1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/page-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
11 * 10Apr2002 Andrew Morton
12 * Initial version
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 #include <trace/hooks/mm.h>
43 #include <trace/hooks/fs.h>
44
45 #include "internal.h"
46
47 /*
48 * Sleep at most 200ms at a time in balance_dirty_pages().
49 */
50 #define MAX_PAUSE max(HZ/5, 1)
51
52 /*
53 * Try to keep balance_dirty_pages() call intervals higher than this many pages
54 * by raising pause time to max_pause when falls below it.
55 */
56 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
57
58 /*
59 * Estimate write bandwidth at 200ms intervals.
60 */
61 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
62
63 #define RATELIMIT_CALC_SHIFT 10
64
65 /*
66 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
67 * will look to see if it needs to force writeback or throttling.
68 */
69 static long ratelimit_pages = 32;
70
71 /* The following parameters are exported via /proc/sys/vm */
72
73 /*
74 * Start background writeback (via writeback threads) at this percentage
75 */
76 static int dirty_background_ratio = 10;
77
78 /*
79 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
80 * dirty_background_ratio * the amount of dirtyable memory
81 */
82 static unsigned long dirty_background_bytes;
83
84 /*
85 * free highmem will not be subtracted from the total free memory
86 * for calculating free ratios if vm_highmem_is_dirtyable is true
87 */
88 static int vm_highmem_is_dirtyable;
89
90 /*
91 * The generator of dirty data starts writeback at this percentage
92 */
93 static int vm_dirty_ratio = 20;
94
95 /*
96 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
97 * vm_dirty_ratio * the amount of dirtyable memory
98 */
99 static unsigned long vm_dirty_bytes;
100
101 /*
102 * The interval between `kupdate'-style writebacks
103 */
104 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
105
106 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
107
108 /*
109 * The longest time for which data is allowed to remain dirty
110 */
111 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
112
113 /*
114 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
115 * a full sync is triggered after this time elapses without any disk activity.
116 */
117 int laptop_mode;
118
119 EXPORT_SYMBOL(laptop_mode);
120
121 /* End of sysctl-exported parameters */
122
123 struct wb_domain global_wb_domain;
124
125 /* consolidated parameters for balance_dirty_pages() and its subroutines */
126 struct dirty_throttle_control {
127 #ifdef CONFIG_CGROUP_WRITEBACK
128 struct wb_domain *dom;
129 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
130 #endif
131 struct bdi_writeback *wb;
132 struct fprop_local_percpu *wb_completions;
133
134 unsigned long avail; /* dirtyable */
135 unsigned long dirty; /* file_dirty + write + nfs */
136 unsigned long thresh; /* dirty threshold */
137 unsigned long bg_thresh; /* dirty background threshold */
138
139 unsigned long wb_dirty; /* per-wb counterparts */
140 unsigned long wb_thresh;
141 unsigned long wb_bg_thresh;
142
143 unsigned long pos_ratio;
144 bool freerun;
145 bool dirty_exceeded;
146 };
147
148 /*
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
152 */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154
155 #ifdef CONFIG_CGROUP_WRITEBACK
156
157 #define GDTC_INIT(__wb) .wb = (__wb), \
158 .dom = &global_wb_domain, \
159 .wb_completions = &(__wb)->completions
160
161 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
162
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
164 .dom = mem_cgroup_wb_domain(__wb), \
165 .wb_completions = &(__wb)->memcg_completions, \
166 .gdtc = __gdtc
167
mdtc_valid(struct dirty_throttle_control * dtc)168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170 return dtc->dom;
171 }
172
dtc_dom(struct dirty_throttle_control * dtc)173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175 return dtc->dom;
176 }
177
mdtc_gdtc(struct dirty_throttle_control * mdtc)178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180 return mdtc->gdtc;
181 }
182
wb_memcg_completions(struct bdi_writeback * wb)183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185 return &wb->memcg_completions;
186 }
187
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189 unsigned long *minp, unsigned long *maxp)
190 {
191 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 unsigned long long min = wb->bdi->min_ratio;
194 unsigned long long max = wb->bdi->max_ratio;
195
196 /*
197 * @wb may already be clean by the time control reaches here and
198 * the total may not include its bw.
199 */
200 if (this_bw < tot_bw) {
201 if (min) {
202 min *= this_bw;
203 min = div64_ul(min, tot_bw);
204 }
205 if (max < 100 * BDI_RATIO_SCALE) {
206 max *= this_bw;
207 max = div64_ul(max, tot_bw);
208 }
209 }
210
211 *minp = min;
212 *maxp = max;
213 }
214
215 #else /* CONFIG_CGROUP_WRITEBACK */
216
217 #define GDTC_INIT(__wb) .wb = (__wb), \
218 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221
mdtc_valid(struct dirty_throttle_control * dtc)222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224 return false;
225 }
226
dtc_dom(struct dirty_throttle_control * dtc)227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229 return &global_wb_domain;
230 }
231
mdtc_gdtc(struct dirty_throttle_control * mdtc)232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234 return NULL;
235 }
236
wb_memcg_completions(struct bdi_writeback * wb)237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239 return NULL;
240 }
241
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243 unsigned long *minp, unsigned long *maxp)
244 {
245 *minp = wb->bdi->min_ratio;
246 *maxp = wb->bdi->max_ratio;
247 }
248
249 #endif /* CONFIG_CGROUP_WRITEBACK */
250
251 /*
252 * In a memory zone, there is a certain amount of pages we consider
253 * available for the page cache, which is essentially the number of
254 * free and reclaimable pages, minus some zone reserves to protect
255 * lowmem and the ability to uphold the zone's watermarks without
256 * requiring writeback.
257 *
258 * This number of dirtyable pages is the base value of which the
259 * user-configurable dirty ratio is the effective number of pages that
260 * are allowed to be actually dirtied. Per individual zone, or
261 * globally by using the sum of dirtyable pages over all zones.
262 *
263 * Because the user is allowed to specify the dirty limit globally as
264 * absolute number of bytes, calculating the per-zone dirty limit can
265 * require translating the configured limit into a percentage of
266 * global dirtyable memory first.
267 */
268
269 /**
270 * node_dirtyable_memory - number of dirtyable pages in a node
271 * @pgdat: the node
272 *
273 * Return: the node's number of pages potentially available for dirty
274 * page cache. This is the base value for the per-node dirty limits.
275 */
node_dirtyable_memory(struct pglist_data * pgdat)276 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
277 {
278 unsigned long nr_pages = 0;
279 int z;
280
281 for (z = 0; z < MAX_NR_ZONES; z++) {
282 struct zone *zone = pgdat->node_zones + z;
283
284 if (!populated_zone(zone))
285 continue;
286
287 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
288 }
289
290 /*
291 * Pages reserved for the kernel should not be considered
292 * dirtyable, to prevent a situation where reclaim has to
293 * clean pages in order to balance the zones.
294 */
295 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
296
297 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
298 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
299
300 return nr_pages;
301 }
302
highmem_dirtyable_memory(unsigned long total)303 static unsigned long highmem_dirtyable_memory(unsigned long total)
304 {
305 #ifdef CONFIG_HIGHMEM
306 int node;
307 unsigned long x = 0;
308 int i;
309
310 for_each_node_state(node, N_HIGH_MEMORY) {
311 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
312 struct zone *z;
313 unsigned long nr_pages;
314
315 if (!is_highmem_idx(i))
316 continue;
317
318 z = &NODE_DATA(node)->node_zones[i];
319 if (!populated_zone(z))
320 continue;
321
322 nr_pages = zone_page_state(z, NR_FREE_PAGES);
323 /* watch for underflows */
324 nr_pages -= min(nr_pages, high_wmark_pages(z));
325 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
326 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
327 x += nr_pages;
328 }
329 }
330
331 /*
332 * Make sure that the number of highmem pages is never larger
333 * than the number of the total dirtyable memory. This can only
334 * occur in very strange VM situations but we want to make sure
335 * that this does not occur.
336 */
337 return min(x, total);
338 #else
339 return 0;
340 #endif
341 }
342
343 /**
344 * global_dirtyable_memory - number of globally dirtyable pages
345 *
346 * Return: the global number of pages potentially available for dirty
347 * page cache. This is the base value for the global dirty limits.
348 */
global_dirtyable_memory(void)349 static unsigned long global_dirtyable_memory(void)
350 {
351 unsigned long x;
352
353 x = global_zone_page_state(NR_FREE_PAGES);
354 /*
355 * Pages reserved for the kernel should not be considered
356 * dirtyable, to prevent a situation where reclaim has to
357 * clean pages in order to balance the zones.
358 */
359 x -= min(x, totalreserve_pages);
360
361 x += global_node_page_state(NR_INACTIVE_FILE);
362 x += global_node_page_state(NR_ACTIVE_FILE);
363
364 if (!vm_highmem_is_dirtyable)
365 x -= highmem_dirtyable_memory(x);
366
367 return x + 1; /* Ensure that we never return 0 */
368 }
369
370 /**
371 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
372 * @dtc: dirty_throttle_control of interest
373 *
374 * Calculate @dtc->thresh and ->bg_thresh considering
375 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
376 * must ensure that @dtc->avail is set before calling this function. The
377 * dirty limits will be lifted by 1/4 for real-time tasks.
378 */
domain_dirty_limits(struct dirty_throttle_control * dtc)379 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
380 {
381 const unsigned long available_memory = dtc->avail;
382 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
383 unsigned long bytes = vm_dirty_bytes;
384 unsigned long bg_bytes = dirty_background_bytes;
385 /* convert ratios to per-PAGE_SIZE for higher precision */
386 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
387 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
388 unsigned long thresh;
389 unsigned long bg_thresh;
390 struct task_struct *tsk;
391
392 /* gdtc is !NULL iff @dtc is for memcg domain */
393 if (gdtc) {
394 unsigned long global_avail = gdtc->avail;
395
396 /*
397 * The byte settings can't be applied directly to memcg
398 * domains. Convert them to ratios by scaling against
399 * globally available memory. As the ratios are in
400 * per-PAGE_SIZE, they can be obtained by dividing bytes by
401 * number of pages.
402 */
403 if (bytes)
404 ratio = min(DIV_ROUND_UP(bytes, global_avail),
405 PAGE_SIZE);
406 if (bg_bytes)
407 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
408 PAGE_SIZE);
409 bytes = bg_bytes = 0;
410 }
411
412 if (bytes)
413 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
414 else
415 thresh = (ratio * available_memory) / PAGE_SIZE;
416
417 if (bg_bytes)
418 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
419 else
420 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
421
422 tsk = current;
423 if (rt_or_dl_task(tsk)) {
424 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
425 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
426 }
427 /*
428 * Dirty throttling logic assumes the limits in page units fit into
429 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
430 */
431 if (thresh > UINT_MAX)
432 thresh = UINT_MAX;
433 /* This makes sure bg_thresh is within 32-bits as well */
434 if (bg_thresh >= thresh)
435 bg_thresh = thresh / 2;
436 dtc->thresh = thresh;
437 dtc->bg_thresh = bg_thresh;
438
439 /* we should eventually report the domain in the TP */
440 if (!gdtc)
441 trace_global_dirty_state(bg_thresh, thresh);
442 }
443
444 /**
445 * global_dirty_limits - background-writeback and dirty-throttling thresholds
446 * @pbackground: out parameter for bg_thresh
447 * @pdirty: out parameter for thresh
448 *
449 * Calculate bg_thresh and thresh for global_wb_domain. See
450 * domain_dirty_limits() for details.
451 */
global_dirty_limits(unsigned long * pbackground,unsigned long * pdirty)452 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
453 {
454 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
455
456 gdtc.avail = global_dirtyable_memory();
457 domain_dirty_limits(&gdtc);
458
459 *pbackground = gdtc.bg_thresh;
460 *pdirty = gdtc.thresh;
461 }
462
463 /**
464 * node_dirty_limit - maximum number of dirty pages allowed in a node
465 * @pgdat: the node
466 *
467 * Return: the maximum number of dirty pages allowed in a node, based
468 * on the node's dirtyable memory.
469 */
node_dirty_limit(struct pglist_data * pgdat)470 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
471 {
472 unsigned long node_memory = node_dirtyable_memory(pgdat);
473 struct task_struct *tsk = current;
474 unsigned long dirty;
475
476 if (vm_dirty_bytes)
477 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
478 node_memory / global_dirtyable_memory();
479 else
480 dirty = vm_dirty_ratio * node_memory / 100;
481
482 if (rt_or_dl_task(tsk))
483 dirty += dirty / 4;
484
485 /*
486 * Dirty throttling logic assumes the limits in page units fit into
487 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
488 */
489 return min_t(unsigned long, dirty, UINT_MAX);
490 }
491
492 /**
493 * node_dirty_ok - tells whether a node is within its dirty limits
494 * @pgdat: the node to check
495 *
496 * Return: %true when the dirty pages in @pgdat are within the node's
497 * dirty limit, %false if the limit is exceeded.
