1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * folio_lock
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28 * vma_start_write
29 * mapping->i_mmap_rwsem
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in block_dirty_folio)
35 * folio_lock_memcg move_lock (in block_dirty_folio)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
44 *
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
46 * ->tasklist_lock
47 * pte map lock
48 *
49 * hugetlbfs PageHuge() take locks in this order:
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * vma_lock (hugetlb specific lock for pmd_sharing)
52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53 * folio_lock
54 */
55
56 #include <linux/mm.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
78 #include <linux/oom.h>
79
80 #include <asm/tlbflush.h>
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/tlb.h>
84 #include <trace/events/migrate.h>
85 #undef CREATE_TRACE_POINTS
86 #include <trace/hooks/mm.h>
87
88 #undef CREATE_TRACE_POINTS
89 #include <trace/hooks/mm.h>
90
91 #include "internal.h"
92
93 static struct kmem_cache *anon_vma_cachep;
94 static struct kmem_cache *anon_vma_chain_cachep;
95
anon_vma_alloc(void)96 static inline struct anon_vma *anon_vma_alloc(void)
97 {
98 struct anon_vma *anon_vma;
99
100 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
101 if (anon_vma) {
102 atomic_set(&anon_vma->refcount, 1);
103 anon_vma->num_children = 0;
104 anon_vma->num_active_vmas = 0;
105 anon_vma->parent = anon_vma;
106 /*
107 * Initialise the anon_vma root to point to itself. If called
108 * from fork, the root will be reset to the parents anon_vma.
109 */
110 anon_vma->root = anon_vma;
111 }
112
113 return anon_vma;
114 }
115
anon_vma_free(struct anon_vma * anon_vma)116 static inline void anon_vma_free(struct anon_vma *anon_vma)
117 {
118 VM_BUG_ON(atomic_read(&anon_vma->refcount));
119
120 /*
121 * Synchronize against folio_lock_anon_vma_read() such that
122 * we can safely hold the lock without the anon_vma getting
123 * freed.
124 *
125 * Relies on the full mb implied by the atomic_dec_and_test() from
126 * put_anon_vma() against the acquire barrier implied by
127 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
128 *
129 * folio_lock_anon_vma_read() VS put_anon_vma()
130 * down_read_trylock() atomic_dec_and_test()
131 * LOCK MB
132 * atomic_read() rwsem_is_locked()
133 *
134 * LOCK should suffice since the actual taking of the lock must
135 * happen _before_ what follows.
136 */
137 might_sleep();
138 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
139 anon_vma_lock_write(anon_vma);
140 anon_vma_unlock_write(anon_vma);
141 }
142
143 kmem_cache_free(anon_vma_cachep, anon_vma);
144 }
145
anon_vma_chain_alloc(gfp_t gfp)146 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
147 {
148 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
149 }
150
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)151 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
152 {
153 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
154 }
155
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)156 static void anon_vma_chain_link(struct vm_area_struct *vma,
157 struct anon_vma_chain *avc,
158 struct anon_vma *anon_vma)
159 {
160 avc->vma = vma;
161 avc->anon_vma = anon_vma;
162 list_add(&avc->same_vma, &vma->anon_vma_chain);
163 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
164 }
165
166 /**
167 * __anon_vma_prepare - attach an anon_vma to a memory region
168 * @vma: the memory region in question
169 *
170 * This makes sure the memory mapping described by 'vma' has
171 * an 'anon_vma' attached to it, so that we can associate the
172 * anonymous pages mapped into it with that anon_vma.
173 *
174 * The common case will be that we already have one, which
175 * is handled inline by anon_vma_prepare(). But if
176 * not we either need to find an adjacent mapping that we
177 * can re-use the anon_vma from (very common when the only
178 * reason for splitting a vma has been mprotect()), or we
179 * allocate a new one.
180 *
181 * Anon-vma allocations are very subtle, because we may have
182 * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
183 * and that may actually touch the rwsem even in the newly
184 * allocated vma (it depends on RCU to make sure that the
185 * anon_vma isn't actually destroyed).
186 *
187 * As a result, we need to do proper anon_vma locking even
188 * for the new allocation. At the same time, we do not want
189 * to do any locking for the common case of already having
190 * an anon_vma.
191 */
__anon_vma_prepare(struct vm_area_struct * vma)192 int __anon_vma_prepare(struct vm_area_struct *vma)
193 {
194 struct mm_struct *mm = vma->vm_mm;
195 struct anon_vma *anon_vma, *allocated;
196 struct anon_vma_chain *avc;
197
198 mmap_assert_locked(mm);
199 might_sleep();
200
201 avc = anon_vma_chain_alloc(GFP_KERNEL);
202 if (!avc)
203 goto out_enomem;
204
205 anon_vma = find_mergeable_anon_vma(vma);
206 allocated = NULL;
207 if (!anon_vma) {
208 anon_vma = anon_vma_alloc();
209 if (unlikely(!anon_vma))
210 goto out_enomem_free_avc;
211 anon_vma->num_children++; /* self-parent link for new root */
212 allocated = anon_vma;
213 }
214
215 anon_vma_lock_write(anon_vma);
216 /* page_table_lock to protect against threads */
217 spin_lock(&mm->page_table_lock);
218 if (likely(!vma->anon_vma)) {
219 vma->anon_vma = anon_vma;
220 anon_vma_chain_link(vma, avc, anon_vma);
221 anon_vma->num_active_vmas++;
222 allocated = NULL;
223 avc = NULL;
224 }
225 spin_unlock(&mm->page_table_lock);
226 anon_vma_unlock_write(anon_vma);
227
228 if (unlikely(allocated))
229 put_anon_vma(allocated);
230 if (unlikely(avc))
231 anon_vma_chain_free(avc);
232
233 return 0;
234
235 out_enomem_free_avc:
236 anon_vma_chain_free(avc);
237 out_enomem:
238 return -ENOMEM;
239 }
240
241 /*
242 * This is a useful helper function for locking the anon_vma root as
243 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
244 * have the same vma.
245 *
246 * Such anon_vma's should have the same root, so you'd expect to see
247 * just a single mutex_lock for the whole traversal.
248 */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)249 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
250 {
251 struct anon_vma *new_root = anon_vma->root;
252 if (new_root != root) {
253 if (WARN_ON_ONCE(root))
254 up_write(&root->rwsem);
255 root = new_root;
256 down_write(&root->rwsem);
257 }
258 return root;
259 }
260
unlock_anon_vma_root(struct anon_vma * root)261 static inline void unlock_anon_vma_root(struct anon_vma *root)
262 {
263 if (root)
264 up_write(&root->rwsem);
265 }
266
267 /*
268 * Attach the anon_vmas from src to dst.
269 * Returns 0 on success, -ENOMEM on failure.
270 *
271 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
272 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
273 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
274 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
275 * call, we can identify this case by checking (!dst->anon_vma &&
276 * src->anon_vma).
277 *
278 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
279 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
280 * This prevents degradation of anon_vma hierarchy to endless linear chain in
281 * case of constantly forking task. On the other hand, an anon_vma with more
282 * than one child isn't reused even if there was no alive vma, thus rmap
283 * walker has a good chance of avoiding scanning the whole hierarchy when it
284 * searches where page is mapped.
285 */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)286 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
287 {
288 struct anon_vma_chain *avc, *pavc;
289 struct anon_vma *root = NULL;
290
291 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
292 struct anon_vma *anon_vma;
293
294 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
295 if (unlikely(!avc)) {
296 unlock_anon_vma_root(root);
297 root = NULL;
298 avc = anon_vma_chain_alloc(GFP_KERNEL);
299 if (!avc)
300 goto enomem_failure;
301 }
302 anon_vma = pavc->anon_vma;
303 root = lock_anon_vma_root(root, anon_vma);
304 anon_vma_chain_link(dst, avc, anon_vma);
305
306 /*
307 * Reuse existing anon_vma if it has no vma and only one
308 * anon_vma child.
309 *
310 * Root anon_vma is never reused:
311 * it has self-parent reference and at least one child.
312 */
313 if (!dst->anon_vma && src->anon_vma &&
314 anon_vma->num_children < 2 &&
315 anon_vma->num_active_vmas == 0)
316 dst->anon_vma = anon_vma;
317 }
318 if (dst->anon_vma)
319 dst->anon_vma->num_active_vmas++;
320 unlock_anon_vma_root(root);
321 return 0;
322
323 enomem_failure:
324 /*
325 * dst->anon_vma is dropped here otherwise its num_active_vmas can
326 * be incorrectly decremented in unlink_anon_vmas().
327 * We can safely do this because callers of anon_vma_clone() don't care
328 * about dst->anon_vma if anon_vma_clone() failed.
329 */
330 dst->anon_vma = NULL;
331 unlink_anon_vmas(dst);
332 return -ENOMEM;
333 }
334
335 /*
336 * Attach vma to its own anon_vma, as well as to the anon_vmas that
337 * the corresponding VMA in the parent process is attached to.
338 * Returns 0 on success, non-zero on failure.
339 */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)340 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
341 {
342 struct anon_vma_chain *avc;
343 struct anon_vma *anon_vma;
344 int error;
345
346 /* Don't bother if the parent process has no anon_vma here. */
347 if (!pvma->anon_vma)
348 return 0;
349
350 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
351 vma->anon_vma = NULL;
352
353 /*
354 * First, attach the new VMA to the parent VMA's anon_vmas,
355 * so rmap can find non-COWed pages in child processes.
356 */
357 error = anon_vma_clone(vma, pvma);
358 if (error)
359 return error;
360
361 /* An existing anon_vma has been reused, all done then. */
362 if (vma->anon_vma)
363 return 0;
364
365 /* Then add our own anon_vma. */
366 anon_vma = anon_vma_alloc();
367 if (!anon_vma)
368 goto out_error;
369 anon_vma->num_active_vmas++;
370 avc = anon_vma_chain_alloc(GFP_KERNEL);
371 if (!avc)
372 goto out_error_free_anon_vma;
373
374 /*
375 * The root anon_vma's rwsem is the lock actually used when we
376 * lock any of the anon_vmas in this anon_vma tree.
377 */
378 anon_vma->root = pvma->anon_vma->root;
379 anon_vma->parent = pvma->anon_vma;
380 /*
381 * With refcounts, an anon_vma can stay around longer than the
382 * process it belongs to. The root anon_vma needs to be pinned until
383 * this anon_vma is freed, because the lock lives in the root.
384 */
385 get_anon_vma(anon_vma->root);
386 /* Mark this anon_vma as the one where our new (COWed) pages go. */
387 vma->anon_vma = anon_vma;
388 anon_vma_lock_write(anon_vma);
389 anon_vma_chain_link(vma, avc, anon_vma);
390 anon_vma->parent->num_children++;
391 anon_vma_unlock_write(anon_vma);
392
393 return 0;
394
395 out_error_free_anon_vma:
396 put_anon_vma(anon_vma);
397 out_error:
398 unlink_anon_vmas(vma);
399 return -ENOMEM;
400 }
401
unlink_anon_vmas(struct vm_area_struct * vma)402 void unlink_anon_vmas(struct vm_area_struct *vma)
403 {
404 struct anon_vma_chain *avc, *next;
405 struct anon_vma *root = NULL;
406
407 /*
408 * Unlink each anon_vma chained to the VMA. This list is ordered
409 * from newest to oldest, ensuring the root anon_vma gets freed last.
