1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/page_isolation.c
4 */
5
6 #include <linux/mm.h>
7 #include <linux/page-isolation.h>
8 #include <linux/pageblock-flags.h>
9 #include <linux/memory.h>
10 #include <linux/hugetlb.h>
11 #include <linux/page_owner.h>
12 #include <linux/page_pinner.h>
13 #include <linux/migrate.h>
14 #include "internal.h"
15
16 #define CREATE_TRACE_POINTS
17 #include <trace/events/page_isolation.h>
18
19 /*
20 * This function checks whether the range [start_pfn, end_pfn) includes
21 * unmovable pages or not. The range must fall into a single pageblock and
22 * consequently belong to a single zone.
23 *
24 * PageLRU check without isolation or lru_lock could race so that
25 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
26 * check without lock_page also may miss some movable non-lru pages at
27 * race condition. So you can't expect this function should be exact.
28 *
29 * Returns a page without holding a reference. If the caller wants to
30 * dereference that page (e.g., dumping), it has to make sure that it
31 * cannot get removed (e.g., via memory unplug) concurrently.
32 *
33 */
has_unmovable_pages(unsigned long start_pfn,unsigned long end_pfn,int migratetype,int flags)34 static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn,
35 int migratetype, int flags)
36 {
37 struct page *page = pfn_to_page(start_pfn);
38 struct zone *zone = page_zone(page);
39 unsigned long pfn;
40
41 VM_BUG_ON(pageblock_start_pfn(start_pfn) !=
42 pageblock_start_pfn(end_pfn - 1));
43
44 if (is_migrate_cma_page(page)) {
45 /*
46 * CMA allocations (alloc_contig_range) really need to mark
47 * isolate CMA pageblocks even when they are not movable in fact
48 * so consider them movable here.
49 */
50 if (is_migrate_cma(migratetype))
51 return NULL;
52
53 return page;
54 }
55
56 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
57 page = pfn_to_page(pfn);
58
59 /*
60 * Both, bootmem allocations and memory holes are marked
61 * PG_reserved and are unmovable. We can even have unmovable
62 * allocations inside ZONE_MOVABLE, for example when
63 * specifying "movablecore".
64 */
65 if (PageReserved(page))
66 return page;
67
68 /*
69 * If the zone is movable and we have ruled out all reserved
70 * pages then it should be reasonably safe to assume the rest
71 * is movable.
72 */
73 if (zone_idx(zone) == ZONE_MOVABLE)
74 continue;
75
76 /*
77 * Hugepages are not in LRU lists, but they're movable.
78 * THPs are on the LRU, but need to be counted as #small pages.
79 * We need not scan over tail pages because we don't
80 * handle each tail page individually in migration.
81 */
82 if (PageHuge(page) || PageTransCompound(page)) {
83 struct folio *folio = page_folio(page);
84 unsigned int skip_pages;
85
86 if (PageHuge(page)) {
87 if (!hugepage_migration_supported(folio_hstate(folio)))
88 return page;
89 } else if (!folio_test_lru(folio) && !__folio_test_movable(folio)) {
90 return page;
91 }
92
93 skip_pages = folio_nr_pages(folio) - folio_page_idx(folio, page);
94 pfn += skip_pages - 1;
95 continue;
96 }
97
98 /*
99 * We can't use page_count without pin a page
100 * because another CPU can free compound page.
101 * This check already skips compound tails of THP
102 * because their page->_refcount is zero at all time.
103 */
104 if (!page_ref_count(page)) {
105 if (PageBuddy(page))
106 pfn += (1 << buddy_order(page)) - 1;
107 continue;
108 }
109
110 /*
111 * The HWPoisoned page may be not in buddy system, and
112 * page_count() is not 0.
113 */
114 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
115 continue;
116
117 /*
118 * We treat all PageOffline() pages as movable when offlining
119 * to give drivers a chance to decrement their reference count
120 * in MEM_GOING_OFFLINE in order to indicate that these pages
121 * can be offlined as there are no direct references anymore.