498 */
node_dirty_ok(struct pglist_data * pgdat)499 bool node_dirty_ok(struct pglist_data *pgdat)
500 {
501 unsigned long limit = node_dirty_limit(pgdat);
502 unsigned long nr_pages = 0;
503
504 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
505 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
506
507 return nr_pages <= limit;
508 }
509
510 #ifdef CONFIG_SYSCTL
dirty_background_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)511 static int dirty_background_ratio_handler(const struct ctl_table *table, int write,
512 void *buffer, size_t *lenp, loff_t *ppos)
513 {
514 int ret;
515
516 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
517 if (ret == 0 && write)
518 dirty_background_bytes = 0;
519 return ret;
520 }
521
dirty_background_bytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)522 static int dirty_background_bytes_handler(const struct ctl_table *table, int write,
523 void *buffer, size_t *lenp, loff_t *ppos)
524 {
525 int ret;
526 unsigned long old_bytes = dirty_background_bytes;
527
528 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
529 if (ret == 0 && write) {
530 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
531 UINT_MAX) {
532 dirty_background_bytes = old_bytes;
533 return -ERANGE;
534 }
535 dirty_background_ratio = 0;
536 }
537 return ret;
538 }
539
dirty_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)540 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer,
541 size_t *lenp, loff_t *ppos)
542 {
543 int old_ratio = vm_dirty_ratio;
544 int ret;
545
546 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
547 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
548 vm_dirty_bytes = 0;
549 writeback_set_ratelimit();
550 }
551 return ret;
552 }
553
dirty_bytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)554 static int dirty_bytes_handler(const struct ctl_table *table, int write,
555 void *buffer, size_t *lenp, loff_t *ppos)
556 {
557 unsigned long old_bytes = vm_dirty_bytes;
558 int ret;
559
560 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
561 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
562 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
563 vm_dirty_bytes = old_bytes;
564 return -ERANGE;
565 }
566 writeback_set_ratelimit();
567 vm_dirty_ratio = 0;
568 }
569 return ret;
570 }
571 #endif
572
wp_next_time(unsigned long cur_time)573 static unsigned long wp_next_time(unsigned long cur_time)
574 {
575 cur_time += VM_COMPLETIONS_PERIOD_LEN;
576 /* 0 has a special meaning... */
577 if (!cur_time)
578 return 1;
579 return cur_time;
580 }
581
wb_domain_writeout_add(struct wb_domain * dom,struct fprop_local_percpu * completions,unsigned int max_prop_frac,long nr)582 static void wb_domain_writeout_add(struct wb_domain *dom,
583 struct fprop_local_percpu *completions,
584 unsigned int max_prop_frac, long nr)
585 {
586 __fprop_add_percpu_max(&dom->completions, completions,
587 max_prop_frac, nr);
588 /* First event after period switching was turned off? */
589 if (unlikely(!dom->period_time)) {
590 /*
591 * We can race with other __bdi_writeout_inc calls here but
592 * it does not cause any harm since the resulting time when
593 * timer will fire and what is in writeout_period_time will be
594 * roughly the same.
595 */
596 dom->period_time = wp_next_time(jiffies);
597 mod_timer(&dom->period_timer, dom->period_time);
598 }
599 }
600
601 /*
602 * Increment @wb's writeout completion count and the global writeout
603 * completion count. Called from __folio_end_writeback().
604 */
__wb_writeout_add(struct bdi_writeback * wb,long nr)605 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
606 {
607 struct wb_domain *cgdom;
608
609 wb_stat_mod(wb, WB_WRITTEN, nr);
610 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
611 wb->bdi->max_prop_frac, nr);
612
613 cgdom = mem_cgroup_wb_domain(wb);
614 if (cgdom)
615 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
616 wb->bdi->max_prop_frac, nr);
617 }
618
wb_writeout_inc(struct bdi_writeback * wb)619 void wb_writeout_inc(struct bdi_writeback *wb)
620 {
621 unsigned long flags;
622
623 local_irq_save(flags);
624 __wb_writeout_add(wb, 1);
625 local_irq_restore(flags);
626 }
627 EXPORT_SYMBOL_GPL(wb_writeout_inc);
628
629 /*
630 * On idle system, we can be called long after we scheduled because we use
631 * deferred timers so count with missed periods.
632 */
writeout_period(struct timer_list * t)633 static void writeout_period(struct timer_list *t)
634 {
635 struct wb_domain *dom = from_timer(dom, t, period_timer);
636 int miss_periods = (jiffies - dom->period_time) /
637 VM_COMPLETIONS_PERIOD_LEN;
638
639 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
640 dom->period_time = wp_next_time(dom->period_time +
641 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
642 mod_timer(&dom->period_timer, dom->period_time);
643 } else {
644 /*
645 * Aging has zeroed all fractions. Stop wasting CPU on period
646 * updates.
647 */
648 dom->period_time = 0;
649 }
650 }
651
wb_domain_init(struct wb_domain * dom,gfp_t gfp)652 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
653 {
654 memset(dom, 0, sizeof(*dom));
655
656 spin_lock_init(&dom->lock);
657
658 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
659
660 dom->dirty_limit_tstamp = jiffies;
661
662 return fprop_global_init(&dom->completions, gfp);
663 }
664
665 #ifdef CONFIG_CGROUP_WRITEBACK
wb_domain_exit(struct wb_domain * dom)666 void wb_domain_exit(struct wb_domain *dom)
667 {
668 del_timer_sync(&dom->period_timer);
669 fprop_global_destroy(&dom->completions);
670 }
671 #endif
672
673 /*
674 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
675 * registered backing devices, which, for obvious reasons, can not
676 * exceed 100%.
677 */
678 static unsigned int bdi_min_ratio;
679
bdi_check_pages_limit(unsigned long pages)680 static int bdi_check_pages_limit(unsigned long pages)
681 {
682 unsigned long max_dirty_pages = global_dirtyable_memory();
683
684 if (pages > max_dirty_pages)
685 return -EINVAL;
686
687 return 0;
688 }
689
bdi_ratio_from_pages(unsigned long pages)690 static unsigned long bdi_ratio_from_pages(unsigned long pages)
691 {
692 unsigned long background_thresh;
693 unsigned long dirty_thresh;
694 unsigned long ratio;
695
696 global_dirty_limits(&background_thresh, &dirty_thresh);
697 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
698
699 return ratio;
700 }
701
bdi_get_bytes(unsigned int ratio)702 static u64 bdi_get_bytes(unsigned int ratio)
703 {
704 unsigned long background_thresh;
705 unsigned long dirty_thresh;
706 u64 bytes;
707
708 global_dirty_limits(&background_thresh, &dirty_thresh);
709 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
710
711 return bytes;
712 }
713
__bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)714 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
715 {
716 unsigned int delta;
717 int ret = 0;
718
719 if (min_ratio > 100 * BDI_RATIO_SCALE)
720 return -EINVAL;
721
722 spin_lock_bh(&bdi_lock);
723 if (min_ratio > bdi->max_ratio) {
724 ret = -EINVAL;
725 } else {
726 if (min_ratio < bdi->min_ratio) {
727 delta = bdi->min_ratio - min_ratio;
728 bdi_min_ratio -= delta;
729 bdi->min_ratio = min_ratio;
730 } else {
731 delta = min_ratio - bdi->min_ratio;
732 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
733 bdi_min_ratio += delta;
734 bdi->min_ratio = min_ratio;
735 } else {
736 ret = -EINVAL;
737 }
738 }
739 }
740 spin_unlock_bh(&bdi_lock);
741
742 return ret;
743 }
744
__bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)745 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
746 {
747 int ret = 0;
748
749 if (max_ratio > 100 * BDI_RATIO_SCALE)
750 return -EINVAL;
751
752 spin_lock_bh(&bdi_lock);
753 if (bdi->min_ratio > max_ratio) {
754 ret = -EINVAL;
755 } else {
756 bdi->max_ratio = max_ratio;
757 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
758 (100 * BDI_RATIO_SCALE);
759 }
760 spin_unlock_bh(&bdi_lock);
761
762 return ret;
763 }
764
bdi_set_min_ratio_no_scale(struct backing_dev_info * bdi,unsigned int min_ratio)765 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
766 {
767 return __bdi_set_min_ratio(bdi, min_ratio);
768 }
769
bdi_set_max_ratio_no_scale(struct backing_dev_info * bdi,unsigned int max_ratio)770 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
771 {
772 return __bdi_set_max_ratio(bdi, max_ratio);
773 }
774
bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)775 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
776 {
777 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
778 }
779
bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)780 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
781 {
782 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
783 }
784 EXPORT_SYMBOL(bdi_set_max_ratio);
785
bdi_get_min_bytes(struct backing_dev_info * bdi)786 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
787 {
788 return bdi_get_bytes(bdi->min_ratio);
789 }
790
bdi_set_min_bytes(struct backing_dev_info * bdi,u64 min_bytes)791 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
792 {
793 int ret;
794 unsigned long pages = min_bytes >> PAGE_SHIFT;
795 unsigned long min_ratio;
796
797 ret = bdi_check_pages_limit(pages);
798 if (ret)
799 return ret;
800
801 min_ratio = bdi_ratio_from_pages(pages);
802 return __bdi_set_min_ratio(bdi, min_ratio);
803 }
804
bdi_get_max_bytes(struct backing_dev_info * bdi)805 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
806 {
807 return bdi_get_bytes(bdi->max_ratio);
808 }
809
bdi_set_max_bytes(struct backing_dev_info * bdi,u64 max_bytes)810 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
811 {
812 int ret;
813 unsigned long pages = max_bytes >> PAGE_SHIFT;
814 unsigned long max_ratio;
815
816 ret = bdi_check_pages_limit(pages);
817 if (ret)
818 return ret;
819
820 max_ratio = bdi_ratio_from_pages(pages);
821 return __bdi_set_max_ratio(bdi, max_ratio);
822 }
823
bdi_set_strict_limit(struct backing_dev_info * bdi,unsigned int strict_limit)824 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
825 {
826 if (strict_limit > 1)
827 return -EINVAL;
828
829 spin_lock_bh(&bdi_lock);
830 if (strict_limit)
831 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
832 else
833 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
834 spin_unlock_bh(&bdi_lock);
835
836 return 0;
837 }
838
dirty_freerun_ceiling(unsigned long thresh,unsigned long bg_thresh)839 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
840 unsigned long bg_thresh)
841 {
842 return (thresh + bg_thresh) / 2;
843 }
844
hard_dirty_limit(struct wb_domain * dom,unsigned long thresh)845 static unsigned long hard_dirty_limit(struct wb_domain *dom,
846 unsigned long thresh)
847 {
848 return max(thresh, dom->dirty_limit);
849 }
850
851 /*
852 * Memory which can be further allocated to a memcg domain is capped by
853 * system-wide clean memory excluding the amount being used in the domain.
854 */
mdtc_calc_avail(struct dirty_throttle_control * mdtc,unsigned long filepages,unsigned long headroom)855 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
856 unsigned long filepages, unsigned long headroom)
857 {
858 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
859 unsigned long clean = filepages - min(filepages, mdtc->dirty);
860 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
861 unsigned long other_clean = global_clean - min(global_clean, clean);
862
863 mdtc->avail = filepages + min(headroom, other_clean);
864 }
865
dtc_is_global(struct dirty_throttle_control * dtc)866 static inline bool dtc_is_global(struct dirty_throttle_control *dtc)
867 {
868 return mdtc_gdtc(dtc) == NULL;
869 }
870
871 /*
872 * Dirty background will ignore pages being written as we're trying to
873 * decide whether to put more under writeback.
874 */
domain_dirty_avail(struct dirty_throttle_control * dtc,bool include_writeback)875 static void domain_dirty_avail(struct dirty_throttle_control *dtc,
876 bool include_writeback)
877 {
878 if (dtc_is_global(dtc)) {
879 dtc->avail = global_dirtyable_memory();
880 dtc->dirty = global_node_page_state(NR_FILE_DIRTY);
881 if (include_writeback)
882 dtc->dirty += global_node_page_state(NR_WRITEBACK);
883 } else {
884 unsigned long filepages = 0, headroom = 0, writeback = 0;
885
886 mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty,
887 &writeback);
888 if (include_writeback)
889 dtc->dirty += writeback;
890 mdtc_calc_avail(dtc, filepages, headroom);
891 }
892 }
893
894 /**
895 * __wb_calc_thresh - @wb's share of dirty threshold
896 * @dtc: dirty_throttle_context of interest
897 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
898 *
899 * Note that balance_dirty_pages() will only seriously take dirty throttling
900 * threshold as a hard limit when sleeping max_pause per page is not enough
901 * to keep the dirty pages under control. For example, when the device is
902 * completely stalled due to some error conditions, or when there are 1000
903 * dd tasks writing to a slow 10MB/s USB key.
904 * In the other normal situations, it acts more gently by throttling the tasks
905 * more (rather than completely block them) when the wb dirty pages go high.
906 *
907 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
908 * - starving fast devices
909 * - piling up dirty pages (that will take long time to sync) on slow devices
910 *
911 * The wb's share of dirty limit will be adapting to its throughput and
912 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
913 *
914 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
915 * "dirty" in the context of dirty balancing includes all PG_dirty and
916 * PG_writeback pages.
917 */
__wb_calc_thresh(struct dirty_throttle_control * dtc,unsigned long thresh)918 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
919 unsigned long thresh)
920 {
921 struct wb_domain *dom = dtc_dom(dtc);
922 u64 wb_thresh;
923 unsigned long numerator, denominator;
924 unsigned long wb_min_ratio, wb_max_ratio;
925
926 /*
927 * Calculate this wb's share of the thresh ratio.