410 */
411 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
412 struct anon_vma *anon_vma = avc->anon_vma;
413
414 root = lock_anon_vma_root(root, anon_vma);
415 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
416
417 /*
418 * Leave empty anon_vmas on the list - we'll need
419 * to free them outside the lock.
420 */
421 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
422 anon_vma->parent->num_children--;
423 continue;
424 }
425
426 list_del(&avc->same_vma);
427 anon_vma_chain_free(avc);
428 }
429 if (vma->anon_vma) {
430 vma->anon_vma->num_active_vmas--;
431
432 /*
433 * vma would still be needed after unlink, and anon_vma will be prepared
434 * when handle fault.
435 */
436 vma->anon_vma = NULL;
437 }
438 unlock_anon_vma_root(root);
439
440 /*
441 * Iterate the list once more, it now only contains empty and unlinked
442 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
443 * needing to write-acquire the anon_vma->root->rwsem.
444 */
445 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
446 struct anon_vma *anon_vma = avc->anon_vma;
447
448 VM_WARN_ON(anon_vma->num_children);
449 VM_WARN_ON(anon_vma->num_active_vmas);
450 put_anon_vma(anon_vma);
451
452 list_del(&avc->same_vma);
453 anon_vma_chain_free(avc);
454 }
455 }
456
anon_vma_ctor(void * data)457 static void anon_vma_ctor(void *data)
458 {
459 struct anon_vma *anon_vma = data;
460
461 init_rwsem(&anon_vma->rwsem);
462 atomic_set(&anon_vma->refcount, 0);
463 anon_vma->rb_root = RB_ROOT_CACHED;
464 }
465
anon_vma_init(void)466 void __init anon_vma_init(void)
467 {
468 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
469 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
470 anon_vma_ctor);
471 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
472 SLAB_PANIC|SLAB_ACCOUNT);
473 }
474
475 /*
476 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
477 *
478 * Since there is no serialization what so ever against folio_remove_rmap_*()
479 * the best this function can do is return a refcount increased anon_vma
480 * that might have been relevant to this page.
481 *
482 * The page might have been remapped to a different anon_vma or the anon_vma
483 * returned may already be freed (and even reused).
484 *
485 * In case it was remapped to a different anon_vma, the new anon_vma will be a
486 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
487 * ensure that any anon_vma obtained from the page will still be valid for as
488 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
489 *
490 * All users of this function must be very careful when walking the anon_vma
491 * chain and verify that the page in question is indeed mapped in it
492 * [ something equivalent to page_mapped_in_vma() ].
493 *
494 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
495 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
496 * if there is a mapcount, we can dereference the anon_vma after observing
497 * those.
498 *
499 * NOTE: the caller should normally hold folio lock when calling this. If
500 * not, the caller needs to double check the anon_vma didn't change after
501 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
502 * concurrently without folio lock protection). See folio_lock_anon_vma_read()
503 * which has already covered that, and comment above remap_pages().
504 */
folio_get_anon_vma(struct folio * folio)505 struct anon_vma *folio_get_anon_vma(struct folio *folio)
506 {
507 struct anon_vma *anon_vma = NULL;
508 unsigned long anon_mapping;
509
510 rcu_read_lock();
511 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
512 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
513 goto out;
514 if (!folio_mapped(folio))
515 goto out;
516
517 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
518 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
519 anon_vma = NULL;
520 goto out;
521 }
522
523 /*
524 * If this folio is still mapped, then its anon_vma cannot have been
525 * freed. But if it has been unmapped, we have no security against the
526 * anon_vma structure being freed and reused (for another anon_vma:
527 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
528 * above cannot corrupt).
529 */
530 if (!folio_mapped(folio)) {
531 rcu_read_unlock();
532 put_anon_vma(anon_vma);
533 return NULL;
534 }
535 out:
536 rcu_read_unlock();
537
538 return anon_vma;
539 }
540
541 /*
542 * Similar to folio_get_anon_vma() except it locks the anon_vma.
543 *
544 * Its a little more complex as it tries to keep the fast path to a single
545 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
546 * reference like with folio_get_anon_vma() and then block on the mutex
547 * on !rwc->try_lock case.
548 */
folio_lock_anon_vma_read(struct folio * folio,struct rmap_walk_control * rwc)549 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
550 struct rmap_walk_control *rwc)
551 {
552 struct anon_vma *anon_vma = NULL;
553 struct anon_vma *root_anon_vma;
554 unsigned long anon_mapping;
555
556 retry:
557 rcu_read_lock();
558 anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
559 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
560 goto out;
561 if (!folio_mapped(folio))
562 goto out;
563
564 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
565 root_anon_vma = READ_ONCE(anon_vma->root);
566 if (down_read_trylock(&root_anon_vma->rwsem)) {
567 /*
568 * folio_move_anon_rmap() might have changed the anon_vma as we
569 * might not hold the folio lock here.
570 */
571 if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
572 anon_mapping)) {
573 up_read(&root_anon_vma->rwsem);
574 rcu_read_unlock();
575 goto retry;
576 }
577
578 /*
579 * If the folio is still mapped, then this anon_vma is still
580 * its anon_vma, and holding the mutex ensures that it will
581 * not go away, see anon_vma_free().
582 */
583 if (!folio_mapped(folio)) {
584 up_read(&root_anon_vma->rwsem);
585 anon_vma = NULL;
586 }
587 goto out;
588 }
589
590 if (rwc && rwc->try_lock) {
591 anon_vma = NULL;
592 rwc->contended = true;
593 goto out;
594 }
595
596 /* trylock failed, we got to sleep */
597 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
598 anon_vma = NULL;
599 goto out;
600 }
601
602 if (!folio_mapped(folio)) {
603 rcu_read_unlock();
604 put_anon_vma(anon_vma);
605 return NULL;
606 }
607
608 /* we pinned the anon_vma, its safe to sleep */
609 rcu_read_unlock();
610 anon_vma_lock_read(anon_vma);
611
612 /*
613 * folio_move_anon_rmap() might have changed the anon_vma as we might
614 * not hold the folio lock here.
615 */
616 if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
617 anon_mapping)) {
618 anon_vma_unlock_read(anon_vma);
619 put_anon_vma(anon_vma);
620 anon_vma = NULL;
621 goto retry;
622 }
623
624 if (atomic_dec_and_test(&anon_vma->refcount)) {
625 /*
626 * Oops, we held the last refcount, release the lock
627 * and bail -- can't simply use put_anon_vma() because
628 * we'll deadlock on the anon_vma_lock_write() recursion.
629 */
630 anon_vma_unlock_read(anon_vma);
631 __put_anon_vma(anon_vma);
632 anon_vma = NULL;
633 }
634
635 return anon_vma;
636
637 out:
638 rcu_read_unlock();
639 return anon_vma;
640 }
641
642 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
643 /*
644 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
645 * important if a PTE was dirty when it was unmapped that it's flushed
646 * before any IO is initiated on the page to prevent lost writes. Similarly,
647 * it must be flushed before freeing to prevent data leakage.
648 */
try_to_unmap_flush(void)649 void try_to_unmap_flush(void)
650 {
651 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
652
653 if (!tlb_ubc->flush_required)
654 return;
655
656 arch_tlbbatch_flush(&tlb_ubc->arch);
657 tlb_ubc->flush_required = false;
658 tlb_ubc->writable = false;
659 }
660
661 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)662 void try_to_unmap_flush_dirty(void)
663 {
664 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
665
666 if (tlb_ubc->writable)
667 try_to_unmap_flush();
668 }
669
670 /*
671 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
672 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
673 */
674 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
675 #define TLB_FLUSH_BATCH_PENDING_MASK \
676 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
677 #define TLB_FLUSH_BATCH_PENDING_LARGE \
678 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
679
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long uaddr)680 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
681 unsigned long uaddr)
682 {
683 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
684 int batch;
685 bool writable = pte_dirty(pteval);
686
687 if (!pte_accessible(mm, pteval))
688 return;
689
690 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
691 tlb_ubc->flush_required = true;
692
693 /*
694 * Ensure compiler does not re-order the setting of tlb_flush_batched
695 * before the PTE is cleared.
696 */
697 barrier();
698 batch = atomic_read(&mm->tlb_flush_batched);
699 retry:
700 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
701 /*
702 * Prevent `pending' from catching up with `flushed' because of
703 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
704 * `pending' becomes large.
705 */
706 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
707 goto retry;
708 } else {
709 atomic_inc(&mm->tlb_flush_batched);
710 }
711
712 /*
713 * If the PTE was dirty then it's best to assume it's writable. The
714 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
715 * before the page is queued for IO.
716 */
717 if (writable)
718 tlb_ubc->writable = true;
719 }
720
721 /*
722 * Returns true if the TLB flush should be deferred to the end of a batch of
723 * unmap operations to reduce IPIs.
724 */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)725 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
726 {
727 if (!(flags & TTU_BATCH_FLUSH))
728 return false;
729
730 return arch_tlbbatch_should_defer(mm);
731 }
732
733 /*
734 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
735 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
736 * operation such as mprotect or munmap to race between reclaim unmapping
737 * the page and flushing the page. If this race occurs, it potentially allows
738 * access to data via a stale TLB entry. Tracking all mm's that have TLB
739 * batching in flight would be expensive during reclaim so instead track
740 * whether TLB batching occurred in the past and if so then do a flush here
741 * if required. This will cost one additional flush per reclaim cycle paid
742 * by the first operation at risk such as mprotect and mumap.
743 *
744 * This must be called under the PTL so that an access to tlb_flush_batched
745 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
746 * via the PTL.
747 */
flush_tlb_batched_pending(struct mm_struct * mm)748 void flush_tlb_batched_pending(struct mm_struct *mm)
749 {
750 int batch = atomic_read(&mm->tlb_flush_batched);
751 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
752 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
753
754 if (pending != flushed) {
755 arch_flush_tlb_batched_pending(mm);
756 /*
757 * If the new TLB flushing is pending during flushing, leave
758 * mm->tlb_flush_batched as is, to avoid losing flushing.
759 */
760 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
761 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
762 }
763 }
764 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,pte_t pteval,unsigned long uaddr)765 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
766 unsigned long uaddr)
767 {
768 }
769
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)770 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
771 {
772 return false;
773 }
774 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
775
776 /*
777 * At what user virtual address is page expected in vma?
778 * Caller should check the page is actually part of the vma.
779 */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)780 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
781 {
782 struct folio *folio = page_folio(page);
783 pgoff_t pgoff;
784
785 if (folio_test_anon(folio)) {
786 struct anon_vma *page__anon_vma = folio_anon_vma(folio);
787 /*
788 * Note: swapoff's unuse_vma() is more efficient with this
789 * check, and needs it to match anon_vma when KSM is active.