122 * For actually unmovable PageOffline() where the driver does
123 * not support this, we will fail later when trying to actually
124 * move these pages that still have a reference count > 0.
125 * (false negatives in this function only)
126 */
127 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
128 continue;
129
130 if (__PageMovable(page) || PageLRU(page))
131 continue;
132
133 /*
134 * If there are RECLAIMABLE pages, we need to check
135 * it. But now, memory offline itself doesn't call
136 * shrink_node_slabs() and it still to be fixed.
137 */
138 return page;
139 }
140 return NULL;
141 }
142
143 /*
144 * This function set pageblock migratetype to isolate if no unmovable page is
145 * present in [start_pfn, end_pfn). The pageblock must intersect with
146 * [start_pfn, end_pfn).
147 */
set_migratetype_isolate(struct page * page,int migratetype,int isol_flags,unsigned long start_pfn,unsigned long end_pfn)148 static int set_migratetype_isolate(struct page *page, int migratetype, int isol_flags,
149 unsigned long start_pfn, unsigned long end_pfn)
150 {
151 struct zone *zone = page_zone(page);
152 struct page *unmovable;
153 unsigned long flags;
154 unsigned long check_unmovable_start, check_unmovable_end;
155
156 if (PageUnaccepted(page))
157 accept_page(page);
158
159 spin_lock_irqsave(&zone->lock, flags);
160
161 /*
162 * We assume the caller intended to SET migrate type to isolate.
163 * If it is already set, then someone else must have raced and
164 * set it before us.
165 */
166 if (is_migrate_isolate_page(page)) {
167 spin_unlock_irqrestore(&zone->lock, flags);
168 return -EBUSY;
169 }
170
171 /*
172 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
173 * We just check MOVABLE pages.
174 *
175 * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock
176 * to avoid redundant checks.
177 */
178 check_unmovable_start = max(page_to_pfn(page), start_pfn);
179 check_unmovable_end = min(pageblock_end_pfn(page_to_pfn(page)),
180 end_pfn);
181
182 unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end,
183 migratetype, isol_flags);
184 if (!unmovable) {
185 if (!move_freepages_block_isolate(zone, page, MIGRATE_ISOLATE)) {
186 spin_unlock_irqrestore(&zone->lock, flags);
187 return -EBUSY;
188 }
189 zone->nr_isolate_pageblock++;
190 spin_unlock_irqrestore(&zone->lock, flags);
191 return 0;
192 }
193
194 spin_unlock_irqrestore(&zone->lock, flags);
195 if (isol_flags & REPORT_FAILURE) {
196 /*
197 * printk() with zone->lock held will likely trigger a
198 * lockdep splat, so defer it here.
199 */
200 dump_page(unmovable, "unmovable page");
201 }
202
203 return -EBUSY;
204 }
205
unset_migratetype_isolate(struct page * page,int migratetype)206 static void unset_migratetype_isolate(struct page *page, int migratetype)
207 {
208 struct zone *zone;
209 unsigned long flags;
210 bool isolated_page = false;
211 unsigned int order;
212 struct page *buddy;
213
214 zone = page_zone(page);
215 spin_lock_irqsave(&zone->lock, flags);
216 if (!is_migrate_isolate_page(page))
217 goto out;
218
219 /*
220 * Because freepage with more than pageblock_order on isolated
221 * pageblock is restricted to merge due to freepage counting problem,
222 * it is possible that there is free buddy page.
223 * move_freepages_block() doesn't care of merge so we need other
224 * approach in order to merge them. Isolation and free will make
225 * these pages to be merged.
226 */
227 if (PageBuddy(page)) {
228 order = buddy_order(page);
229 if (order >= pageblock_order && order < MAX_PAGE_ORDER) {
230 buddy = find_buddy_page_pfn(page, page_to_pfn(page),
231 order, NULL);
232 if (buddy && !is_migrate_isolate_page(buddy)) {
233 isolated_page = !!__isolate_free_page(page, order);
234 /*
235 * Isolating a free page in an isolated pageblock
236 * is expected to always work as watermarks don't
237 * apply here.