928 */
929 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
930 &numerator, &denominator);
931
932 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
933 wb_thresh *= numerator;
934 wb_thresh = div64_ul(wb_thresh, denominator);
935
936 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
937
938 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
939 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
940 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
941
942 return wb_thresh;
943 }
944
wb_calc_thresh(struct bdi_writeback * wb,unsigned long thresh)945 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
946 {
947 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
948
949 return __wb_calc_thresh(&gdtc, thresh);
950 }
951
cgwb_calc_thresh(struct bdi_writeback * wb)952 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
953 {
954 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
955 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
956
957 domain_dirty_avail(&gdtc, true);
958 domain_dirty_avail(&mdtc, true);
959 domain_dirty_limits(&mdtc);
960
961 return __wb_calc_thresh(&mdtc, mdtc.thresh);
962 }
963
964 /*
965 * setpoint - dirty 3
966 * f(dirty) := 1.0 + (----------------)
967 * limit - setpoint
968 *
969 * it's a 3rd order polynomial that subjects to
970 *
971 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
972 * (2) f(setpoint) = 1.0 => the balance point
973 * (3) f(limit) = 0 => the hard limit
974 * (4) df/dx <= 0 => negative feedback control
975 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
976 * => fast response on large errors; small oscillation near setpoint
977 */
pos_ratio_polynom(unsigned long setpoint,unsigned long dirty,unsigned long limit)978 static long long pos_ratio_polynom(unsigned long setpoint,
979 unsigned long dirty,
980 unsigned long limit)
981 {
982 long long pos_ratio;
983 long x;
984
985 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
986 (limit - setpoint) | 1);
987 pos_ratio = x;
988 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
989 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
990 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
991
992 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
993 }
994
995 /*
996 * Dirty position control.
997 *
998 * (o) global/bdi setpoints
999 *
1000 * We want the dirty pages be balanced around the global/wb setpoints.
1001 * When the number of dirty pages is higher/lower than the setpoint, the
1002 * dirty position control ratio (and hence task dirty ratelimit) will be
1003 * decreased/increased to bring the dirty pages back to the setpoint.
1004 *
1005 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
1006 *
1007 * if (dirty < setpoint) scale up pos_ratio
1008 * if (dirty > setpoint) scale down pos_ratio
1009 *
1010 * if (wb_dirty < wb_setpoint) scale up pos_ratio
1011 * if (wb_dirty > wb_setpoint) scale down pos_ratio
1012 *
1013 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
1014 *
1015 * (o) global control line
1016 *
1017 * ^ pos_ratio
1018 * |
1019 * | |<===== global dirty control scope ======>|
1020 * 2.0 * * * * * * *
1021 * | .*
1022 * | . *
1023 * | . *
1024 * | . *
1025 * | . *
1026 * | . *
1027 * 1.0 ................................*
1028 * | . . *
1029 * | . . *
1030 * | . . *
1031 * | . . *
1032 * | . . *
1033 * 0 +------------.------------------.----------------------*------------->
1034 * freerun^ setpoint^ limit^ dirty pages
1035 *
1036 * (o) wb control line
1037 *
1038 * ^ pos_ratio
1039 * |
1040 * | *
1041 * | *
1042 * | *
1043 * | *
1044 * | * |<=========== span ============>|
1045 * 1.0 .......................*
1046 * | . *
1047 * | . *
1048 * | . *
1049 * | . *
1050 * | . *
1051 * | . *
1052 * | . *
1053 * | . *
1054 * | . *
1055 * | . *
1056 * | . *
1057 * 1/4 ...............................................* * * * * * * * * * * *
1058 * | . .
1059 * | . .
1060 * | . .
1061 * 0 +----------------------.-------------------------------.------------->
1062 * wb_setpoint^ x_intercept^
1063 *
1064 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1065 * be smoothly throttled down to normal if it starts high in situations like
1066 * - start writing to a slow SD card and a fast disk at the same time. The SD
1067 * card's wb_dirty may rush to many times higher than wb_setpoint.
1068 * - the wb dirty thresh drops quickly due to change of JBOD workload
1069 */
wb_position_ratio(struct dirty_throttle_control * dtc)1070 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1071 {
1072 struct bdi_writeback *wb = dtc->wb;
1073 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1074 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1075 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1076 unsigned long wb_thresh = dtc->wb_thresh;
1077 unsigned long x_intercept;
1078 unsigned long setpoint; /* dirty pages' target balance point */
1079 unsigned long wb_setpoint;
1080 unsigned long span;
1081 long long pos_ratio; /* for scaling up/down the rate limit */
1082 long x;
1083
1084 dtc->pos_ratio = 0;
1085
1086 if (unlikely(dtc->dirty >= limit))
1087 return;
1088
1089 /*
1090 * global setpoint
1091 *
1092 * See comment for pos_ratio_polynom().
1093 */
1094 setpoint = (freerun + limit) / 2;
1095 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1096
1097 /*
1098 * The strictlimit feature is a tool preventing mistrusted filesystems
1099 * from growing a large number of dirty pages before throttling. For
1100 * such filesystems balance_dirty_pages always checks wb counters
1101 * against wb limits. Even if global "nr_dirty" is under "freerun".
1102 * This is especially important for fuse which sets bdi->max_ratio to
1103 * 1% by default. Without strictlimit feature, fuse writeback may
1104 * consume arbitrary amount of RAM because it is accounted in
1105 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1106 *
1107 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1108 * two values: wb_dirty and wb_thresh. Let's consider an example:
1109 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1110 * limits are set by default to 10% and 20% (background and throttle).
1111 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1112 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1113 * about ~6K pages (as the average of background and throttle wb
1114 * limits). The 3rd order polynomial will provide positive feedback if
1115 * wb_dirty is under wb_setpoint and vice versa.
1116 *
1117 * Note, that we cannot use global counters in these calculations
1118 * because we want to throttle process writing to a strictlimit wb
1119 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1120 * in the example above).
1121 */
1122 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1123 long long wb_pos_ratio;
1124
1125 if (dtc->wb_dirty < 8) {
1126 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1127 2 << RATELIMIT_CALC_SHIFT);
1128 return;
1129 }
1130
1131 if (dtc->wb_dirty >= wb_thresh)
1132 return;
1133
1134 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1135 dtc->wb_bg_thresh);
1136
1137 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1138 return;
1139
1140 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1141 wb_thresh);
1142
1143 /*
1144 * Typically, for strictlimit case, wb_setpoint << setpoint
1145 * and pos_ratio >> wb_pos_ratio. In the other words global
1146 * state ("dirty") is not limiting factor and we have to
1147 * make decision based on wb counters. But there is an
1148 * important case when global pos_ratio should get precedence:
1149 * global limits are exceeded (e.g. due to activities on other
1150 * wb's) while given strictlimit wb is below limit.
1151 *
1152 * "pos_ratio * wb_pos_ratio" would work for the case above,
1153 * but it would look too non-natural for the case of all
1154 * activity in the system coming from a single strictlimit wb
1155 * with bdi->max_ratio == 100%.
1156 *
1157 * Note that min() below somewhat changes the dynamics of the
1158 * control system. Normally, pos_ratio value can be well over 3
1159 * (when globally we are at freerun and wb is well below wb
1160 * setpoint). Now the maximum pos_ratio in the same situation
1161 * is 2. We might want to tweak this if we observe the control
1162 * system is too slow to adapt.
1163 */
1164 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1165 return;
1166 }
1167
1168 /*
1169 * We have computed basic pos_ratio above based on global situation. If
1170 * the wb is over/under its share of dirty pages, we want to scale
1171 * pos_ratio further down/up. That is done by the following mechanism.
1172 */
1173
1174 /*
1175 * wb setpoint
1176 *
1177 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1178 *
1179 * x_intercept - wb_dirty
1180 * := --------------------------
1181 * x_intercept - wb_setpoint
1182 *
1183 * The main wb control line is a linear function that subjects to
1184 *
1185 * (1) f(wb_setpoint) = 1.0
1186 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1187 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1188 *
1189 * For single wb case, the dirty pages are observed to fluctuate
1190 * regularly within range
1191 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1192 * for various filesystems, where (2) can yield in a reasonable 12.5%
1193 * fluctuation range for pos_ratio.
1194 *
1195 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1196 * own size, so move the slope over accordingly and choose a slope that
1197 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1198 */
1199 if (unlikely(wb_thresh > dtc->thresh))
1200 wb_thresh = dtc->thresh;
1201 /*
1202 * It's very possible that wb_thresh is close to 0 not because the
1203 * device is slow, but that it has remained inactive for long time.
1204 * Honour such devices a reasonable good (hopefully IO efficient)
1205 * threshold, so that the occasional writes won't be blocked and active
1206 * writes can rampup the threshold quickly.
1207 */
1208 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1209 /*
1210 * scale global setpoint to wb's:
1211 * wb_setpoint = setpoint * wb_thresh / thresh
1212 */
1213 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1214 wb_setpoint = setpoint * (u64)x >> 16;
1215 /*
1216 * Use span=(8*write_bw) in single wb case as indicated by
1217 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1218 *
1219 * wb_thresh thresh - wb_thresh
1220 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1221 * thresh thresh
1222 */
1223 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1224 x_intercept = wb_setpoint + span;
1225
1226 if (dtc->wb_dirty < x_intercept - span / 4) {
1227 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1228 (x_intercept - wb_setpoint) | 1);
1229 } else
1230 pos_ratio /= 4;
1231
1232 /*
1233 * wb reserve area, safeguard against dirty pool underrun and disk idle
1234 * It may push the desired control point of global dirty pages higher
1235 * than setpoint.
1236 */
1237 x_intercept = wb_thresh / 2;
1238 if (dtc->wb_dirty < x_intercept) {
1239 if (dtc->wb_dirty > x_intercept / 8)
1240 pos_ratio = div_u64(pos_ratio * x_intercept,
1241 dtc->wb_dirty);
1242 else
1243 pos_ratio *= 8;
1244 }
1245
1246 dtc->pos_ratio = pos_ratio;
1247 }
1248
wb_update_write_bandwidth(struct bdi_writeback * wb,unsigned long elapsed,unsigned long written)1249 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1250 unsigned long elapsed,
1251 unsigned long written)
1252 {
1253 const unsigned long period = roundup_pow_of_two(3 * HZ);
1254 unsigned long avg = wb->avg_write_bandwidth;
1255 unsigned long old = wb->write_bandwidth;
1256 u64 bw;
1257
1258 /*
1259 * bw = written * HZ / elapsed
1260 *
1261 * bw * elapsed + write_bandwidth * (period - elapsed)
1262 * write_bandwidth = ---------------------------------------------------
1263 * period
1264 *
1265 * @written may have decreased due to folio_redirty_for_writepage().
1266 * Avoid underflowing @bw calculation.
1267 */
1268 bw = written - min(written, wb->written_stamp);
1269 bw *= HZ;
1270 if (unlikely(elapsed > period)) {
1271 bw = div64_ul(bw, elapsed);
1272 avg = bw;
1273 goto out;
1274 }
1275 bw += (u64)wb->write_bandwidth * (period - elapsed);
1276 bw >>= ilog2(period);
1277
1278 /*
1279 * one more level of smoothing, for filtering out sudden spikes
1280 */
1281 if (avg > old && old >= (unsigned long)bw)
1282 avg -= (avg - old) >> 3;
1283
1284 if (avg < old && old <= (unsigned long)bw)
1285 avg += (old - avg) >> 3;
1286
1287 out:
1288 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1289 avg = max(avg, 1LU);
1290 if (wb_has_dirty_io(wb)) {
1291 long delta = avg - wb->avg_write_bandwidth;
1292 WARN_ON_ONCE(atomic_long_add_return(delta,
1293 &wb->bdi->tot_write_bandwidth) <= 0);
1294 }
1295 wb->write_bandwidth = bw;
1296 WRITE_ONCE(wb->avg_write_bandwidth, avg);
1297 }
1298
update_dirty_limit(struct dirty_throttle_control * dtc)1299 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1300 {
1301 struct wb_domain *dom = dtc_dom(dtc);
1302 unsigned long thresh = dtc->thresh;
1303 unsigned long limit = dom->dirty_limit;
1304
1305 /*
1306 * Follow up in one step.
1307 */
1308 if (limit < thresh) {
1309 limit = thresh;
1310 goto update;
1311 }
1312
1313 /*
1314 * Follow down slowly. Use the higher one as the target, because thresh
1315 * may drop below dirty. This is exactly the reason to introduce
1316 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1317 */
1318 thresh = max(thresh, dtc->dirty);
1319 if (limit > thresh) {
1320 limit -= (limit - thresh) >> 5;
1321 goto update;
1322 }
1323 return;
1324 update:
1325 dom->dirty_limit = limit;
1326 }
1327
domain_update_dirty_limit(struct dirty_throttle_control * dtc,unsigned long now)1328 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1329 unsigned long now)
1330 {
1331 struct wb_domain *dom = dtc_dom(dtc);
1332
1333 /*
1334 * check locklessly first to optimize away locking for the most time
1335 */
1336 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1337 return;
1338
1339 spin_lock(&dom->lock);
1340 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1341 update_dirty_limit(dtc);
1342 dom->dirty_limit_tstamp = now;
1343 }
1344 spin_unlock(&dom->lock);
1345 }
1346
1347 /*
1348 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1349 *
1350 * Normal wb tasks will be curbed at or below it in long term.
