1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->index: links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->page_type: PGTY_zsmalloc, lower 24 bits locate the first object
24 * offset in a subpage of a zspage
25 *
26 * Usage of struct page flags:
27 * PG_private: identifies the first component page
28 * PG_owner_priv_1: identifies the huge component page
29 *
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 /*
35 * lock ordering:
36 * page_lock
37 * pool->migrate_lock
38 * class->lock
39 * zspage->lock
40 */
41
42 #include <linux/module.h>
43 #include <linux/kernel.h>
44 #include <linux/sched.h>
45 #include <linux/bitops.h>
46 #include <linux/errno.h>
47 #include <linux/highmem.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/pgtable.h>
51 #include <asm/tlbflush.h>
52 #include <linux/cpumask.h>
53 #include <linux/cpu.h>
54 #include <linux/vmalloc.h>
55 #include <linux/preempt.h>
56 #include <linux/spinlock.h>
57 #include <linux/sprintf.h>
58 #include <linux/shrinker.h>
59 #include <linux/types.h>
60 #include <linux/debugfs.h>
61 #include <linux/zsmalloc.h>
62 #include <linux/zpool.h>
63 #include <linux/migrate.h>
64 #include <linux/wait.h>
65 #include <linux/pagemap.h>
66 #include <linux/fs.h>
67 #include <linux/local_lock.h>
68 #include <trace/hooks/mm.h>
69
70 #define ZSPAGE_MAGIC 0x58
71
72 /*
73 * This must be power of 2 and greater than or equal to sizeof(link_free).
74 * These two conditions ensure that any 'struct link_free' itself doesn't
75 * span more than 1 page which avoids complex case of mapping 2 pages simply
76 * to restore link_free pointer values.
77 */
78 #define ZS_ALIGN 8
79
80 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
81
82 /*
83 * Object location (<PFN>, <obj_idx>) is encoded as
84 * a single (unsigned long) handle value.
85 *
86 * Note that object index <obj_idx> starts from 0.
87 *
88 * This is made more complicated by various memory models and PAE.
89 */
90
91 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
92 #ifdef MAX_PHYSMEM_BITS
93 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
94 #else
95 /*
96 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
97 * be PAGE_SHIFT
98 */
99 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
100 #endif
101 #endif
102
103 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
104
105 /*
106 * Head in allocated object should have OBJ_ALLOCATED_TAG
107 * to identify the object was allocated or not.
108 * It's okay to add the status bit in the least bit because
109 * header keeps handle which is 4byte-aligned address so we
110 * have room for two bit at least.
111 */
112 #define OBJ_ALLOCATED_TAG 1
113
114 #define OBJ_TAG_BITS 1
115 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
116
117 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
118 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119
120 #define HUGE_BITS 1
121 #define FULLNESS_BITS 4
122 #define CLASS_BITS 8
123 #define MAGIC_VAL_BITS 8
124
125 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
126
127 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
128 #define ZS_MIN_ALLOC_SIZE \
129 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
130 /* each chunk includes extra space to keep handle */
131 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
132
133 /*
134 * On systems with 4K page size, this gives 255 size classes! There is a
135 * trader-off here:
136 * - Large number of size classes is potentially wasteful as free page are
137 * spread across these classes
138 * - Small number of size classes causes large internal fragmentation
139 * - Probably its better to use specific size classes (empirically
140 * determined). NOTE: all those class sizes must be set as multiple of
141 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
142 *
143 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
144 * (reason above)
145 */
146 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
147 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
148 ZS_SIZE_CLASS_DELTA) + 1)
149
150 /*
151 * Pages are distinguished by the ratio of used memory (that is the ratio
152 * of ->inuse objects to all objects that page can store). For example,
153 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
154 *
155 * The number of fullness groups is not random. It allows us to keep
156 * difference between the least busy page in the group (minimum permitted
157 * number of ->inuse objects) and the most busy page (maximum permitted
158 * number of ->inuse objects) at a reasonable value.
159 */
160 enum fullness_group {
161 ZS_INUSE_RATIO_0,
162 ZS_INUSE_RATIO_10,
163 /* NOTE: 8 more fullness groups here */
164 ZS_INUSE_RATIO_99 = 10,
165 ZS_INUSE_RATIO_100,
166 NR_FULLNESS_GROUPS,
167 };
168
169 enum class_stat_type {
170 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
171 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
172 ZS_OBJS_INUSE,
173 NR_CLASS_STAT_TYPES,
174 };
175
176 struct zs_size_stat {
177 unsigned long objs[NR_CLASS_STAT_TYPES];
178 };
179
180 #ifdef CONFIG_ZSMALLOC_STAT
181 static struct dentry *zs_stat_root;
182 #endif
183
184 static size_t huge_class_size;
185
186 struct size_class {
187 spinlock_t lock;
188 struct list_head fullness_list[NR_FULLNESS_GROUPS];
189 /*
190 * Size of objects stored in this class. Must be multiple
191 * of ZS_ALIGN.