238 */
239 VM_WARN_ON(!isolated_page);
240 }
241 }
242 }
243
244 /*
245 * If we isolate freepage with more than pageblock_order, there
246 * should be no freepage in the range, so we could avoid costly
247 * pageblock scanning for freepage moving.
248 *
249 * We didn't actually touch any of the isolated pages, so place them
250 * to the tail of the freelist. This is an optimization for memory
251 * onlining - just onlined memory won't immediately be considered for
252 * allocation.
253 */
254 if (!isolated_page) {
255 /*
256 * Isolating this block already succeeded, so this
257 * should not fail on zone boundaries.
258 */
259 WARN_ON_ONCE(!move_freepages_block_isolate(zone, page, migratetype));
260 } else {
261 set_pageblock_migratetype(page, migratetype);
262 __putback_isolated_page(page, order, migratetype);
263 }
264 zone->nr_isolate_pageblock--;
265 out:
266 spin_unlock_irqrestore(&zone->lock, flags);
267 }
268
269 static inline struct page *
__first_valid_page(unsigned long pfn,unsigned long nr_pages)270 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
271 {
272 int i;
273
274 for (i = 0; i < nr_pages; i++) {
275 struct page *page;
276
277 page = pfn_to_online_page(pfn + i);
278 if (!page)
279 continue;
280 return page;
281 }
282 return NULL;
283 }
284
285 /**
286 * isolate_single_pageblock() -- tries to isolate a pageblock that might be
287 * within a free or in-use page.
288 * @boundary_pfn: pageblock-aligned pfn that a page might cross
289 * @flags: isolation flags
290 * @gfp_flags: GFP flags used for migrating pages
291 * @isolate_before: isolate the pageblock before the boundary_pfn
292 * @skip_isolation: the flag to skip the pageblock isolation in second
293 * isolate_single_pageblock()
294 * @migratetype: migrate type to set in error recovery.
295 *
296 * Free and in-use pages can be as big as MAX_PAGE_ORDER and contain more than one
297 * pageblock. When not all pageblocks within a page are isolated at the same
298 * time, free page accounting can go wrong. For example, in the case of
299 * MAX_PAGE_ORDER = pageblock_order + 1, a MAX_PAGE_ORDER page has two
300 * pagelbocks.
301 * [ MAX_PAGE_ORDER ]
302 * [ pageblock0 | pageblock1 ]
303 * When either pageblock is isolated, if it is a free page, the page is not
304 * split into separate migratetype lists, which is supposed to; if it is an
305 * in-use page and freed later, __free_one_page() does not split the free page
306 * either. The function handles this by splitting the free page or migrating
307 * the in-use page then splitting the free page.
308 */
isolate_single_pageblock(unsigned long boundary_pfn,int flags,gfp_t gfp_flags,bool isolate_before,bool skip_isolation,int migratetype)309 static int isolate_single_pageblock(unsigned long boundary_pfn, int flags,
310 gfp_t gfp_flags, bool isolate_before, bool skip_isolation,
311 int migratetype)
312 {
313 unsigned long start_pfn;
314 unsigned long isolate_pageblock;
315 unsigned long pfn;
316 struct zone *zone;
317 int ret;
318
319 VM_BUG_ON(!pageblock_aligned(boundary_pfn));
320
321 if (isolate_before)
322 isolate_pageblock = boundary_pfn - pageblock_nr_pages;
323 else
324 isolate_pageblock = boundary_pfn;
325
326 /*
327 * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid
328 * only isolating a subset of pageblocks from a bigger than pageblock
329 * free or in-use page. Also make sure all to-be-isolated pageblocks
330 * are within the same zone.