1351 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1352 */
wb_update_dirty_ratelimit(struct dirty_throttle_control * dtc,unsigned long dirtied,unsigned long elapsed)1353 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1354 unsigned long dirtied,
1355 unsigned long elapsed)
1356 {
1357 struct bdi_writeback *wb = dtc->wb;
1358 unsigned long dirty = dtc->dirty;
1359 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1360 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1361 unsigned long setpoint = (freerun + limit) / 2;
1362 unsigned long write_bw = wb->avg_write_bandwidth;
1363 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1364 unsigned long dirty_rate;
1365 unsigned long task_ratelimit;
1366 unsigned long balanced_dirty_ratelimit;
1367 unsigned long step;
1368 unsigned long x;
1369 unsigned long shift;
1370
1371 /*
1372 * The dirty rate will match the writeout rate in long term, except
1373 * when dirty pages are truncated by userspace or re-dirtied by FS.
1374 */
1375 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1376
1377 /*
1378 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1379 */
1380 task_ratelimit = (u64)dirty_ratelimit *
1381 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1382 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1383
1384 /*
1385 * A linear estimation of the "balanced" throttle rate. The theory is,
1386 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1387 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1388 * formula will yield the balanced rate limit (write_bw / N).
1389 *
1390 * Note that the expanded form is not a pure rate feedback:
1391 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1392 * but also takes pos_ratio into account:
1393 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1394 *
1395 * (1) is not realistic because pos_ratio also takes part in balancing
1396 * the dirty rate. Consider the state
1397 * pos_ratio = 0.5 (3)
1398 * rate = 2 * (write_bw / N) (4)
1399 * If (1) is used, it will stuck in that state! Because each dd will
1400 * be throttled at
1401 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1402 * yielding
1403 * dirty_rate = N * task_ratelimit = write_bw (6)
1404 * put (6) into (1) we get
1405 * rate_(i+1) = rate_(i) (7)
1406 *
1407 * So we end up using (2) to always keep
1408 * rate_(i+1) ~= (write_bw / N) (8)
1409 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1410 * pos_ratio is able to drive itself to 1.0, which is not only where
1411 * the dirty count meet the setpoint, but also where the slope of
1412 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1413 */
1414 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1415 dirty_rate | 1);
1416 /*
1417 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1418 */
1419 if (unlikely(balanced_dirty_ratelimit > write_bw))
1420 balanced_dirty_ratelimit = write_bw;
1421
1422 /*
1423 * We could safely do this and return immediately:
1424 *
1425 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1426 *
1427 * However to get a more stable dirty_ratelimit, the below elaborated
1428 * code makes use of task_ratelimit to filter out singular points and
1429 * limit the step size.
1430 *
1431 * The below code essentially only uses the relative value of
1432 *
1433 * task_ratelimit - dirty_ratelimit
1434 * = (pos_ratio - 1) * dirty_ratelimit
1435 *
1436 * which reflects the direction and size of dirty position error.
1437 */
1438
1439 /*
1440 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1441 * task_ratelimit is on the same side of dirty_ratelimit, too.
1442 * For example, when
1443 * - dirty_ratelimit > balanced_dirty_ratelimit
1444 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1445 * lowering dirty_ratelimit will help meet both the position and rate
1446 * control targets. Otherwise, don't update dirty_ratelimit if it will
1447 * only help meet the rate target. After all, what the users ultimately
1448 * feel and care are stable dirty rate and small position error.
1449 *
1450 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1451 * and filter out the singular points of balanced_dirty_ratelimit. Which
1452 * keeps jumping around randomly and can even leap far away at times
1453 * due to the small 200ms estimation period of dirty_rate (we want to
1454 * keep that period small to reduce time lags).
1455 */
1456 step = 0;
1457
1458 /*
1459 * For strictlimit case, calculations above were based on wb counters
1460 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1461 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1462 * Hence, to calculate "step" properly, we have to use wb_dirty as
1463 * "dirty" and wb_setpoint as "setpoint".
1464 *
1465 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1466 * it's possible that wb_thresh is close to zero due to inactivity
1467 * of backing device.
1468 */
1469 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1470 dirty = dtc->wb_dirty;
1471 if (dtc->wb_dirty < 8)
1472 setpoint = dtc->wb_dirty + 1;
1473 else
1474 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1475 }
1476
1477 if (dirty < setpoint) {
1478 x = min3(wb->balanced_dirty_ratelimit,
1479 balanced_dirty_ratelimit, task_ratelimit);
1480 if (dirty_ratelimit < x)
1481 step = x - dirty_ratelimit;
1482 } else {
1483 x = max3(wb->balanced_dirty_ratelimit,
1484 balanced_dirty_ratelimit, task_ratelimit);
1485 if (dirty_ratelimit > x)
1486 step = dirty_ratelimit - x;
1487 }
1488
1489 /*
1490 * Don't pursue 100% rate matching. It's impossible since the balanced
1491 * rate itself is constantly fluctuating. So decrease the track speed
1492 * when it gets close to the target. Helps eliminate pointless tremors.
1493 */
1494 shift = dirty_ratelimit / (2 * step + 1);
1495 if (shift < BITS_PER_LONG)
1496 step = DIV_ROUND_UP(step >> shift, 8);
1497 else
1498 step = 0;
1499
1500 if (dirty_ratelimit < balanced_dirty_ratelimit)
1501 dirty_ratelimit += step;
1502 else
1503 dirty_ratelimit -= step;
1504
1505 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1506 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1507
1508 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1509 }
1510
__wb_update_bandwidth(struct dirty_throttle_control * gdtc,struct dirty_throttle_control * mdtc,bool update_ratelimit)1511 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1512 struct dirty_throttle_control *mdtc,
1513 bool update_ratelimit)
1514 {
1515 struct bdi_writeback *wb = gdtc->wb;
1516 unsigned long now = jiffies;
1517 unsigned long elapsed;
1518 unsigned long dirtied;
1519 unsigned long written;
1520
1521 spin_lock(&wb->list_lock);
1522
1523 /*
1524 * Lockless checks for elapsed time are racy and delayed update after
1525 * IO completion doesn't do it at all (to make sure written pages are
1526 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1527 * division errors.
1528 */
1529 elapsed = max(now - wb->bw_time_stamp, 1UL);
1530 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1531 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1532
1533 if (update_ratelimit) {
1534 domain_update_dirty_limit(gdtc, now);
1535 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1536
1537 /*
1538 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1539 * compiler has no way to figure that out. Help it.
1540 */
1541 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1542 domain_update_dirty_limit(mdtc, now);
1543 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1544 }
1545 }
1546 wb_update_write_bandwidth(wb, elapsed, written);
1547
1548 wb->dirtied_stamp = dirtied;
1549 wb->written_stamp = written;
1550 WRITE_ONCE(wb->bw_time_stamp, now);
1551 spin_unlock(&wb->list_lock);
1552 }
1553
wb_update_bandwidth(struct bdi_writeback * wb)1554 void wb_update_bandwidth(struct bdi_writeback *wb)
1555 {
1556 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1557
1558 __wb_update_bandwidth(&gdtc, NULL, false);
1559 }
1560
1561 /* Interval after which we consider wb idle and don't estimate bandwidth */
1562 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1563
wb_bandwidth_estimate_start(struct bdi_writeback * wb)1564 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1565 {
1566 unsigned long now = jiffies;
1567 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1568
1569 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1570 !atomic_read(&wb->writeback_inodes)) {
1571 spin_lock(&wb->list_lock);
1572 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1573 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1574 WRITE_ONCE(wb->bw_time_stamp, now);
1575 spin_unlock(&wb->list_lock);
1576 }
1577 }
1578
1579 /*
1580 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1581 * will look to see if it needs to start dirty throttling.
1582 *
1583 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1584 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1585 * (the number of pages we may dirty without exceeding the dirty limits).
1586 */
dirty_poll_interval(unsigned long dirty,unsigned long thresh)1587 static unsigned long dirty_poll_interval(unsigned long dirty,
1588 unsigned long thresh)
1589 {
1590 if (thresh > dirty)
1591 return 1UL << (ilog2(thresh - dirty) >> 1);
1592
1593 return 1;
1594 }
1595
wb_max_pause(struct bdi_writeback * wb,unsigned long wb_dirty)1596 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1597 unsigned long wb_dirty)
1598 {
1599 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1600 unsigned long t;
1601
1602 /*
1603 * Limit pause time for small memory systems. If sleeping for too long
1604 * time, a small pool of dirty/writeback pages may go empty and disk go
1605 * idle.
1606 *
1607 * 8 serves as the safety ratio.
1608 */
1609 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1610 t++;
1611
1612 return min_t(unsigned long, t, MAX_PAUSE);
1613 }
1614
wb_min_pause(struct bdi_writeback * wb,long max_pause,unsigned long task_ratelimit,unsigned long dirty_ratelimit,int * nr_dirtied_pause)1615 static long wb_min_pause(struct bdi_writeback *wb,
1616 long max_pause,
1617 unsigned long task_ratelimit,
1618 unsigned long dirty_ratelimit,
1619 int *nr_dirtied_pause)
1620 {
1621 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1622 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1623 long t; /* target pause */
1624 long pause; /* estimated next pause */
1625 int pages; /* target nr_dirtied_pause */
1626
1627 /* target for 10ms pause on 1-dd case */
1628 t = max(1, HZ / 100);
1629
1630 /*
1631 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1632 * overheads.
1633 *
1634 * (N * 10ms) on 2^N concurrent tasks.
1635 */
1636 if (hi > lo)
1637 t += (hi - lo) * (10 * HZ) / 1024;
1638
1639 /*
1640 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1641 * on the much more stable dirty_ratelimit. However the next pause time
1642 * will be computed based on task_ratelimit and the two rate limits may
1643 * depart considerably at some time. Especially if task_ratelimit goes
1644 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1645 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1646 * result task_ratelimit won't be executed faithfully, which could
1647 * eventually bring down dirty_ratelimit.
1648 *
1649 * We apply two rules to fix it up:
1650 * 1) try to estimate the next pause time and if necessary, use a lower
1651 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1652 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1653 * 2) limit the target pause time to max_pause/2, so that the normal
1654 * small fluctuations of task_ratelimit won't trigger rule (1) and
1655 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1656 */
1657 t = min(t, 1 + max_pause / 2);
1658 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1659
1660 /*
1661 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1662 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1663 * When the 16 consecutive reads are often interrupted by some dirty
1664 * throttling pause during the async writes, cfq will go into idles
1665 * (deadline is fine). So push nr_dirtied_pause as high as possible
1666 * until reaches DIRTY_POLL_THRESH=32 pages.
1667 */
1668 if (pages < DIRTY_POLL_THRESH) {
1669 t = max_pause;
1670 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1671 if (pages > DIRTY_POLL_THRESH) {
1672 pages = DIRTY_POLL_THRESH;
1673 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1674 }
1675 }
1676
1677 pause = HZ * pages / (task_ratelimit + 1);
1678 if (pause > max_pause) {
1679 t = max_pause;
1680 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1681 }
1682
1683 *nr_dirtied_pause = pages;
1684 /*
1685 * The minimal pause time will normally be half the target pause time.
1686 */
1687 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1688 }
1689
wb_dirty_limits(struct dirty_throttle_control * dtc)1690 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1691 {
1692 struct bdi_writeback *wb = dtc->wb;
1693 unsigned long wb_reclaimable;
1694
1695 /*
1696 * wb_thresh is not treated as some limiting factor as
1697 * dirty_thresh, due to reasons
1698 * - in JBOD setup, wb_thresh can fluctuate a lot
1699 * - in a system with HDD and USB key, the USB key may somehow
1700 * go into state (wb_dirty >> wb_thresh) either because
1701 * wb_dirty starts high, or because wb_thresh drops low.
1702 * In this case we don't want to hard throttle the USB key
1703 * dirtiers for 100 seconds until wb_dirty drops under
1704 * wb_thresh. Instead the auxiliary wb control line in
1705 * wb_position_ratio() will let the dirtier task progress
1706 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1707 */
1708 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1709 dtc->wb_bg_thresh = dtc->thresh ?
1710 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1711
1712 /*
1713 * In order to avoid the stacked BDI deadlock we need
1714 * to ensure we accurately count the 'dirty' pages when
1715 * the threshold is low.
1716 *
1717 * Otherwise it would be possible to get thresh+n pages
1718 * reported dirty, even though there are thresh-m pages
1719 * actually dirty; with m+n sitting in the percpu
1720 * deltas.
1721 */
1722 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1723 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1724 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1725 } else {
1726 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1727 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1728 }
1729 trace_android_vh_wb_dirty_limits(&dtc->wb_dirty, wb);
1730 }
1731
domain_poll_intv(struct dirty_throttle_control * dtc,bool strictlimit)1732 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc,
1733 bool strictlimit)
1734 {
1735 unsigned long dirty, thresh;
1736
1737 if (strictlimit) {
1738 dirty = dtc->wb_dirty;
1739 thresh = dtc->wb_thresh;
1740 } else {
1741 dirty = dtc->dirty;
1742 thresh = dtc->thresh;
1743 }
1744
1745 return dirty_poll_interval(dirty, thresh);
1746 }
1747
1748 /*
1749 * Throttle it only when the background writeback cannot catch-up. This avoids
1750 * (excessively) small writeouts when the wb limits are ramping up in case of
1751 * !strictlimit.