790 */
791 if (!vma->anon_vma || !page__anon_vma ||
792 vma->anon_vma->root != page__anon_vma->root)
793 return -EFAULT;
794 } else if (!vma->vm_file) {
795 return -EFAULT;
796 } else if (vma->vm_file->f_mapping != folio->mapping) {
797 return -EFAULT;
798 }
799
800 /* The !page__anon_vma above handles KSM folios */
801 pgoff = folio->index + folio_page_idx(folio, page);
802 return vma_address(vma, pgoff, 1);
803 }
804
805 /*
806 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
807 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t*
808 * represents.
809 */
mm_find_pmd(struct mm_struct * mm,unsigned long address)810 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
811 {
812 pgd_t *pgd;
813 p4d_t *p4d;
814 pud_t *pud;
815 pmd_t *pmd = NULL;
816
817 pgd = pgd_offset(mm, address);
818 if (!pgd_present(*pgd))
819 goto out;
820
821 p4d = p4d_offset(pgd, address);
822 if (!p4d_present(*p4d))
823 goto out;
824
825 pud = pud_offset(p4d, address);
826 if (!pud_present(*pud))
827 goto out;
828
829 pmd = pmd_offset(pud, address);
830 out:
831 return pmd;
832 }
833
834 struct folio_referenced_arg {
835 int mapcount;
836 int referenced;
837 unsigned long vm_flags;
838 struct mem_cgroup *memcg;
839 };
840
841 /*
842 * arg: folio_referenced_arg will be passed
843 */
folio_referenced_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)844 static bool folio_referenced_one(struct folio *folio,
845 struct vm_area_struct *vma, unsigned long address, void *arg)
846 {
847 struct folio_referenced_arg *pra = arg;
848 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
849 int referenced = 0;
850 unsigned long start = address, ptes = 0;
851
852 while (page_vma_mapped_walk(&pvmw)) {
853 address = pvmw.address;
854
855 if (vma->vm_flags & VM_LOCKED) {
856 if (!folio_test_large(folio) || !pvmw.pte) {
857 /* Restore the mlock which got missed */
858 mlock_vma_folio(folio, vma);
859 page_vma_mapped_walk_done(&pvmw);
860 pra->vm_flags |= VM_LOCKED;
861 return false; /* To break the loop */
862 }
863 /*
864 * For large folio fully mapped to VMA, will
865 * be handled after the pvmw loop.
866 *
867 * For large folio cross VMA boundaries, it's
868 * expected to be picked by page reclaim. But
869 * should skip reference of pages which are in
870 * the range of VM_LOCKED vma. As page reclaim
871 * should just count the reference of pages out
872 * the range of VM_LOCKED vma.
873 */
874 ptes++;
875 pra->mapcount--;
876 continue;
877 }
878
879 /*
880 * Skip the non-shared swapbacked folio mapped solely by
881 * the exiting or OOM-reaped process. This avoids redundant
882 * swap-out followed by an immediate unmap.
883 */
884 if ((!atomic_read(&vma->vm_mm->mm_users) ||
885 check_stable_address_space(vma->vm_mm)) &&
886 folio_test_anon(folio) && folio_test_swapbacked(folio) &&
887 !folio_likely_mapped_shared(folio)) {
888 pra->referenced = -1;
889 page_vma_mapped_walk_done(&pvmw);
890 return false;
891 }
892
893 if (lru_gen_enabled() && pvmw.pte) {
894 trace_android_vh_look_around(&pvmw, folio, vma, &referenced);
895 if (lru_gen_look_around(&pvmw))
896 referenced++;
897 } else if (pvmw.pte) {
898 if (ptep_clear_flush_young_notify(vma, address,
899 pvmw.pte))
900 referenced++;
901 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
902 if (pmdp_clear_flush_young_notify(vma, address,
903 pvmw.pmd))
904 referenced++;
905 } else {
906 /* unexpected pmd-mapped folio? */
907 WARN_ON_ONCE(1);
908 }
909
910 pra->mapcount--;
911 }
912
913 if ((vma->vm_flags & VM_LOCKED) &&
914 folio_test_large(folio) &&
915 folio_within_vma(folio, vma)) {
916 unsigned long s_align, e_align;
917
918 s_align = ALIGN_DOWN(start, PMD_SIZE);
919 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
920
921 /* folio doesn't cross page table boundary and fully mapped */
922 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
923 /* Restore the mlock which got missed */
924 mlock_vma_folio(folio, vma);
925 pra->vm_flags |= VM_LOCKED;
926 return false; /* To break the loop */
927 }
928 }
929
930 if (referenced)
931 folio_clear_idle(folio);
932 if (folio_test_clear_young(folio))
933 referenced++;
934
935 if (referenced) {
936 pra->referenced++;
937 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
938 }
939
940 if (!pra->mapcount)
941 return false; /* To break the loop */
942
943 return true;
944 }
945
invalid_folio_referenced_vma(struct vm_area_struct * vma,void * arg)946 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
947 {
948 struct folio_referenced_arg *pra = arg;
949 struct mem_cgroup *memcg = pra->memcg;
950
951 /*
952 * Ignore references from this mapping if it has no recency. If the
953 * folio has been used in another mapping, we will catch it; if this
954 * other mapping is already gone, the unmap path will have set the
955 * referenced flag or activated the folio in zap_pte_range().
956 */
957 if (!vma_has_recency(vma))
958 return true;
959
960 /*
961 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
962 * of references from different cgroups.
963 */
964 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
965 return true;
966
967 return false;
968 }
969
970 /**
971 * folio_referenced() - Test if the folio was referenced.
972 * @folio: The folio to test.
973 * @is_locked: Caller holds lock on the folio.
974 * @memcg: target memory cgroup
975 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
976 *
977 * Quick test_and_clear_referenced for all mappings of a folio,
978 *
979 * Return: The number of mappings which referenced the folio. Return -1 if
980 * the function bailed out due to rmap lock contention.
981 */
folio_referenced(struct folio * folio,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)982 int folio_referenced(struct folio *folio, int is_locked,
983 struct mem_cgroup *memcg, unsigned long *vm_flags)
984 {
985 bool we_locked = false;
986 struct folio_referenced_arg pra = {
987 .mapcount = folio_mapcount(folio),
988 .memcg = memcg,
989 };
990 struct rmap_walk_control rwc = {
991 .rmap_one = folio_referenced_one,
992 .arg = (void *)&pra,
993 .anon_lock = folio_lock_anon_vma_read,
994 .try_lock = true,
995 .invalid_vma = invalid_folio_referenced_vma,
996 };
997
998 *vm_flags = 0;
999 if (!pra.mapcount)
1000 return 0;
1001
1002 if (!folio_raw_mapping(folio))
1003 return 0;
1004
1005 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
1006 we_locked = folio_trylock(folio);
1007 if (!we_locked)
1008 return 1;
1009 }
1010
1011 rmap_walk(folio, &rwc);
1012 *vm_flags = pra.vm_flags;
1013
1014 if (we_locked)
1015 folio_unlock(folio);
1016
1017 return rwc.contended ? -1 : pra.referenced;
1018 }
1019 EXPORT_SYMBOL_GPL(folio_referenced);
1020
page_vma_mkclean_one(struct page_vma_mapped_walk * pvmw)1021 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1022 {
1023 int cleaned = 0;
1024 struct vm_area_struct *vma = pvmw->vma;
1025 struct mmu_notifier_range range;
1026 unsigned long address = pvmw->address;
1027
1028 /*
1029 * We have to assume the worse case ie pmd for invalidation. Note that
1030 * the folio can not be freed from this function.
1031 */
1032 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1033 vma->vm_mm, address, vma_address_end(pvmw));
1034 mmu_notifier_invalidate_range_start(&range);
1035
1036 while (page_vma_mapped_walk(pvmw)) {
1037 int ret = 0;
1038
1039 address = pvmw->address;
1040 if (pvmw->pte) {
1041 pte_t *pte = pvmw->pte;
1042 pte_t entry = ptep_get(pte);
1043
1044 if (!pte_dirty(entry) && !pte_write(entry))
1045 continue;
1046
1047 flush_cache_page(vma, address, pte_pfn(entry));
1048 entry = ptep_clear_flush(vma, address, pte);
1049 entry = pte_wrprotect(entry);
1050 entry = pte_mkclean(entry);
1051 set_pte_at(vma->vm_mm, address, pte, entry);
1052 ret = 1;
1053 } else {
1054 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1055 pmd_t *pmd = pvmw->pmd;
1056 pmd_t entry;
1057
1058 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1059 continue;
1060
1061 flush_cache_range(vma, address,
1062 address + HPAGE_PMD_SIZE);
1063 entry = pmdp_invalidate(vma, address, pmd);
1064 entry = pmd_wrprotect(entry);
1065 entry = pmd_mkclean(entry);
1066 set_pmd_at(vma->vm_mm, address, pmd, entry);
1067 ret = 1;
1068 #else
1069 /* unexpected pmd-mapped folio? */
1070 WARN_ON_ONCE(1);
1071 #endif
1072 }
1073
1074 if (ret)
1075 cleaned++;
1076 }
1077
1078 mmu_notifier_invalidate_range_end(&range);
1079
1080 return cleaned;
1081 }
1082
page_mkclean_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1083 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1084 unsigned long address, void *arg)
1085 {
1086 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1087 int *cleaned = arg;
1088
1089 *cleaned += page_vma_mkclean_one(&pvmw);
1090
1091 return true;
1092 }
1093
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)1094 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1095 {
1096 if (vma->vm_flags & VM_SHARED)
1097 return false;
1098
1099 return true;
1100 }
1101
folio_mkclean(struct folio * folio)1102 int folio_mkclean(struct folio *folio)
1103 {
1104 int cleaned = 0;
1105 struct address_space *mapping;
1106 struct rmap_walk_control rwc = {
1107 .arg = (void *)&cleaned,
1108 .rmap_one = page_mkclean_one,
1109 .invalid_vma = invalid_mkclean_vma,
1110 };
1111
1112 BUG_ON(!folio_test_locked(folio));
1113
1114 if (!folio_mapped(folio))
1115 return 0;
1116
1117 mapping = folio_mapping(folio);
1118 if (!mapping)
1119 return 0;
1120
1121 rmap_walk(folio, &rwc);
1122
1123 return cleaned;
1124 }
1125 EXPORT_SYMBOL_GPL(folio_mkclean);
1126
1127 /**
1128 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1129 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1130 * within the @vma of shared mappings. And since clean PTEs
1131 * should also be readonly, write protects them too.
1132 * @pfn: start pfn.
1133 * @nr_pages: number of physically contiguous pages srarting with @pfn.
1134 * @pgoff: page offset that the @pfn mapped with.
1135 * @vma: vma that @pfn mapped within.
1136 *
1137 * Returns the number of cleaned PTEs (including PMDs).