192 */
193 int size;
194 int objs_per_zspage;
195 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
196 int pages_per_zspage;
197
198 unsigned int index;
199 struct zs_size_stat stats;
200 };
201
202 /*
203 * Placed within free objects to form a singly linked list.
204 * For every zspage, zspage->freeobj gives head of this list.
205 *
206 * This must be power of 2 and less than or equal to ZS_ALIGN
207 */
208 struct link_free {
209 union {
210 /*
211 * Free object index;
212 * It's valid for non-allocated object
213 */
214 unsigned long next;
215 /*
216 * Handle of allocated object.
217 */
218 unsigned long handle;
219 };
220 };
221
222 struct zs_pool {
223 const char *name;
224
225 struct size_class *size_class[ZS_SIZE_CLASSES];
226 struct kmem_cache *handle_cachep;
227 struct kmem_cache *zspage_cachep;
228
229 atomic_long_t pages_allocated;
230
231 struct zs_pool_stats stats;
232
233 /* Compact classes */
234 struct shrinker *shrinker;
235
236 #ifdef CONFIG_ZSMALLOC_STAT
237 struct dentry *stat_dentry;
238 #endif
239 #ifdef CONFIG_COMPACTION
240 struct work_struct free_work;
241 #endif
242 /* protect page/zspage migration */
243 rwlock_t migrate_lock;
244 atomic_t compaction_in_progress;
245 };
246
247 struct zspage {
248 struct {
249 unsigned int huge:HUGE_BITS;
250 unsigned int fullness:FULLNESS_BITS;
251 unsigned int class:CLASS_BITS + 1;
252 unsigned int magic:MAGIC_VAL_BITS;
253 };
254 unsigned int inuse;
255 unsigned int freeobj;
256 struct page *first_page;
257 struct list_head list; /* fullness list */
258 struct zs_pool *pool;
259 rwlock_t lock;
260 };
261
262 struct mapping_area {
263 local_lock_t lock;
264 char *vm_buf; /* copy buffer for objects that span pages */
265 char *vm_addr; /* address of kmap_atomic()'ed pages */
266 enum zs_mapmode vm_mm; /* mapping mode */
267 };
268
269 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
SetZsHugePage(struct zspage * zspage)270 static void SetZsHugePage(struct zspage *zspage)
271 {
272 zspage->huge = 1;
273 }
274
ZsHugePage(struct zspage * zspage)275 static bool ZsHugePage(struct zspage *zspage)
276 {
277 return zspage->huge;
278 }
279
280 static void migrate_lock_init(struct zspage *zspage);
281 static void migrate_read_lock(struct zspage *zspage);
282 static void migrate_read_unlock(struct zspage *zspage);
283 static void migrate_write_lock(struct zspage *zspage);
284 static void migrate_write_unlock(struct zspage *zspage);
285
286 #ifdef CONFIG_COMPACTION
287 static void kick_deferred_free(struct zs_pool *pool);
288 static void init_deferred_free(struct zs_pool *pool);
289 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
290 #else
kick_deferred_free(struct zs_pool * pool)291 static void kick_deferred_free(struct zs_pool *pool) {}
init_deferred_free(struct zs_pool * pool)292 static void init_deferred_free(struct zs_pool *pool) {}
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)293 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
294 #endif
295
create_cache(struct zs_pool * pool)296 static int create_cache(struct zs_pool *pool)
297 {
298 char *name;
299
300 name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
301 if (!name)
302 return -ENOMEM;
303 pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
304 0, 0, NULL);
305 kfree(name);
306 if (!pool->handle_cachep)
307 return -EINVAL;
308
309 name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
310 if (!name)
311 return -ENOMEM;
312 pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
313 0, 0, NULL);
314 kfree(name);
315 if (!pool->zspage_cachep) {
316 kmem_cache_destroy(pool->handle_cachep);
317 pool->handle_cachep = NULL;
318 return -EINVAL;
319 }
320
321 return 0;
322 }
323
destroy_cache(struct zs_pool * pool)324 static void destroy_cache(struct zs_pool *pool)
325 {
326 kmem_cache_destroy(pool->handle_cachep);
327 kmem_cache_destroy(pool->zspage_cachep);
328 }
329
cache_alloc_handle(struct zs_pool * pool,gfp_t gfp)330 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
331 {
332 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
333 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE|__GFP_CMA));
334 }
335
cache_free_handle(struct zs_pool * pool,unsigned long handle)336 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
337 {
338 kmem_cache_free(pool->handle_cachep, (void *)handle);
339 }
340
cache_alloc_zspage(struct zs_pool * pool,gfp_t flags)341 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
342 {
343 return kmem_cache_zalloc(pool->zspage_cachep,
344 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE|__GFP_CMA));
345 }
346
cache_free_zspage(struct zs_pool * pool,struct zspage * zspage)347 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
348 {
349 kmem_cache_free(pool->zspage_cachep, zspage);
350 }
351
352 /* class->lock(which owns the handle) synchronizes races */
record_obj(unsigned long handle,unsigned long obj)353 static void record_obj(unsigned long handle, unsigned long obj)
354 {
355 *(unsigned long *)handle = obj;
356 }
357
358 /* zpool driver */
359
360 #ifdef CONFIG_ZPOOL
361
zs_zpool_create(const char * name,gfp_t gfp)362 static void *zs_zpool_create(const char *name, gfp_t gfp)
363 {
364 /*
365 * Ignore global gfp flags: zs_malloc() may be invoked from
366 * different contexts and its caller must provide a valid
367 * gfp mask.