1752 *
1753 * In strictlimit case make decision based on the wb counters and limits. Small
1754 * writeouts when the wb limits are ramping up are the price we consciously pay
1755 * for strictlimit-ing.
1756 */
domain_dirty_freerun(struct dirty_throttle_control * dtc,bool strictlimit)1757 static void domain_dirty_freerun(struct dirty_throttle_control *dtc,
1758 bool strictlimit)
1759 {
1760 unsigned long dirty, thresh, bg_thresh;
1761
1762 if (unlikely(strictlimit)) {
1763 wb_dirty_limits(dtc);
1764 dirty = dtc->wb_dirty;
1765 thresh = dtc->wb_thresh;
1766 bg_thresh = dtc->wb_bg_thresh;
1767 } else {
1768 dirty = dtc->dirty;
1769 thresh = dtc->thresh;
1770 bg_thresh = dtc->bg_thresh;
1771 }
1772 dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh);
1773 }
1774
balance_domain_limits(struct dirty_throttle_control * dtc,bool strictlimit)1775 static void balance_domain_limits(struct dirty_throttle_control *dtc,
1776 bool strictlimit)
1777 {
1778 domain_dirty_avail(dtc, true);
1779 domain_dirty_limits(dtc);
1780 domain_dirty_freerun(dtc, strictlimit);
1781 }
1782
wb_dirty_freerun(struct dirty_throttle_control * dtc,bool strictlimit)1783 static void wb_dirty_freerun(struct dirty_throttle_control *dtc,
1784 bool strictlimit)
1785 {
1786 dtc->freerun = false;
1787
1788 /* was already handled in domain_dirty_freerun */
1789 if (strictlimit)
1790 return;
1791
1792 wb_dirty_limits(dtc);
1793 /*
1794 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb
1795 * freerun ceiling.
1796 */
1797 if (!(current->flags & PF_LOCAL_THROTTLE))
1798 return;
1799
1800 dtc->freerun = dtc->wb_dirty <
1801 dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh);
1802 }
1803
wb_dirty_exceeded(struct dirty_throttle_control * dtc,bool strictlimit)1804 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc,
1805 bool strictlimit)
1806 {
1807 dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) &&
1808 ((dtc->dirty > dtc->thresh) || strictlimit);
1809 }
1810
1811 /*
1812 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is
1813 * in freerun state. Please don't use these invalid fields in freerun case.
1814 */
balance_wb_limits(struct dirty_throttle_control * dtc,bool strictlimit)1815 static void balance_wb_limits(struct dirty_throttle_control *dtc,
1816 bool strictlimit)
1817 {
1818 wb_dirty_freerun(dtc, strictlimit);
1819 if (dtc->freerun)
1820 return;
1821
1822 wb_dirty_exceeded(dtc, strictlimit);
1823 wb_position_ratio(dtc);
1824 }
1825
1826 /*
1827 * balance_dirty_pages() must be called by processes which are generating dirty
1828 * data. It looks at the number of dirty pages in the machine and will force
1829 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1830 * If we're over `background_thresh' then the writeback threads are woken to
1831 * perform some writeout.
1832 */
balance_dirty_pages(struct bdi_writeback * wb,unsigned long pages_dirtied,unsigned int flags)1833 static int balance_dirty_pages(struct bdi_writeback *wb,
1834 unsigned long pages_dirtied, unsigned int flags)
1835 {
1836 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1837 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1838 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1839 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1840 &mdtc_stor : NULL;
1841 struct dirty_throttle_control *sdtc;
1842 unsigned long nr_dirty;
1843 long period;
1844 long pause;
1845 long max_pause;
1846 long min_pause;
1847 int nr_dirtied_pause;
1848 unsigned long task_ratelimit;
1849 unsigned long dirty_ratelimit;
1850 struct backing_dev_info *bdi = wb->bdi;
1851 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1852 unsigned long start_time = jiffies;
1853 int ret = 0;
1854
1855 for (;;) {
1856 unsigned long now = jiffies;
1857
1858 nr_dirty = global_node_page_state(NR_FILE_DIRTY);
1859
1860 balance_domain_limits(gdtc, strictlimit);
1861 if (mdtc) {
1862 /*
1863 * If @wb belongs to !root memcg, repeat the same
1864 * basic calculations for the memcg domain.
1865 */
1866 balance_domain_limits(mdtc, strictlimit);
1867 }
1868
1869 /*
1870 * In laptop mode, we wait until hitting the higher threshold
1871 * before starting background writeout, and then write out all
1872 * the way down to the lower threshold. So slow writers cause
1873 * minimal disk activity.
1874 *
1875 * In normal mode, we start background writeout at the lower
1876 * background_thresh, to keep the amount of dirty memory low.
1877 */
1878 if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1879 !writeback_in_progress(wb))
1880 wb_start_background_writeback(wb);
1881
1882 /*
1883 * If memcg domain is in effect, @dirty should be under
1884 * both global and memcg freerun ceilings.
1885 */
1886 if (gdtc->freerun && (!mdtc || mdtc->freerun)) {
1887 unsigned long intv;
1888 unsigned long m_intv;
1889
1890 free_running:
1891 intv = domain_poll_intv(gdtc, strictlimit);
1892 m_intv = ULONG_MAX;
1893
1894 current->dirty_paused_when = now;
1895 current->nr_dirtied = 0;
1896 if (mdtc)
1897 m_intv = domain_poll_intv(mdtc, strictlimit);
1898 current->nr_dirtied_pause = min(intv, m_intv);
1899 break;
1900 }
1901
1902 /* Start writeback even when in laptop mode */
1903 if (unlikely(!writeback_in_progress(wb)))
1904 wb_start_background_writeback(wb);
1905
1906 mem_cgroup_flush_foreign(wb);
1907
1908 /*
1909 * Calculate global domain's pos_ratio and select the
1910 * global dtc by default.
1911 */
1912 balance_wb_limits(gdtc, strictlimit);
1913 if (gdtc->freerun)
1914 goto free_running;
1915 sdtc = gdtc;
1916
1917 if (mdtc) {
1918 /*
1919 * If memcg domain is in effect, calculate its
1920 * pos_ratio. @wb should satisfy constraints from
1921 * both global and memcg domains. Choose the one
1922 * w/ lower pos_ratio.
1923 */
1924 balance_wb_limits(mdtc, strictlimit);
1925 if (mdtc->freerun)
1926 goto free_running;
1927 if (mdtc->pos_ratio < gdtc->pos_ratio)
1928 sdtc = mdtc;
1929 }
1930
1931 wb->dirty_exceeded = gdtc->dirty_exceeded ||
1932 (mdtc && mdtc->dirty_exceeded);
1933 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1934 BANDWIDTH_INTERVAL))
1935 __wb_update_bandwidth(gdtc, mdtc, true);
1936
1937 /* throttle according to the chosen dtc */
1938 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1939 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1940 RATELIMIT_CALC_SHIFT;
1941 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1942 min_pause = wb_min_pause(wb, max_pause,
1943 task_ratelimit, dirty_ratelimit,
1944 &nr_dirtied_pause);
1945
1946 if (unlikely(task_ratelimit == 0)) {
1947 period = max_pause;
1948 pause = max_pause;
1949 goto pause;
1950 }
1951 period = HZ * pages_dirtied / task_ratelimit;
1952 pause = period;
1953 if (current->dirty_paused_when)
1954 pause -= now - current->dirty_paused_when;
1955 /*
1956 * For less than 1s think time (ext3/4 may block the dirtier
1957 * for up to 800ms from time to time on 1-HDD; so does xfs,
1958 * however at much less frequency), try to compensate it in
1959 * future periods by updating the virtual time; otherwise just
1960 * do a reset, as it may be a light dirtier.
1961 */
1962 if (pause < min_pause) {
1963 trace_balance_dirty_pages(wb,
1964 sdtc->thresh,
1965 sdtc->bg_thresh,
1966 sdtc->dirty,
1967 sdtc->wb_thresh,
1968 sdtc->wb_dirty,
1969 dirty_ratelimit,
1970 task_ratelimit,
1971 pages_dirtied,
1972 period,
1973 min(pause, 0L),
1974 start_time);
1975 if (pause < -HZ) {
1976 current->dirty_paused_when = now;
1977 current->nr_dirtied = 0;
1978 } else if (period) {
1979 current->dirty_paused_when += period;
1980 current->nr_dirtied = 0;
1981 } else if (current->nr_dirtied_pause <= pages_dirtied)
1982 current->nr_dirtied_pause += pages_dirtied;
1983 break;
1984 }
1985 if (unlikely(pause > max_pause)) {
1986 /* for occasional dropped task_ratelimit */
1987 now += min(pause - max_pause, max_pause);
1988 pause = max_pause;
1989 }
1990
1991 pause:
1992 trace_balance_dirty_pages(wb,
1993 sdtc->thresh,
1994 sdtc->bg_thresh,
1995 sdtc->dirty,
1996 sdtc->wb_thresh,
1997 sdtc->wb_dirty,
1998 dirty_ratelimit,
1999 task_ratelimit,
2000 pages_dirtied,
2001 period,
2002 pause,
2003 start_time);
2004 if (flags & BDP_ASYNC) {
2005 ret = -EAGAIN;
2006 break;
2007 }
2008 __set_current_state(TASK_KILLABLE);
2009 bdi->last_bdp_sleep = jiffies;
2010 io_schedule_timeout(pause);
2011
2012 current->dirty_paused_when = now + pause;
2013 current->nr_dirtied = 0;
2014 current->nr_dirtied_pause = nr_dirtied_pause;
2015
2016 /*
2017 * This is typically equal to (dirty < thresh) and can also
2018 * keep "1000+ dd on a slow USB stick" under control.
2019 */
2020 if (task_ratelimit)
2021 break;
2022
2023 /*
2024 * In the case of an unresponsive NFS server and the NFS dirty
2025 * pages exceeds dirty_thresh, give the other good wb's a pipe
2026 * to go through, so that tasks on them still remain responsive.
2027 *
2028 * In theory 1 page is enough to keep the consumer-producer
2029 * pipe going: the flusher cleans 1 page => the task dirties 1
2030 * more page. However wb_dirty has accounting errors. So use
2031 * the larger and more IO friendly wb_stat_error.
2032 */
2033 if (sdtc->wb_dirty <= wb_stat_error())
2034 break;
2035
2036 if (fatal_signal_pending(current))
2037 break;
2038 }
2039 return ret;
2040 }
2041
2042 static DEFINE_PER_CPU(int, bdp_ratelimits);
2043
2044 /*
2045 * Normal tasks are throttled by
2046 * loop {
2047 * dirty tsk->nr_dirtied_pause pages;
2048 * take a snap in balance_dirty_pages();
2049 * }
2050 * However there is a worst case. If every task exit immediately when dirtied
2051 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2052 * called to throttle the page dirties. The solution is to save the not yet
2053 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2054 * randomly into the running tasks. This works well for the above worst case,
2055 * as the new task will pick up and accumulate the old task's leaked dirty
2056 * count and eventually get throttled.
2057 */
2058 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
2059
2060 /**
2061 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2062 * @mapping: address_space which was dirtied.
2063 * @flags: BDP flags.
2064 *
2065 * Processes which are dirtying memory should call in here once for each page
2066 * which was newly dirtied. The function will periodically check the system's
2067 * dirty state and will initiate writeback if needed.
2068 *
2069 * See balance_dirty_pages_ratelimited() for details.
2070 *
2071 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2072 * indicate that memory is out of balance and the caller must wait
2073 * for I/O to complete. Otherwise, it will return 0 to indicate
2074 * that either memory was already in balance, or it was able to sleep
2075 * until the amount of dirty memory returned to balance.
2076 */
balance_dirty_pages_ratelimited_flags(struct address_space * mapping,unsigned int flags)2077 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2078 unsigned int flags)
2079 {
2080 struct inode *inode = mapping->host;
2081 struct backing_dev_info *bdi = inode_to_bdi(inode);
2082 struct bdi_writeback *wb = NULL;
2083 int ratelimit;
2084 int ret = 0;
2085 int *p;
2086
2087 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2088 return ret;
2089
2090 trace_android_rvh_ctl_dirty_rate(inode);
2091
2092 if (inode_cgwb_enabled(inode))
2093 wb = wb_get_create_current(bdi, GFP_KERNEL);
2094 if (!wb)
2095 wb = &bdi->wb;
2096
2097 ratelimit = current->nr_dirtied_pause;
2098 if (wb->dirty_exceeded)
2099 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2100
2101 preempt_disable();
2102 /*
2103 * This prevents one CPU to accumulate too many dirtied pages without
2104 * calling into balance_dirty_pages(), which can happen when there are
2105 * 1000+ tasks, all of them start dirtying pages at exactly the same
2106 * time, hence all honoured too large initial task->nr_dirtied_pause.
2107 */
2108 p = this_cpu_ptr(&bdp_ratelimits);
2109 if (unlikely(current->nr_dirtied >= ratelimit))
2110 *p = 0;
2111 else if (unlikely(*p >= ratelimit_pages)) {
2112 *p = 0;
2113 ratelimit = 0;
2114 }
2115 /*
2116 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2117 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2118 * the dirty throttling and livelock other long-run dirtiers.