1138 */
pfn_mkclean_range(unsigned long pfn,unsigned long nr_pages,pgoff_t pgoff,struct vm_area_struct * vma)1139 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1140 struct vm_area_struct *vma)
1141 {
1142 struct page_vma_mapped_walk pvmw = {
1143 .pfn = pfn,
1144 .nr_pages = nr_pages,
1145 .pgoff = pgoff,
1146 .vma = vma,
1147 .flags = PVMW_SYNC,
1148 };
1149
1150 if (invalid_mkclean_vma(vma, NULL))
1151 return 0;
1152
1153 pvmw.address = vma_address(vma, pgoff, nr_pages);
1154 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1155
1156 return page_vma_mkclean_one(&pvmw);
1157 }
1158
__folio_add_rmap(struct folio * folio,struct page * page,int nr_pages,enum rmap_level level,int * nr_pmdmapped)1159 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1160 struct page *page, int nr_pages, enum rmap_level level,
1161 int *nr_pmdmapped)
1162 {
1163 atomic_t *mapped = &folio->_nr_pages_mapped;
1164 const int orig_nr_pages = nr_pages;
1165 int first = 0, nr = 0;
1166
1167 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1168
1169 switch (level) {
1170 case RMAP_LEVEL_PTE:
1171 if (!folio_test_large(folio)) {
1172 nr = atomic_inc_and_test(&folio->_mapcount);
1173 break;
1174 }
1175
1176 do {
1177 first += atomic_inc_and_test(&page->_mapcount);
1178 } while (page++, --nr_pages > 0);
1179
1180 if (first &&
1181 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1182 nr = first;
1183
1184 atomic_add(orig_nr_pages, &folio->_large_mapcount);
1185 break;
1186 case RMAP_LEVEL_PMD:
1187 first = atomic_inc_and_test(&folio->_entire_mapcount);
1188 if (first) {
1189 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1190 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1191 *nr_pmdmapped = folio_nr_pages(folio);
1192 nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1193 /* Raced ahead of a remove and another add? */
1194 if (unlikely(nr < 0))
1195 nr = 0;
1196 } else {
1197 /* Raced ahead of a remove of ENTIRELY_MAPPED */
1198 nr = 0;
1199 }
1200 }
1201 atomic_inc(&folio->_large_mapcount);
1202 break;
1203 }
1204 return nr;
1205 }
1206
1207 /**
1208 * folio_move_anon_rmap - move a folio to our anon_vma
1209 * @folio: The folio to move to our anon_vma
1210 * @vma: The vma the folio belongs to
1211 *
1212 * When a folio belongs exclusively to one process after a COW event,
1213 * that folio can be moved into the anon_vma that belongs to just that
1214 * process, so the rmap code will not search the parent or sibling processes.
1215 */
folio_move_anon_rmap(struct folio * folio,struct vm_area_struct * vma)1216 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1217 {
1218 void *anon_vma = vma->anon_vma;
1219
1220 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1221 VM_BUG_ON_VMA(!anon_vma, vma);
1222
1223 anon_vma += PAGE_MAPPING_ANON;
1224 /*
1225 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1226 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1227 * folio_test_anon()) will not see one without the other.
1228 */
1229 WRITE_ONCE(folio->mapping, anon_vma);
1230 }
1231
1232 /**
1233 * __folio_set_anon - set up a new anonymous rmap for a folio
1234 * @folio: The folio to set up the new anonymous rmap for.
1235 * @vma: VM area to add the folio to.
1236 * @address: User virtual address of the mapping
1237 * @exclusive: Whether the folio is exclusive to the process.
1238 */
__folio_set_anon(struct folio * folio,struct vm_area_struct * vma,unsigned long address,bool exclusive)1239 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1240 unsigned long address, bool exclusive)
1241 {
1242 struct anon_vma *anon_vma = vma->anon_vma;
1243
1244 BUG_ON(!anon_vma);
1245
1246 /*
1247 * If the folio isn't exclusive to this vma, we must use the _oldest_
1248 * possible anon_vma for the folio mapping!
1249 */
1250 if (!exclusive)
1251 anon_vma = anon_vma->root;
1252
1253 /*
1254 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1255 * Make sure the compiler doesn't split the stores of anon_vma and
1256 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1257 * could mistake the mapping for a struct address_space and crash.
1258 */
1259 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1260 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1261 folio->index = linear_page_index(vma, address);
1262 }
1263
1264 /**
1265 * __page_check_anon_rmap - sanity check anonymous rmap addition
1266 * @folio: The folio containing @page.
1267 * @page: the page to check the mapping of
1268 * @vma: the vm area in which the mapping is added
1269 * @address: the user virtual address mapped
1270 */
__page_check_anon_rmap(struct folio * folio,struct page * page,struct vm_area_struct * vma,unsigned long address)1271 static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1272 struct vm_area_struct *vma, unsigned long address)
1273 {
1274 /*
1275 * The page's anon-rmap details (mapping and index) are guaranteed to
1276 * be set up correctly at this point.
1277 *
1278 * We have exclusion against folio_add_anon_rmap_*() because the caller
1279 * always holds the page locked.
1280 *
1281 * We have exclusion against folio_add_new_anon_rmap because those pages
1282 * are initially only visible via the pagetables, and the pte is locked
1283 * over the call to folio_add_new_anon_rmap.
1284 */
1285 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1286 folio);
1287 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1288 page);
1289 }
1290
__folio_mod_stat(struct folio * folio,int nr,int nr_pmdmapped)1291 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1292 {
1293 int idx;
1294
1295 if (nr) {
1296 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1297 __lruvec_stat_mod_folio(folio, idx, nr);
1298 }
1299 if (nr_pmdmapped) {
1300 if (folio_test_anon(folio)) {
1301 idx = NR_ANON_THPS;
1302 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1303 } else {
1304 /* NR_*_PMDMAPPED are not maintained per-memcg */
1305 idx = folio_test_swapbacked(folio) ?
1306 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1307 __mod_node_page_state(folio_pgdat(folio), idx,
1308 nr_pmdmapped);
1309 }
1310 }
1311 }
1312
__folio_add_anon_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags,enum rmap_level level)1313 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1314 struct page *page, int nr_pages, struct vm_area_struct *vma,
1315 unsigned long address, rmap_t flags, enum rmap_level level)
1316 {
1317 int i, nr, nr_pmdmapped = 0;
1318
1319 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1320
1321 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1322
1323 if (likely(!folio_test_ksm(folio)))
1324 __page_check_anon_rmap(folio, page, vma, address);
1325
1326 __folio_mod_stat(folio, nr, nr_pmdmapped);
1327
1328 if (flags & RMAP_EXCLUSIVE) {
1329 switch (level) {
1330 case RMAP_LEVEL_PTE:
1331 for (i = 0; i < nr_pages; i++)
1332 SetPageAnonExclusive(page + i);
1333 break;
1334 case RMAP_LEVEL_PMD:
1335 SetPageAnonExclusive(page);
1336 break;
1337 }
1338 }
1339 for (i = 0; i < nr_pages; i++) {
1340 struct page *cur_page = page + i;
1341
1342 /* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1343 VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1344 (folio_test_large(folio) &&
1345 folio_entire_mapcount(folio) > 1)) &&
1346 PageAnonExclusive(cur_page), folio);
1347 }
1348
1349 /*
1350 * For large folio, only mlock it if it's fully mapped to VMA. It's
1351 * not easy to check whether the large folio is fully mapped to VMA
1352 * here. Only mlock normal 4K folio and leave page reclaim to handle
1353 * large folio.
1354 */
1355 if (!folio_test_large(folio))
1356 mlock_vma_folio(folio, vma);
1357 }
1358
1359 /**
1360 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1361 * @folio: The folio to add the mappings to
1362 * @page: The first page to add
1363 * @nr_pages: The number of pages which will be mapped
1364 * @vma: The vm area in which the mappings are added
1365 * @address: The user virtual address of the first page to map
1366 * @flags: The rmap flags
1367 *
1368 * The page range of folio is defined by [first_page, first_page + nr_pages)
1369 *
1370 * The caller needs to hold the page table lock, and the page must be locked in
1371 * the anon_vma case: to serialize mapping,index checking after setting,
1372 * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1373 * (but KSM folios are never downgraded).
1374 */
folio_add_anon_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1375 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1376 int nr_pages, struct vm_area_struct *vma, unsigned long address,
1377 rmap_t flags)
1378 {
1379 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1380 RMAP_LEVEL_PTE);
1381 }
1382
1383 /**
1384 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1385 * @folio: The folio to add the mapping to
1386 * @page: The first page to add
1387 * @vma: The vm area in which the mapping is added
1388 * @address: The user virtual address of the first page to map
1389 * @flags: The rmap flags
1390 *
1391 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1392 *
1393 * The caller needs to hold the page table lock, and the page must be locked in
1394 * the anon_vma case: to serialize mapping,index checking after setting.
1395 */
folio_add_anon_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1396 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1397 struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1398 {
1399 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1400 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1401 RMAP_LEVEL_PMD);
1402 #else
1403 WARN_ON_ONCE(true);
1404 #endif
1405 }
1406
1407 /**
1408 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1409 * @folio: The folio to add the mapping to.
1410 * @vma: the vm area in which the mapping is added
1411 * @address: the user virtual address mapped
1412 * @flags: The rmap flags
1413 *
1414 * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1415 * This means the inc-and-test can be bypassed.
1416 * The folio doesn't necessarily need to be locked while it's exclusive
1417 * unless two threads map it concurrently. However, the folio must be
1418 * locked if it's shared.
1419 *
1420 * If the folio is pmd-mappable, it is accounted as a THP.
1421 */
folio_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)1422 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1423 unsigned long address, rmap_t flags)
1424 {
1425 const int nr = folio_nr_pages(folio);
1426 const bool exclusive = flags & RMAP_EXCLUSIVE;
1427 int nr_pmdmapped = 0;
1428
1429 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1430 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1431 VM_BUG_ON_VMA(address < vma->vm_start ||
1432 address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1433
1434 /*
1435 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1436 * under memory pressure.
1437 */
1438 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1439 __folio_set_swapbacked(folio);
1440 __folio_set_anon(folio, vma, address, exclusive);
1441
1442 if (likely(!folio_test_large(folio))) {
1443 /* increment count (starts at -1) */
1444 atomic_set(&folio->_mapcount, 0);
1445 if (exclusive)
1446 SetPageAnonExclusive(&folio->page);
1447 } else if (!folio_test_pmd_mappable(folio)) {
1448 int i;
1449
1450 for (i = 0; i < nr; i++) {
1451 struct page *page = folio_page(folio, i);
1452
1453 /* increment count (starts at -1) */
1454 atomic_set(&page->_mapcount, 0);
1455 if (exclusive)
1456 SetPageAnonExclusive(page);
1457 }
1458
1459 /* increment count (starts at -1) */
1460 atomic_set(&folio->_large_mapcount, nr - 1);
1461 atomic_set(&folio->_nr_pages_mapped, nr);
1462 } else {
1463 /* increment count (starts at -1) */
1464 atomic_set(&folio->_entire_mapcount, 0);
1465 /* increment count (starts at -1) */
1466 atomic_set(&folio->_large_mapcount, 0);
1467 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1468 if (exclusive)
1469 SetPageAnonExclusive(&folio->page);
1470 nr_pmdmapped = nr;
1471 }
1472
1473 __folio_mod_stat(folio, nr, nr_pmdmapped);
1474 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
1475 trace_android_vh_page_add_new_anon_rmap(&folio->page, vma, address);
1476 }
1477
__folio_add_file_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum rmap_level level)1478 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1479 struct page *page, int nr_pages, struct vm_area_struct *vma,
1480 enum rmap_level level)
1481 {
1482 int nr, nr_pmdmapped = 0;
1483
1484 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1485
1486 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1487 __folio_mod_stat(folio, nr, nr_pmdmapped);
1488
1489 /* See comments in folio_add_anon_rmap_*() */
1490 if (!folio_test_large(folio))
1491 mlock_vma_folio(folio, vma);
1492 }
1493
1494 /**
1495 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1496 * @folio: The folio to add the mappings to
1497 * @page: The first page to add
1498 * @nr_pages: The number of pages that will be mapped using PTEs
1499 * @vma: The vm area in which the mappings are added
1500 *
1501 * The page range of the folio is defined by [page, page + nr_pages)
1502 *
1503 * The caller needs to hold the page table lock.
