * This is actually a page-missing access, but with uffd-wp special pte
4000 * installed. It means this pte was wr-protected before being unmapped.
4001 */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)4002 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
4003 {
4004 /*
4005 * Just in case there're leftover special ptes even after the region
4006 * got unregistered - we can simply clear them.
4007 */
4008 if (unlikely(!userfaultfd_wp(vmf->vma)))
4009 return pte_marker_clear(vmf);
4010
4011 return do_pte_missing(vmf);
4012 }
4013
handle_pte_marker(struct vm_fault * vmf)4014 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4015 {
4016 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4017 unsigned long marker = pte_marker_get(entry);
4018
4019 /*
4020 * PTE markers should never be empty. If anything weird happened,
4021 * the best thing to do is to kill the process along with its mm.
4022 */
4023 if (WARN_ON_ONCE(!marker))
4024 return VM_FAULT_SIGBUS;
4025
4026 /* Higher priority than uffd-wp when data corrupted */
4027 if (marker & PTE_MARKER_POISONED)
4028 return VM_FAULT_HWPOISON;
4029
4030 /* Hitting a guard page is always a fatal condition. */
4031 if (marker & PTE_MARKER_GUARD)
4032 return VM_FAULT_SIGSEGV;
4033
4034 if (pte_marker_entry_uffd_wp(entry))
4035 return pte_marker_handle_uffd_wp(vmf);
4036
4037 /* This is an unknown pte marker */
4038 return VM_FAULT_SIGBUS;
4039 }
4040
__alloc_swap_folio(struct vm_fault * vmf)4041 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4042 {
4043 struct vm_area_struct *vma = vmf->vma;
4044 struct folio *folio;
4045 swp_entry_t entry;
4046
4047 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE | __GFP_CMA,
4048 0, vma, vmf->address, false);
4049 if (!folio)
4050 return NULL;
4051
4052 entry = pte_to_swp_entry(vmf->orig_pte);
4053 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4054 GFP_KERNEL, entry)) {
4055 folio_put(folio);
4056 return NULL;
4057 }
4058
4059 return folio;
4060 }
4061
4062 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
non_swapcache_batch(swp_entry_t entry,int max_nr)4063 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4064 {
4065 struct swap_info_struct *si = swp_swap_info(entry);
4066 pgoff_t offset = swp_offset(entry);
4067 int i;
4068
4069 /*
4070 * While allocating a large folio and doing swap_read_folio, which is
4071 * the case the being faulted pte doesn't have swapcache. We need to
4072 * ensure all PTEs have no cache as well, otherwise, we might go to
4073 * swap devices while the content is in swapcache.
4074 */
4075 for (i = 0; i < max_nr; i++) {
4076 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4077 return i;
4078 }
4079
4080 return i;
4081 }
4082
4083 /*
4084 * Check if the PTEs within a range are contiguous swap entries
4085 * and have consistent swapcache, zeromap.
4086 */
can_swapin_thp(struct vm_fault * vmf,pte_t * ptep,int nr_pages)4087 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4088 {
4089 unsigned long addr;
4090 swp_entry_t entry;
4091 int idx;
4092 pte_t pte;
4093
4094 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4095 idx = (vmf->address - addr) / PAGE_SIZE;
4096 pte = ptep_get(ptep);
4097
4098 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4099 return false;
4100 entry = pte_to_swp_entry(pte);
4101 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4102 return false;
4103
4104 /*
4105 * swap_read_folio() can't handle the case a large folio is hybridly
4106 * from different backends. And they are likely corner cases. Similar
4107 * things might be added once zswap support large folios.
4108 */
4109 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4110 return false;
4111 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4112 return false;
4113
4114 return true;
4115 }
4116
thp_swap_suitable_orders(pgoff_t swp_offset,unsigned long addr,unsigned long orders)4117 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4118 unsigned long addr,
4119 unsigned long orders)
4120 {
4121 int order, nr;
4122
4123 order = highest_order(orders);
4124
4125 /*
4126 * To swap in a THP with nr pages, we require that its first swap_offset
4127 * is aligned with that number, as it was when the THP was swapped out.
4128 * This helps filter out most invalid entries.
4129 */
4130 while (orders) {
4131 nr = 1 << order;
4132 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4133 break;
4134 order = next_order(&orders, order);
4135 }
4136
4137 return orders;
4138 }
4139
alloc_swap_folio(struct vm_fault * vmf)4140 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4141 {
4142 struct vm_area_struct *vma = vmf->vma;
4143 unsigned long orders;
4144 struct folio *folio;
4145 unsigned long addr;
4146 swp_entry_t entry;
4147 spinlock_t *ptl;
4148 pte_t *pte;
4149 gfp_t gfp;
4150 int order;
4151
4152 /*
4153 * If uffd is active for the vma we need per-page fault fidelity to
4154 * maintain the uffd semantics.
4155 */
4156 if (unlikely(userfaultfd_armed(vma)))
4157 goto fallback;
4158
4159 /*
4160 * A large swapped out folio could be partially or fully in zswap. We
4161 * lack handling for such cases, so fallback to swapping in order-0
4162 * folio.
4163 */
4164 if (!zswap_never_enabled())
4165 goto fallback;
4166
4167 entry = pte_to_swp_entry(vmf->orig_pte);
4168 /*
4169 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4170 * and suitable for swapping THP.
4171 */
4172 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4173 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4174 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4175 orders = thp_swap_suitable_orders(swp_offset(entry),
4176 vmf->address, orders);
4177
4178 if (!orders)
4179 goto fallback;
4180
4181 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4182 vmf->address & PMD_MASK, &ptl);
4183 if (unlikely(!pte))
4184 goto fallback;
4185
4186 /*
4187 * For do_swap_page, find the highest order where the aligned range is
4188 * completely swap entries with contiguous swap offsets.
4189 */
4190 order = highest_order(orders);
4191 while (orders) {
4192 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4193 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4194 break;
4195 order = next_order(&orders, order);
4196 }
4197
4198 pte_unmap_unlock(pte, ptl);
4199
4200 /* Try allocating the highest of the remaining orders. */
4201 gfp = vma_thp_gfp_mask(vma);
4202 while (orders) {
4203 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4204 folio = vma_alloc_folio(gfp, order, vma, addr, true);
4205 if (folio) {
4206 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4207 gfp, entry))
4208 return folio;
4209 folio_put(folio);
4210 }
4211 order = next_order(&orders, order);
4212 }
4213
4214 fallback:
4215 return __alloc_swap_folio(vmf);
4216 }
4217 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
alloc_swap_folio(struct vm_fault * vmf)4218 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4219 {
4220 return __alloc_swap_folio(vmf);
4221 }
4222 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4223
4224 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4225
4226 /*
4227 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4228 * but allow concurrent faults), and pte mapped but not yet locked.
4229 * We return with pte unmapped and unlocked.
4230 *
4231 * We return with the mmap_lock locked or unlocked in the same cases
4232 * as does filemap_fault().
4233 */
do_swap_page(struct vm_fault * vmf)4234 vm_fault_t do_swap_page(struct vm_fault *vmf)
4235 {
4236 struct vm_area_struct *vma = vmf->vma;
4237 struct folio *swapcache, *folio = NULL;
4238 DECLARE_WAITQUEUE(wait, current);
4239 struct page *page;
4240 struct swap_info_struct *si = NULL;
4241 rmap_t rmap_flags = RMAP_NONE;
4242 bool need_clear_cache = false;
4243 bool exclusive = false;
4244 swp_entry_t entry;
4245 pte_t pte;
4246 vm_fault_t ret = 0;
4247 void *shadow = NULL;
4248 int nr_pages;
4249 unsigned long page_idx;
4250 unsigned long address;
4251 pte_t *ptep;
4252
4253 if (!pte_unmap_same(vmf))
4254 goto out;
4255
4256 entry = pte_to_swp_entry(vmf->orig_pte);
4257 if (unlikely(non_swap_entry(entry))) {
4258 if (is_migration_entry(entry)) {
4259 migration_entry_wait(vma->vm_mm, vmf->pmd,
4260 vmf->address);
4261 } else if (is_device_exclusive_entry(entry)) {
4262 vmf->page = pfn_swap_entry_to_page(entry);
4263 ret = remove_device_exclusive_entry(vmf);
4264 } else if (is_device_private_entry(entry)) {
4265 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4266 /*
4267 * migrate_to_ram is not yet ready to operate
4268 * under VMA lock.
4269 */
4270 vma_end_read(vma);
4271 ret = VM_FAULT_RETRY;
4272 goto out;
4273 }
4274
4275 vmf->page = pfn_swap_entry_to_page(entry);
4276 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4277 vmf->address, &vmf->ptl);
4278 if (unlikely(!vmf->pte ||
4279 !pte_same(ptep_get(vmf->pte),
4280 vmf->orig_pte)))
4281 goto unlock;
4282
4283 /*
4284 * Get a page reference while we know the page can't be
4285 * freed.
4286 */
4287 get_page(vmf->page);
4288 pte_unmap_unlock(vmf->pte, vmf->ptl);
4289 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4290 put_page(vmf->page);
4291 } else if (is_hwpoison_entry(entry)) {
4292 ret = VM_FAULT_HWPOISON;
4293 } else if (is_pte_marker_entry(entry)) {
4294 ret = handle_pte_marker(vmf);
4295 } else {
4296 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4297 ret = VM_FAULT_SIGBUS;
4298 }
4299 goto out;
4300 }
4301
4302 /* Prevent swapoff from happening to us. */
4303 si = get_swap_device(entry);
4304 if (unlikely(!si))
4305 goto out;
4306
4307 folio = swap_cache_get_folio(entry, vma, vmf->address);
4308 if (folio)
4309 page = folio_file_page(folio, swp_offset(entry));
4310 swapcache = folio;
4311
4312 if (!folio) {
4313 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4314 __swap_count(entry) == 1) {
4315 /* skip swapcache */
4316 folio = alloc_swap_folio(vmf);
4317 if (folio) {
4318 __folio_set_locked(folio);
4319 __folio_set_swapbacked(folio);
4320
4321 nr_pages = folio_nr_pages(folio);
4322 if (folio_test_large(folio))
4323 entry.val = ALIGN_DOWN(entry.val, nr_pages);
4324 /*
4325 * Prevent parallel swapin from proceeding with
4326 * the cache flag. Otherwise, another thread
4327 * may finish swapin first, free the entry, and
4328 * swapout reusing the same entry. It's
4329 * undetectable as pte_same() returns true due
4330 * to entry reuse.
4331 */
4332 if (swapcache_prepare(entry, nr_pages)) {
4333 /*
4334 * Relax a bit to prevent rapid
4335 * repeated page faults.
4336 */
4337 add_wait_queue(&swapcache_wq, &wait);
4338 schedule_timeout_uninterruptible(1);
4339 remove_wait_queue(&swapcache_wq, &wait);
4340 goto out_page;
4341 }
4342 need_clear_cache = true;
4343
4344 mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
4345
4346 shadow = get_shadow_from_swap_cache(entry);
4347 if (shadow)
4348 workingset_refault(folio, shadow);
4349
4350 folio_add_lru(folio);
4351
4352 /* To provide entry to swap_read_folio() */
4353 folio->swap = entry;
4354 swap_read_folio(folio, NULL);
4355 folio->private = NULL;
4356 }
4357 } else {
4358 folio = swapin_readahead(entry,
4359 GFP_HIGHUSER_MOVABLE | __GFP_CMA,
4360 vmf);
4361 swapcache = folio;
4362 }
4363
4364 if (!folio) {
4365 /*
4366 * Back out if somebody else faulted in this pte
4367 * while we released the pte lock.
4368 */
4369 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4370 vmf->address, &vmf->ptl);
4371 if (likely(vmf->pte &&
4372 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4373 ret = VM_FAULT_OOM;
4374 goto unlock;
4375 }
4376
4377 /* Had to read the page from swap area: Major fault */
4378 ret = VM_FAULT_MAJOR;
4379 count_vm_event(PGMAJFAULT);
4380 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4381 page = folio_file_page(folio, swp_offset(entry));
4382 } else if (PageHWPoison(page)) {
4383 /*
4384 * hwpoisoned dirty swapcache pages are kept for killing
4385 * owner processes (which may be unknown at hwpoison time)
4386 */
4387 ret = VM_FAULT_HWPOISON;
4388 goto out_release;
4389 }
4390
4391 ret |= folio_lock_or_retry(folio, vmf);
4392 if (ret & VM_FAULT_RETRY)
4393 goto out_release;
4394
4395 if (swapcache) {
4396 /*
4397 * Make sure folio_free_swap() or swapoff did not release the
4398 * swapcache from under us. The page pin, and pte_same test
4399 * below, are not enough to exclude that. Even if it is still
4400 * swapcache, we need to check that the page's swap has not
4401 * changed.