368 */
369 return zs_create_pool(name);
370 }
371
zs_zpool_destroy(void * pool)372 static void zs_zpool_destroy(void *pool)
373 {
374 zs_destroy_pool(pool);
375 }
376
zs_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)377 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
378 unsigned long *handle)
379 {
380 *handle = zs_malloc(pool, size, gfp);
381
382 if (IS_ERR_VALUE(*handle))
383 return PTR_ERR((void *)*handle);
384 return 0;
385 }
zs_zpool_free(void * pool,unsigned long handle)386 static void zs_zpool_free(void *pool, unsigned long handle)
387 {
388 zs_free(pool, handle);
389 }
390
zs_zpool_map(void * pool,unsigned long handle,enum zpool_mapmode mm)391 static void *zs_zpool_map(void *pool, unsigned long handle,
392 enum zpool_mapmode mm)
393 {
394 enum zs_mapmode zs_mm;
395
396 switch (mm) {
397 case ZPOOL_MM_RO:
398 zs_mm = ZS_MM_RO;
399 break;
400 case ZPOOL_MM_WO:
401 zs_mm = ZS_MM_WO;
402 break;
403 case ZPOOL_MM_RW:
404 default:
405 zs_mm = ZS_MM_RW;
406 break;
407 }
408
409 return zs_map_object(pool, handle, zs_mm);
410 }
zs_zpool_unmap(void * pool,unsigned long handle)411 static void zs_zpool_unmap(void *pool, unsigned long handle)
412 {
413 zs_unmap_object(pool, handle);
414 }
415
zs_zpool_total_pages(void * pool)416 static u64 zs_zpool_total_pages(void *pool)
417 {
418 return zs_get_total_pages(pool);
419 }
420
421 static struct zpool_driver zs_zpool_driver = {
422 .type = "zsmalloc",
423 .owner = THIS_MODULE,
424 .create = zs_zpool_create,
425 .destroy = zs_zpool_destroy,
426 .malloc_support_movable = true,
427 .malloc = zs_zpool_malloc,
428 .free = zs_zpool_free,
429 .map = zs_zpool_map,
430 .unmap = zs_zpool_unmap,
431 .total_pages = zs_zpool_total_pages,
432 };
433
434 MODULE_ALIAS("zpool-zsmalloc");
435 #endif /* CONFIG_ZPOOL */
436
437 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
438 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
439 .lock = INIT_LOCAL_LOCK(lock),
440 };
441
is_first_page(struct page * page)442 static __maybe_unused int is_first_page(struct page *page)
443 {
444 return PagePrivate(page);
445 }
446
447 /* Protected by class->lock */
get_zspage_inuse(struct zspage * zspage)448 static inline int get_zspage_inuse(struct zspage *zspage)
449 {
450 return zspage->inuse;
451 }
452
453
mod_zspage_inuse(struct zspage * zspage,int val)454 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
455 {
456 zspage->inuse += val;
457 }
458
get_first_page(struct zspage * zspage)459 static inline struct page *get_first_page(struct zspage *zspage)
460 {
461 struct page *first_page = zspage->first_page;
462
463 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
464 return first_page;
465 }
466
467 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff
468
get_first_obj_offset(struct page * page)469 static inline unsigned int get_first_obj_offset(struct page *page)
470 {
471 VM_WARN_ON_ONCE(!PageZsmalloc(page));
472 return page->page_type & FIRST_OBJ_PAGE_TYPE_MASK;
473 }
474
set_first_obj_offset(struct page * page,unsigned int offset)475 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
476 {
477 /* With 24 bits available, we can support offsets into 16 MiB pages. */
478 BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
479 VM_WARN_ON_ONCE(!PageZsmalloc(page));
480 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
481 page->page_type &= ~FIRST_OBJ_PAGE_TYPE_MASK;
482 page->page_type |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
483 }
484
get_freeobj(struct zspage * zspage)485 static inline unsigned int get_freeobj(struct zspage *zspage)
486 {
487 return zspage->freeobj;
488 }
489
set_freeobj(struct zspage * zspage,unsigned int obj)490 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
491 {
492 zspage->freeobj = obj;
493 }
494
zspage_class(struct zs_pool * pool,struct zspage * zspage)495 static struct size_class *zspage_class(struct zs_pool *pool,
496 struct zspage *zspage)
497 {
498 return pool->size_class[zspage->class];
499 }
500
501 /*
502 * zsmalloc divides the pool into various size classes where each
503 * class maintains a list of zspages where each zspage is divided
504 * into equal sized chunks. Each allocation falls into one of these
505 * classes depending on its size. This function returns index of the
506 * size class which has chunk size big enough to hold the given size.