1504 */
folio_add_file_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1505 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1506 int nr_pages, struct vm_area_struct *vma)
1507 {
1508 __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1509 }
1510
1511 /**
1512 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1513 * @folio: The folio to add the mapping to
1514 * @page: The first page to add
1515 * @vma: The vm area in which the mapping is added
1516 *
1517 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1518 *
1519 * The caller needs to hold the page table lock.
1520 */
folio_add_file_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1521 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1522 struct vm_area_struct *vma)
1523 {
1524 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1525 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1526 #else
1527 WARN_ON_ONCE(true);
1528 #endif
1529 }
1530
__folio_remove_rmap(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma,enum rmap_level level)1531 static __always_inline void __folio_remove_rmap(struct folio *folio,
1532 struct page *page, int nr_pages, struct vm_area_struct *vma,
1533 enum rmap_level level)
1534 {
1535 atomic_t *mapped = &folio->_nr_pages_mapped;
1536 int last = 0, nr = 0, nr_pmdmapped = 0;
1537 bool partially_mapped = false;
1538
1539 __folio_rmap_sanity_checks(folio, page, nr_pages, level);
1540
1541 switch (level) {
1542 case RMAP_LEVEL_PTE:
1543 if (!folio_test_large(folio)) {
1544 nr = atomic_add_negative(-1, &folio->_mapcount);
1545 break;
1546 }
1547
1548 atomic_sub(nr_pages, &folio->_large_mapcount);
1549 do {
1550 last += atomic_add_negative(-1, &page->_mapcount);
1551 } while (page++, --nr_pages > 0);
1552
1553 if (last &&
1554 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1555 nr = last;
1556
1557 partially_mapped = nr && atomic_read(mapped);
1558 break;
1559 case RMAP_LEVEL_PMD:
1560 atomic_dec(&folio->_large_mapcount);
1561 last = atomic_add_negative(-1, &folio->_entire_mapcount);
1562 if (last) {
1563 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1564 if (likely(nr < ENTIRELY_MAPPED)) {
1565 nr_pmdmapped = folio_nr_pages(folio);
1566 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1567 /* Raced ahead of another remove and an add? */
1568 if (unlikely(nr < 0))
1569 nr = 0;
1570 } else {
1571 /* An add of ENTIRELY_MAPPED raced ahead */
1572 nr = 0;
1573 }
1574 }
1575
1576 partially_mapped = nr && nr < nr_pmdmapped;
1577 break;
1578 }
1579
1580 /*
1581 * Queue anon large folio for deferred split if at least one page of
1582 * the folio is unmapped and at least one page is still mapped.
1583 *
1584 * Check partially_mapped first to ensure it is a large folio.
1585 */
1586 if (partially_mapped && folio_test_anon(folio) &&
1587 !folio_test_partially_mapped(folio))
1588 deferred_split_folio(folio, true);
1589
1590 __folio_mod_stat(folio, -nr, -nr_pmdmapped);
1591
1592 /*
1593 * It would be tidy to reset folio_test_anon mapping when fully
1594 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1595 * which increments mapcount after us but sets mapping before us:
1596 * so leave the reset to free_pages_prepare, and remember that
1597 * it's only reliable while mapped.
1598 */
1599
1600 munlock_vma_folio(folio, vma);
1601 }
1602
1603 /**
1604 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1605 * @folio: The folio to remove the mappings from
1606 * @page: The first page to remove
1607 * @nr_pages: The number of pages that will be removed from the mapping
1608 * @vma: The vm area from which the mappings are removed
1609 *
1610 * The page range of the folio is defined by [page, page + nr_pages)
1611 *
1612 * The caller needs to hold the page table lock.
1613 */
folio_remove_rmap_ptes(struct folio * folio,struct page * page,int nr_pages,struct vm_area_struct * vma)1614 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1615 int nr_pages, struct vm_area_struct *vma)
1616 {
1617 __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1618 }
1619
1620 /**
1621 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1622 * @folio: The folio to remove the mapping from
1623 * @page: The first page to remove
1624 * @vma: The vm area from which the mapping is removed
1625 *
1626 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1627 *
1628 * The caller needs to hold the page table lock.
1629 */
folio_remove_rmap_pmd(struct folio * folio,struct page * page,struct vm_area_struct * vma)1630 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1631 struct vm_area_struct *vma)
1632 {
1633 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1634 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1635 #else
1636 WARN_ON_ONCE(true);
1637 #endif
1638 }
1639
1640 /*
1641 * @arg: enum ttu_flags will be passed to this argument
1642 */
try_to_unmap_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)1643 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1644 unsigned long address, void *arg)
1645 {
1646 struct mm_struct *mm = vma->vm_mm;
1647 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1648 pte_t pteval;
1649 struct page *subpage;
1650 bool anon_exclusive, ret = true;
1651 struct mmu_notifier_range range;
1652 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1653 unsigned long pfn;
1654 unsigned long hsz = 0;
1655
1656 /*
1657 * When racing against e.g. zap_pte_range() on another cpu,
1658 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1659 * try_to_unmap() may return before page_mapped() has become false,
1660 * if page table locking is skipped: use TTU_SYNC to wait for that.
1661 */
1662 if (flags & TTU_SYNC)
1663 pvmw.flags = PVMW_SYNC;
1664
1665 /*
1666 * For THP, we have to assume the worse case ie pmd for invalidation.
1667 * For hugetlb, it could be much worse if we need to do pud
1668 * invalidation in the case of pmd sharing.
1669 *
1670 * Note that the folio can not be freed in this function as call of
1671 * try_to_unmap() must hold a reference on the folio.
1672 */
1673 range.end = vma_address_end(&pvmw);
1674 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1675 address, range.end);
1676 if (folio_test_hugetlb(folio)) {
1677 /*
1678 * If sharing is possible, start and end will be adjusted
1679 * accordingly.
1680 */
1681 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1682 &range.end);
1683
1684 /* We need the huge page size for set_huge_pte_at() */
1685 hsz = huge_page_size(hstate_vma(vma));
1686 }
1687 mmu_notifier_invalidate_range_start(&range);
1688
1689 while (page_vma_mapped_walk(&pvmw)) {
1690 /*
1691 * If the folio is in an mlock()d vma, we must not swap it out.
1692 */
1693 if (!(flags & TTU_IGNORE_MLOCK) &&
1694 (vma->vm_flags & VM_LOCKED)) {
1695 /* Restore the mlock which got missed */
1696 if (!folio_test_large(folio))
1697 mlock_vma_folio(folio, vma);
1698 goto walk_abort;
1699 }
1700
1701 if (!pvmw.pte) {
1702 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd,
1703 folio))
1704 goto walk_done;
1705
1706 if (flags & TTU_SPLIT_HUGE_PMD) {
1707 /*
1708 * We temporarily have to drop the PTL and
1709 * restart so we can process the PTE-mapped THP.
1710 */
1711 split_huge_pmd_locked(vma, pvmw.address,
1712 pvmw.pmd, false, folio);
1713 flags &= ~TTU_SPLIT_HUGE_PMD;
1714 page_vma_mapped_walk_restart(&pvmw);
1715 continue;
1716 }
1717 }
1718
1719 /* Unexpected PMD-mapped THP? */
1720 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1721
1722 pfn = pte_pfn(ptep_get(pvmw.pte));
1723 subpage = folio_page(folio, pfn - folio_pfn(folio));
1724 address = pvmw.address;
1725 anon_exclusive = folio_test_anon(folio) &&
1726 PageAnonExclusive(subpage);
1727
1728 if (folio_test_hugetlb(folio)) {
1729 bool anon = folio_test_anon(folio);
1730
1731 /*
1732 * The try_to_unmap() is only passed a hugetlb page
1733 * in the case where the hugetlb page is poisoned.
1734 */
1735 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1736 /*
1737 * huge_pmd_unshare may unmap an entire PMD page.
1738 * There is no way of knowing exactly which PMDs may
1739 * be cached for this mm, so we must flush them all.
1740 * start/end were already adjusted above to cover this
1741 * range.
1742 */
1743 flush_cache_range(vma, range.start, range.end);
1744
1745 /*
1746 * To call huge_pmd_unshare, i_mmap_rwsem must be
1747 * held in write mode. Caller needs to explicitly
1748 * do this outside rmap routines.
1749 *
1750 * We also must hold hugetlb vma_lock in write mode.
1751 * Lock order dictates acquiring vma_lock BEFORE
1752 * i_mmap_rwsem. We can only try lock here and fail
1753 * if unsuccessful.
1754 */
1755 if (!anon) {
1756 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1757 if (!hugetlb_vma_trylock_write(vma))
1758 goto walk_abort;
1759 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1760 hugetlb_vma_unlock_write(vma);
1761 flush_tlb_range(vma,
1762 range.start, range.end);
1763 /*
1764 * The ref count of the PMD page was
1765 * dropped which is part of the way map
1766 * counting is done for shared PMDs.
1767 * Return 'true' here. When there is
1768 * no other sharing, huge_pmd_unshare
1769 * returns false and we will unmap the
1770 * actual page and drop map count
1771 * to zero.
1772 */
1773 goto walk_done;
1774 }
1775 hugetlb_vma_unlock_write(vma);
1776 }
1777 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1778 } else {
1779 flush_cache_page(vma, address, pfn);
1780 /* Nuke the page table entry. */
1781 if (should_defer_flush(mm, flags)) {
1782 /*
1783 * We clear the PTE but do not flush so potentially
1784 * a remote CPU could still be writing to the folio.
1785 * If the entry was previously clean then the
1786 * architecture must guarantee that a clear->dirty
1787 * transition on a cached TLB entry is written through
1788 * and traps if the PTE is unmapped.
1789 */
1790 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1791
1792 set_tlb_ubc_flush_pending(mm, pteval, address);
1793 } else {
1794 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1795 }
1796 }
1797
1798 /*
1799 * Now the pte is cleared. If this pte was uffd-wp armed,
1800 * we may want to replace a none pte with a marker pte if
1801 * it's file-backed, so we don't lose the tracking info.