4402 */
4403 if (unlikely(!folio_test_swapcache(folio) ||
4404 page_swap_entry(page).val != entry.val))
4405 goto out_page;
4406
4407 /*
4408 * KSM sometimes has to copy on read faults, for example, if
4409 * page->index of !PageKSM() pages would be nonlinear inside the
4410 * anon VMA -- PageKSM() is lost on actual swapout.
4411 */
4412 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4413 if (unlikely(!folio)) {
4414 ret = VM_FAULT_OOM;
4415 folio = swapcache;
4416 goto out_page;
4417 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4418 ret = VM_FAULT_HWPOISON;
4419 folio = swapcache;
4420 goto out_page;
4421 }
4422 if (folio != swapcache)
4423 page = folio_page(folio, 0);
4424
4425 /*
4426 * If we want to map a page that's in the swapcache writable, we
4427 * have to detect via the refcount if we're really the exclusive
4428 * owner. Try removing the extra reference from the local LRU
4429 * caches if required.
4430 */
4431 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4432 !folio_test_ksm(folio) && !folio_test_lru(folio))
4433 lru_add_drain();
4434 }
4435
4436 folio_throttle_swaprate(folio, GFP_KERNEL);
4437
4438 /*
4439 * Back out if somebody else already faulted in this pte.
4440 */
4441 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4442 &vmf->ptl);
4443 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4444 goto out_nomap;
4445
4446 if (unlikely(!folio_test_uptodate(folio))) {
4447 ret = VM_FAULT_SIGBUS;
4448 goto out_nomap;
4449 }
4450
4451 /* allocated large folios for SWP_SYNCHRONOUS_IO */
4452 if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4453 unsigned long nr = folio_nr_pages(folio);
4454 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4455 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4456 pte_t *folio_ptep = vmf->pte - idx;
4457 pte_t folio_pte = ptep_get(folio_ptep);
4458
4459 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4460 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4461 goto out_nomap;
4462
4463 page_idx = idx;
4464 address = folio_start;
4465 ptep = folio_ptep;
4466 goto check_folio;
4467 }
4468
4469 nr_pages = 1;
4470 page_idx = 0;
4471 address = vmf->address;
4472 ptep = vmf->pte;
4473 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4474 int nr = folio_nr_pages(folio);
4475 unsigned long idx = folio_page_idx(folio, page);
4476 unsigned long folio_start = address - idx * PAGE_SIZE;
4477 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4478 pte_t *folio_ptep;
4479 pte_t folio_pte;
4480
4481 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4482 goto check_folio;
4483 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4484 goto check_folio;
4485
4486 folio_ptep = vmf->pte - idx;
4487 folio_pte = ptep_get(folio_ptep);
4488 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4489 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4490 goto check_folio;
4491
4492 page_idx = idx;
4493 address = folio_start;
4494 ptep = folio_ptep;
4495 nr_pages = nr;
4496 entry = folio->swap;
4497 page = &folio->page;
4498 }
4499
4500 check_folio:
4501 /*
4502 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4503 * must never point at an anonymous page in the swapcache that is
4504 * PG_anon_exclusive. Sanity check that this holds and especially, that
4505 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4506 * check after taking the PT lock and making sure that nobody
4507 * concurrently faulted in this page and set PG_anon_exclusive.
4508 */
4509 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4510 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4511
4512 /*
4513 * Check under PT lock (to protect against concurrent fork() sharing
4514 * the swap entry concurrently) for certainly exclusive pages.
4515 */
4516 if (!folio_test_ksm(folio)) {
4517 exclusive = pte_swp_exclusive(vmf->orig_pte);
4518 if (folio != swapcache) {
4519 /*
4520 * We have a fresh page that is not exposed to the
4521 * swapcache -> certainly exclusive.
4522 */
4523 exclusive = true;
4524 } else if (exclusive && folio_test_writeback(folio) &&
4525 data_race(si->flags & SWP_STABLE_WRITES)) {
4526 /*
4527 * This is tricky: not all swap backends support
4528 * concurrent page modifications while under writeback.
4529 *
4530 * So if we stumble over such a page in the swapcache
4531 * we must not set the page exclusive, otherwise we can
4532 * map it writable without further checks and modify it
4533 * while still under writeback.
4534 *
4535 * For these problematic swap backends, simply drop the
4536 * exclusive marker: this is perfectly fine as we start
4537 * writeback only if we fully unmapped the page and
4538 * there are no unexpected references on the page after
4539 * unmapping succeeded. After fully unmapped, no
4540 * further GUP references (FOLL_GET and FOLL_PIN) can
4541 * appear, so dropping the exclusive marker and mapping
4542 * it only R/O is fine.
4543 */
4544 exclusive = false;
4545 }
4546 }
4547
4548 /*
4549 * Some architectures may have to restore extra metadata to the page
4550 * when reading from swap. This metadata may be indexed by swap entry
4551 * so this must be called before swap_free().
4552 */
4553 arch_swap_restore(folio_swap(entry, folio), folio);
4554
4555 /*
4556 * Remove the swap entry and conditionally try to free up the swapcache.
4557 * We're already holding a reference on the page but haven't mapped it
4558 * yet.
4559 */
4560 swap_free_nr(entry, nr_pages);
4561 if (should_try_to_free_swap(folio, vma, vmf->flags))
4562 folio_free_swap(folio);
4563
4564 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4565 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4566 pte = mk_pte(page, vma->vm_page_prot);
4567 if (pte_swp_soft_dirty(vmf->orig_pte))
4568 pte = pte_mksoft_dirty(pte);
4569 if (pte_swp_uffd_wp(vmf->orig_pte))
4570 pte = pte_mkuffd_wp(pte);
4571 trace_android_vh_do_swap_page(folio, &pte, vmf, entry);
4572
4573 /*
4574 * Same logic as in do_wp_page(); however, optimize for pages that are
4575 * certainly not shared either because we just allocated them without
4576 * exposing them to the swapcache or because the swap entry indicates
4577 * exclusivity.
4578 */
4579 if (!folio_test_ksm(folio) &&
4580 (exclusive || folio_ref_count(folio) == 1)) {
4581 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4582 !pte_needs_soft_dirty_wp(vma, pte)) {
4583 pte = pte_mkwrite(pte, vma);
4584 if (vmf->flags & FAULT_FLAG_WRITE) {
4585 pte = pte_mkdirty(pte);
4586 vmf->flags &= ~FAULT_FLAG_WRITE;
4587 }
4588 }
4589 rmap_flags |= RMAP_EXCLUSIVE;
4590 }
4591 folio_ref_add(folio, nr_pages - 1);
4592 flush_icache_pages(vma, page, nr_pages);
4593 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4594
4595 /* ksm created a completely new copy */
4596 if (unlikely(folio != swapcache && swapcache)) {
4597 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4598 folio_add_lru_vma(folio, vma);
4599 } else if (!folio_test_anon(folio)) {
4600 /*
4601 * We currently only expect small !anon folios which are either
4602 * fully exclusive or fully shared, or new allocated large
4603 * folios which are fully exclusive. If we ever get large
4604 * folios within swapcache here, we have to be careful.
4605 */
4606 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4607 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4608 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4609 } else {
4610 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4611 rmap_flags);
4612 }
4613
4614 VM_BUG_ON(!folio_test_anon(folio) ||
4615 (pte_write(pte) && !PageAnonExclusive(page)));
4616 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4617 arch_do_swap_page_nr(vma->vm_mm, vma, address,
4618 pte, pte, nr_pages);
4619
4620 folio_unlock(folio);
4621 if (folio != swapcache && swapcache) {
4622 /*
4623 * Hold the lock to avoid the swap entry to be reused
4624 * until we take the PT lock for the pte_same() check
4625 * (to avoid false positives from pte_same). For
4626 * further safety release the lock after the swap_free
4627 * so that the swap count won't change under a
4628 * parallel locked swapcache.
4629 */
4630 folio_unlock(swapcache);
4631 folio_put(swapcache);
4632 }
4633
4634 if (vmf->flags & FAULT_FLAG_WRITE) {
4635 ret |= do_wp_page(vmf);
4636 if (ret & VM_FAULT_ERROR)
4637 ret &= VM_FAULT_ERROR;
4638 goto out;
4639 }
4640
4641 /* No need to invalidate - it was non-present before */
4642 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4643 unlock:
4644 if (vmf->pte)
4645 pte_unmap_unlock(vmf->pte, vmf->ptl);
4646 out:
4647 /* Clear the swap cache pin for direct swapin after PTL unlock */
4648 if (need_clear_cache) {
4649 swapcache_clear(si, entry, nr_pages);
4650 if (waitqueue_active(&swapcache_wq))
4651 wake_up(&swapcache_wq);
4652 }
4653 if (si)
4654 put_swap_device(si);
4655 return ret;
4656 out_nomap:
4657 if (vmf->pte)
4658 pte_unmap_unlock(vmf->pte, vmf->ptl);
4659 out_page:
4660 folio_unlock(folio);
4661 out_release:
4662 folio_put(folio);
4663 if (folio != swapcache && swapcache) {
4664 folio_unlock(swapcache);
4665 folio_put(swapcache);
4666 }
4667 if (need_clear_cache) {
4668 swapcache_clear(si, entry, nr_pages);
4669 if (waitqueue_active(&swapcache_wq))
4670 wake_up(&swapcache_wq);
4671 }
4672 if (si)
4673 put_swap_device(si);
4674 return ret;
4675 }
4676
pte_range_none(pte_t * pte,int nr_pages)4677 static bool pte_range_none(pte_t *pte, int nr_pages)
4678 {
4679 int i;
4680
4681 for (i = 0; i < nr_pages; i++) {
4682 if (!pte_none(ptep_get_lockless(pte + i)))
4683 return false;
4684 }
4685
4686 return true;
4687 }
4688
alloc_anon_folio(struct vm_fault * vmf)4689 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4690 {
4691 struct vm_area_struct *vma = vmf->vma;
4692 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4693 unsigned long orders;
4694 struct folio *folio = NULL;
4695 unsigned long addr;
4696 pte_t *pte;
4697 gfp_t gfp;
4698 int order;
4699
4700 /*
4701 * If uffd is active for the vma we need per-page fault fidelity to
4702 * maintain the uffd semantics.
4703 */
4704 if (unlikely(userfaultfd_armed(vma)))
4705 goto fallback;
4706
4707 /*
4708 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4709 * for this vma. Then filter out the orders that can't be allocated over
4710 * the faulting address and still be fully contained in the vma.
4711 */
4712 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4713 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4714 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4715
4716 if (!orders)
4717 goto fallback;
4718
4719 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4720 if (!pte)
4721 return ERR_PTR(-EAGAIN);
4722
4723 /*
4724 * Find the highest order where the aligned range is completely
4725 * pte_none(). Note that all remaining orders will be completely
4726 * pte_none().
4727 */
4728 order = highest_order(orders);
4729 while (orders) {
4730 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4731 if (pte_range_none(pte + pte_index(addr), 1 << order))
4732 break;
4733 order = next_order(&orders, order);
4734 }
4735
4736 pte_unmap(pte);
4737
4738 if (!orders)
4739 goto fallback;
4740
4741 /* Try allocating the highest of the remaining orders. */
4742 gfp = vma_thp_gfp_mask(vma);
4743
4744 trace_android_vh_mm_customize_alloc_anon_thp(&gfp, &orders, &order, &folio);
4745 if (folio)
4746 goto allocated;
4747
4748 trace_android_vh_customize_thp_gfp_orders(&gfp, &orders, &order);
4749 while (orders) {
4750 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4751 folio = vma_alloc_folio(gfp, order, vma, addr, true);
4752 if (folio) {
4753 allocated:
4754 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4755 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4756 folio_put(folio);
4757 goto next;
4758 }
4759 folio_throttle_swaprate(folio, gfp);
4760 folio_zero_user(folio, vmf->address);
4761 return folio;
4762 }
4763 next:
4764 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4765 order = next_order(&orders, order);
4766 }
4767
4768 fallback:
4769 #endif
4770 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4771 }
4772
4773 /*
4774 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4775 * but allow concurrent faults), and pte mapped but not yet locked.
4776 * We return with mmap_lock still held, but pte unmapped and unlocked.
4777 */
do_anonymous_page(struct vm_fault * vmf)4778 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4779 {
4780 struct vm_area_struct *vma = vmf->vma;
4781 unsigned long addr = vmf->address;
4782 struct folio *folio;
4783 vm_fault_t ret = 0;
4784 int nr_pages = 1;
4785 pte_t entry;
4786
4787 /* File mapping without ->vm_ops ? */
4788 if (vma->vm_flags & VM_SHARED)
4789 return VM_FAULT_SIGBUS;
4790
4791 /*
4792 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4793 * be distinguished from a transient failure of pte_offset_map().