507 */
get_size_class_index(int size)508 static int get_size_class_index(int size)
509 {
510 int idx = 0;
511
512 if (likely(size > ZS_MIN_ALLOC_SIZE))
513 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
514 ZS_SIZE_CLASS_DELTA);
515
516 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
517 }
518
class_stat_add(struct size_class * class,int type,unsigned long cnt)519 static inline void class_stat_add(struct size_class *class, int type,
520 unsigned long cnt)
521 {
522 class->stats.objs[type] += cnt;
523 }
524
class_stat_sub(struct size_class * class,int type,unsigned long cnt)525 static inline void class_stat_sub(struct size_class *class, int type,
526 unsigned long cnt)
527 {
528 class->stats.objs[type] -= cnt;
529 }
530
class_stat_read(struct size_class * class,int type)531 static inline unsigned long class_stat_read(struct size_class *class, int type)
532 {
533 return class->stats.objs[type];
534 }
535
536 #ifdef CONFIG_ZSMALLOC_STAT
537
zs_stat_init(void)538 static void __init zs_stat_init(void)
539 {
540 if (!debugfs_initialized()) {
541 pr_warn("debugfs not available, stat dir not created\n");
542 return;
543 }
544
545 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
546 }
547
zs_stat_exit(void)548 static void __exit zs_stat_exit(void)
549 {
550 debugfs_remove_recursive(zs_stat_root);
551 }
552
553 static unsigned long zs_can_compact(struct size_class *class);
554
zs_stats_size_show(struct seq_file * s,void * v)555 static int zs_stats_size_show(struct seq_file *s, void *v)
556 {
557 int i, fg;
558 struct zs_pool *pool = s->private;
559 struct size_class *class;
560 int objs_per_zspage;
561 unsigned long obj_allocated, obj_used, pages_used, freeable;
562 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
563 unsigned long total_freeable = 0;
564 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
565
566 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
567 "class", "size", "10%", "20%", "30%", "40%",
568 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
569 "obj_allocated", "obj_used", "pages_used",
570 "pages_per_zspage", "freeable");
571
572 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
573
574 class = pool->size_class[i];
575
576 if (class->index != i)
577 continue;
578
579 spin_lock(&class->lock);
580
581 seq_printf(s, " %5u %5u ", i, class->size);
582 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
583 inuse_totals[fg] += class_stat_read(class, fg);
584 seq_printf(s, "%9lu ", class_stat_read(class, fg));
585 }
586
587 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
588 obj_used = class_stat_read(class, ZS_OBJS_INUSE);
589 freeable = zs_can_compact(class);
590 spin_unlock(&class->lock);
591
592 objs_per_zspage = class->objs_per_zspage;
593 pages_used = obj_allocated / objs_per_zspage *
594 class->pages_per_zspage;
595
596 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
597 obj_allocated, obj_used, pages_used,
598 class->pages_per_zspage, freeable);
599
600 total_objs += obj_allocated;
601 total_used_objs += obj_used;
602 total_pages += pages_used;
603 total_freeable += freeable;
604 }
605
606 seq_puts(s, "\n");
607 seq_printf(s, " %5s %5s ", "Total", "");
608
609 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
610 seq_printf(s, "%9lu ", inuse_totals[fg]);
611
612 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
613 total_objs, total_used_objs, total_pages, "",
614 total_freeable);
615
616 return 0;
617 }
618 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
619
zs_pool_stat_create(struct zs_pool * pool,const char * name)620 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
621 {
622 if (!zs_stat_root) {
623 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
624 return;
625 }
626
627 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
628
629 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
630 &zs_stats_size_fops);
631 }
632
zs_pool_stat_destroy(struct zs_pool * pool)633 static void zs_pool_stat_destroy(struct zs_pool *pool)
634 {
635 debugfs_remove_recursive(pool->stat_dentry);
636 }
637
638 #else /* CONFIG_ZSMALLOC_STAT */
zs_stat_init(void)639 static void __init zs_stat_init(void)
640 {
641 }
642
zs_stat_exit(void)643 static void __exit zs_stat_exit(void)
644 {
645 }
646
zs_pool_stat_create(struct zs_pool * pool,const char * name)647 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
648 {
649 }
650
zs_pool_stat_destroy(struct zs_pool * pool)651 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
652 {
653 }
654 #endif
655
656
657 /*
658 * For each size class, zspages are divided into different groups
659 * depending on their usage ratio. This function returns fullness
660 * status of the given page.