1802 */
1803 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1804
1805 /* Set the dirty flag on the folio now the pte is gone. */
1806 if (pte_dirty(pteval))
1807 folio_mark_dirty(folio);
1808
1809 /* Update high watermark before we lower rss */
1810 update_hiwater_rss(mm);
1811
1812 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1813 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1814 if (folio_test_hugetlb(folio)) {
1815 hugetlb_count_sub(folio_nr_pages(folio), mm);
1816 set_huge_pte_at(mm, address, pvmw.pte, pteval,
1817 hsz);
1818 } else {
1819 dec_mm_counter(mm, mm_counter(folio));
1820 set_pte_at(mm, address, pvmw.pte, pteval);
1821 }
1822
1823 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1824 /*
1825 * The guest indicated that the page content is of no
1826 * interest anymore. Simply discard the pte, vmscan
1827 * will take care of the rest.
1828 * A future reference will then fault in a new zero
1829 * page. When userfaultfd is active, we must not drop
1830 * this page though, as its main user (postcopy
1831 * migration) will not expect userfaults on already
1832 * copied pages.
1833 */
1834 dec_mm_counter(mm, mm_counter(folio));
1835 } else if (folio_test_anon(folio)) {
1836 swp_entry_t entry = page_swap_entry(subpage);
1837 pte_t swp_pte;
1838 /*
1839 * Store the swap location in the pte.
1840 * See handle_pte_fault() ...
1841 */
1842 if (unlikely(folio_test_swapbacked(folio) !=
1843 folio_test_swapcache(folio))) {
1844 WARN_ON_ONCE(1);
1845 goto walk_abort;
1846 }
1847
1848 /* MADV_FREE page check */
1849 if (!folio_test_swapbacked(folio)) {
1850 int ref_count, map_count;
1851
1852 /*
1853 * Synchronize with gup_pte_range():
1854 * - clear PTE; barrier; read refcount
1855 * - inc refcount; barrier; read PTE
1856 */
1857 smp_mb();
1858
1859 ref_count = folio_ref_count(folio);
1860 map_count = folio_mapcount(folio);
1861
1862 /*
1863 * Order reads for page refcount and dirty flag
1864 * (see comments in __remove_mapping()).
1865 */
1866 smp_rmb();
1867
1868 /*
1869 * The only page refs must be one from isolation
1870 * plus the rmap(s) (dropped by discard:).
1871 */
1872 if (ref_count == 1 + map_count &&
1873 (!folio_test_dirty(folio) ||
1874 /*
1875 * Unlike MADV_FREE mappings, VM_DROPPABLE
1876 * ones can be dropped even if they've
1877 * been dirtied.
1878 */
1879 (vma->vm_flags & VM_DROPPABLE))) {
1880 dec_mm_counter(mm, MM_ANONPAGES);
1881 goto discard;
1882 }
1883
1884 /*
1885 * If the folio was redirtied, it cannot be
1886 * discarded. Remap the page to page table.
1887 */
1888 set_pte_at(mm, address, pvmw.pte, pteval);
1889 /*
1890 * Unlike MADV_FREE mappings, VM_DROPPABLE ones
1891 * never get swap backed on failure to drop.
1892 */
1893 if (!(vma->vm_flags & VM_DROPPABLE))
1894 folio_set_swapbacked(folio);
1895 goto walk_abort;
1896 }
1897
1898 if (swap_duplicate(entry) < 0) {
1899 set_pte_at(mm, address, pvmw.pte, pteval);
1900 goto walk_abort;
1901 }
1902 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1903 swap_free(entry);
1904 set_pte_at(mm, address, pvmw.pte, pteval);
1905 goto walk_abort;
1906 }
1907
1908 /* See folio_try_share_anon_rmap(): clear PTE first. */
1909 if (anon_exclusive &&
1910 folio_try_share_anon_rmap_pte(folio, subpage)) {
1911 swap_free(entry);
1912 set_pte_at(mm, address, pvmw.pte, pteval);
1913 goto walk_abort;
1914 }
1915 if (list_empty(&mm->mmlist)) {
1916 spin_lock(&mmlist_lock);
1917 if (list_empty(&mm->mmlist))
1918 list_add(&mm->mmlist, &init_mm.mmlist);
1919 spin_unlock(&mmlist_lock);
1920 }
1921 dec_mm_counter(mm, MM_ANONPAGES);
1922 inc_mm_counter(mm, MM_SWAPENTS);
1923 swp_pte = swp_entry_to_pte(entry);
1924 if (anon_exclusive)
1925 swp_pte = pte_swp_mkexclusive(swp_pte);
1926 if (pte_soft_dirty(pteval))
1927 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1928 if (pte_uffd_wp(pteval))
1929 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1930 set_pte_at(mm, address, pvmw.pte, swp_pte);
1931 } else {
1932 /*
1933 * This is a locked file-backed folio,
1934 * so it cannot be removed from the page
1935 * cache and replaced by a new folio before
1936 * mmu_notifier_invalidate_range_end, so no
1937 * concurrent thread might update its page table
1938 * to point at a new folio while a device is
1939 * still using this folio.
1940 *
1941 * See Documentation/mm/mmu_notifier.rst
1942 */
1943 dec_mm_counter(mm, mm_counter_file(folio));
1944 }
1945 discard:
1946 if (unlikely(folio_test_hugetlb(folio)))
1947 hugetlb_remove_rmap(folio);
1948 else
1949 folio_remove_rmap_pte(folio, subpage, vma);
1950 if (vma->vm_flags & VM_LOCKED)
1951 mlock_drain_local();
1952 folio_put(folio);
1953 continue;
1954 walk_abort:
1955 ret = false;
1956 walk_done:
1957 page_vma_mapped_walk_done(&pvmw);
1958 break;
1959 }
1960
1961 mmu_notifier_invalidate_range_end(&range);
1962 trace_android_vh_try_to_unmap_one(folio, vma, address, arg, ret);
1963
1964 return ret;
1965 }
1966
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1967 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1968 {
1969 return vma_is_temporary_stack(vma);
1970 }
1971
folio_not_mapped(struct folio * folio)1972 static int folio_not_mapped(struct folio *folio)
1973 {
1974 return !folio_mapped(folio);
1975 }
1976
1977 /**
1978 * try_to_unmap - Try to remove all page table mappings to a folio.
1979 * @folio: The folio to unmap.
1980 * @flags: action and flags
1981 *
1982 * Tries to remove all the page table entries which are mapping this
1983 * folio. It is the caller's responsibility to check if the folio is
1984 * still mapped if needed (use TTU_SYNC to prevent accounting races).
1985 *
1986 * Context: Caller must hold the folio lock.
1987 */
try_to_unmap(struct folio * folio,enum ttu_flags flags)1988 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1989 {
1990 struct rmap_walk_control rwc = {
1991 .rmap_one = try_to_unmap_one,
1992 .arg = (void *)flags,
1993 .done = folio_not_mapped,
1994 .anon_lock = folio_lock_anon_vma_read,
1995 };
1996
1997 if (flags & TTU_RMAP_LOCKED)
1998 rmap_walk_locked(folio, &rwc);
1999 else
2000 rmap_walk(folio, &rwc);
2001 }
2002
2003 /*
2004 * @arg: enum ttu_flags will be passed to this argument.
2005 *
2006 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
2007 * containing migration entries.
2008 */
try_to_migrate_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * arg)2009 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2010 unsigned long address, void *arg)
2011 {
2012 struct mm_struct *mm = vma->vm_mm;
2013 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2014 pte_t pteval;
2015 struct page *subpage;
2016 bool anon_exclusive, ret = true;
2017 struct mmu_notifier_range range;
2018 enum ttu_flags flags = (enum ttu_flags)(long)arg;
2019 unsigned long pfn;
2020 unsigned long hsz = 0;
2021
2022 /*
2023 * When racing against e.g. zap_pte_range() on another cpu,
2024 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2025 * try_to_migrate() may return before page_mapped() has become false,
2026 * if page table locking is skipped: use TTU_SYNC to wait for that.
2027 */
2028 if (flags & TTU_SYNC)
2029 pvmw.flags = PVMW_SYNC;
2030
2031 /*
2032 * unmap_page() in mm/huge_memory.c is the only user of migration with
2033 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
2034 */
2035 if (flags & TTU_SPLIT_HUGE_PMD)
2036 split_huge_pmd_address(vma, address, true, folio);
2037
2038 /*
2039 * For THP, we have to assume the worse case ie pmd for invalidation.
2040 * For hugetlb, it could be much worse if we need to do pud
2041 * invalidation in the case of pmd sharing.
2042 *
2043 * Note that the page can not be free in this function as call of
2044 * try_to_unmap() must hold a reference on the page.
2045 */
2046 range.end = vma_address_end(&pvmw);
2047 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2048 address, range.end);
2049 if (folio_test_hugetlb(folio)) {
2050 /*
2051 * If sharing is possible, start and end will be adjusted
2052 * accordingly.
2053 */
2054 adjust_range_if_pmd_sharing_possible(vma, &range.start,
2055 &range.end);
2056
2057 /* We need the huge page size for set_huge_pte_at() */
2058 hsz = huge_page_size(hstate_vma(vma));
2059 }
2060 mmu_notifier_invalidate_range_start(&range);
2061
2062 while (page_vma_mapped_walk(&pvmw)) {
2063 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2064 /* PMD-mapped THP migration entry */
2065 if (!pvmw.pte) {
2066 subpage = folio_page(folio,
2067 pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2068 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2069 !folio_test_pmd_mappable(folio), folio);
2070
2071 if (set_pmd_migration_entry(&pvmw, subpage)) {
2072 ret = false;
2073 page_vma_mapped_walk_done(&pvmw);
2074 break;
2075 }
2076 continue;
2077 }
2078 #endif
2079
2080 /* Unexpected PMD-mapped THP? */
2081 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2082
2083 pfn = pte_pfn(ptep_get(pvmw.pte));
2084
2085 if (folio_is_zone_device(folio)) {
2086 /*
2087 * Our PTE is a non-present device exclusive entry and
2088 * calculating the subpage as for the common case would
2089 * result in an invalid pointer.
2090 *
2091 * Since only PAGE_SIZE pages can currently be
2092 * migrated, just set it to page. This will need to be
2093 * changed when hugepage migrations to device private
2094 * memory are supported.
2095 */
2096 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
2097 subpage = &folio->page;
2098 } else {
2099 subpage = folio_page(folio, pfn - folio_pfn(folio));
2100 }
2101 address = pvmw.address;
2102 anon_exclusive = folio_test_anon(folio) &&
2103 PageAnonExclusive(subpage);
2104
2105 if (folio_test_hugetlb(folio)) {
2106 bool anon = folio_test_anon(folio);
2107
2108 /*
2109 * huge_pmd_unshare may unmap an entire PMD page.
2110 * There is no way of knowing exactly which PMDs may
2111 * be cached for this mm, so we must flush them all.
2112 * start/end were already adjusted above to cover this
2113 * range.
2114 */
2115 flush_cache_range(vma, range.start, range.end);
2116
2117 /*
2118 * To call huge_pmd_unshare, i_mmap_rwsem must be
2119 * held in write mode. Caller needs to explicitly
2120 * do this outside rmap routines.