4794 */
4795 if (pte_alloc(vma->vm_mm, vmf->pmd))
4796 return VM_FAULT_OOM;
4797
4798 /* Use the zero-page for reads */
4799 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4800 !mm_forbids_zeropage(vma->vm_mm)) {
4801 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4802 vma->vm_page_prot));
4803 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4804 vmf->address, &vmf->ptl);
4805 if (!vmf->pte)
4806 goto unlock;
4807 if (vmf_pte_changed(vmf)) {
4808 update_mmu_tlb(vma, vmf->address, vmf->pte);
4809 goto unlock;
4810 }
4811 ret = check_stable_address_space(vma->vm_mm);
4812 if (ret)
4813 goto unlock;
4814 /* Deliver the page fault to userland, check inside PT lock */
4815 if (userfaultfd_missing(vma)) {
4816 pte_unmap_unlock(vmf->pte, vmf->ptl);
4817 return handle_userfault(vmf, VM_UFFD_MISSING);
4818 }
4819 goto setpte;
4820 }
4821
4822 /* Allocate our own private page. */
4823 ret = vmf_anon_prepare(vmf);
4824 if (ret)
4825 return ret;
4826 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4827 folio = alloc_anon_folio(vmf);
4828 if (IS_ERR(folio))
4829 return 0;
4830 if (!folio)
4831 goto oom;
4832
4833 nr_pages = folio_nr_pages(folio);
4834 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4835
4836 /*
4837 * The memory barrier inside __folio_mark_uptodate makes sure that
4838 * preceding stores to the page contents become visible before
4839 * the set_pte_at() write.
4840 */
4841 __folio_mark_uptodate(folio);
4842
4843 trace_android_vh_do_anonymous_page(vma, folio);
4844 entry = mk_pte(&folio->page, vma->vm_page_prot);
4845 entry = pte_sw_mkyoung(entry);
4846 if (vma->vm_flags & VM_WRITE)
4847 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4848
4849 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4850 if (!vmf->pte)
4851 goto release;
4852 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4853 update_mmu_tlb(vma, addr, vmf->pte);
4854 goto release;
4855 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4856 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4857 goto release;
4858 }
4859
4860 ret = check_stable_address_space(vma->vm_mm);
4861 if (ret)
4862 goto release;
4863
4864 /* Deliver the page fault to userland, check inside PT lock */
4865 if (userfaultfd_missing(vma)) {
4866 pte_unmap_unlock(vmf->pte, vmf->ptl);
4867 folio_put(folio);
4868 return handle_userfault(vmf, VM_UFFD_MISSING);
4869 }
4870
4871 folio_ref_add(folio, nr_pages - 1);
4872 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4873 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4874 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4875 folio_add_lru_vma(folio, vma);
4876 setpte:
4877 if (vmf_orig_pte_uffd_wp(vmf))
4878 entry = pte_mkuffd_wp(entry);
4879 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4880
4881 /* No need to invalidate - it was non-present before */
4882 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4883 unlock:
4884 if (vmf->pte)
4885 pte_unmap_unlock(vmf->pte, vmf->ptl);
4886 return ret;
4887 release:
4888 folio_put(folio);
4889 goto unlock;
4890 oom:
4891 return VM_FAULT_OOM;
4892 }
4893
4894 /*
4895 * The mmap_lock must have been held on entry, and may have been
4896 * released depending on flags and vma->vm_ops->fault() return value.
4897 * See filemap_fault() and __lock_page_retry().
4898 */
__do_fault(struct vm_fault * vmf)4899 static vm_fault_t __do_fault(struct vm_fault *vmf)
4900 {
4901 struct vm_area_struct *vma = vmf->vma;
4902 struct folio *folio;
4903 vm_fault_t ret;
4904
4905 /*
4906 * Preallocate pte before we take page_lock because this might lead to
4907 * deadlocks for memcg reclaim which waits for pages under writeback:
4908 * lock_page(A)
4909 * SetPageWriteback(A)
4910 * unlock_page(A)
4911 * lock_page(B)
4912 * lock_page(B)
4913 * pte_alloc_one
4914 * shrink_folio_list
4915 * wait_on_page_writeback(A)
4916 * SetPageWriteback(B)
4917 * unlock_page(B)
4918 * # flush A, B to clear the writeback
4919 */
4920 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4921 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4922 if (!vmf->prealloc_pte)
4923 return VM_FAULT_OOM;
4924 }
4925
4926 ret = vma->vm_ops->fault(vmf);
4927 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4928 VM_FAULT_DONE_COW)))
4929 return ret;
4930
4931 folio = page_folio(vmf->page);
4932 if (unlikely(PageHWPoison(vmf->page))) {
4933 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4934 if (ret & VM_FAULT_LOCKED) {
4935 if (page_mapped(vmf->page))
4936 unmap_mapping_folio(folio);
4937 /* Retry if a clean folio was removed from the cache. */
4938 if (mapping_evict_folio(folio->mapping, folio))
4939 poisonret = VM_FAULT_NOPAGE;
4940 folio_unlock(folio);
4941 }
4942 folio_put(folio);
4943 vmf->page = NULL;
4944 return poisonret;
4945 }
4946
4947 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4948 folio_lock(folio);
4949 else
4950 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4951
4952 return ret;
4953 }
4954
4955 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)4956 static void deposit_prealloc_pte(struct vm_fault *vmf)
4957 {
4958 struct vm_area_struct *vma = vmf->vma;
4959
4960 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4961 /*
4962 * We are going to consume the prealloc table,
4963 * count that as nr_ptes.
4964 */
4965 mm_inc_nr_ptes(vma->vm_mm);
4966 vmf->prealloc_pte = NULL;
4967 }
4968
do_set_pmd(struct vm_fault * vmf,struct page * page)4969 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4970 {
4971 struct folio *folio = page_folio(page);
4972 struct vm_area_struct *vma = vmf->vma;
4973 bool write = vmf->flags & FAULT_FLAG_WRITE;
4974 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4975 pmd_t entry;
4976 vm_fault_t ret = VM_FAULT_FALLBACK;
4977
4978 /*
4979 * It is too late to allocate a small folio, we already have a large
4980 * folio in the pagecache: especially s390 KVM cannot tolerate any
4981 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
4982 * PMD mappings if THPs are disabled.
4983 */
4984 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
4985 return ret;
4986
4987 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4988 return ret;
4989
4990 if (folio_order(folio) != HPAGE_PMD_ORDER)
4991 return ret;
4992 page = &folio->page;
4993
4994 /*
4995 * Just backoff if any subpage of a THP is corrupted otherwise
4996 * the corrupted page may mapped by PMD silently to escape the
4997 * check. This kind of THP just can be PTE mapped. Access to
4998 * the corrupted subpage should trigger SIGBUS as expected.
4999 */
5000 if (unlikely(folio_test_has_hwpoisoned(folio)))
5001 return ret;
5002
5003 /*
5004 * Archs like ppc64 need additional space to store information
5005 * related to pte entry. Use the preallocated table for that.
5006 */
5007 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
5008 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5009 if (!vmf->prealloc_pte)
5010 return VM_FAULT_OOM;
5011 }
5012
5013 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
5014 if (unlikely(!pmd_none(*vmf->pmd)))
5015 goto out;
5016
5017 flush_icache_pages(vma, page, HPAGE_PMD_NR);
5018
5019 entry = mk_huge_pmd(page, vma->vm_page_prot);
5020 if (write)
5021 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5022
5023 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5024 folio_add_file_rmap_pmd(folio, page, vma);
5025
5026 /*
5027 * deposit and withdraw with pmd lock held
5028 */
5029 if (arch_needs_pgtable_deposit())
5030 deposit_prealloc_pte(vmf);
5031
5032 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5033
5034 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5035
5036 /* fault is handled */
5037 ret = 0;
5038 count_vm_event(THP_FILE_MAPPED);
5039 out:
5040 spin_unlock(vmf->ptl);
5041 return ret;
5042 }
5043 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)5044 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5045 {
5046 return VM_FAULT_FALLBACK;
5047 }
5048 #endif
5049
5050 /**
5051 * set_pte_range - Set a range of PTEs to point to pages in a folio.
5052 * @vmf: Fault decription.
5053 * @folio: The folio that contains @page.
5054 * @page: The first page to create a PTE for.
5055 * @nr: The number of PTEs to create.
5056 * @addr: The first address to create a PTE for.
5057 */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)5058 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5059 struct page *page, unsigned int nr, unsigned long addr)
5060 {
5061 struct vm_area_struct *vma = vmf->vma;
5062 bool write = vmf->flags & FAULT_FLAG_WRITE;
5063 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5064 pte_t entry;
5065
5066 flush_icache_pages(vma, page, nr);
5067 entry = mk_pte(page, vma->vm_page_prot);
5068
5069 if (prefault && arch_wants_old_prefaulted_pte())
5070 entry = pte_mkold(entry);
5071 else
5072 entry = pte_sw_mkyoung(entry);
5073
5074 if (write)
5075 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5076 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5077 entry = pte_mkuffd_wp(entry);
5078 /* copy-on-write page */
5079 if (write && !(vma->vm_flags & VM_SHARED)) {
5080 VM_BUG_ON_FOLIO(nr != 1, folio);
5081 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5082 folio_add_lru_vma(folio, vma);
5083 } else {
5084 folio_add_file_rmap_ptes(folio, page, nr, vma);
5085 }
5086 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5087
5088 /* no need to invalidate: a not-present page won't be cached */
5089 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5090 }
5091
vmf_pte_changed(struct vm_fault * vmf)5092 static bool vmf_pte_changed(struct vm_fault *vmf)
5093 {
5094 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5095 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5096
5097 return !pte_none(ptep_get(vmf->pte));
5098 }
5099
5100 /**
5101 * finish_fault - finish page fault once we have prepared the page to fault
5102 *
5103 * @vmf: structure describing the fault
5104 *
5105 * This function handles all that is needed to finish a page fault once the
5106 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5107 * given page, adds reverse page mapping, handles memcg charges and LRU
5108 * addition.
5109 *
5110 * The function expects the page to be locked and on success it consumes a
5111 * reference of a page being mapped (for the PTE which maps it).
5112 *
5113 * Return: %0 on success, %VM_FAULT_ code in case of error.
5114 */
finish_fault(struct vm_fault * vmf)5115 vm_fault_t finish_fault(struct vm_fault *vmf)
5116 {
5117 struct vm_area_struct *vma = vmf->vma;
5118 struct page *page;
5119 struct folio *folio;
5120 vm_fault_t ret;
5121 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5122 !(vma->vm_flags & VM_SHARED);
5123 int type, nr_pages;
5124 unsigned long addr;
5125 bool needs_fallback = false;
5126
5127 fallback:
5128 addr = vmf->address;
5129
5130 /* Did we COW the page? */
5131 if (is_cow)
5132 page = vmf->cow_page;
5133 else
5134 page = vmf->page;
5135
5136 /*
5137 * check even for read faults because we might have lost our CoWed
5138 * page
5139 */
5140 if (!(vma->vm_flags & VM_SHARED)) {
5141 ret = check_stable_address_space(vma->vm_mm);
5142 if (ret)
5143 return ret;
5144 }
5145
5146 if (pmd_none(*vmf->pmd)) {
5147 if (PageTransCompound(page)) {
5148 ret = do_set_pmd(vmf, page);
5149 if (ret != VM_FAULT_FALLBACK)
5150 return ret;
5151 }
5152
5153 if (vmf->prealloc_pte)
5154 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5155 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5156 return VM_FAULT_OOM;
5157 }
5158
5159 folio = page_folio(page);
5160 nr_pages = folio_nr_pages(folio);
5161
5162 /*
5163 * Using per-page fault to maintain the uffd semantics, and same
5164 * approach also applies to non-anonymous-shmem faults to avoid
5165 * inflating the RSS of the process.
5166 */
5167 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) ||
5168 unlikely(needs_fallback)) {
5169 nr_pages = 1;
5170 } else if (nr_pages > 1) {
5171 pgoff_t idx = folio_page_idx(folio, page);
5172 /* The page offset of vmf->address within the VMA. */
5173 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5174 /* The index of the entry in the pagetable for fault page. */
5175 pgoff_t pte_off = pte_index(vmf->address);
5176
5177 /*
5178 * Fallback to per-page fault in case the folio size in page
5179 * cache beyond the VMA limits and PMD pagetable limits.