2119 */
2120 p = this_cpu_ptr(&dirty_throttle_leaks);
2121 if (*p > 0 && current->nr_dirtied < ratelimit) {
2122 unsigned long nr_pages_dirtied;
2123 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2124 *p -= nr_pages_dirtied;
2125 current->nr_dirtied += nr_pages_dirtied;
2126 }
2127 preempt_enable();
2128
2129 if (unlikely(current->nr_dirtied >= ratelimit))
2130 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2131
2132 wb_put(wb);
2133 return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2136
2137 /**
2138 * balance_dirty_pages_ratelimited - balance dirty memory state.
2139 * @mapping: address_space which was dirtied.
2140 *
2141 * Processes which are dirtying memory should call in here once for each page
2142 * which was newly dirtied. The function will periodically check the system's
2143 * dirty state and will initiate writeback if needed.
2144 *
2145 * Once we're over the dirty memory limit we decrease the ratelimiting
2146 * by a lot, to prevent individual processes from overshooting the limit
2147 * by (ratelimit_pages) each.
2148 */
balance_dirty_pages_ratelimited(struct address_space * mapping)2149 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2150 {
2151 balance_dirty_pages_ratelimited_flags(mapping, 0);
2152 }
2153 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2154
2155 /*
2156 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty
2157 * and thresh, but it's for background writeback.
2158 */
wb_bg_dirty_limits(struct dirty_throttle_control * dtc)2159 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc)
2160 {
2161 struct bdi_writeback *wb = dtc->wb;
2162
2163 dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh);
2164 if (dtc->wb_bg_thresh < 2 * wb_stat_error())
2165 dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE);
2166 else
2167 dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE);
2168 trace_android_vh_wb_dirty_limits(&dtc->wb_dirty, wb);
2169 }
2170
domain_over_bg_thresh(struct dirty_throttle_control * dtc)2171 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc)
2172 {
2173 domain_dirty_avail(dtc, false);
2174 domain_dirty_limits(dtc);
2175 if (dtc->dirty > dtc->bg_thresh)
2176 return true;
2177
2178 wb_bg_dirty_limits(dtc);
2179 if (dtc->wb_dirty > dtc->wb_bg_thresh)
2180 return true;
2181
2182 return false;
2183 }
2184
2185 /**
2186 * wb_over_bg_thresh - does @wb need to be written back?
2187 * @wb: bdi_writeback of interest
2188 *
2189 * Determines whether background writeback should keep writing @wb or it's
2190 * clean enough.
2191 *
2192 * Return: %true if writeback should continue.
2193 */
wb_over_bg_thresh(struct bdi_writeback * wb)2194 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2195 {
2196 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
2197 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
2198
2199 if (domain_over_bg_thresh(&gdtc))
2200 return true;
2201
2202 if (mdtc_valid(&mdtc))
2203 return domain_over_bg_thresh(&mdtc);
2204
2205 return false;
2206 }
2207
2208 #ifdef CONFIG_SYSCTL
2209 /*
2210 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2211 */
dirty_writeback_centisecs_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2212 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write,
2213 void *buffer, size_t *length, loff_t *ppos)
2214 {
2215 unsigned int old_interval = dirty_writeback_interval;
2216 int ret;
2217
2218 ret = proc_dointvec(table, write, buffer, length, ppos);
2219
2220 /*
2221 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2222 * and a different non-zero value will wakeup the writeback threads.
2223 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2224 * iterate over all bdis and wbs.
2225 * The reason we do this is to make the change take effect immediately.
2226 */
2227 if (!ret && write && dirty_writeback_interval &&
2228 dirty_writeback_interval != old_interval)
2229 wakeup_flusher_threads(WB_REASON_PERIODIC);
2230
2231 return ret;
2232 }
2233 #endif
2234
laptop_mode_timer_fn(struct timer_list * t)2235 void laptop_mode_timer_fn(struct timer_list *t)
2236 {
2237 struct backing_dev_info *backing_dev_info =
2238 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2239
2240 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2241 }
2242
2243 /*
2244 * We've spun up the disk and we're in laptop mode: schedule writeback
2245 * of all dirty data a few seconds from now. If the flush is already scheduled
2246 * then push it back - the user is still using the disk.
2247 */
laptop_io_completion(struct backing_dev_info * info)2248 void laptop_io_completion(struct backing_dev_info *info)
2249 {
2250 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2251 }
2252
2253 /*
2254 * We're in laptop mode and we've just synced. The sync's writes will have
2255 * caused another writeback to be scheduled by laptop_io_completion.
2256 * Nothing needs to be written back anymore, so we unschedule the writeback.
2257 */
laptop_sync_completion(void)2258 void laptop_sync_completion(void)
2259 {
2260 struct backing_dev_info *bdi;
2261
2262 rcu_read_lock();
2263
2264 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2265 del_timer(&bdi->laptop_mode_wb_timer);
2266
2267 rcu_read_unlock();
2268 }
2269
2270 /*
2271 * If ratelimit_pages is too high then we can get into dirty-data overload
2272 * if a large number of processes all perform writes at the same time.
2273 *
2274 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2275 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2276 * thresholds.
2277 */
2278
writeback_set_ratelimit(void)2279 void writeback_set_ratelimit(void)
2280 {
2281 struct wb_domain *dom = &global_wb_domain;
2282 unsigned long background_thresh;
2283 unsigned long dirty_thresh;
2284
2285 global_dirty_limits(&background_thresh, &dirty_thresh);
2286 dom->dirty_limit = dirty_thresh;
2287 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2288 if (ratelimit_pages < 16)
2289 ratelimit_pages = 16;
2290 }
2291
page_writeback_cpu_online(unsigned int cpu)2292 static int page_writeback_cpu_online(unsigned int cpu)
2293 {
2294 writeback_set_ratelimit();
2295 return 0;
2296 }
2297
2298 #ifdef CONFIG_SYSCTL
2299
2300 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2301 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2302
2303 static struct ctl_table vm_page_writeback_sysctls[] = {
2304 {
2305 .procname = "dirty_background_ratio",
2306 .data = &dirty_background_ratio,
2307 .maxlen = sizeof(dirty_background_ratio),
2308 .mode = 0644,
2309 .proc_handler = dirty_background_ratio_handler,
2310 .extra1 = SYSCTL_ZERO,
2311 .extra2 = SYSCTL_ONE_HUNDRED,
2312 },
2313 {
2314 .procname = "dirty_background_bytes",
2315 .data = &dirty_background_bytes,
2316 .maxlen = sizeof(dirty_background_bytes),
2317 .mode = 0644,
2318 .proc_handler = dirty_background_bytes_handler,
2319 .extra1 = SYSCTL_LONG_ONE,
2320 },
2321 {
2322 .procname = "dirty_ratio",
2323 .data = &vm_dirty_ratio,
2324 .maxlen = sizeof(vm_dirty_ratio),
2325 .mode = 0644,
2326 .proc_handler = dirty_ratio_handler,
2327 .extra1 = SYSCTL_ZERO,
2328 .extra2 = SYSCTL_ONE_HUNDRED,
2329 },
2330 {
2331 .procname = "dirty_bytes",
2332 .data = &vm_dirty_bytes,
2333 .maxlen = sizeof(vm_dirty_bytes),
2334 .mode = 0644,
2335 .proc_handler = dirty_bytes_handler,
2336 .extra1 = (void *)&dirty_bytes_min,
2337 },
2338 {
2339 .procname = "dirty_writeback_centisecs",
2340 .data = &dirty_writeback_interval,
2341 .maxlen = sizeof(dirty_writeback_interval),
2342 .mode = 0644,
2343 .proc_handler = dirty_writeback_centisecs_handler,
2344 },
2345 {
2346 .procname = "dirty_expire_centisecs",
2347 .data = &dirty_expire_interval,
2348 .maxlen = sizeof(dirty_expire_interval),
2349 .mode = 0644,
2350 .proc_handler = proc_dointvec_minmax,
2351 .extra1 = SYSCTL_ZERO,
2352 },
2353 #ifdef CONFIG_HIGHMEM
2354 {
2355 .procname = "highmem_is_dirtyable",
2356 .data = &vm_highmem_is_dirtyable,
2357 .maxlen = sizeof(vm_highmem_is_dirtyable),
2358 .mode = 0644,
2359 .proc_handler = proc_dointvec_minmax,
2360 .extra1 = SYSCTL_ZERO,
2361 .extra2 = SYSCTL_ONE,
2362 },
2363 #endif
2364 {
2365 .procname = "laptop_mode",
2366 .data = &laptop_mode,
2367 .maxlen = sizeof(laptop_mode),
2368 .mode = 0644,
2369 .proc_handler = proc_dointvec_jiffies,
2370 },
2371 };
2372 #endif
2373
2374 /*
2375 * Called early on to tune the page writeback dirty limits.
2376 *
2377 * We used to scale dirty pages according to how total memory
2378 * related to pages that could be allocated for buffers.
2379 *
2380 * However, that was when we used "dirty_ratio" to scale with
2381 * all memory, and we don't do that any more. "dirty_ratio"
2382 * is now applied to total non-HIGHPAGE memory, and as such we can't
2383 * get into the old insane situation any more where we had
2384 * large amounts of dirty pages compared to a small amount of
2385 * non-HIGHMEM memory.
2386 *
2387 * But we might still want to scale the dirty_ratio by how
2388 * much memory the box has..
2389 */
page_writeback_init(void)2390 void __init page_writeback_init(void)
2391 {
2392 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2393
2394 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2395 page_writeback_cpu_online, NULL);
2396 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2397 page_writeback_cpu_online);
2398 #ifdef CONFIG_SYSCTL
2399 register_sysctl_init("vm", vm_page_writeback_sysctls);
2400 #endif
2401 }
2402
2403 /**
2404 * tag_pages_for_writeback - tag pages to be written by writeback
2405 * @mapping: address space structure to write
2406 * @start: starting page index
2407 * @end: ending page index (inclusive)
2408 *
2409 * This function scans the page range from @start to @end (inclusive) and tags
2410 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller
2411 * can then use the TOWRITE tag to identify pages eligible for writeback.
2412 * This mechanism is used to avoid livelocking of writeback by a process
2413 * steadily creating new dirty pages in the file (thus it is important for this
2414 * function to be quick so that it can tag pages faster than a dirtying process
2415 * can create them).
2416 */
tag_pages_for_writeback(struct address_space * mapping,pgoff_t start,pgoff_t end)2417 void tag_pages_for_writeback(struct address_space *mapping,
2418 pgoff_t start, pgoff_t end)
2419 {
2420 XA_STATE(xas, &mapping->i_pages, start);
2421 unsigned int tagged = 0;
2422 void *page;
2423
2424 xas_lock_irq(&xas);
2425 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2426 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2427 if (++tagged % XA_CHECK_SCHED)
2428 continue;
2429
2430 xas_pause(&xas);
2431 xas_unlock_irq(&xas);
2432 cond_resched();
2433 xas_lock_irq(&xas);
2434 }
2435 xas_unlock_irq(&xas);
2436 }
2437 EXPORT_SYMBOL(tag_pages_for_writeback);
2438
folio_prepare_writeback(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio)2439 static bool folio_prepare_writeback(struct address_space *mapping,
2440 struct writeback_control *wbc, struct folio *folio)
2441 {
2442 /*
2443 * Folio truncated or invalidated. We can freely skip it then,
2444 * even for data integrity operations: the folio has disappeared
2445 * concurrently, so there could be no real expectation of this
2446 * data integrity operation even if there is now a new, dirty
2447 * folio at the same pagecache index.
2448 */
2449 if (unlikely(folio->mapping != mapping))
2450 return false;
2451
2452 /*
2453 * Did somebody else write it for us?
2454 */
2455 if (!folio_test_dirty(folio))
2456 return false;
2457
2458 if (folio_test_writeback(folio)) {
2459 if (wbc->sync_mode == WB_SYNC_NONE)
2460 return false;
2461 folio_wait_writeback(folio);
2462 }
2463 BUG_ON(folio_test_writeback(folio));
2464
2465 if (!folio_clear_dirty_for_io(folio))
2466 return false;
2467
2468 return true;
2469 }
2470
wbc_to_tag(struct writeback_control * wbc)2471 static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2472 {
2473 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2474 return PAGECACHE_TAG_TOWRITE;
2475 return PAGECACHE_TAG_DIRTY;
2476 }
2477
wbc_end(struct writeback_control * wbc)2478 static pgoff_t wbc_end(struct writeback_control *wbc)
2479 {
2480 if (wbc->range_cyclic)
2481 return -1;
2482 return wbc->range_end >> PAGE_SHIFT;
2483 }
2484
writeback_get_folio(struct address_space * mapping,struct writeback_control * wbc)2485 static struct folio *writeback_get_folio(struct address_space *mapping,
2486 struct writeback_control *wbc)
2487 {
2488 struct folio *folio;
2489
2490 retry:
2491 folio = folio_batch_next(&wbc->fbatch);
2492 if (!folio) {
2493 folio_batch_release(&wbc->fbatch);
2494 cond_resched();
2495 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2496 wbc_to_tag(wbc), &wbc->fbatch);
2497 folio = folio_batch_next(&wbc->fbatch);
2498 if (!folio)
2499 return NULL;
2500 }
2501
2502 folio_lock(folio);
2503 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2504 folio_unlock(folio);
2505 goto retry;
2506 }
2507
2508 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2509 return folio;
2510 }
2511
2512 /**
2513 * writeback_iter - iterate folio of a mapping for writeback
2514 * @mapping: address space structure to write
2515 * @wbc: writeback context
2516 * @folio: previously iterated folio (%NULL to start)
2517 * @error: in-out pointer for writeback errors (see below)
2518 *
2519 * This function returns the next folio for the writeback operation described by
2520 * @wbc on @mapping and should be called in a while loop in the ->writepages
2521 * implementation.