331 */
332 zone = page_zone(pfn_to_page(isolate_pageblock));
333 start_pfn = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES),
334 zone->zone_start_pfn);
335
336 if (skip_isolation) {
337 int mt __maybe_unused = get_pageblock_migratetype(pfn_to_page(isolate_pageblock));
338
339 VM_BUG_ON(!is_migrate_isolate(mt));
340 } else {
341 ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype,
342 flags, isolate_pageblock, isolate_pageblock + pageblock_nr_pages);
343
344 if (ret)
345 return ret;
346 }
347
348 /*
349 * Bail out early when the to-be-isolated pageblock does not form
350 * a free or in-use page across boundary_pfn:
351 *
352 * 1. isolate before boundary_pfn: the page after is not online
353 * 2. isolate after boundary_pfn: the page before is not online
354 *
355 * This also ensures correctness. Without it, when isolate after
356 * boundary_pfn and [start_pfn, boundary_pfn) are not online,
357 * __first_valid_page() will return unexpected NULL in the for loop
358 * below.
359 */
360 if (isolate_before) {
361 if (!pfn_to_online_page(boundary_pfn))
362 return 0;
363 } else {
364 if (!pfn_to_online_page(boundary_pfn - 1))
365 return 0;
366 }
367
368 for (pfn = start_pfn; pfn < boundary_pfn;) {
369 struct page *page = __first_valid_page(pfn, boundary_pfn - pfn);
370
371 VM_BUG_ON(!page);
372 pfn = page_to_pfn(page);
373
374 if (PageUnaccepted(page)) {
375 pfn += MAX_ORDER_NR_PAGES;
376 continue;
377 }
378
379 if (PageBuddy(page)) {
380 int order = buddy_order(page);
381
382 /* move_freepages_block_isolate() handled this */
383 VM_WARN_ON_ONCE(pfn + (1 << order) > boundary_pfn);
384
385 pfn += 1UL << order;
386 continue;
387 }
388
389 /*
390 * If a compound page is straddling our block, attempt
391 * to migrate it out of the way.
392 *
393 * We don't have to worry about this creating a large
394 * free page that straddles into our block: gigantic
395 * pages are freed as order-0 chunks, and LRU pages
396 * (currently) do not exceed pageblock_order.
397 *
398 * The block of interest has already been marked
399 * MIGRATE_ISOLATE above, so when migration is done it
400 * will free its pages onto the correct freelists.
401 */
402 if (PageCompound(page)) {
403 struct page *head = compound_head(page);
404 unsigned long head_pfn = page_to_pfn(head);
405 unsigned long nr_pages = compound_nr(head);
406
407 if (head_pfn + nr_pages <= boundary_pfn ||
408 PageHuge(page)) {
409 pfn = head_pfn + nr_pages;
410 continue;
411 }
412
413 /*
414 * These pages are movable too, but they're
415 * not expected to exceed pageblock_order.
416 *
417 * Let us know when they do, so we can add
418 * proper free and split handling for them.
419 */
420 VM_WARN_ON_ONCE_PAGE(PageLRU(page), page);
421 VM_WARN_ON_ONCE_PAGE(__PageMovable(page), page);
422
423 goto failed;
424 }
425
426 pfn++;
427 }
428 return 0;
429 failed:
430 /* restore the original migratetype */
431 if (!skip_isolation)
432 unset_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype);
433 return -EBUSY;
434 }
435
436 /**
437 * start_isolate_page_range() - mark page range MIGRATE_ISOLATE
438 * @start_pfn: The first PFN of the range to be isolated.
439 * @end_pfn: The last PFN of the range to be isolated.
440 * @migratetype: Migrate type to set in error recovery.
441 * @flags: The following flags are allowed (they can be combined in
442 * a bit mask)
443 * MEMORY_OFFLINE - isolate to offline (!allocate) memory
444 * e.g., skip over PageHWPoison() pages
445 * and PageOffline() pages.
446 * REPORT_FAILURE - report details about the failure to
447 * isolate the range
448 * @gfp_flags: GFP flags used for migrating pages that sit across the
449 * range boundaries.
450 *
451 * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
452 * the range will never be allocated. Any free pages and pages freed in the
453 * future will not be allocated again. If specified range includes migrate types
454 * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all
455 * pages in the range finally, the caller have to free all pages in the range.