5180 */
5181 if (unlikely(vma_off < idx ||
5182 vma_off + (nr_pages - idx) > vma_pages(vma) ||
5183 pte_off < idx ||
5184 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
5185 nr_pages = 1;
5186 } else {
5187 /* Now we can set mappings for the whole large folio. */
5188 addr = vmf->address - idx * PAGE_SIZE;
5189 page = &folio->page;
5190 }
5191 }
5192
5193 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5194 addr, &vmf->ptl);
5195 if (!vmf->pte)
5196 return VM_FAULT_NOPAGE;
5197
5198 /* Re-check under ptl */
5199 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5200 update_mmu_tlb(vma, addr, vmf->pte);
5201 ret = VM_FAULT_NOPAGE;
5202 goto unlock;
5203 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5204 needs_fallback = true;
5205 pte_unmap_unlock(vmf->pte, vmf->ptl);
5206 goto fallback;
5207 }
5208
5209 folio_ref_add(folio, nr_pages - 1);
5210 set_pte_range(vmf, folio, page, nr_pages, addr);
5211 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5212 add_mm_counter(vma->vm_mm, type, nr_pages);
5213 ret = 0;
5214
5215 unlock:
5216 pte_unmap_unlock(vmf->pte, vmf->ptl);
5217 return ret;
5218 }
5219
5220 static unsigned long fault_around_pages __read_mostly =
5221 65536 >> PAGE_SHIFT;
5222
5223 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)5224 static int fault_around_bytes_get(void *data, u64 *val)
5225 {
5226 *val = fault_around_pages << PAGE_SHIFT;
5227 return 0;
5228 }
5229
5230 /*
5231 * fault_around_bytes must be rounded down to the nearest page order as it's
5232 * what do_fault_around() expects to see.
5233 */
fault_around_bytes_set(void * data,u64 val)5234 static int fault_around_bytes_set(void *data, u64 val)
5235 {
5236 if (val / PAGE_SIZE > PTRS_PER_PTE)
5237 return -EINVAL;
5238
5239 /*
5240 * The minimum value is 1 page, however this results in no fault-around
5241 * at all. See should_fault_around().
5242 */
5243 val = max(val, PAGE_SIZE);
5244 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5245
5246 return 0;
5247 }
5248 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5249 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5250
fault_around_debugfs(void)5251 static int __init fault_around_debugfs(void)
5252 {
5253 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5254 &fault_around_bytes_fops);
5255 return 0;
5256 }
5257 late_initcall(fault_around_debugfs);
5258 #endif
5259
5260 /*
5261 * do_fault_around() tries to map few pages around the fault address. The hope
5262 * is that the pages will be needed soon and this will lower the number of
5263 * faults to handle.
5264 *
5265 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5266 * not ready to be mapped: not up-to-date, locked, etc.
5267 *
5268 * This function doesn't cross VMA or page table boundaries, in order to call
5269 * map_pages() and acquire a PTE lock only once.
5270 *
5271 * fault_around_pages defines how many pages we'll try to map.
5272 * do_fault_around() expects it to be set to a power of two less than or equal
5273 * to PTRS_PER_PTE.
5274 *
5275 * The virtual address of the area that we map is naturally aligned to
5276 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5277 * (and therefore to page order). This way it's easier to guarantee
5278 * that we don't cross page table boundaries.
5279 */
do_fault_around(struct vm_fault * vmf)5280 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5281 {
5282 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5283 pgoff_t pte_off = pte_index(vmf->address);
5284 /* The page offset of vmf->address within the VMA. */
5285 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5286 pgoff_t from_pte, to_pte;
5287 vm_fault_t ret;
5288
5289 /* The PTE offset of the start address, clamped to the VMA. */
5290 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5291 pte_off - min(pte_off, vma_off));
5292
5293 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5294 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5295 pte_off + vma_data_pages(vmf->vma) - vma_off) - 1;
5296
5297 if (pmd_none(*vmf->pmd)) {
5298 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5299 if (!vmf->prealloc_pte)
5300 return VM_FAULT_OOM;
5301 }
5302
5303 rcu_read_lock();
5304 ret = vmf->vma->vm_ops->map_pages(vmf,
5305 vmf->pgoff + from_pte - pte_off,
5306 vmf->pgoff + to_pte - pte_off);
5307 rcu_read_unlock();
5308
5309 return ret;
5310 }
5311
5312 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)5313 static inline bool should_fault_around(struct vm_fault *vmf)
5314 {
5315 bool should_around = true;
5316 /* No ->map_pages? No way to fault around... */
5317 if (!vmf->vma->vm_ops->map_pages)
5318 return false;
5319
5320 if (uffd_disable_fault_around(vmf->vma))
5321 return false;
5322
5323 trace_android_vh_should_fault_around(vmf, &should_around);
5324 if (!should_around)
5325 return false;
5326
5327 /* A single page implies no faulting 'around' at all. */
5328 return fault_around_pages > 1;
5329 }
5330
do_read_fault(struct vm_fault * vmf)5331 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5332 {
5333 vm_fault_t ret = 0;
5334 struct folio *folio;
5335
5336 trace_android_rvh_do_read_fault(vmf, &fault_around_pages);
5337
5338 /*
5339 * Let's call ->map_pages() first and use ->fault() as fallback
5340 * if page by the offset is not ready to be mapped (cold cache or
5341 * something).
5342 */
5343 if (should_fault_around(vmf)) {
5344 ret = do_fault_around(vmf);
5345 if (ret)
5346 return ret;
5347 } else {
5348 trace_android_vh_do_read_fault(vmf, fault_around_pages);
5349 }
5350
5351 ret = vmf_can_call_fault(vmf);
5352 if (ret)
5353 return ret;
5354
5355 ret = __do_fault(vmf);
5356 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5357 return ret;
5358
5359 ret |= finish_fault(vmf);
5360 folio = page_folio(vmf->page);
5361 folio_unlock(folio);
5362 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5363 folio_put(folio);
5364 return ret;
5365 }
5366
do_cow_fault(struct vm_fault * vmf)5367 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5368 {
5369 struct vm_area_struct *vma = vmf->vma;
5370 struct folio *folio;
5371 vm_fault_t ret;
5372
5373 ret = vmf_can_call_fault(vmf);
5374 if (!ret)
5375 ret = vmf_anon_prepare(vmf);
5376 if (ret)
5377 return ret;
5378
5379 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5380 if (!folio)
5381 return VM_FAULT_OOM;
5382
5383 vmf->cow_page = &folio->page;
5384
5385 ret = __do_fault(vmf);
5386 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5387 goto uncharge_out;
5388 if (ret & VM_FAULT_DONE_COW)
5389 return ret;
5390
5391 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5392 ret = VM_FAULT_HWPOISON;
5393 goto unlock;
5394 }
5395 __folio_mark_uptodate(folio);
5396
5397 ret |= finish_fault(vmf);
5398 unlock:
5399 unlock_page(vmf->page);
5400 put_page(vmf->page);
5401 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5402 goto uncharge_out;
5403 return ret;
5404 uncharge_out:
5405 folio_put(folio);
5406 return ret;
5407 }
5408
do_shared_fault(struct vm_fault * vmf)5409 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5410 {
5411 struct vm_area_struct *vma = vmf->vma;
5412 vm_fault_t ret, tmp;
5413 struct folio *folio;
5414
5415 ret = vmf_can_call_fault(vmf);
5416 if (ret)
5417 return ret;
5418
5419 ret = __do_fault(vmf);
5420 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5421 return ret;
5422
5423 folio = page_folio(vmf->page);
5424
5425 /*
5426 * Check if the backing address space wants to know that the page is
5427 * about to become writable
5428 */
5429 if (vma->vm_ops->page_mkwrite) {
5430 folio_unlock(folio);
5431 tmp = do_page_mkwrite(vmf, folio);
5432 if (unlikely(!tmp ||
5433 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5434 folio_put(folio);
5435 return tmp;
5436 }
5437 }
5438
5439 ret |= finish_fault(vmf);
5440 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5441 VM_FAULT_RETRY))) {
5442 folio_unlock(folio);
5443 folio_put(folio);
5444 return ret;
5445 }
5446
5447 ret |= fault_dirty_shared_page(vmf);
5448 return ret;
5449 }
5450
5451 /*
5452 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5453 * but allow concurrent faults).
5454 * The mmap_lock may have been released depending on flags and our
5455 * return value. See filemap_fault() and __folio_lock_or_retry().
5456 * If mmap_lock is released, vma may become invalid (for example
5457 * by other thread calling munmap()).
5458 */
do_fault(struct vm_fault * vmf)5459 static vm_fault_t do_fault(struct vm_fault *vmf)
5460 {
5461 struct vm_area_struct *vma = vmf->vma;
5462 struct mm_struct *vm_mm = vma->vm_mm;
5463 vm_fault_t ret;
5464
5465 /*
5466 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5467 */
5468 if (!vma->vm_ops->fault) {
5469 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5470 vmf->address, &vmf->ptl);
5471 if (unlikely(!vmf->pte))
5472 ret = VM_FAULT_SIGBUS;
5473 else {
5474 /*
5475 * Make sure this is not a temporary clearing of pte
5476 * by holding ptl and checking again. A R/M/W update
5477 * of pte involves: take ptl, clearing the pte so that
5478 * we don't have concurrent modification by hardware
5479 * followed by an update.
5480 */
5481 if (unlikely(pte_none(ptep_get(vmf->pte))))
5482 ret = VM_FAULT_SIGBUS;
5483 else
5484 ret = VM_FAULT_NOPAGE;
5485
5486 pte_unmap_unlock(vmf->pte, vmf->ptl);
5487 }
5488 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5489 ret = do_read_fault(vmf);
5490 else if (!(vma->vm_flags & VM_SHARED))
5491 ret = do_cow_fault(vmf);
5492 else
5493 ret = do_shared_fault(vmf);
5494
5495 /* preallocated pagetable is unused: free it */
5496 if (vmf->prealloc_pte) {
5497 pte_free(vm_mm, vmf->prealloc_pte);
5498 vmf->prealloc_pte = NULL;
5499 }
5500 return ret;
5501 }
5502
numa_migrate_check(struct folio * folio,struct vm_fault * vmf,unsigned long addr,int * flags,bool writable,int * last_cpupid)5503 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5504 unsigned long addr, int *flags,
5505 bool writable, int *last_cpupid)
5506 {
5507 struct vm_area_struct *vma = vmf->vma;
5508
5509 /*
5510 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5511 * much anyway since they can be in shared cache state. This misses
5512 * the case where a mapping is writable but the process never writes
5513 * to it but pte_write gets cleared during protection updates and
5514 * pte_dirty has unpredictable behaviour between PTE scan updates,
5515 * background writeback, dirty balancing and application behaviour.
5516 */
5517 if (!writable)
5518 *flags |= TNF_NO_GROUP;
5519
5520 /*
5521 * Flag if the folio is shared between multiple address spaces. This
5522 * is later used when determining whether to group tasks together
5523 */
5524 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5525 *flags |= TNF_SHARED;
5526 /*
5527 * For memory tiering mode, cpupid of slow memory page is used
5528 * to record page access time. So use default value.
5529 */
5530 if (folio_use_access_time(folio))
5531 *last_cpupid = (-1 & LAST_CPUPID_MASK);
5532 else
5533 *last_cpupid = folio_last_cpupid(folio);
5534
5535 /* Record the current PID acceesing VMA */
5536 vma_set_access_pid_bit(vma);
5537
5538 count_vm_numa_event(NUMA_HINT_FAULTS);
5539 #ifdef CONFIG_NUMA_BALANCING
5540 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5541 #endif
5542 if (folio_nid(folio) == numa_node_id()) {
5543 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5544 *flags |= TNF_FAULT_LOCAL;
5545 }
5546
5547 return mpol_misplaced(folio, vmf, addr);
5548 }
5549
numa_rebuild_single_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long fault_addr,pte_t * fault_pte,bool writable)5550 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5551 unsigned long fault_addr, pte_t *fault_pte,
5552 bool writable)
5553 {
5554 pte_t pte, old_pte;
5555
5556 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5557 pte = pte_modify(old_pte, vma->vm_page_prot);
5558 pte = pte_mkyoung(pte);
5559 if (writable)
5560 pte = pte_mkwrite(pte, vma);
5561 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5562 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5563 }
5564
numa_rebuild_large_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,struct folio * folio,pte_t fault_pte,bool ignore_writable,bool pte_write_upgrade)5565 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5566 struct folio *folio, pte_t fault_pte,
5567 bool ignore_writable, bool pte_write_upgrade)
5568 {
5569 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5570 unsigned long start, end, addr = vmf->address;
5571 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5572 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5573 pte_t *start_ptep;
5574
5575 /* Stay within the VMA and within the page table. */
5576 start = max3(addr_start, pt_start, vma->vm_start);
5577 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5578 vma->vm_end);
5579 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5580
5581 /* Restore all PTEs' mapping of the large folio */
5582 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5583 pte_t ptent = ptep_get(start_ptep);
5584 bool writable = false;
5585
5586 if (!pte_present(ptent) || !pte_protnone(ptent))
5587 continue;
5588
5589 if (pfn_folio(pte_pfn(ptent)) != folio)
5590 continue;
5591
5592 if (!ignore_writable) {
5593 ptent = pte_modify(ptent, vma->vm_page_prot);
5594 writable = pte_write(ptent);
5595 if (!writable && pte_write_upgrade &&
5596 can_change_pte_writable(vma, addr, ptent))
5597 writable = true;
5598 }
5599
5600 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5601 }
5602 }
5603
do_numa_page(struct vm_fault * vmf)5604 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5605 {
5606 struct vm_area_struct *vma = vmf->vma;
5607 struct folio *folio = NULL;
5608 int nid = NUMA_NO_NODE;
5609 bool writable = false, ignore_writable = false;
5610 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5611 int last_cpupid;
5612 int target_nid;
5613 pte_t pte, old_pte;
5614 int flags = 0, nr_pages;
5615
5616 /*
5617 * The pte cannot be used safely until we verify, while holding the page
5618 * table lock, that its contents have not changed during fault handling.