2121 *
2122 * We also must hold hugetlb vma_lock in write mode.
2123 * Lock order dictates acquiring vma_lock BEFORE
2124 * i_mmap_rwsem. We can only try lock here and
2125 * fail if unsuccessful.
2126 */
2127 if (!anon) {
2128 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2129 if (!hugetlb_vma_trylock_write(vma)) {
2130 page_vma_mapped_walk_done(&pvmw);
2131 ret = false;
2132 break;
2133 }
2134 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2135 hugetlb_vma_unlock_write(vma);
2136 flush_tlb_range(vma,
2137 range.start, range.end);
2138
2139 /*
2140 * The ref count of the PMD page was
2141 * dropped which is part of the way map
2142 * counting is done for shared PMDs.
2143 * Return 'true' here. When there is
2144 * no other sharing, huge_pmd_unshare
2145 * returns false and we will unmap the
2146 * actual page and drop map count
2147 * to zero.
2148 */
2149 page_vma_mapped_walk_done(&pvmw);
2150 break;
2151 }
2152 hugetlb_vma_unlock_write(vma);
2153 }
2154 /* Nuke the hugetlb page table entry */
2155 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2156 } else {
2157 flush_cache_page(vma, address, pfn);
2158 /* Nuke the page table entry. */
2159 if (should_defer_flush(mm, flags)) {
2160 /*
2161 * We clear the PTE but do not flush so potentially
2162 * a remote CPU could still be writing to the folio.
2163 * If the entry was previously clean then the
2164 * architecture must guarantee that a clear->dirty
2165 * transition on a cached TLB entry is written through
2166 * and traps if the PTE is unmapped.
2167 */
2168 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2169
2170 set_tlb_ubc_flush_pending(mm, pteval, address);
2171 } else {
2172 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2173 }
2174 }
2175
2176 /* Set the dirty flag on the folio now the pte is gone. */
2177 if (pte_dirty(pteval))
2178 folio_mark_dirty(folio);
2179
2180 /* Update high watermark before we lower rss */
2181 update_hiwater_rss(mm);
2182
2183 if (folio_is_device_private(folio)) {
2184 unsigned long pfn = folio_pfn(folio);
2185 swp_entry_t entry;
2186 pte_t swp_pte;
2187
2188 if (anon_exclusive)
2189 WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio,
2190 subpage));
2191
2192 /*
2193 * Store the pfn of the page in a special migration
2194 * pte. do_swap_page() will wait until the migration
2195 * pte is removed and then restart fault handling.
2196 */
2197 entry = pte_to_swp_entry(pteval);
2198 if (is_writable_device_private_entry(entry))
2199 entry = make_writable_migration_entry(pfn);
2200 else if (anon_exclusive)
2201 entry = make_readable_exclusive_migration_entry(pfn);
2202 else
2203 entry = make_readable_migration_entry(pfn);
2204 swp_pte = swp_entry_to_pte(entry);
2205
2206 /*
2207 * pteval maps a zone device page and is therefore
2208 * a swap pte.
2209 */
2210 if (pte_swp_soft_dirty(pteval))
2211 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2212 if (pte_swp_uffd_wp(pteval))
2213 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2214 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2215 trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2216 folio_order(folio));
2217 /*
2218 * No need to invalidate here it will synchronize on
2219 * against the special swap migration pte.
2220 */
2221 } else if (PageHWPoison(subpage)) {
2222 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2223 if (folio_test_hugetlb(folio)) {
2224 hugetlb_count_sub(folio_nr_pages(folio), mm);
2225 set_huge_pte_at(mm, address, pvmw.pte, pteval,
2226 hsz);
2227 } else {
2228 dec_mm_counter(mm, mm_counter(folio));
2229 set_pte_at(mm, address, pvmw.pte, pteval);
2230 }
2231
2232 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2233 /*
2234 * The guest indicated that the page content is of no
2235 * interest anymore. Simply discard the pte, vmscan
2236 * will take care of the rest.
2237 * A future reference will then fault in a new zero
2238 * page. When userfaultfd is active, we must not drop
2239 * this page though, as its main user (postcopy
2240 * migration) will not expect userfaults on already
2241 * copied pages.
2242 */
2243 dec_mm_counter(mm, mm_counter(folio));
2244 } else {
2245 swp_entry_t entry;
2246 pte_t swp_pte;
2247
2248 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2249 if (folio_test_hugetlb(folio))
2250 set_huge_pte_at(mm, address, pvmw.pte,
2251 pteval, hsz);
2252 else
2253 set_pte_at(mm, address, pvmw.pte, pteval);
2254 ret = false;
2255 page_vma_mapped_walk_done(&pvmw);
2256 break;
2257 }
2258 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2259 !anon_exclusive, subpage);
2260
2261 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2262 if (folio_test_hugetlb(folio)) {
2263 if (anon_exclusive &&
2264 hugetlb_try_share_anon_rmap(folio)) {
2265 set_huge_pte_at(mm, address, pvmw.pte,
2266 pteval, hsz);
2267 ret = false;
2268 page_vma_mapped_walk_done(&pvmw);
2269 break;
2270 }
2271 } else if (anon_exclusive &&
2272 folio_try_share_anon_rmap_pte(folio, subpage)) {
2273 set_pte_at(mm, address, pvmw.pte, pteval);
2274 ret = false;
2275 page_vma_mapped_walk_done(&pvmw);
2276 break;
2277 }
2278
2279 /*
2280 * Store the pfn of the page in a special migration
2281 * pte. do_swap_page() will wait until the migration
2282 * pte is removed and then restart fault handling.
2283 */
2284 if (pte_write(pteval))
2285 entry = make_writable_migration_entry(
2286 page_to_pfn(subpage));
2287 else if (anon_exclusive)
2288 entry = make_readable_exclusive_migration_entry(
2289 page_to_pfn(subpage));
2290 else
2291 entry = make_readable_migration_entry(
2292 page_to_pfn(subpage));
2293 if (pte_young(pteval))
2294 entry = make_migration_entry_young(entry);
2295 if (pte_dirty(pteval))
2296 entry = make_migration_entry_dirty(entry);
2297 swp_pte = swp_entry_to_pte(entry);
2298 if (pte_soft_dirty(pteval))
2299 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2300 if (pte_uffd_wp(pteval))
2301 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2302 if (folio_test_hugetlb(folio))
2303 set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2304 hsz);
2305 else
2306 set_pte_at(mm, address, pvmw.pte, swp_pte);
2307 trace_set_migration_pte(address, pte_val(swp_pte),
2308 folio_order(folio));
2309 trace_android_vh_mm_migrate_one_page(subpage, vma->vm_flags);
2310 /*
2311 * No need to invalidate here it will synchronize on
2312 * against the special swap migration pte.
2313 */
2314 }
2315
2316 if (unlikely(folio_test_hugetlb(folio)))
2317 hugetlb_remove_rmap(folio);
2318 else
2319 folio_remove_rmap_pte(folio, subpage, vma);
2320 if (vma->vm_flags & VM_LOCKED)
2321 mlock_drain_local();
2322 folio_put(folio);
2323 }
2324
2325 mmu_notifier_invalidate_range_end(&range);
2326
2327 return ret;
2328 }
2329
2330 /**
2331 * try_to_migrate - try to replace all page table mappings with swap entries
2332 * @folio: the folio to replace page table entries for
2333 * @flags: action and flags
2334 *
2335 * Tries to remove all the page table entries which are mapping this folio and
2336 * replace them with special swap entries. Caller must hold the folio lock.
2337 */
try_to_migrate(struct folio * folio,enum ttu_flags flags)2338 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2339 {
2340 struct rmap_walk_control rwc = {
2341 .rmap_one = try_to_migrate_one,
2342 .arg = (void *)flags,
2343 .done = folio_not_mapped,
2344 .anon_lock = folio_lock_anon_vma_read,
2345 };
2346
2347 /*
2348 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2349 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2350 */
2351 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2352 TTU_SYNC | TTU_BATCH_FLUSH)))
2353 return;
2354
2355 if (folio_is_zone_device(folio) &&
2356 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2357 return;
2358
2359 /*
2360 * During exec, a temporary VMA is setup and later moved.
2361 * The VMA is moved under the anon_vma lock but not the
2362 * page tables leading to a race where migration cannot
2363 * find the migration ptes. Rather than increasing the
2364 * locking requirements of exec(), migration skips
2365 * temporary VMAs until after exec() completes.
2366 */
2367 if (!folio_test_ksm(folio) && folio_test_anon(folio))
2368 rwc.invalid_vma = invalid_migration_vma;
2369
2370 if (flags & TTU_RMAP_LOCKED)
2371 rmap_walk_locked(folio, &rwc);
2372 else
2373 rmap_walk(folio, &rwc);
2374 }
2375
2376 #ifdef CONFIG_DEVICE_PRIVATE
2377 struct make_exclusive_args {
2378 struct mm_struct *mm;
2379 unsigned long address;
2380 void *owner;
2381 bool valid;
2382 };
2383
page_make_device_exclusive_one(struct folio * folio,struct vm_area_struct * vma,unsigned long address,void * priv)2384 static bool page_make_device_exclusive_one(struct folio *folio,
2385 struct vm_area_struct *vma, unsigned long address, void *priv)
2386 {
2387 struct mm_struct *mm = vma->vm_mm;
2388 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2389 struct make_exclusive_args *args = priv;
2390 pte_t pteval;
2391 struct page *subpage;
2392 bool ret = true;
2393 struct mmu_notifier_range range;
2394 swp_entry_t entry;
2395 pte_t swp_pte;
2396 pte_t ptent;
2397
2398 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2399 vma->vm_mm, address, min(vma->vm_end,
2400 address + folio_size(folio)),
2401 args->owner);
2402 mmu_notifier_invalidate_range_start(&range);
2403
2404 while (page_vma_mapped_walk(&pvmw)) {
2405 /* Unexpected PMD-mapped THP? */
2406 VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2407
2408 ptent = ptep_get(pvmw.pte);
2409 if (!pte_present(ptent)) {
2410 ret = false;
2411 page_vma_mapped_walk_done(&pvmw);
2412 break;
2413 }
2414
2415 subpage = folio_page(folio,
2416 pte_pfn(ptent) - folio_pfn(folio));
2417 address = pvmw.address;
2418
2419 /* Nuke the page table entry. */
2420 flush_cache_page(vma, address, pte_pfn(ptent));
2421 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2422
2423 /* Set the dirty flag on the folio now the pte is gone. */
2424 if (pte_dirty(pteval))
2425 folio_mark_dirty(folio);
2426
2427 /*
2428 * Check that our target page is still mapped at the expected
2429 * address.
2430 */
2431 if (args->mm == mm && args->address == address &&
2432 pte_write(pteval))
2433 args->valid = true;
2434
2435 /*
2436 * Store the pfn of the page in a special migration
2437 * pte. do_swap_page() will wait until the migration
2438 * pte is removed and then restart fault handling.