661 */
get_fullness_group(struct size_class * class,struct zspage * zspage)662 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
663 {
664 int inuse, objs_per_zspage, ratio;
665
666 inuse = get_zspage_inuse(zspage);
667 objs_per_zspage = class->objs_per_zspage;
668
669 if (inuse == 0)
670 return ZS_INUSE_RATIO_0;
671 if (inuse == objs_per_zspage)
672 return ZS_INUSE_RATIO_100;
673
674 ratio = 100 * inuse / objs_per_zspage;
675 /*
676 * Take integer division into consideration: a page with one inuse
677 * object out of 127 possible, will end up having 0 usage ratio,
678 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
679 */
680 return ratio / 10 + 1;
681 }
682
683 /*
684 * Each size class maintains various freelists and zspages are assigned
685 * to one of these freelists based on the number of live objects they
686 * have. This functions inserts the given zspage into the freelist
687 * identified by <class, fullness_group>.
688 */
insert_zspage(struct size_class * class,struct zspage * zspage,int fullness)689 static void insert_zspage(struct size_class *class,
690 struct zspage *zspage,
691 int fullness)
692 {
693 class_stat_add(class, fullness, 1);
694 list_add(&zspage->list, &class->fullness_list[fullness]);
695 zspage->fullness = fullness;
696 }
697
698 /*
699 * This function removes the given zspage from the freelist identified
700 * by <class, fullness_group>.
701 */
remove_zspage(struct size_class * class,struct zspage * zspage)702 static void remove_zspage(struct size_class *class, struct zspage *zspage)
703 {
704 int fullness = zspage->fullness;
705
706 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
707
708 list_del_init(&zspage->list);
709 class_stat_sub(class, fullness, 1);
710 }
711
712 /*
713 * Each size class maintains zspages in different fullness groups depending
714 * on the number of live objects they contain. When allocating or freeing
715 * objects, the fullness status of the page can change, for instance, from
716 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
717 * checks if such a status change has occurred for the given page and
718 * accordingly moves the page from the list of the old fullness group to that
719 * of the new fullness group.
720 */
fix_fullness_group(struct size_class * class,struct zspage * zspage)721 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
722 {
723 int newfg;
724
725 newfg = get_fullness_group(class, zspage);
726 if (newfg == zspage->fullness)
727 goto out;
728
729 remove_zspage(class, zspage);
730 insert_zspage(class, zspage, newfg);
731 out:
732 return newfg;
733 }
734
get_zspage(struct page * page)735 static struct zspage *get_zspage(struct page *page)
736 {
737 struct zspage *zspage = (struct zspage *)page_private(page);
738
739 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
740 return zspage;
741 }
742
get_next_page(struct page * page)743 static struct page *get_next_page(struct page *page)
744 {
745 struct zspage *zspage = get_zspage(page);
746
747 if (unlikely(ZsHugePage(zspage)))
748 return NULL;
749
750 return (struct page *)page->index;
751 }
752
753 /**
754 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
755 * @obj: the encoded object value
756 * @page: page object resides in zspage
757 * @obj_idx: object index
758 */
obj_to_location(unsigned long obj,struct page ** page,unsigned int * obj_idx)759 static void obj_to_location(unsigned long obj, struct page **page,
760 unsigned int *obj_idx)
761 {
762 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
763 *obj_idx = (obj & OBJ_INDEX_MASK);
764 }
765
obj_to_page(unsigned long obj,struct page ** page)766 static void obj_to_page(unsigned long obj, struct page **page)
767 {
768 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
769 }
770
771 /**
772 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
773 * @page: page object resides in zspage
774 * @obj_idx: object index
775 */
location_to_obj(struct page * page,unsigned int obj_idx)776 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
777 {
778 unsigned long obj;
779
780 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
781 obj |= obj_idx & OBJ_INDEX_MASK;
782
783 return obj;
784 }
785
handle_to_obj(unsigned long handle)786 static unsigned long handle_to_obj(unsigned long handle)
787 {
788 return *(unsigned long *)handle;
789 }
790
obj_allocated(struct page * page,void * obj,unsigned long * phandle)791 static inline bool obj_allocated(struct page *page, void *obj,