5619 */
5620 spin_lock(vmf->ptl);
5621 /* Read the live PTE from the page tables: */
5622 old_pte = ptep_get(vmf->pte);
5623
5624 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5625 pte_unmap_unlock(vmf->pte, vmf->ptl);
5626 return 0;
5627 }
5628
5629 pte = pte_modify(old_pte, vma->vm_page_prot);
5630
5631 /*
5632 * Detect now whether the PTE could be writable; this information
5633 * is only valid while holding the PT lock.
5634 */
5635 writable = pte_write(pte);
5636 if (!writable && pte_write_upgrade &&
5637 can_change_pte_writable(vma, vmf->address, pte))
5638 writable = true;
5639
5640 folio = vm_normal_folio(vma, vmf->address, pte);
5641 if (!folio || folio_is_zone_device(folio))
5642 goto out_map;
5643
5644 nid = folio_nid(folio);
5645 nr_pages = folio_nr_pages(folio);
5646
5647 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5648 writable, &last_cpupid);
5649 if (target_nid == NUMA_NO_NODE)
5650 goto out_map;
5651 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5652 flags |= TNF_MIGRATE_FAIL;
5653 goto out_map;
5654 }
5655 /* The folio is isolated and isolation code holds a folio reference. */
5656 pte_unmap_unlock(vmf->pte, vmf->ptl);
5657 writable = false;
5658 ignore_writable = true;
5659
5660 /* Migrate to the requested node */
5661 if (!migrate_misplaced_folio(folio, vma, target_nid)) {
5662 nid = target_nid;
5663 flags |= TNF_MIGRATED;
5664 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5665 return 0;
5666 }
5667
5668 flags |= TNF_MIGRATE_FAIL;
5669 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5670 vmf->address, &vmf->ptl);
5671 if (unlikely(!vmf->pte))
5672 return 0;
5673 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5674 pte_unmap_unlock(vmf->pte, vmf->ptl);
5675 return 0;
5676 }
5677 out_map:
5678 /*
5679 * Make it present again, depending on how arch implements
5680 * non-accessible ptes, some can allow access by kernel mode.
5681 */
5682 if (folio && folio_test_large(folio))
5683 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5684 pte_write_upgrade);
5685 else
5686 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5687 writable);
5688 pte_unmap_unlock(vmf->pte, vmf->ptl);
5689
5690 if (nid != NUMA_NO_NODE)
5691 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5692 return 0;
5693 }
5694
create_huge_pmd(struct vm_fault * vmf)5695 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5696 {
5697 struct vm_area_struct *vma = vmf->vma;
5698 if (vma_is_anonymous(vma))
5699 return do_huge_pmd_anonymous_page(vmf);
5700 if (vma->vm_ops->huge_fault)
5701 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5702 return VM_FAULT_FALLBACK;
5703 }
5704
5705 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)5706 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5707 {
5708 struct vm_area_struct *vma = vmf->vma;
5709 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5710 vm_fault_t ret;
5711
5712 if (vma_is_anonymous(vma)) {
5713 if (likely(!unshare) &&
5714 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5715 if (userfaultfd_wp_async(vmf->vma))
5716 goto split;
5717 return handle_userfault(vmf, VM_UFFD_WP);
5718 }
5719 return do_huge_pmd_wp_page(vmf);
5720 }
5721
5722 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5723 if (vma->vm_ops->huge_fault) {
5724 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5725 if (!(ret & VM_FAULT_FALLBACK))
5726 return ret;
5727 }
5728 }
5729
5730 split:
5731 /* COW or write-notify handled on pte level: split pmd. */
5732 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5733
5734 return VM_FAULT_FALLBACK;
5735 }
5736
create_huge_pud(struct vm_fault * vmf)5737 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5738 {
5739 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5740 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5741 struct vm_area_struct *vma = vmf->vma;
5742 /* No support for anonymous transparent PUD pages yet */
5743 if (vma_is_anonymous(vma))
5744 return VM_FAULT_FALLBACK;
5745 if (vma->vm_ops->huge_fault)
5746 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5747 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5748 return VM_FAULT_FALLBACK;
5749 }
5750
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)5751 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5752 {
5753 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5754 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5755 struct vm_area_struct *vma = vmf->vma;
5756 vm_fault_t ret;
5757
5758 /* No support for anonymous transparent PUD pages yet */
5759 if (vma_is_anonymous(vma))
5760 goto split;
5761 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5762 if (vma->vm_ops->huge_fault) {
5763 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5764 if (!(ret & VM_FAULT_FALLBACK))
5765 return ret;
5766 }
5767 }
5768 split:
5769 /* COW or write-notify not handled on PUD level: split pud.*/
5770 __split_huge_pud(vma, vmf->pud, vmf->address);
5771 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5772 return VM_FAULT_FALLBACK;
5773 }
5774
5775 /*
5776 * These routines also need to handle stuff like marking pages dirty
5777 * and/or accessed for architectures that don't do it in hardware (most
5778 * RISC architectures). The early dirtying is also good on the i386.
5779 *
5780 * There is also a hook called "update_mmu_cache()" that architectures
5781 * with external mmu caches can use to update those (ie the Sparc or
5782 * PowerPC hashed page tables that act as extended TLBs).
5783 *
5784 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5785 * concurrent faults).
5786 *
5787 * The mmap_lock may have been released depending on flags and our return value.
5788 * See filemap_fault() and __folio_lock_or_retry().
5789 */
handle_pte_fault(struct vm_fault * vmf)5790 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5791 {
5792 pte_t entry;
5793
5794 if (unlikely(pmd_none(*vmf->pmd))) {
5795 /*
5796 * Leave __pte_alloc() until later: because vm_ops->fault may
5797 * want to allocate huge page, and if we expose page table
5798 * for an instant, it will be difficult to retract from
5799 * concurrent faults and from rmap lookups.
5800 */
5801 vmf->pte = NULL;
5802 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5803 } else {
5804 pmd_t dummy_pmdval;
5805
5806 /*
5807 * A regular pmd is established and it can't morph into a huge
5808 * pmd by anon khugepaged, since that takes mmap_lock in write
5809 * mode; but shmem or file collapse to THP could still morph
5810 * it into a huge pmd: just retry later if so.
5811 *
5812 * Use the maywrite version to indicate that vmf->pte may be
5813 * modified, but since we will use pte_same() to detect the
5814 * change of the !pte_none() entry, there is no need to recheck
5815 * the pmdval. Here we chooes to pass a dummy variable instead
5816 * of NULL, which helps new user think about why this place is
5817 * special.
5818 */
5819 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
5820 vmf->address, &dummy_pmdval,
5821 &vmf->ptl);
5822 if (unlikely(!vmf->pte))
5823 return 0;
5824 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5825 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5826
5827 if (pte_none(vmf->orig_pte)) {
5828 pte_unmap(vmf->pte);
5829 vmf->pte = NULL;
5830 }
5831 }
5832
5833 if (!vmf->pte)
5834 return do_pte_missing(vmf);
5835
5836 if (!pte_present(vmf->orig_pte))
5837 return do_swap_page(vmf);
5838
5839 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5840 return do_numa_page(vmf);
5841
5842 spin_lock(vmf->ptl);
5843 entry = vmf->orig_pte;
5844 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5845 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5846 goto unlock;
5847 }
5848 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5849 if (!pte_write(entry))
5850 return do_wp_page(vmf);
5851 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5852 entry = pte_mkdirty(entry);
5853 }
5854 entry = pte_mkyoung(entry);
5855 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5856 vmf->flags & FAULT_FLAG_WRITE)) {
5857 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5858 vmf->pte, 1);
5859 } else {
5860 /* Skip spurious TLB flush for retried page fault */
5861 if (vmf->flags & FAULT_FLAG_TRIED)
5862 goto unlock;
5863 /*
5864 * This is needed only for protection faults but the arch code
5865 * is not yet telling us if this is a protection fault or not.
5866 * This still avoids useless tlb flushes for .text page faults
5867 * with threads.
5868 */
5869 if (vmf->flags & FAULT_FLAG_WRITE)
5870 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5871 vmf->pte);
5872 }
5873 unlock:
5874 pte_unmap_unlock(vmf->pte, vmf->ptl);
5875 return 0;
5876 }
5877
5878 /*
5879 * On entry, we hold either the VMA lock or the mmap_lock
5880 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5881 * the result, the mmap_lock is not held on exit. See filemap_fault()
5882 * and __folio_lock_or_retry().
5883 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)5884 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5885 unsigned long address, unsigned int flags)
5886 {
5887 struct vm_fault vmf = {
5888 .vma = vma,
5889 .address = address & PAGE_MASK,
5890 .real_address = address,
5891 .flags = flags,
5892 .pgoff = linear_page_index(vma, address),
5893 .gfp_mask = __get_fault_gfp_mask(vma),
5894 };
5895 struct mm_struct *mm = vma->vm_mm;
5896 unsigned long vm_flags = vma->vm_flags;
5897 pgd_t *pgd;
5898 p4d_t *p4d;
5899 vm_fault_t ret;
5900
5901 pgd = pgd_offset(mm, address);
5902 p4d = p4d_alloc(mm, pgd, address);
5903 if (!p4d)
5904 return VM_FAULT_OOM;
5905
5906 vmf.pud = pud_alloc(mm, p4d, address);
5907 if (!vmf.pud)
5908 return VM_FAULT_OOM;
5909 retry_pud:
5910 if (pud_none(*vmf.pud) &&
5911 thp_vma_allowable_order(vma, vm_flags,
5912 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5913 ret = create_huge_pud(&vmf);
5914 if (!(ret & VM_FAULT_FALLBACK))
5915 return ret;
5916 } else {
5917 pud_t orig_pud = *vmf.pud;
5918
5919 barrier();
5920 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5921
5922 /*
5923 * TODO once we support anonymous PUDs: NUMA case and
5924 * FAULT_FLAG_UNSHARE handling.
5925 */
5926 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5927 ret = wp_huge_pud(&vmf, orig_pud);
5928 if (!(ret & VM_FAULT_FALLBACK))
5929 return ret;
5930 } else {
5931 huge_pud_set_accessed(&vmf, orig_pud);
5932 return 0;
5933 }
5934 }
5935 }
5936
5937 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5938 if (!vmf.pmd)
5939 return VM_FAULT_OOM;
5940
5941 /* Huge pud page fault raced with pmd_alloc? */
5942 if (pud_trans_unstable(vmf.pud))
5943 goto retry_pud;
5944
5945 if (pmd_none(*vmf.pmd) &&
5946 thp_vma_allowable_order(vma, vm_flags,
5947 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5948 ret = create_huge_pmd(&vmf);
5949 if (!(ret & VM_FAULT_FALLBACK))
5950 return ret;
5951 } else {
5952 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5953
5954 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5955 VM_BUG_ON(thp_migration_supported() &&
5956 !is_pmd_migration_entry(vmf.orig_pmd));
5957 if (is_pmd_migration_entry(vmf.orig_pmd))
5958 pmd_migration_entry_wait(mm, vmf.pmd);
5959 return 0;
5960 }
5961 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5962 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5963 return do_huge_pmd_numa_page(&vmf);
5964
5965 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5966 !pmd_write(vmf.orig_pmd)) {
5967 ret = wp_huge_pmd(&vmf);
5968 if (!(ret & VM_FAULT_FALLBACK))
5969 return ret;
5970 } else {
5971 huge_pmd_set_accessed(&vmf);
5972 return 0;
5973 }
5974 }
5975 }
5976
5977 return handle_pte_fault(&vmf);
5978 }
5979
5980 /**
5981 * mm_account_fault - Do page fault accounting
5982 * @mm: mm from which memcg should be extracted. It can be NULL.
5983 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5984 * of perf event counters, but we'll still do the per-task accounting to
5985 * the task who triggered this page fault.
5986 * @address: the faulted address.
5987 * @flags: the fault flags.
5988 * @ret: the fault retcode.
5989 *
5990 * This will take care of most of the page fault accounting. Meanwhile, it
5991 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5992 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5993 * still be in per-arch page fault handlers at the entry of page fault.
5994 */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)5995 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5996 unsigned long address, unsigned int flags,
5997 vm_fault_t ret)
5998 {
5999 bool major;
6000
6001 /* Incomplete faults will be accounted upon completion. */
6002 if (ret & VM_FAULT_RETRY)
6003 return;
6004
6005 /*
6006 * To preserve the behavior of older kernels, PGFAULT counters record
6007 * both successful and failed faults, as opposed to perf counters,
6008 * which ignore failed cases.