456 * test_page_isolated() can be used for test it.
457 *
458 * The function first tries to isolate the pageblocks at the beginning and end
459 * of the range, since there might be pages across the range boundaries.
460 * Afterwards, it isolates the rest of the range.
461 *
462 * There is no high level synchronization mechanism that prevents two threads
463 * from trying to isolate overlapping ranges. If this happens, one thread
464 * will notice pageblocks in the overlapping range already set to isolate.
465 * This happens in set_migratetype_isolate, and set_migratetype_isolate
466 * returns an error. We then clean up by restoring the migration type on
467 * pageblocks we may have modified and return -EBUSY to caller. This
468 * prevents two threads from simultaneously working on overlapping ranges.
469 *
470 * Please note that there is no strong synchronization with the page allocator
471 * either. Pages might be freed while their page blocks are marked ISOLATED.
472 * A call to drain_all_pages() after isolation can flush most of them. However
473 * in some cases pages might still end up on pcp lists and that would allow
474 * for their allocation even when they are in fact isolated already. Depending
475 * on how strong of a guarantee the caller needs, zone_pcp_disable/enable()
476 * might be used to flush and disable pcplist before isolation and enable after
477 * unisolation.
478 *
479 * Return: 0 on success and -EBUSY if any part of range cannot be isolated.
480 */
start_isolate_page_range(unsigned long start_pfn,unsigned long end_pfn,int migratetype,int flags,gfp_t gfp_flags)481 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
482 int migratetype, int flags, gfp_t gfp_flags)
483 {
484 unsigned long pfn;
485 struct page *page;
486 /* isolation is done at page block granularity */
487 unsigned long isolate_start = pageblock_start_pfn(start_pfn);
488 unsigned long isolate_end = pageblock_align(end_pfn);
489 int ret;
490 bool skip_isolation = false;
491
492 /* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */
493 ret = isolate_single_pageblock(isolate_start, flags, gfp_flags, false,
494 skip_isolation, migratetype);
495 if (ret)
496 return ret;
497
498 if (isolate_start == isolate_end - pageblock_nr_pages)
499 skip_isolation = true;
500
501 /* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */
502 ret = isolate_single_pageblock(isolate_end, flags, gfp_flags, true,
503 skip_isolation, migratetype);
504 if (ret) {
505 unset_migratetype_isolate(pfn_to_page(isolate_start), migratetype);
506 return ret;
507 }
508
509 /* skip isolated pageblocks at the beginning and end */
510 for (pfn = isolate_start + pageblock_nr_pages;
511 pfn < isolate_end - pageblock_nr_pages;
512 pfn += pageblock_nr_pages) {
513 page = __first_valid_page(pfn, pageblock_nr_pages);
514 if (page && set_migratetype_isolate(page, migratetype, flags,
515 start_pfn, end_pfn)) {
516 undo_isolate_page_range(isolate_start, pfn, migratetype);
517 unset_migratetype_isolate(
518 pfn_to_page(isolate_end - pageblock_nr_pages),
519 migratetype);
520 return -EBUSY;
521 }
522 }
523 return 0;
524 }
525
526 /**
527 * undo_isolate_page_range - undo effects of start_isolate_page_range()
528 * @start_pfn: The first PFN of the isolated range
529 * @end_pfn: The last PFN of the isolated range
530 * @migratetype: New migrate type to set on the range
531 *
532 * This finds every MIGRATE_ISOLATE page block in the given range
533 * and switches it to @migratetype.
534 */
undo_isolate_page_range(unsigned long start_pfn,unsigned long end_pfn,int migratetype)535 void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
536 int migratetype)
537 {
538 unsigned long pfn;
539 struct page *page;
540 unsigned long isolate_start = pageblock_start_pfn(start_pfn);
541 unsigned long isolate_end = pageblock_align(end_pfn);
542
543 for (pfn = isolate_start;
544 pfn < isolate_end;
545 pfn += pageblock_nr_pages) {
546 page = __first_valid_page(pfn, pageblock_nr_pages);
547 if (!page || !is_migrate_isolate_page(page))
548 continue;
549 unset_migratetype_isolate(page, migratetype);
550 }
551 }
552 /*
553 * Test all pages in the range is free(means isolated) or not.