792 unsigned long *phandle)
793 {
794 unsigned long handle;
795 struct zspage *zspage = get_zspage(page);
796
797 if (unlikely(ZsHugePage(zspage))) {
798 VM_BUG_ON_PAGE(!is_first_page(page), page);
799 handle = page->index;
800 } else
801 handle = *(unsigned long *)obj;
802
803 if (!(handle & OBJ_ALLOCATED_TAG))
804 return false;
805
806 /* Clear all tags before returning the handle */
807 *phandle = handle & ~OBJ_TAG_MASK;
808 return true;
809 }
810
reset_page(struct page * page)811 static void reset_page(struct page *page)
812 {
813 __ClearPageMovable(page);
814 ClearPagePrivate(page);
815 set_page_private(page, 0);
816 page->index = 0;
817 __ClearPageZsmalloc(page);
818 }
819
trylock_zspage(struct zspage * zspage)820 static int trylock_zspage(struct zspage *zspage)
821 {
822 struct page *cursor, *fail;
823
824 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
825 get_next_page(cursor)) {
826 if (!trylock_page(cursor)) {
827 fail = cursor;
828 goto unlock;
829 }
830 }
831
832 return 1;
833 unlock:
834 for (cursor = get_first_page(zspage); cursor != fail; cursor =
835 get_next_page(cursor))
836 unlock_page(cursor);
837
838 return 0;
839 }
840
__free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)841 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
842 struct zspage *zspage)
843 {
844 struct page *page, *next;
845
846 assert_spin_locked(&class->lock);
847
848 VM_BUG_ON(get_zspage_inuse(zspage));
849 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
850
851 next = page = get_first_page(zspage);
852 do {
853 VM_BUG_ON_PAGE(!PageLocked(page), page);
854 next = get_next_page(page);
855 reset_page(page);
856 unlock_page(page);
857 dec_zone_page_state(page, NR_ZSPAGES);
858 put_page(page);
859 page = next;
860 } while (page != NULL);
861
862 cache_free_zspage(pool, zspage);
863
864 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
865 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
866 }
867
free_zspage(struct zs_pool * pool,struct size_class * class,struct zspage * zspage)868 static void free_zspage(struct zs_pool *pool, struct size_class *class,
869 struct zspage *zspage)
870 {
871 VM_BUG_ON(get_zspage_inuse(zspage));
872 VM_BUG_ON(list_empty(&zspage->list));
873
874 /*
875 * Since zs_free couldn't be sleepable, this function cannot call
876 * lock_page. The page locks trylock_zspage got will be released
877 * by __free_zspage.
878 */
879 if (!trylock_zspage(zspage)) {
880 kick_deferred_free(pool);
881 return;
882 }
883
884 remove_zspage(class, zspage);
885 __free_zspage(pool, class, zspage);
886 }
887
888 /* Initialize a newly allocated zspage */
init_zspage(struct size_class * class,struct zspage * zspage)889 static void init_zspage(struct size_class *class, struct zspage *zspage)
890 {
891 unsigned int freeobj = 1;
892 unsigned long off = 0;
893 struct page *page = get_first_page(zspage);
894
895 while (page) {
896 struct page *next_page;
897 struct link_free *link;
898 void *vaddr;
899
900 set_first_obj_offset(page, off);
901
902 vaddr = kmap_atomic(page);
903 link = (struct link_free *)vaddr + off / sizeof(*link);
904
905 while ((off += class->size) < PAGE_SIZE) {
906 link->next = freeobj++ << OBJ_TAG_BITS;
907 link += class->size / sizeof(*link);
908 }
909
910 /*
911 * We now come to the last (full or partial) object on this
912 * page, which must point to the first object on the next
913 * page (if present)
914 */
915 next_page = get_next_page(page);
916 if (next_page) {
917 link->next = freeobj++ << OBJ_TAG_BITS;
918 } else {
919 /*
920 * Reset OBJ_TAG_BITS bit to last link to tell
921 * whether it's allocated object or not.
922 */
923 link->next = -1UL << OBJ_TAG_BITS;
924 }
925 kunmap_atomic(vaddr);
926 page = next_page;
927 off %= PAGE_SIZE;
928 }
929
930 set_freeobj(zspage, 0);
931 }
932
create_page_chain(struct size_class * class,struct zspage * zspage,struct page * pages[])933 static void create_page_chain(struct size_class *class, struct zspage *zspage,
934 struct page *pages[])
935 {
936 int i;
937 struct page *page;
938 struct page *prev_page = NULL;
939 int nr_pages = class->pages_per_zspage;
940
941 /*
942 * Allocate individual pages and link them together as:
943 * 1. all pages are linked together using page->index
944 * 2. each sub-page point to zspage using page->private
945 *
946 * we set PG_private to identify the first page (i.e. no other sub-page
947 * has this flag set).