6009 */
6010 count_vm_event(PGFAULT);
6011 count_memcg_event_mm(mm, PGFAULT);
6012
6013 /*
6014 * Do not account for unsuccessful faults (e.g. when the address wasn't
6015 * valid). That includes arch_vma_access_permitted() failing before
6016 * reaching here. So this is not a "this many hardware page faults"
6017 * counter. We should use the hw profiling for that.
6018 */
6019 if (ret & VM_FAULT_ERROR)
6020 return;
6021
6022 /*
6023 * We define the fault as a major fault when the final successful fault
6024 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6025 * handle it immediately previously).
6026 */
6027 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6028
6029 if (major)
6030 current->maj_flt++;
6031 else
6032 current->min_flt++;
6033
6034 /*
6035 * If the fault is done for GUP, regs will be NULL. We only do the
6036 * accounting for the per thread fault counters who triggered the
6037 * fault, and we skip the perf event updates.
6038 */
6039 if (!regs)
6040 return;
6041
6042 if (major)
6043 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6044 else
6045 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6046 }
6047
6048 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)6049 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6050 {
6051 /* the LRU algorithm only applies to accesses with recency */
6052 current->in_lru_fault = vma_has_recency(vma);
6053 }
6054
lru_gen_exit_fault(void)6055 static void lru_gen_exit_fault(void)
6056 {
6057 current->in_lru_fault = false;
6058 }
6059 #else
lru_gen_enter_fault(struct vm_area_struct * vma)6060 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6061 {
6062 }
6063
lru_gen_exit_fault(void)6064 static void lru_gen_exit_fault(void)
6065 {
6066 }
6067 #endif /* CONFIG_LRU_GEN */
6068
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)6069 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6070 unsigned int *flags)
6071 {
6072 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6073 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6074 return VM_FAULT_SIGSEGV;
6075 /*
6076 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6077 * just treat it like an ordinary read-fault otherwise.
6078 */
6079 if (!is_cow_mapping(vma->vm_flags))
6080 *flags &= ~FAULT_FLAG_UNSHARE;
6081 } else if (*flags & FAULT_FLAG_WRITE) {
6082 /* Write faults on read-only mappings are impossible ... */
6083 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6084 return VM_FAULT_SIGSEGV;
6085 /* ... and FOLL_FORCE only applies to COW mappings. */
6086 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6087 !is_cow_mapping(vma->vm_flags)))
6088 return VM_FAULT_SIGSEGV;
6089 }
6090 #ifdef CONFIG_PER_VMA_LOCK
6091 /*
6092 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6093 * the assumption that lock is dropped on VM_FAULT_RETRY.
6094 */
6095 if (WARN_ON_ONCE((*flags &
6096 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6097 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6098 return VM_FAULT_SIGSEGV;
6099 #endif
6100
6101 return 0;
6102 }
6103
6104 /*
6105 * By the time we get here, we already hold the mm semaphore
6106 *
6107 * The mmap_lock may have been released depending on flags and our
6108 * return value. See filemap_fault() and __folio_lock_or_retry().
6109 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)6110 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6111 unsigned int flags, struct pt_regs *regs)
6112 {
6113 /* If the fault handler drops the mmap_lock, vma may be freed */
6114 struct mm_struct *mm = vma->vm_mm;
6115 vm_fault_t ret;
6116 bool is_droppable;
6117
6118 __set_current_state(TASK_RUNNING);
6119
6120 ret = sanitize_fault_flags(vma, &flags);
6121 if (ret)
6122 goto out;
6123
6124 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6125 flags & FAULT_FLAG_INSTRUCTION,
6126 flags & FAULT_FLAG_REMOTE)) {
6127 ret = VM_FAULT_SIGSEGV;
6128 goto out;
6129 }
6130
6131 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6132
6133 /*
6134 * Enable the memcg OOM handling for faults triggered in user
6135 * space. Kernel faults are handled more gracefully.
6136 */
6137 if (flags & FAULT_FLAG_USER)
6138 mem_cgroup_enter_user_fault();
6139
6140 lru_gen_enter_fault(vma);
6141
6142 if (unlikely(is_vm_hugetlb_page(vma)))
6143 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6144 else
6145 ret = __handle_mm_fault(vma, address, flags);
6146
6147 /*
6148 * Warning: It is no longer safe to dereference vma-> after this point,
6149 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6150 * vma might be destroyed from underneath us.
6151 */
6152
6153 lru_gen_exit_fault();
6154
6155 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6156 if (is_droppable)
6157 ret &= ~VM_FAULT_OOM;
6158
6159 if (flags & FAULT_FLAG_USER) {
6160 mem_cgroup_exit_user_fault();
6161 /*
6162 * The task may have entered a memcg OOM situation but
6163 * if the allocation error was handled gracefully (no
6164 * VM_FAULT_OOM), there is no need to kill anything.
6165 * Just clean up the OOM state peacefully.
6166 */
6167 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6168 mem_cgroup_oom_synchronize(false);
6169 }
6170 out:
6171 mm_account_fault(mm, regs, address, flags, ret);
6172
6173 return ret;
6174 }
6175 EXPORT_SYMBOL_GPL(handle_mm_fault);
6176
6177 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6178 #include <linux/extable.h>
6179
get_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)6180 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6181 {
6182 if (likely(mmap_read_trylock(mm)))
6183 return true;
6184
6185 if (regs && !user_mode(regs)) {
6186 unsigned long ip = exception_ip(regs);
6187 if (!search_exception_tables(ip))
6188 return false;
6189 }
6190
6191 return !mmap_read_lock_killable(mm);
6192 }
6193
mmap_upgrade_trylock(struct mm_struct * mm)6194 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6195 {
6196 /*
6197 * We don't have this operation yet.
6198 *
6199 * It should be easy enough to do: it's basically a
6200 * atomic_long_try_cmpxchg_acquire()
6201 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6202 * it also needs the proper lockdep magic etc.
6203 */
6204 return false;
6205 }
6206
upgrade_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)6207 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6208 {
6209 mmap_read_unlock(mm);
6210 if (regs && !user_mode(regs)) {
6211 unsigned long ip = exception_ip(regs);
6212 if (!search_exception_tables(ip))
6213 return false;
6214 }
6215 return !mmap_write_lock_killable(mm);
6216 }
6217
6218 /*
6219 * Helper for page fault handling.
6220 *
6221 * This is kind of equivalend to "mmap_read_lock()" followed
6222 * by "find_extend_vma()", except it's a lot more careful about
6223 * the locking (and will drop the lock on failure).
6224 *
6225 * For example, if we have a kernel bug that causes a page
6226 * fault, we don't want to just use mmap_read_lock() to get
6227 * the mm lock, because that would deadlock if the bug were
6228 * to happen while we're holding the mm lock for writing.
6229 *
6230 * So this checks the exception tables on kernel faults in
6231 * order to only do this all for instructions that are actually
6232 * expected to fault.
6233 *
6234 * We can also actually take the mm lock for writing if we
6235 * need to extend the vma, which helps the VM layer a lot.
6236 */
lock_mm_and_find_vma(struct mm_struct * mm,unsigned long addr,struct pt_regs * regs)6237 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6238 unsigned long addr, struct pt_regs *regs)
6239 {
6240 struct vm_area_struct *vma;
6241
6242 if (!get_mmap_lock_carefully(mm, regs))
6243 return NULL;
6244
6245 vma = find_vma(mm, addr);
6246 if (likely(vma && (vma->vm_start <= addr)))
6247 return vma;
6248
6249 /*
6250 * Well, dang. We might still be successful, but only
6251 * if we can extend a vma to do so.
6252 */
6253 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6254 mmap_read_unlock(mm);
6255 return NULL;
6256 }
6257
6258 /*
6259 * We can try to upgrade the mmap lock atomically,
6260 * in which case we can continue to use the vma
6261 * we already looked up.
6262 *
6263 * Otherwise we'll have to drop the mmap lock and
6264 * re-take it, and also look up the vma again,
6265 * re-checking it.
6266 */
6267 if (!mmap_upgrade_trylock(mm)) {
6268 if (!upgrade_mmap_lock_carefully(mm, regs))
6269 return NULL;
6270
6271 vma = find_vma(mm, addr);
6272 if (!vma)
6273 goto fail;
6274 if (vma->vm_start <= addr)
6275 goto success;
6276 if (!(vma->vm_flags & VM_GROWSDOWN))
6277 goto fail;
6278 }
6279
6280 if (expand_stack_locked(vma, addr))
6281 goto fail;
6282
6283 success:
6284 mmap_write_downgrade(mm);
6285 return vma;
6286
6287 fail:
6288 mmap_write_unlock(mm);
6289 return NULL;
6290 }
6291 #endif
6292
6293 #ifdef CONFIG_PER_VMA_LOCK
__vma_enter_locked(struct vm_area_struct * vma,bool detaching)6294 static inline bool __vma_enter_locked(struct vm_area_struct *vma, bool detaching)
6295 {
6296 unsigned int tgt_refcnt = VMA_LOCK_OFFSET;
6297
6298 /* Additional refcnt if the vma is attached. */
6299 if (!detaching)
6300 tgt_refcnt++;
6301
6302 /*
6303 * If vma is detached then only vma_mark_attached() can raise the
6304 * vm_refcnt. mmap_write_lock prevents racing with vma_mark_attached().
6305 */
6306 if (!refcount_add_not_zero(VMA_LOCK_OFFSET, &vma->vm_refcnt))
6307 return false;
6308
6309 rwsem_acquire(&vma->vmlock_dep_map, 0, 0, _RET_IP_);
6310 rcuwait_wait_event(&vma->vm_mm->vma_writer_wait,
6311 refcount_read(&vma->vm_refcnt) == tgt_refcnt,
6312 TASK_UNINTERRUPTIBLE);
6313 lock_acquired(&vma->vmlock_dep_map, _RET_IP_);
6314
6315 return true;
6316 }
6317
__vma_exit_locked(struct vm_area_struct * vma,bool * detached)6318 static inline void __vma_exit_locked(struct vm_area_struct *vma, bool *detached)
6319 {
6320 *detached = refcount_sub_and_test(VMA_LOCK_OFFSET, &vma->vm_refcnt);
6321 rwsem_release(&vma->vmlock_dep_map, _RET_IP_);
6322 }
6323
__vma_start_write(struct vm_area_struct * vma,unsigned int mm_lock_seq)6324 void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq)
6325 {
6326 bool locked;
6327
6328 /*
6329 * __vma_enter_locked() returns false immediately if the vma is not
6330 * attached, otherwise it waits until refcnt is indicating that vma
6331 * is attached with no readers.
6332 */
6333 locked = __vma_enter_locked(vma, false);
6334
6335 /*
6336 * We should use WRITE_ONCE() here because we can have concurrent reads
6337 * from the early lockless pessimistic check in vma_start_read().
6338 * We don't really care about the correctness of that early check, but
6339 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
6340 */
6341 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
6342
6343 if (locked) {
6344 bool detached;
6345
6346 __vma_exit_locked(vma, &detached);
6347 WARN_ON_ONCE(detached); /* vma should remain attached */
6348 }
6349 }
6350 EXPORT_SYMBOL_GPL(__vma_start_write);
6351
vma_mark_detached(struct vm_area_struct * vma)6352 void vma_mark_detached(struct vm_area_struct *vma)
6353 {
6354 vma_assert_write_locked(vma);
6355 vma_assert_attached(vma);
6356
6357 /*
6358 * We are the only writer, so no need to use vma_refcount_put().
6359 * The condition below is unlikely because the vma has been already
6360 * write-locked and readers can increment vm_refcnt only temporarily
6361 * before they check vm_lock_seq, realize the vma is locked and drop
6362 * back the vm_refcnt. That is a narrow window for observing a raised
6363 * vm_refcnt.
6364 */
6365 if (unlikely(!refcount_dec_and_test(&vma->vm_refcnt))) {
6366 /* Wait until vma is detached with no readers. */
6367 if (__vma_enter_locked(vma, true)) {
6368 bool detached;
6369
6370 __vma_exit_locked(vma, &detached);
6371 WARN_ON_ONCE(!detached);
6372 }
6373 }
6374 }
6375
6376 /*
6377 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6378 * stable and not isolated. If the VMA is not found or is being modified the
6379 * function returns NULL.
6380 */
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)6381 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6382 unsigned long address)
6383 {
6384 MA_STATE(mas, &mm->mm_mt, address, address);
6385 struct vm_area_struct *vma;
6386
6387 rcu_read_lock();
6388 retry:
6389 vma = mas_walk(&mas);
6390 if (!vma)
6391 goto inval;
6392
6393 vma = vma_start_read(mm, vma);
6394 if (IS_ERR_OR_NULL(vma)) {
6395 /* Check if the VMA got isolated after we found it */
6396 if (PTR_ERR(vma) == -EAGAIN) {
6397 count_vm_vma_lock_event(VMA_LOCK_MISS);
6398 /* The area was replaced with another one */
6399 goto retry;
6400 }
6401
6402 /* Failed to lock the VMA */
6403 goto inval;
6404 }
6405 /*
6406 * At this point, we have a stable reference to a VMA: The VMA is
6407 * locked and we know it hasn't already been isolated.