2439 */
2440 if (pte_write(pteval))
2441 entry = make_writable_device_exclusive_entry(
2442 page_to_pfn(subpage));
2443 else
2444 entry = make_readable_device_exclusive_entry(
2445 page_to_pfn(subpage));
2446 swp_pte = swp_entry_to_pte(entry);
2447 if (pte_soft_dirty(pteval))
2448 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2449 if (pte_uffd_wp(pteval))
2450 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2451
2452 set_pte_at(mm, address, pvmw.pte, swp_pte);
2453
2454 /*
2455 * There is a reference on the page for the swap entry which has
2456 * been removed, so shouldn't take another.
2457 */
2458 folio_remove_rmap_pte(folio, subpage, vma);
2459 }
2460
2461 mmu_notifier_invalidate_range_end(&range);
2462
2463 return ret;
2464 }
2465
2466 /**
2467 * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2468 * @folio: The folio to replace page table entries for.
2469 * @mm: The mm_struct where the folio is expected to be mapped.
2470 * @address: Address where the folio is expected to be mapped.
2471 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2472 *
2473 * Tries to remove all the page table entries which are mapping this
2474 * folio and replace them with special device exclusive swap entries to
2475 * grant a device exclusive access to the folio.
2476 *
2477 * Context: Caller must hold the folio lock.
2478 * Return: false if the page is still mapped, or if it could not be unmapped
2479 * from the expected address. Otherwise returns true (success).
2480 */
folio_make_device_exclusive(struct folio * folio,struct mm_struct * mm,unsigned long address,void * owner)2481 static bool folio_make_device_exclusive(struct folio *folio,
2482 struct mm_struct *mm, unsigned long address, void *owner)
2483 {
2484 struct make_exclusive_args args = {
2485 .mm = mm,
2486 .address = address,
2487 .owner = owner,
2488 .valid = false,
2489 };
2490 struct rmap_walk_control rwc = {
2491 .rmap_one = page_make_device_exclusive_one,
2492 .done = folio_not_mapped,
2493 .anon_lock = folio_lock_anon_vma_read,
2494 .arg = &args,
2495 };
2496
2497 /*
2498 * Restrict to anonymous folios for now to avoid potential writeback
2499 * issues.
2500 */
2501 if (!folio_test_anon(folio) || folio_test_hugetlb(folio))
2502 return false;
2503
2504 rmap_walk(folio, &rwc);
2505
2506 return args.valid && !folio_mapcount(folio);
2507 }
2508
2509 /**
2510 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2511 * @mm: mm_struct of associated target process
2512 * @start: start of the region to mark for exclusive device access
2513 * @end: end address of region
2514 * @pages: returns the pages which were successfully marked for exclusive access
2515 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2516 *
2517 * Returns: number of pages found in the range by GUP. A page is marked for
2518 * exclusive access only if the page pointer is non-NULL.
2519 *
2520 * This function finds ptes mapping page(s) to the given address range, locks
2521 * them and replaces mappings with special swap entries preventing userspace CPU
2522 * access. On fault these entries are replaced with the original mapping after
2523 * calling MMU notifiers.
2524 *
2525 * A driver using this to program access from a device must use a mmu notifier
2526 * critical section to hold a device specific lock during programming. Once
2527 * programming is complete it should drop the page lock and reference after
2528 * which point CPU access to the page will revoke the exclusive access.
2529 */
make_device_exclusive_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct page ** pages,void * owner)2530 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2531 unsigned long end, struct page **pages,
2532 void *owner)
2533 {
2534 long npages = (end - start) >> PAGE_SHIFT;
2535 long i;
2536
2537 npages = get_user_pages_remote(mm, start, npages,
2538 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2539 pages, NULL);
2540 if (npages < 0)
2541 return npages;
2542
2543 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2544 struct folio *folio = page_folio(pages[i]);
2545 if (PageTail(pages[i]) || !folio_trylock(folio)) {
2546 folio_put(folio);
2547 pages[i] = NULL;
2548 continue;
2549 }
2550
2551 if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2552 folio_unlock(folio);
2553 folio_put(folio);
2554 pages[i] = NULL;
2555 }
2556 }
2557
2558 return npages;
2559 }
2560 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2561 #endif
2562
__put_anon_vma(struct anon_vma * anon_vma)2563 void __put_anon_vma(struct anon_vma *anon_vma)
2564 {
2565 struct anon_vma *root = anon_vma->root;
2566
2567 anon_vma_free(anon_vma);
2568 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2569 anon_vma_free(root);
2570 }
2571
rmap_walk_anon_lock(struct folio * folio,struct rmap_walk_control * rwc)2572 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2573 struct rmap_walk_control *rwc)
2574 {
2575 struct anon_vma *anon_vma;
2576
2577 if (rwc->anon_lock)
2578 return rwc->anon_lock(folio, rwc);
2579
2580 /*
2581 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2582 * because that depends on page_mapped(); but not all its usages
2583 * are holding mmap_lock. Users without mmap_lock are required to
2584 * take a reference count to prevent the anon_vma disappearing
2585 */
2586 anon_vma = folio_anon_vma(folio);
2587 if (!anon_vma)
2588 return NULL;
2589
2590 if (anon_vma_trylock_read(anon_vma))
2591 goto out;
2592
2593 if (rwc->try_lock) {
2594 anon_vma = NULL;
2595 rwc->contended = true;
2596 goto out;
2597 }
2598
2599 anon_vma_lock_read(anon_vma);
2600 out:
2601 return anon_vma;
2602 }
2603
2604 /*
2605 * rmap_walk_anon - do something to anonymous page using the object-based
2606 * rmap method
2607 * @folio: the folio to be handled
2608 * @rwc: control variable according to each walk type
2609 * @locked: caller holds relevant rmap lock
2610 *
2611 * Find all the mappings of a folio using the mapping pointer and the vma
2612 * chains contained in the anon_vma struct it points to.
2613 */
rmap_walk_anon(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2614 static void rmap_walk_anon(struct folio *folio,
2615 struct rmap_walk_control *rwc, bool locked)
2616 {
2617 struct anon_vma *anon_vma;
2618 pgoff_t pgoff_start, pgoff_end;
2619 struct anon_vma_chain *avc;
2620
2621 if (locked) {
2622 anon_vma = folio_anon_vma(folio);
2623 /* anon_vma disappear under us? */
2624 VM_BUG_ON_FOLIO(!anon_vma, folio);
2625 } else {
2626 anon_vma = rmap_walk_anon_lock(folio, rwc);
2627 }
2628 if (!anon_vma)
2629 return;
2630
2631 pgoff_start = folio_pgoff(folio);
2632 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2633 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2634 pgoff_start, pgoff_end) {
2635 struct vm_area_struct *vma = avc->vma;
2636 unsigned long address = vma_address(vma, pgoff_start,
2637 folio_nr_pages(folio));
2638
2639 VM_BUG_ON_VMA(address == -EFAULT, vma);
2640 cond_resched();
2641
2642 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2643 continue;
2644
2645 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2646 break;
2647 if (rwc->done && rwc->done(folio))
2648 break;
2649 }
2650
2651 if (!locked)
2652 anon_vma_unlock_read(anon_vma);
2653 }
2654
2655 /*
2656 * rmap_walk_file - do something to file page using the object-based rmap method
2657 * @folio: the folio to be handled
2658 * @rwc: control variable according to each walk type
2659 * @locked: caller holds relevant rmap lock
2660 *
2661 * Find all the mappings of a folio using the mapping pointer and the vma chains
2662 * contained in the address_space struct it points to.
2663 */
rmap_walk_file(struct folio * folio,struct rmap_walk_control * rwc,bool locked)2664 static void rmap_walk_file(struct folio *folio,
2665 struct rmap_walk_control *rwc, bool locked)
2666 {
2667 struct address_space *mapping = folio_mapping(folio);
2668 pgoff_t pgoff_start, pgoff_end;
2669 struct vm_area_struct *vma;
2670
2671 /*
2672 * The page lock not only makes sure that page->mapping cannot
2673 * suddenly be NULLified by truncation, it makes sure that the
2674 * structure at mapping cannot be freed and reused yet,
2675 * so we can safely take mapping->i_mmap_rwsem.
2676 */
2677 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2678
2679 if (!mapping)
2680 return;
2681
2682 pgoff_start = folio_pgoff(folio);
2683 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2684 if (!locked) {
2685 if (i_mmap_trylock_read(mapping))
2686 goto lookup;
2687
2688 if (rwc->try_lock) {
2689 rwc->contended = true;
2690 return;
2691 }
2692
2693 i_mmap_lock_read(mapping);
2694 }
2695 lookup:
2696 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2697 pgoff_start, pgoff_end) {
2698 unsigned long address = vma_address(vma, pgoff_start,
2699 folio_nr_pages(folio));
2700
2701 VM_BUG_ON_VMA(address == -EFAULT, vma);
2702 cond_resched();
2703
2704 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2705 continue;
2706
2707 if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2708 goto done;
2709 if (rwc->done && rwc->done(folio))
2710 goto done;
2711 }
2712
2713 done:
2714 if (!locked)
2715 i_mmap_unlock_read(mapping);
2716 }
2717
rmap_walk(struct folio * folio,struct rmap_walk_control * rwc)2718 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2719 {
2720 if (unlikely(folio_test_ksm(folio)))
2721 rmap_walk_ksm(folio, rwc);
2722 else if (folio_test_anon(folio))
2723 rmap_walk_anon(folio, rwc, false);
2724 else
2725 rmap_walk_file(folio, rwc, false);
2726 }
2727
2728 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct folio * folio,struct rmap_walk_control * rwc)2729 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2730 {
2731 /* no ksm support for now */
2732 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2733 if (folio_test_anon(folio))
2734 rmap_walk_anon(folio, rwc, true);
2735 else
2736 rmap_walk_file(folio, rwc, true);
2737 }
2738
2739 #ifdef CONFIG_HUGETLB_PAGE
2740 /*
2741 * The following two functions are for anonymous (private mapped) hugepages.
2742 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2743 * and no lru code, because we handle hugepages differently from common pages.
2744 */
hugetlb_add_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address,rmap_t flags)2745 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2746 unsigned long address, rmap_t flags)
2747 {
2748 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2749 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2750
2751 atomic_inc(&folio->_entire_mapcount);
2752 atomic_inc(&folio->_large_mapcount);
2753 if (flags & RMAP_EXCLUSIVE)
2754 SetPageAnonExclusive(&folio->page);
2755 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2756 PageAnonExclusive(&folio->page), folio);
2757 }
2758
hugetlb_add_new_anon_rmap(struct folio * folio,struct vm_area_struct * vma,unsigned long address)2759 void hugetlb_add_new_anon_rmap(struct folio *folio,
2760 struct vm_area_struct *vma, unsigned long address)
2761 {
2762 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2763
2764 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2765 /* increment count (starts at -1) */
2766 atomic_set(&folio->_entire_mapcount, 0);
2767 atomic_set(&folio->_large_mapcount, 0);
2768 folio_clear_hugetlb_restore_reserve(folio);
2769 __folio_set_anon(folio, vma, address, true);
2770 SetPageAnonExclusive(&folio->page);
2771 }
2772 #endif /* CONFIG_HUGETLB_PAGE */
2773