948 */
949 for (i = 0; i < nr_pages; i++) {
950 page = pages[i];
951 set_page_private(page, (unsigned long)zspage);
952 page->index = 0;
953 if (i == 0) {
954 zspage->first_page = page;
955 SetPagePrivate(page);
956 if (unlikely(class->objs_per_zspage == 1 &&
957 class->pages_per_zspage == 1))
958 SetZsHugePage(zspage);
959 } else {
960 prev_page->index = (unsigned long)page;
961 }
962 prev_page = page;
963 }
964 }
965
966 /*
967 * Allocate a zspage for the given size class
968 */
alloc_zspage(struct zs_pool * pool,struct size_class * class,gfp_t gfp)969 static struct zspage *alloc_zspage(struct zs_pool *pool,
970 struct size_class *class,
971 gfp_t gfp)
972 {
973 int i;
974 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
975 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
976
977 if (!zspage)
978 return NULL;
979
980 if (!IS_ENABLED(CONFIG_COMPACTION))
981 gfp &= ~__GFP_MOVABLE;
982
983 zspage->magic = ZSPAGE_MAGIC;
984 migrate_lock_init(zspage);
985
986 for (i = 0; i < class->pages_per_zspage; i++) {
987 struct page *page;
988
989 page = alloc_page(gfp);
990 if (!page) {
991 while (--i >= 0) {
992 dec_zone_page_state(pages[i], NR_ZSPAGES);
993 __ClearPageZsmalloc(pages[i]);
994 __free_page(pages[i]);
995 }
996 cache_free_zspage(pool, zspage);
997 return NULL;
998 }
999 __SetPageZsmalloc(page);
1000
1001 inc_zone_page_state(page, NR_ZSPAGES);
1002 pages[i] = page;
1003 }
1004
1005 create_page_chain(class, zspage, pages);
1006 init_zspage(class, zspage);
1007 zspage->pool = pool;
1008 zspage->class = class->index;
1009
1010 return zspage;
1011 }
1012
find_get_zspage(struct size_class * class)1013 static struct zspage *find_get_zspage(struct size_class *class)
1014 {
1015 int i;
1016 struct zspage *zspage;
1017
1018 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1019 zspage = list_first_entry_or_null(&class->fullness_list[i],
1020 struct zspage, list);
1021 if (zspage)
1022 break;
1023 }
1024
1025 return zspage;
1026 }
1027
__zs_cpu_up(struct mapping_area * area)1028 static inline int __zs_cpu_up(struct mapping_area *area)
1029 {
1030 /*
1031 * Make sure we don't leak memory if a cpu UP notification
1032 * and zs_init() race and both call zs_cpu_up() on the same cpu
1033 */
1034 if (area->vm_buf)
1035 return 0;
1036 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1037 if (!area->vm_buf)
1038 return -ENOMEM;
1039 return 0;
1040 }
1041
__zs_cpu_down(struct mapping_area * area)1042 static inline void __zs_cpu_down(struct mapping_area *area)
1043 {
1044 kfree(area->vm_buf);
1045 area->vm_buf = NULL;
1046 }
1047
__zs_map_object(struct mapping_area * area,struct page * pages[2],int off,int size)1048 static void *__zs_map_object(struct mapping_area *area,
1049 struct page *pages[2], int off, int size)
1050 {
1051 int sizes[2];
1052 void *addr;
1053 char *buf = area->vm_buf;
1054
1055 /* disable page faults to match kmap_atomic() return conditions */
1056 pagefault_disable();
1057
1058 /* no read fastpath */
1059 if (area->vm_mm == ZS_MM_WO)
1060 goto out;
1061
1062 sizes[0] = PAGE_SIZE - off;
1063 sizes[1] = size - sizes[0];
1064
1065 /* copy object to per-cpu buffer */
1066 addr = kmap_atomic(pages[0]);
1067 memcpy(buf, addr + off, sizes[0]);
1068 kunmap_atomic(addr);
1069 addr = kmap_atomic(pages[1]);
1070 memcpy(buf + sizes[0], addr, sizes[1]);
1071 kunmap_atomic(addr);
1072 out:
1073 return area->vm_buf;
1074 }
1075
__zs_unmap_object(struct mapping_area * area,struct page * pages[2],int off,int size)1076 static void __zs_unmap_object(struct mapping_area *area,
1077 struct page *pages[2], int off, int size)
1078 {
1079 int sizes[2];
1080 void *addr;
1081 char *buf;
1082
1083 /* no write fastpath */
1084 if (area->vm_mm == ZS_MM_RO)
1085 goto out;
1086
1087 buf = area->vm_buf;
1088 buf = buf + ZS_HANDLE_SIZE;
1089 size -= ZS_HANDLE_SIZE;
1090 off += ZS_HANDLE_SIZE;
1091
1092 sizes[0] = PAGE_SIZE - off;
1093 sizes[1] = size - sizes[0];
1094
1095 /* copy per-cpu buffer to object */
1096 addr = kmap_atomic(pages[0]);
1097 memcpy(addr + off, buf, sizes[0]);
1098 kunmap_atomic(addr);
1099 addr = kmap_atomic(pages[1]);
1100 memcpy(addr, buf + sizes[0], sizes[1]);
1101 kunmap_atomic(addr);
1102
1103 out:
1104 /* enable page faults to match kunmap_atomic() return conditions */
1105 pagefault_enable();
1106 }
1107
zs_cpu_prepare(unsigned int cpu)1108 static int zs_cpu_prepare(unsigned int cpu)
1109 {
1110 struct mapping_area *area;
1111
1112 area = &per_cpu(zs_map_area, cpu);
1113 return __zs_cpu_up(area);
1114 }
1115
zs_cpu_dead(unsigned int cpu)1116 static int zs_cpu_dead(unsigned int cpu)
1117 {
1118 struct mapping_area *area;
1119
1120 area = &per_cpu(zs_map_area, cpu);
1121 __zs_cpu_down(area);
1122 return 0;
1123 }
1124
can_merge(struct size_class * prev,int pages_per_zspage,int objs_per_zspage)1125 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1126 int objs_per_zspage)
1127 {
1128 if (prev->pages_per_zspage == pages_per_zspage &&
1129 prev->objs_per_zspage == objs_per_zspage)
1130 return true;
1131
1132 return false;
1133 }
1134
zspage_full(struct size_class * class,struct zspage * zspage)1135 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1136 {
1137 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1138 }
1139
zspage_empty(struct zspage * zspage)1140 static bool zspage_empty(struct zspage *zspage)
1141 {
1142 return get_zspage_inuse(zspage) == 0;
1143 }
1144
1145 /**
1146 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1147 * that hold objects of the provided size.