6408 * From here on, we can access the VMA without worrying about which
6409 * fields are accessible for RCU readers.
6410 */
6411
6412 /* Check if the vma we locked is the right one. */
6413 if (unlikely(vma->vm_mm != mm ||
6414 address < vma->vm_start || address >= vma->vm_end))
6415 goto inval_end_read;
6416
6417 rcu_read_unlock();
6418 return vma;
6419
6420 inval_end_read:
6421 vma_end_read(vma);
6422 inval:
6423 rcu_read_unlock();
6424 count_vm_vma_lock_event(VMA_LOCK_ABORT);
6425 return NULL;
6426 }
6427
lock_next_vma_under_mmap_lock(struct mm_struct * mm,struct vma_iterator * vmi,unsigned long from_addr)6428 static struct vm_area_struct *lock_next_vma_under_mmap_lock(struct mm_struct *mm,
6429 struct vma_iterator *vmi,
6430 unsigned long from_addr)
6431 {
6432 struct vm_area_struct *vma;
6433 int ret;
6434
6435 ret = mmap_read_lock_killable(mm);
6436 if (ret)
6437 return ERR_PTR(ret);
6438
6439 /* Lookup the vma at the last position again under mmap_read_lock */
6440 vma_iter_set(vmi, from_addr);
6441 vma = vma_next(vmi);
6442 if (vma) {
6443 /* Very unlikely vma->vm_refcnt overflow case */
6444 if (unlikely(!vma_start_read_locked(vma)))
6445 vma = ERR_PTR(-EAGAIN);
6446 }
6447
6448 mmap_read_unlock(mm);
6449
6450 return vma;
6451 }
6452
lock_next_vma(struct mm_struct * mm,struct vma_iterator * vmi,unsigned long from_addr)6453 struct vm_area_struct *lock_next_vma(struct mm_struct *mm,
6454 struct vma_iterator *vmi,
6455 unsigned long from_addr)
6456 {
6457 struct vm_area_struct *vma;
6458 unsigned int mm_wr_seq;
6459 bool mmap_unlocked;
6460
6461 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu read lock held");
6462 retry:
6463 /* Start mmap_lock speculation in case we need to verify the vma later */
6464 mmap_unlocked = mmap_lock_speculate_try_begin(mm, &mm_wr_seq);
6465 vma = vma_next(vmi);
6466 if (!vma)
6467 return NULL;
6468
6469 vma = vma_start_read(mm, vma);
6470 if (IS_ERR_OR_NULL(vma)) {
6471 /*
6472 * Retry immediately if the vma gets detached from under us.
6473 * Infinite loop should not happen because the vma we find will
6474 * have to be constantly knocked out from under us.
6475 */
6476 if (PTR_ERR(vma) == -EAGAIN) {
6477 /* reset to search from the last address */
6478 vma_iter_set(vmi, from_addr);
6479 goto retry;
6480 }
6481
6482 goto fallback;
6483 }
6484
6485 /*
6486 * Verify the vma we locked belongs to the same address space and it's
6487 * not behind of the last search position.
6488 */
6489 if (unlikely(vma->vm_mm != mm || from_addr >= vma->vm_end))
6490 goto fallback_unlock;
6491
6492 /*
6493 * vma can be ahead of the last search position but we need to verify
6494 * it was not shrunk after we found it and another vma has not been
6495 * installed ahead of it. Otherwise we might observe a gap that should
6496 * not be there.
6497 */
6498 if (from_addr < vma->vm_start) {
6499 /* Verify only if the address space might have changed since vma lookup. */
6500 if (!mmap_unlocked || mmap_lock_speculate_retry(mm, mm_wr_seq)) {
6501 vma_iter_set(vmi, from_addr);
6502 if (vma != vma_next(vmi))
6503 goto fallback_unlock;
6504 }
6505 }
6506
6507 return vma;
6508
6509 fallback_unlock:
6510 vma_end_read(vma);
6511 fallback:
6512 rcu_read_unlock();
6513 vma = lock_next_vma_under_mmap_lock(mm, vmi, from_addr);
6514 rcu_read_lock();
6515 /* Reinitialize the iterator after re-entering rcu read section */
6516 vma_iter_set(vmi, IS_ERR_OR_NULL(vma) ? from_addr : vma->vm_end);
6517
6518 return vma;
6519 }
6520 #endif /* CONFIG_PER_VMA_LOCK */
6521
6522 #ifndef __PAGETABLE_P4D_FOLDED
6523 /*
6524 * Allocate p4d page table.
6525 * We've already handled the fast-path in-line.
6526 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)6527 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6528 {
6529 p4d_t *new = p4d_alloc_one(mm, address);
6530 if (!new)
6531 return -ENOMEM;
6532
6533 spin_lock(&mm->page_table_lock);
6534 if (pgd_present(*pgd)) { /* Another has populated it */
6535 p4d_free(mm, new);
6536 } else {
6537 smp_wmb(); /* See comment in pmd_install() */
6538 pgd_populate(mm, pgd, new);
6539 }
6540 spin_unlock(&mm->page_table_lock);
6541 return 0;
6542 }
6543 #endif /* __PAGETABLE_P4D_FOLDED */
6544
6545 #ifndef __PAGETABLE_PUD_FOLDED
6546 /*
6547 * Allocate page upper directory.
6548 * We've already handled the fast-path in-line.
6549 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)6550 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6551 {
6552 pud_t *new = pud_alloc_one(mm, address);
6553 if (!new)
6554 return -ENOMEM;
6555
6556 spin_lock(&mm->page_table_lock);
6557 if (!p4d_present(*p4d)) {
6558 mm_inc_nr_puds(mm);
6559 smp_wmb(); /* See comment in pmd_install() */
6560 p4d_populate(mm, p4d, new);
6561 } else /* Another has populated it */
6562 pud_free(mm, new);
6563 spin_unlock(&mm->page_table_lock);
6564 return 0;
6565 }
6566 #endif /* __PAGETABLE_PUD_FOLDED */
6567
6568 #ifndef __PAGETABLE_PMD_FOLDED
6569 /*
6570 * Allocate page middle directory.
6571 * We've already handled the fast-path in-line.
6572 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)6573 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6574 {
6575 spinlock_t *ptl;
6576 pmd_t *new = pmd_alloc_one(mm, address);
6577 if (!new)
6578 return -ENOMEM;
6579
6580 ptl = pud_lock(mm, pud);
6581 if (!pud_present(*pud)) {
6582 mm_inc_nr_pmds(mm);
6583 smp_wmb(); /* See comment in pmd_install() */
6584 pud_populate(mm, pud, new);
6585 } else { /* Another has populated it */
6586 pmd_free(mm, new);
6587 }
6588 spin_unlock(ptl);
6589 return 0;
6590 }
6591 #endif /* __PAGETABLE_PMD_FOLDED */
6592
pfnmap_args_setup(struct follow_pfnmap_args * args,spinlock_t * lock,pte_t * ptep,pgprot_t pgprot,unsigned long pfn_base,unsigned long addr_mask,bool writable,bool special)6593 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6594 spinlock_t *lock, pte_t *ptep,
6595 pgprot_t pgprot, unsigned long pfn_base,
6596 unsigned long addr_mask, bool writable,
6597 bool special)
6598 {
6599 args->lock = lock;
6600 args->ptep = ptep;
6601 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6602 args->pgprot = pgprot;
6603 args->writable = writable;
6604 args->special = special;
6605 }
6606
pfnmap_lockdep_assert(struct vm_area_struct * vma)6607 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6608 {
6609 #ifdef CONFIG_LOCKDEP
6610 struct file *file = vma->vm_file;
6611 struct address_space *mapping = file ? file->f_mapping : NULL;
6612
6613 if (mapping)
6614 lockdep_assert(lockdep_is_held(&vma->vm_file->f_mapping->i_mmap_rwsem) ||
6615 lockdep_is_held(&vma->vm_mm->mmap_lock));
6616 else
6617 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6618 #endif
6619 }
6620
6621 /**
6622 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6623 * @args: Pointer to struct @follow_pfnmap_args
6624 *
6625 * The caller needs to setup args->vma and args->address to point to the
6626 * virtual address as the target of such lookup. On a successful return,
6627 * the results will be put into other output fields.
6628 *
6629 * After the caller finished using the fields, the caller must invoke
6630 * another follow_pfnmap_end() to proper releases the locks and resources
6631 * of such look up request.
6632 *
6633 * During the start() and end() calls, the results in @args will be valid
6634 * as proper locks will be held. After the end() is called, all the fields
6635 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6636 * use of such information after end() may require proper synchronizations
6637 * by the caller with page table updates, otherwise it can create a
6638 * security bug.
6639 *
6640 * If the PTE maps a refcounted page, callers are responsible to protect
6641 * against invalidation with MMU notifiers; otherwise access to the PFN at
6642 * a later point in time can trigger use-after-free.
6643 *
6644 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6645 * should be taken for read, and the mmap semaphore cannot be released
6646 * before the end() is invoked.
6647 *
6648 * This function must not be used to modify PTE content.
6649 *
6650 * Return: zero on success, negative otherwise.
6651 */
follow_pfnmap_start(struct follow_pfnmap_args * args)6652 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6653 {
6654 struct vm_area_struct *vma = args->vma;
6655 unsigned long address = args->address;
6656 struct mm_struct *mm = vma->vm_mm;
6657 spinlock_t *lock;
6658 pgd_t *pgdp;
6659 p4d_t *p4dp, p4d;
6660 pud_t *pudp, pud;
6661 pmd_t *pmdp, pmd;
6662 pte_t *ptep, pte;
6663
6664 pfnmap_lockdep_assert(vma);
6665
6666 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6667 goto out;
6668
6669 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6670 goto out;
6671 retry:
6672 pgdp = pgd_offset(mm, address);
6673 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6674 goto out;
6675
6676 p4dp = p4d_offset(pgdp, address);
6677 p4d = READ_ONCE(*p4dp);
6678 if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6679 goto out;
6680
6681 pudp = pud_offset(p4dp, address);
6682 pud = READ_ONCE(*pudp);
6683 if (pud_none(pud))
6684 goto out;
6685 if (pud_leaf(pud)) {
6686 lock = pud_lock(mm, pudp);
6687 if (!unlikely(pud_leaf(pud))) {
6688 spin_unlock(lock);
6689 goto retry;
6690 }
6691 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6692 pud_pfn(pud), PUD_MASK, pud_write(pud),
6693 pud_special(pud));
6694 return 0;
6695 }
6696
6697 pmdp = pmd_offset(pudp, address);
6698 pmd = pmdp_get_lockless(pmdp);
6699 if (pmd_leaf(pmd)) {
6700 lock = pmd_lock(mm, pmdp);
6701 if (!unlikely(pmd_leaf(pmd))) {
6702 spin_unlock(lock);
6703 goto retry;
6704 }
6705 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6706 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6707 pmd_special(pmd));
6708 return 0;
6709 }
6710
6711 ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6712 if (!ptep)
6713 goto out;
6714 pte = ptep_get(ptep);
6715 if (!pte_present(pte))
6716 goto unlock;
6717 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6718 pte_pfn(pte), PAGE_MASK, pte_write(pte),
6719 pte_special(pte));
6720 return 0;
6721 unlock:
6722 pte_unmap_unlock(ptep, lock);
6723 out:
6724 return -EINVAL;
6725 }
6726 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6727
6728 /**
6729 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6730 * @args: Pointer to struct @follow_pfnmap_args
6731 *
6732 * Must be used in pair of follow_pfnmap_start(). See the start() function
6733 * above for more information.
6734 */
follow_pfnmap_end(struct follow_pfnmap_args * args)6735 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6736 {
6737 if (args->lock)
6738 spin_unlock(args->lock);
6739 if (args->ptep)
6740 pte_unmap(args->ptep);
6741 }
6742 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6743
6744 #ifdef CONFIG_HAVE_IOREMAP_PROT
6745 /**
6746 * generic_access_phys - generic implementation for iomem mmap access
6747 * @vma: the vma to access
6748 * @addr: userspace address, not relative offset within @vma
6749 * @buf: buffer to read/write
6750 * @len: length of transfer
6751 * @write: set to FOLL_WRITE when writing, otherwise reading
6752 *
6753 * This is a generic implementation for &vm_operations_struct.access for an
6754 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6755 * not page based.