554 * all pages in [start_pfn...end_pfn) must be in the same zone.
555 * zone->lock must be held before call this.
556 *
557 * Returns the last tested pfn.
558 */
559 static unsigned long
__test_page_isolated_in_pageblock(unsigned long pfn,unsigned long end_pfn,int flags)560 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
561 int flags)
562 {
563 struct page *page;
564
565 while (pfn < end_pfn) {
566 page = pfn_to_page(pfn);
567 if (PageBuddy(page))
568 /*
569 * If the page is on a free list, it has to be on
570 * the correct MIGRATE_ISOLATE freelist. There is no
571 * simple way to verify that as VM_BUG_ON(), though.
572 */
573 pfn += 1 << buddy_order(page);
574 else if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
575 /* A HWPoisoned page cannot be also PageBuddy */
576 pfn++;
577 else if ((flags & MEMORY_OFFLINE) && PageOffline(page) &&
578 !page_count(page))
579 /*
580 * The responsible driver agreed to skip PageOffline()
581 * pages when offlining memory by dropping its
582 * reference in MEM_GOING_OFFLINE.
583 */
584 pfn++;
585 else
586 break;
587 }
588
589 return pfn;
590 }
591
592 /**
593 * test_pages_isolated - check if pageblocks in range are isolated
594 * @start_pfn: The first PFN of the isolated range
595 * @end_pfn: The first PFN *after* the isolated range
596 * @isol_flags: Testing mode flags
597 *
598 * This tests if all in the specified range are free.
599 *
600 * If %MEMORY_OFFLINE is specified in @flags, it will consider
601 * poisoned and offlined pages free as well.
602 *
603 * Caller must ensure the requested range doesn't span zones.
604 *
605 * Returns 0 if true, -EBUSY if one or more pages are in use.
606 */
test_pages_isolated(unsigned long start_pfn,unsigned long end_pfn,int isol_flags)607 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
608 int isol_flags)
609 {
610 unsigned long pfn, flags;
611 struct page *page;
612 struct zone *zone;
613 int ret;
614
615 /*
616 * Due to the deferred freeing of hugetlb folios, the hugepage folios may
617 * not immediately release to the buddy system. This can cause PageBuddy()
618 * to fail in __test_page_isolated_in_pageblock(). To ensure that the
619 * hugetlb folios are properly released back to the buddy system, we
620 * invoke the wait_for_freed_hugetlb_folios() function to wait for the
621 * release to complete.
622 */
623 wait_for_freed_hugetlb_folios();
624
625 /*
626 * Note: pageblock_nr_pages != MAX_PAGE_ORDER. Then, chunks of free
627 * pages are not aligned to pageblock_nr_pages.
628 * Then we just check migratetype first.
629 */
630 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
631 page = __first_valid_page(pfn, pageblock_nr_pages);
632 if (page && !is_migrate_isolate_page(page))
633 break;
634 }
635 page = __first_valid_page(start_pfn, end_pfn - start_pfn);
636 if ((pfn < end_pfn) || !page) {
637 ret = -EBUSY;
638 goto out;
639 }
640
641 /* Check all pages are free or marked as ISOLATED */
642 zone = page_zone(page);
643 spin_lock_irqsave(&zone->lock, flags);
644 pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, isol_flags);
645 spin_unlock_irqrestore(&zone->lock, flags);
646
647 ret = pfn < end_pfn ? -EBUSY : 0;
648
649 out:
650 trace_test_pages_isolated(start_pfn, end_pfn, pfn);
651 if (pfn < end_pfn)
652 page_pinner_failure_detect(pfn_to_page(pfn));
653
654 return ret;
655 }
656