2522 *
2523 * To start the writeback operation, %NULL is passed in the @folio argument, and
2524 * for every subsequent iteration the folio returned previously should be passed
2525 * back in.
2526 *
2527 * If there was an error in the per-folio writeback inside the writeback_iter()
2528 * loop, @error should be set to the error value.
2529 *
2530 * Once the writeback described in @wbc has finished, this function will return
2531 * %NULL and if there was an error in any iteration restore it to @error.
2532 *
2533 * Note: callers should not manually break out of the loop using break or goto
2534 * but must keep calling writeback_iter() until it returns %NULL.
2535 *
2536 * Return: the folio to write or %NULL if the loop is done.
2537 */
writeback_iter(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio,int * error)2538 struct folio *writeback_iter(struct address_space *mapping,
2539 struct writeback_control *wbc, struct folio *folio, int *error)
2540 {
2541 if (!folio) {
2542 folio_batch_init(&wbc->fbatch);
2543 wbc->saved_err = *error = 0;
2544
2545 /*
2546 * For range cyclic writeback we remember where we stopped so
2547 * that we can continue where we stopped.
2548 *
2549 * For non-cyclic writeback we always start at the beginning of
2550 * the passed in range.
2551 */
2552 if (wbc->range_cyclic)
2553 wbc->index = mapping->writeback_index;
2554 else
2555 wbc->index = wbc->range_start >> PAGE_SHIFT;
2556
2557 /*
2558 * To avoid livelocks when other processes dirty new pages, we
2559 * first tag pages which should be written back and only then
2560 * start writing them.
2561 *
2562 * For data-integrity writeback we have to be careful so that we
2563 * do not miss some pages (e.g., because some other process has
2564 * cleared the TOWRITE tag we set). The rule we follow is that
2565 * TOWRITE tag can be cleared only by the process clearing the
2566 * DIRTY tag (and submitting the page for I/O).
2567 */
2568 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2569 tag_pages_for_writeback(mapping, wbc->index,
2570 wbc_end(wbc));
2571 } else {
2572 wbc->nr_to_write -= folio_nr_pages(folio);
2573
2574 WARN_ON_ONCE(*error > 0);
2575
2576 /*
2577 * For integrity writeback we have to keep going until we have
2578 * written all the folios we tagged for writeback above, even if
2579 * we run past wbc->nr_to_write or encounter errors.
2580 * We stash away the first error we encounter in wbc->saved_err
2581 * so that it can be retrieved when we're done. This is because
2582 * the file system may still have state to clear for each folio.
2583 *
2584 * For background writeback we exit as soon as we run past
2585 * wbc->nr_to_write or encounter the first error.
2586 */
2587 if (wbc->sync_mode == WB_SYNC_ALL) {
2588 if (*error && !wbc->saved_err)
2589 wbc->saved_err = *error;
2590 } else {
2591 if (*error || wbc->nr_to_write <= 0)
2592 goto done;
2593 }
2594 }
2595
2596 folio = writeback_get_folio(mapping, wbc);
2597 if (!folio) {
2598 /*
2599 * To avoid deadlocks between range_cyclic writeback and callers
2600 * that hold pages in PageWriteback to aggregate I/O until
2601 * the writeback iteration finishes, we do not loop back to the
2602 * start of the file. Doing so causes a page lock/page
2603 * writeback access order inversion - we should only ever lock
2604 * multiple pages in ascending page->index order, and looping
2605 * back to the start of the file violates that rule and causes
2606 * deadlocks.
2607 */
2608 if (wbc->range_cyclic)
2609 mapping->writeback_index = 0;
2610
2611 /*
2612 * Return the first error we encountered (if there was any) to
2613 * the caller.
2614 */
2615 *error = wbc->saved_err;
2616 }
2617 return folio;
2618
2619 done:
2620 if (wbc->range_cyclic)
2621 mapping->writeback_index = folio_next_index(folio);
2622 folio_batch_release(&wbc->fbatch);
2623 return NULL;
2624 }
2625 EXPORT_SYMBOL_GPL(writeback_iter);
2626
2627 /**
2628 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2629 * @mapping: address space structure to write
2630 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2631 * @writepage: function called for each page
2632 * @data: data passed to writepage function
2633 *
2634 * Return: %0 on success, negative error code otherwise
2635 *
2636 * Note: please use writeback_iter() instead.
2637 */
write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data)2638 int write_cache_pages(struct address_space *mapping,
2639 struct writeback_control *wbc, writepage_t writepage,
2640 void *data)
2641 {
2642 struct folio *folio = NULL;
2643 int error;
2644
2645 while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2646 error = writepage(folio, wbc, data);
2647 if (error == AOP_WRITEPAGE_ACTIVATE) {
2648 folio_unlock(folio);
2649 error = 0;
2650 }
2651 }
2652
2653 return error;
2654 }
2655 EXPORT_SYMBOL(write_cache_pages);
2656
writeback_use_writepage(struct address_space * mapping,struct writeback_control * wbc)2657 static int writeback_use_writepage(struct address_space *mapping,
2658 struct writeback_control *wbc)
2659 {
2660 struct folio *folio = NULL;
2661 struct blk_plug plug;
2662 int err;
2663
2664 blk_start_plug(&plug);
2665 while ((folio = writeback_iter(mapping, wbc, folio, &err))) {
2666 err = mapping->a_ops->writepage(&folio->page, wbc);
2667 if (err == AOP_WRITEPAGE_ACTIVATE) {
2668 folio_unlock(folio);
2669 err = 0;
2670 }
2671 mapping_set_error(mapping, err);
2672 }
2673 blk_finish_plug(&plug);
2674
2675 return err;
2676 }
2677
do_writepages(struct address_space * mapping,struct writeback_control * wbc)2678 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2679 {
2680 int ret;
2681 struct bdi_writeback *wb;
2682
2683 if (wbc->nr_to_write <= 0)
2684 return 0;
2685 wb = inode_to_wb_wbc(mapping->host, wbc);
2686 wb_bandwidth_estimate_start(wb);
2687 while (1) {
2688 if (mapping->a_ops->writepages) {
2689 ret = mapping->a_ops->writepages(mapping, wbc);
2690 } else if (mapping->a_ops->writepage) {
2691 ret = writeback_use_writepage(mapping, wbc);
2692 } else {
2693 /* deal with chardevs and other special files */
2694 ret = 0;
2695 }
2696 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2697 break;
2698
2699 /*
2700 * Lacking an allocation context or the locality or writeback
2701 * state of any of the inode's pages, throttle based on
2702 * writeback activity on the local node. It's as good a
2703 * guess as any.
2704 */
2705 reclaim_throttle(NODE_DATA(numa_node_id()),
2706 VMSCAN_THROTTLE_WRITEBACK);
2707 }
2708 /*
2709 * Usually few pages are written by now from those we've just submitted
2710 * but if there's constant writeback being submitted, this makes sure
2711 * writeback bandwidth is updated once in a while.
2712 */
2713 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2714 BANDWIDTH_INTERVAL))
2715 wb_update_bandwidth(wb);
2716 return ret;
2717 }
2718
2719 /*
2720 * For address_spaces which do not use buffers nor write back.
2721 */
noop_dirty_folio(struct address_space * mapping,struct folio * folio)2722 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2723 {
2724 if (!folio_test_dirty(folio))
2725 return !folio_test_set_dirty(folio);
2726 return false;
2727 }
2728 EXPORT_SYMBOL(noop_dirty_folio);
2729
2730 /*
2731 * Helper function for set_page_dirty family.
2732 *
2733 * Caller must hold folio_memcg_lock().
2734 *
2735 * NOTE: This relies on being atomic wrt interrupts.
2736 */
folio_account_dirtied(struct folio * folio,struct address_space * mapping)2737 static void folio_account_dirtied(struct folio *folio,
2738 struct address_space *mapping)
2739 {
2740 struct inode *inode = mapping->host;
2741
2742 trace_writeback_dirty_folio(folio, mapping);
2743
2744 if (mapping_can_writeback(mapping)) {
2745 struct bdi_writeback *wb;
2746 long nr = folio_nr_pages(folio);
2747
2748 inode_attach_wb(inode, folio);
2749 wb = inode_to_wb(inode);
2750
2751 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2752 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2753 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2754 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2755 wb_stat_mod(wb, WB_DIRTIED, nr);
2756 task_io_account_write(nr * PAGE_SIZE);
2757 current->nr_dirtied += nr;
2758 __this_cpu_add(bdp_ratelimits, nr);
2759
2760 mem_cgroup_track_foreign_dirty(folio, wb);
2761 }
2762 }
2763
2764 /*
2765 * Helper function for deaccounting dirty page without writeback.
2766 *
2767 * Caller must hold folio_memcg_lock().
2768 */
folio_account_cleaned(struct folio * folio,struct bdi_writeback * wb)2769 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2770 {
2771 long nr = folio_nr_pages(folio);
2772
2773 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2774 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2775 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2776 task_io_account_cancelled_write(nr * PAGE_SIZE);
2777 }
2778
2779 /*
2780 * Mark the folio dirty, and set it dirty in the page cache.
2781 *
2782 * If warn is true, then emit a warning if the folio is not uptodate and has
2783 * not been truncated.
2784 *
2785 * The caller must hold folio_memcg_lock(). It is the caller's
2786 * responsibility to prevent the folio from being truncated while
2787 * this function is in progress, although it may have been truncated
2788 * before this function is called. Most callers have the folio locked.
2789 * A few have the folio blocked from truncation through other means (e.g.
2790 * zap_vma_pages() has it mapped and is holding the page table lock).
2791 * When called from mark_buffer_dirty(), the filesystem should hold a
2792 * reference to the buffer_head that is being marked dirty, which causes
2793 * try_to_free_buffers() to fail.
2794 */
__folio_mark_dirty(struct folio * folio,struct address_space * mapping,int warn)2795 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2796 int warn)
2797 {
2798 unsigned long flags;
2799
2800 xa_lock_irqsave(&mapping->i_pages, flags);
2801 if (folio->mapping) { /* Race with truncate? */
2802 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2803 folio_account_dirtied(folio, mapping);
2804 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2805 PAGECACHE_TAG_DIRTY);
2806 }
2807 xa_unlock_irqrestore(&mapping->i_pages, flags);
2808 }
2809
2810 /**
2811 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2812 * @mapping: Address space this folio belongs to.
2813 * @folio: Folio to be marked as dirty.
2814 *
2815 * Filesystems which do not use buffer heads should call this function
2816 * from their dirty_folio address space operation. It ignores the
2817 * contents of folio_get_private(), so if the filesystem marks individual
2818 * blocks as dirty, the filesystem should handle that itself.
2819 *
2820 * This is also sometimes used by filesystems which use buffer_heads when
2821 * a single buffer is being dirtied: we want to set the folio dirty in
2822 * that case, but not all the buffers. This is a "bottom-up" dirtying,
2823 * whereas block_dirty_folio() is a "top-down" dirtying.
2824 *
2825 * The caller must ensure this doesn't race with truncation. Most will
2826 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2827 * folio mapped and the pte lock held, which also locks out truncation.
2828 */
filemap_dirty_folio(struct address_space * mapping,struct folio * folio)2829 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2830 {
2831 folio_memcg_lock(folio);
2832 if (folio_test_set_dirty(folio)) {
2833 folio_memcg_unlock(folio);
2834 return false;
2835 }
2836
2837 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2838 folio_memcg_unlock(folio);
2839
2840 if (mapping->host) {
2841 /* !PageAnon && !swapper_space */
2842 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2843 }
2844 return true;
2845 }
2846 EXPORT_SYMBOL(filemap_dirty_folio);
2847
2848 /**
2849 * folio_redirty_for_writepage - Decline to write a dirty folio.
2850 * @wbc: The writeback control.
2851 * @folio: The folio.
2852 *
2853 * When a writepage implementation decides that it doesn't want to write
2854 * @folio for some reason, it should call this function, unlock @folio and
2855 * return 0.
2856 *
2857 * Return: True if we redirtied the folio. False if someone else dirtied
2858 * it first.
2859 */
folio_redirty_for_writepage(struct writeback_control * wbc,struct folio * folio)2860 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2861 struct folio *folio)
2862 {
2863 struct address_space *mapping = folio->mapping;
2864 long nr = folio_nr_pages(folio);
2865 bool ret;
2866
2867 wbc->pages_skipped += nr;
2868 ret = filemap_dirty_folio(mapping, folio);
2869 if (mapping && mapping_can_writeback(mapping)) {
2870 struct inode *inode = mapping->host;
2871 struct bdi_writeback *wb;
2872 struct wb_lock_cookie cookie = {};
2873
2874 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2875 current->nr_dirtied -= nr;
2876 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2877 wb_stat_mod(wb, WB_DIRTIED, -nr);
2878 unlocked_inode_to_wb_end(inode, &cookie);
2879 }
2880 return ret;
2881 }
2882 EXPORT_SYMBOL(folio_redirty_for_writepage);
2883
2884 /**
2885 * folio_mark_dirty - Mark a folio as being modified.