6756 */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)6757 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6758 void *buf, int len, int write)
6759 {
6760 resource_size_t phys_addr;
6761 unsigned long prot = 0;
6762 void __iomem *maddr;
6763 int offset = offset_in_page(addr);
6764 int ret = -EINVAL;
6765 bool writable;
6766 struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6767
6768 retry:
6769 if (follow_pfnmap_start(&args))
6770 return -EINVAL;
6771 prot = pgprot_val(args.pgprot);
6772 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6773 writable = args.writable;
6774 follow_pfnmap_end(&args);
6775
6776 if ((write & FOLL_WRITE) && !writable)
6777 return -EINVAL;
6778
6779 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6780 if (!maddr)
6781 return -ENOMEM;
6782
6783 if (follow_pfnmap_start(&args))
6784 goto out_unmap;
6785
6786 if ((prot != pgprot_val(args.pgprot)) ||
6787 (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6788 (writable != args.writable)) {
6789 follow_pfnmap_end(&args);
6790 iounmap(maddr);
6791 goto retry;
6792 }
6793
6794 if (write)
6795 memcpy_toio(maddr + offset, buf, len);
6796 else
6797 memcpy_fromio(buf, maddr + offset, len);
6798 ret = len;
6799 follow_pfnmap_end(&args);
6800 out_unmap:
6801 iounmap(maddr);
6802
6803 return ret;
6804 }
6805 EXPORT_SYMBOL_GPL(generic_access_phys);
6806 #endif
6807
6808 /*
6809 * Access another process' address space as given in mm.
6810 */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6811 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6812 void *buf, int len, unsigned int gup_flags)
6813 {
6814 void *old_buf = buf;
6815 int write = gup_flags & FOLL_WRITE;
6816
6817 if (mmap_read_lock_killable(mm))
6818 return 0;
6819
6820 /* Untag the address before looking up the VMA */
6821 addr = untagged_addr_remote(mm, addr);
6822
6823 /* Avoid triggering the temporary warning in __get_user_pages */
6824 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6825 return 0;
6826
6827 /* ignore errors, just check how much was successfully transferred */
6828 while (len) {
6829 int bytes, offset;
6830 void *maddr;
6831 struct vm_area_struct *vma = NULL;
6832 struct page *page = get_user_page_vma_remote(mm, addr,
6833 gup_flags, &vma);
6834
6835 if (IS_ERR(page)) {
6836 /* We might need to expand the stack to access it */
6837 vma = vma_lookup(mm, addr);
6838 if (!vma) {
6839 vma = expand_stack(mm, addr);
6840
6841 /* mmap_lock was dropped on failure */
6842 if (!vma)
6843 return buf - old_buf;
6844
6845 /* Try again if stack expansion worked */
6846 continue;
6847 }
6848
6849 /*
6850 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6851 * we can access using slightly different code.
6852 */
6853 bytes = 0;
6854 #ifdef CONFIG_HAVE_IOREMAP_PROT
6855 if (vma->vm_ops && vma->vm_ops->access)
6856 bytes = vma->vm_ops->access(vma, addr, buf,
6857 len, write);
6858 #endif
6859 if (bytes <= 0)
6860 break;
6861 } else {
6862 bytes = len;
6863 offset = addr & (PAGE_SIZE-1);
6864 if (bytes > PAGE_SIZE-offset)
6865 bytes = PAGE_SIZE-offset;
6866
6867 maddr = kmap_local_page(page);
6868 if (write) {
6869 copy_to_user_page(vma, page, addr,
6870 maddr + offset, buf, bytes);
6871 set_page_dirty_lock(page);
6872 } else {
6873 copy_from_user_page(vma, page, addr,
6874 buf, maddr + offset, bytes);
6875 }
6876 unmap_and_put_page(page, maddr);
6877 }
6878 len -= bytes;
6879 buf += bytes;
6880 addr += bytes;
6881 }
6882 mmap_read_unlock(mm);
6883
6884 return buf - old_buf;
6885 }
6886
6887 /**
6888 * access_remote_vm - access another process' address space
6889 * @mm: the mm_struct of the target address space
6890 * @addr: start address to access
6891 * @buf: source or destination buffer
6892 * @len: number of bytes to transfer
6893 * @gup_flags: flags modifying lookup behaviour
6894 *
6895 * The caller must hold a reference on @mm.
6896 *
6897 * Return: number of bytes copied from source to destination.
6898 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6899 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6900 void *buf, int len, unsigned int gup_flags)
6901 {
6902 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6903 }
6904
6905 /*
6906 * Access another process' address space.
6907 * Source/target buffer must be kernel space,
6908 * Do not walk the page table directly, use get_user_pages
6909 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)6910 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6911 void *buf, int len, unsigned int gup_flags)
6912 {
6913 struct mm_struct *mm;
6914 int ret;
6915
6916 mm = get_task_mm(tsk);
6917 if (!mm)
6918 return 0;
6919
6920 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6921
6922 mmput(mm);
6923
6924 return ret;
6925 }
6926 EXPORT_SYMBOL_GPL(access_process_vm);
6927
6928 /*
6929 * Print the name of a VMA.
6930 */
print_vma_addr(char * prefix,unsigned long ip)6931 void print_vma_addr(char *prefix, unsigned long ip)
6932 {
6933 struct mm_struct *mm = current->mm;
6934 struct vm_area_struct *vma;
6935
6936 /*
6937 * we might be running from an atomic context so we cannot sleep
6938 */
6939 if (!mmap_read_trylock(mm))
6940 return;
6941
6942 vma = vma_lookup(mm, ip);
6943 if (vma && vma->vm_file) {
6944 struct file *f = vma->vm_file;
6945 ip -= vma->vm_start;
6946 ip += vma->vm_pgoff << PAGE_SHIFT;
6947 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6948 vma->vm_start,
6949 vma->vm_end - vma->vm_start);
6950 }
6951 mmap_read_unlock(mm);
6952 }
6953
6954 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)6955 void __might_fault(const char *file, int line)
6956 {
6957 if (pagefault_disabled())
6958 return;
6959 __might_sleep(file, line);
6960 if (current->mm)
6961 might_lock_read(¤t->mm->mmap_lock);
6962 }
6963 EXPORT_SYMBOL(__might_fault);
6964 #endif
6965
6966 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6967 /*
6968 * Process all subpages of the specified huge page with the specified
6969 * operation. The target subpage will be processed last to keep its
6970 * cache lines hot.
6971 */
process_huge_page(unsigned long addr_hint,unsigned int nr_pages,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)6972 static inline int process_huge_page(
6973 unsigned long addr_hint, unsigned int nr_pages,
6974 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6975 void *arg)
6976 {
6977 int i, n, base, l, ret;
6978 unsigned long addr = addr_hint &
6979 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6980
6981 /* Process target subpage last to keep its cache lines hot */
6982 might_sleep();
6983 n = (addr_hint - addr) / PAGE_SIZE;
6984 if (2 * n <= nr_pages) {
6985 /* If target subpage in first half of huge page */
6986 base = 0;
6987 l = n;
6988 /* Process subpages at the end of huge page */
6989 for (i = nr_pages - 1; i >= 2 * n; i--) {
6990 cond_resched();
6991 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6992 if (ret)
6993 return ret;
6994 }
6995 } else {
6996 /* If target subpage in second half of huge page */
6997 base = nr_pages - 2 * (nr_pages - n);
6998 l = nr_pages - n;
6999 /* Process subpages at the begin of huge page */
7000 for (i = 0; i < base; i++) {
7001 cond_resched();
7002 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7003 if (ret)
7004 return ret;
7005 }
7006 }
7007 /*
7008 * Process remaining subpages in left-right-left-right pattern
7009 * towards the target subpage
7010 */
7011 for (i = 0; i < l; i++) {
7012 int left_idx = base + i;
7013 int right_idx = base + 2 * l - 1 - i;
7014
7015 cond_resched();
7016 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
7017 if (ret)
7018 return ret;
7019 cond_resched();
7020 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
7021 if (ret)
7022 return ret;
7023 }
7024 return 0;
7025 }
7026
clear_gigantic_page(struct folio * folio,unsigned long addr_hint,unsigned int nr_pages)7027 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
7028 unsigned int nr_pages)
7029 {
7030 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
7031 int i;
7032
7033 might_sleep();
7034 for (i = 0; i < nr_pages; i++) {
7035 cond_resched();
7036 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
7037 }
7038 }
7039
clear_subpage(unsigned long addr,int idx,void * arg)7040 static int clear_subpage(unsigned long addr, int idx, void *arg)
7041 {
7042 struct folio *folio = arg;
7043
7044 clear_user_highpage(folio_page(folio, idx), addr);
7045 return 0;
7046 }
7047
7048 /**
7049 * folio_zero_user - Zero a folio which will be mapped to userspace.
7050 * @folio: The folio to zero.
7051 * @addr_hint: The address will be accessed or the base address if uncelar.
7052 */
folio_zero_user(struct folio * folio,unsigned long addr_hint)7053 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
7054 {
7055 unsigned int nr_pages = folio_nr_pages(folio);
7056
7057 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7058 clear_gigantic_page(folio, addr_hint, nr_pages);
7059 else
7060 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
7061 }
7062
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int nr_pages)7063 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
7064 unsigned long addr_hint,
7065 struct vm_area_struct *vma,
7066 unsigned int nr_pages)
7067 {
7068 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
7069 struct page *dst_page;
7070 struct page *src_page;
7071 int i;
7072
7073 for (i = 0; i < nr_pages; i++) {
7074 dst_page = folio_page(dst, i);
7075 src_page = folio_page(src, i);
7076
7077 cond_resched();
7078 if (copy_mc_user_highpage(dst_page, src_page,
7079 addr + i*PAGE_SIZE, vma))
7080 return -EHWPOISON;
7081 }
7082 return 0;
7083 }
7084
7085 struct copy_subpage_arg {
7086 struct folio *dst;
7087 struct folio *src;
7088 struct vm_area_struct *vma;
7089 };
7090
copy_subpage(unsigned long addr,int idx,void * arg)7091 static int copy_subpage(unsigned long addr, int idx, void *arg)
7092 {
7093 struct copy_subpage_arg *copy_arg = arg;
7094 struct page *dst = folio_page(copy_arg->dst, idx);
7095 struct page *src = folio_page(copy_arg->src, idx);
7096
7097 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
7098 return -EHWPOISON;
7099 return 0;
7100 }
7101
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)7102 int copy_user_large_folio(struct folio *dst, struct folio *src,
7103 unsigned long addr_hint, struct vm_area_struct *vma)
7104 {
7105 unsigned int nr_pages = folio_nr_pages(dst);
7106 struct copy_subpage_arg arg = {
7107 .dst = dst,
7108 .src = src,
7109 .vma = vma,
7110 };
7111
7112 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7113 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
7114
7115 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
7116 }
7117
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)7118 long copy_folio_from_user(struct folio *dst_folio,
7119 const void __user *usr_src,
7120 bool allow_pagefault)
7121 {
7122 void *kaddr;
7123 unsigned long i, rc = 0;
7124 unsigned int nr_pages = folio_nr_pages(dst_folio);
7125 unsigned long ret_val = nr_pages * PAGE_SIZE;
7126 struct page *subpage;
7127
7128 for (i = 0; i < nr_pages; i++) {
7129 subpage = folio_page(dst_folio, i);
7130 kaddr = kmap_local_page(subpage);
7131 if (!allow_pagefault)
7132 pagefault_disable();
7133 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
7134 if (!allow_pagefault)
7135 pagefault_enable();
7136 kunmap_local(kaddr);
7137
7138 ret_val -= (PAGE_SIZE - rc);
7139 if (rc)
7140 break;
7141
7142 flush_dcache_page(subpage);
7143
7144 cond_resched();
7145 }
7146 return ret_val;
7147 }
7148 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7149
7150 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7151
7152 static struct kmem_cache *page_ptl_cachep;
7153
ptlock_cache_init(void)7154 void __init ptlock_cache_init(void)
7155 {
7156 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
7157 SLAB_PANIC, NULL);
7158 }
7159
ptlock_alloc(struct ptdesc * ptdesc)7160 bool ptlock_alloc(struct ptdesc *ptdesc)
7161 {
7162 spinlock_t *ptl;
7163
7164 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
7165 if (!ptl)
7166 return false;
7167 ptdesc->ptl = ptl;
7168 return true;
7169 }
7170
ptlock_free(struct ptdesc * ptdesc)7171 void ptlock_free(struct ptdesc *ptdesc)
7172 {
7173 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
7174 }
7175 #endif
7176
vma_pgtable_walk_begin(struct vm_area_struct * vma)7177 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
7178 {
7179 if (is_vm_hugetlb_page(vma))
7180 hugetlb_vma_lock_read(vma);
7181 }
7182
vma_pgtable_walk_end(struct vm_area_struct * vma)7183 void vma_pgtable_walk_end(struct vm_area_struct *vma)
7184 {
7185 if (is_vm_hugetlb_page(vma))
7186 hugetlb_vma_unlock_read(vma);
7187 }
7188