2886 * @folio: The folio.
2887 *
2888 * The folio may not be truncated while this function is running.
2889 * Holding the folio lock is sufficient to prevent truncation, but some
2890 * callers cannot acquire a sleeping lock. These callers instead hold
2891 * the page table lock for a page table which contains at least one page
2892 * in this folio. Truncation will block on the page table lock as it
2893 * unmaps pages before removing the folio from its mapping.
2894 *
2895 * Return: True if the folio was newly dirtied, false if it was already dirty.
2896 */
folio_mark_dirty(struct folio * folio)2897 bool folio_mark_dirty(struct folio *folio)
2898 {
2899 struct address_space *mapping = folio_mapping(folio);
2900
2901 if (likely(mapping)) {
2902 /*
2903 * readahead/folio_deactivate could remain
2904 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2905 * About readahead, if the folio is written, the flags would be
2906 * reset. So no problem.
2907 * About folio_deactivate, if the folio is redirtied,
2908 * the flag will be reset. So no problem. but if the
2909 * folio is used by readahead it will confuse readahead
2910 * and make it restart the size rampup process. But it's
2911 * a trivial problem.
2912 */
2913 if (folio_test_reclaim(folio))
2914 folio_clear_reclaim(folio);
2915 return mapping->a_ops->dirty_folio(mapping, folio);
2916 }
2917
2918 return noop_dirty_folio(mapping, folio);
2919 }
2920 EXPORT_SYMBOL(folio_mark_dirty);
2921
2922 /*
2923 * set_page_dirty() is racy if the caller has no reference against
2924 * page->mapping->host, and if the page is unlocked. This is because another
2925 * CPU could truncate the page off the mapping and then free the mapping.
2926 *
2927 * Usually, the page _is_ locked, or the caller is a user-space process which
2928 * holds a reference on the inode by having an open file.
2929 *
2930 * In other cases, the page should be locked before running set_page_dirty().
2931 */
set_page_dirty_lock(struct page * page)2932 int set_page_dirty_lock(struct page *page)
2933 {
2934 int ret;
2935
2936 lock_page(page);
2937 ret = set_page_dirty(page);
2938 unlock_page(page);
2939 return ret;
2940 }
2941 EXPORT_SYMBOL(set_page_dirty_lock);
2942
2943 /*
2944 * This cancels just the dirty bit on the kernel page itself, it does NOT
2945 * actually remove dirty bits on any mmap's that may be around. It also
2946 * leaves the page tagged dirty, so any sync activity will still find it on
2947 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2948 * look at the dirty bits in the VM.
2949 *
2950 * Doing this should *normally* only ever be done when a page is truncated,
2951 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2952 * this when it notices that somebody has cleaned out all the buffers on a
2953 * page without actually doing it through the VM. Can you say "ext3 is
2954 * horribly ugly"? Thought you could.
2955 */
__folio_cancel_dirty(struct folio * folio)2956 void __folio_cancel_dirty(struct folio *folio)
2957 {
2958 struct address_space *mapping = folio_mapping(folio);
2959
2960 if (mapping_can_writeback(mapping)) {
2961 struct inode *inode = mapping->host;
2962 struct bdi_writeback *wb;
2963 struct wb_lock_cookie cookie = {};
2964
2965 folio_memcg_lock(folio);
2966 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2967
2968 if (folio_test_clear_dirty(folio))
2969 folio_account_cleaned(folio, wb);
2970
2971 unlocked_inode_to_wb_end(inode, &cookie);
2972 folio_memcg_unlock(folio);
2973 } else {
2974 folio_clear_dirty(folio);
2975 }
2976 }
2977 EXPORT_SYMBOL(__folio_cancel_dirty);
2978
2979 /*
2980 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2981 * Returns true if the folio was previously dirty.
2982 *
2983 * This is for preparing to put the folio under writeout. We leave
2984 * the folio tagged as dirty in the xarray so that a concurrent
2985 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2986 * The ->writepage implementation will run either folio_start_writeback()
2987 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2988 * and xarray dirty tag back into sync.
2989 *
2990 * This incoherency between the folio's dirty flag and xarray tag is
2991 * unfortunate, but it only exists while the folio is locked.
2992 */
folio_clear_dirty_for_io(struct folio * folio)2993 bool folio_clear_dirty_for_io(struct folio *folio)
2994 {
2995 struct address_space *mapping = folio_mapping(folio);
2996 bool ret = false;
2997
2998 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2999
3000 if (mapping && mapping_can_writeback(mapping)) {
3001 struct inode *inode = mapping->host;
3002 struct bdi_writeback *wb;
3003 struct wb_lock_cookie cookie = {};
3004
3005 /*
3006 * Yes, Virginia, this is indeed insane.
3007 *
3008 * We use this sequence to make sure that
3009 * (a) we account for dirty stats properly
3010 * (b) we tell the low-level filesystem to
3011 * mark the whole folio dirty if it was
3012 * dirty in a pagetable. Only to then
3013 * (c) clean the folio again and return 1 to
3014 * cause the writeback.
3015 *
3016 * This way we avoid all nasty races with the
3017 * dirty bit in multiple places and clearing
3018 * them concurrently from different threads.
3019 *
3020 * Note! Normally the "folio_mark_dirty(folio)"
3021 * has no effect on the actual dirty bit - since
3022 * that will already usually be set. But we
3023 * need the side effects, and it can help us
3024 * avoid races.
3025 *
3026 * We basically use the folio "master dirty bit"
3027 * as a serialization point for all the different
3028 * threads doing their things.
3029 */
3030 if (folio_mkclean(folio))
3031 folio_mark_dirty(folio);
3032 /*
3033 * We carefully synchronise fault handlers against
3034 * installing a dirty pte and marking the folio dirty
3035 * at this point. We do this by having them hold the
3036 * page lock while dirtying the folio, and folios are
3037 * always locked coming in here, so we get the desired
3038 * exclusion.
3039 */
3040 wb = unlocked_inode_to_wb_begin(inode, &cookie);
3041 if (folio_test_clear_dirty(folio)) {
3042 long nr = folio_nr_pages(folio);
3043 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
3044 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3045 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
3046 ret = true;
3047 }
3048 unlocked_inode_to_wb_end(inode, &cookie);
3049 return ret;
3050 }
3051 return folio_test_clear_dirty(folio);
3052 }
3053 EXPORT_SYMBOL(folio_clear_dirty_for_io);
3054
wb_inode_writeback_start(struct bdi_writeback * wb)3055 static void wb_inode_writeback_start(struct bdi_writeback *wb)
3056 {
3057 atomic_inc(&wb->writeback_inodes);
3058 }
3059
wb_inode_writeback_end(struct bdi_writeback * wb)3060 static void wb_inode_writeback_end(struct bdi_writeback *wb)
3061 {
3062 unsigned long flags;
3063 atomic_dec(&wb->writeback_inodes);
3064 /*
3065 * Make sure estimate of writeback throughput gets updated after
3066 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3067 * (which is the interval other bandwidth updates use for batching) so
3068 * that if multiple inodes end writeback at a similar time, they get
3069 * batched into one bandwidth update.
3070 */
3071 spin_lock_irqsave(&wb->work_lock, flags);
3072 if (test_bit(WB_registered, &wb->state))
3073 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3074 spin_unlock_irqrestore(&wb->work_lock, flags);
3075 }
3076
__folio_end_writeback(struct folio * folio)3077 bool __folio_end_writeback(struct folio *folio)
3078 {
3079 long nr = folio_nr_pages(folio);
3080 struct address_space *mapping = folio_mapping(folio);
3081 bool ret;
3082
3083 folio_memcg_lock(folio);
3084 if (mapping && mapping_use_writeback_tags(mapping)) {
3085 struct inode *inode = mapping->host;
3086 struct backing_dev_info *bdi = inode_to_bdi(inode);
3087 unsigned long flags;
3088
3089 xa_lock_irqsave(&mapping->i_pages, flags);
3090 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3091 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
3092 PAGECACHE_TAG_WRITEBACK);
3093 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3094 struct bdi_writeback *wb = inode_to_wb(inode);
3095
3096 wb_stat_mod(wb, WB_WRITEBACK, -nr);
3097 __wb_writeout_add(wb, nr);
3098 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3099 wb_inode_writeback_end(wb);
3100 }
3101
3102 if (mapping->host && !mapping_tagged(mapping,
3103 PAGECACHE_TAG_WRITEBACK))
3104 sb_clear_inode_writeback(mapping->host);
3105
3106 xa_unlock_irqrestore(&mapping->i_pages, flags);
3107 } else {
3108 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3109 }
3110
3111 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3112 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3113 node_stat_mod_folio(folio, NR_WRITTEN, nr);
3114 folio_memcg_unlock(folio);
3115
3116 return ret;
3117 }
3118
__folio_start_writeback(struct folio * folio,bool keep_write)3119 void __folio_start_writeback(struct folio *folio, bool keep_write)
3120 {
3121 long nr = folio_nr_pages(folio);
3122 struct address_space *mapping = folio_mapping(folio);
3123 int access_ret;
3124
3125 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3126
3127 folio_memcg_lock(folio);
3128 if (mapping && mapping_use_writeback_tags(mapping)) {
3129 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3130 struct inode *inode = mapping->host;
3131 struct backing_dev_info *bdi = inode_to_bdi(inode);
3132 unsigned long flags;
3133 bool on_wblist;
3134
3135 xas_lock_irqsave(&xas, flags);
3136 xas_load(&xas);
3137 folio_test_set_writeback(folio);
3138
3139 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3140
3141 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3142 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3143 struct bdi_writeback *wb = inode_to_wb(inode);
3144
3145 wb_stat_mod(wb, WB_WRITEBACK, nr);
3146 if (!on_wblist)
3147 wb_inode_writeback_start(wb);
3148 }
3149
3150 /*
3151 * We can come through here when swapping anonymous
3152 * folios, so we don't necessarily have an inode to
3153 * track for sync.
3154 */
3155 if (mapping->host && !on_wblist)
3156 sb_mark_inode_writeback(mapping->host);
3157 if (!folio_test_dirty(folio))
3158 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3159 if (!keep_write)
3160 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3161 xas_unlock_irqrestore(&xas, flags);
3162 } else {
3163 folio_test_set_writeback(folio);
3164 }
3165
3166 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3167 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3168 folio_memcg_unlock(folio);
3169
3170 access_ret = arch_make_folio_accessible(folio);
3171 /*
3172 * If writeback has been triggered on a page that cannot be made
3173 * accessible, it is too late to recover here.
3174 */
3175 VM_BUG_ON_FOLIO(access_ret != 0, folio);
3176 }
3177 EXPORT_SYMBOL(__folio_start_writeback);
3178
3179 /**
3180 * folio_wait_writeback - Wait for a folio to finish writeback.
3181 * @folio: The folio to wait for.
3182 *
3183 * If the folio is currently being written back to storage, wait for the
3184 * I/O to complete.
3185 *
3186 * Context: Sleeps. Must be called in process context and with
3187 * no spinlocks held. Caller should hold a reference on the folio.
3188 * If the folio is not locked, writeback may start again after writeback
3189 * has finished.
3190 */
folio_wait_writeback(struct folio * folio)3191 void folio_wait_writeback(struct folio *folio)
3192 {
3193 while (folio_test_writeback(folio)) {
3194 trace_folio_wait_writeback(folio, folio_mapping(folio));
3195 folio_wait_bit(folio, PG_writeback);
3196 }
3197 }
3198 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3199
3200 /**
3201 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3202 * @folio: The folio to wait for.
3203 *
3204 * If the folio is currently being written back to storage, wait for the
3205 * I/O to complete or a fatal signal to arrive.
3206 *
3207 * Context: Sleeps. Must be called in process context and with
3208 * no spinlocks held. Caller should hold a reference on the folio.
3209 * If the folio is not locked, writeback may start again after writeback
3210 * has finished.
3211 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3212 */
folio_wait_writeback_killable(struct folio * folio)3213 int folio_wait_writeback_killable(struct folio *folio)
3214 {
3215 while (folio_test_writeback(folio)) {
3216 trace_folio_wait_writeback(folio, folio_mapping(folio));
3217 if (folio_wait_bit_killable(folio, PG_writeback))
3218 return -EINTR;
3219 }
3220
3221 return 0;
3222 }
3223 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3224
3225 /**
3226 * folio_wait_stable() - wait for writeback to finish, if necessary.
3227 * @folio: The folio to wait on.
3228 *
3229 * This function determines if the given folio is related to a backing
3230 * device that requires folio contents to be held stable during writeback.
3231 * If so, then it will wait for any pending writeback to complete.
3232 *
3233 * Context: Sleeps. Must be called in process context and with
3234 * no spinlocks held. Caller should hold a reference on the folio.
3235 * If the folio is not locked, writeback may start again after writeback
3236 * has finished.
3237 */
folio_wait_stable(struct folio * folio)3238 void folio_wait_stable(struct folio *folio)
3239 {
3240 if (mapping_stable_writes(folio_mapping(folio)))
3241 folio_wait_writeback(folio);
3242 }
3243 EXPORT_SYMBOL_GPL(folio_wait_stable);
3244