1148 * @pool: zsmalloc pool to use
1149 * @size: object size
1150 *
1151 * Context: Any context.
1152 *
1153 * Return: the index of the zsmalloc &size_class that hold objects of the
1154 * provided size.
1155 */
zs_lookup_class_index(struct zs_pool * pool,unsigned int size)1156 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1157 {
1158 struct size_class *class;
1159
1160 class = pool->size_class[get_size_class_index(size)];
1161
1162 return class->index;
1163 }
1164 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1165
zs_get_total_pages(struct zs_pool * pool)1166 unsigned long zs_get_total_pages(struct zs_pool *pool)
1167 {
1168 return atomic_long_read(&pool->pages_allocated);
1169 }
1170 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1171
1172 /**
1173 * zs_map_object - get address of allocated object from handle.
1174 * @pool: pool from which the object was allocated
1175 * @handle: handle returned from zs_malloc
1176 * @mm: mapping mode to use
1177 *
1178 * Before using an object allocated from zs_malloc, it must be mapped using
1179 * this function. When done with the object, it must be unmapped using
1180 * zs_unmap_object.
1181 *
1182 * Only one object can be mapped per cpu at a time. There is no protection
1183 * against nested mappings.
1184 *
1185 * This function returns with preemption and page faults disabled.
1186 */
zs_map_object(struct zs_pool * pool,unsigned long handle,enum zs_mapmode mm)1187 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1188 enum zs_mapmode mm)
1189 {
1190 struct zspage *zspage;
1191 struct page *page;
1192 unsigned long obj, off;
1193 unsigned int obj_idx;
1194
1195 struct size_class *class;
1196 struct mapping_area *area;
1197 struct page *pages[2];
1198 void *ret;
1199
1200 /*
1201 * Because we use per-cpu mapping areas shared among the
1202 * pools/users, we can't allow mapping in interrupt context
1203 * because it can corrupt another users mappings.
1204 */
1205 BUG_ON(in_interrupt());
1206
1207 /* It guarantees it can get zspage from handle safely */
1208 read_lock(&pool->migrate_lock);
1209 obj = handle_to_obj(handle);
1210 obj_to_location(obj, &page, &obj_idx);
1211 zspage = get_zspage(page);
1212
1213 /*
1214 * migration cannot move any zpages in this zspage. Here, class->lock
1215 * is too heavy since callers would take some time until they calls
1216 * zs_unmap_object API so delegate the locking from class to zspage
1217 * which is smaller granularity.
1218 */
1219 migrate_read_lock(zspage);
1220 read_unlock(&pool->migrate_lock);
1221
1222 class = zspage_class(pool, zspage);
1223 off = offset_in_page(class->size * obj_idx);
1224
1225 local_lock(&zs_map_area.lock);
1226 area = this_cpu_ptr(&zs_map_area);
1227 area->vm_mm = mm;
1228 if (off + class->size <= PAGE_SIZE) {
1229 /* this object is contained entirely within a page */
1230 area->vm_addr = kmap_atomic(page);
1231 ret = area->vm_addr + off;
1232 goto out;
1233 }
1234
1235 /* this object spans two pages */
1236 pages[0] = page;
1237 pages[1] = get_next_page(page);
1238 BUG_ON(!pages[1]);
1239
1240 ret = __zs_map_object(area, pages, off, class->size);
1241 out:
1242 if (likely(!ZsHugePage(zspage)))
1243 ret += ZS_HANDLE_SIZE;
1244
1245 return ret;
1246 }
1247 EXPORT_SYMBOL_GPL(zs_map_object);
1248
zs_unmap_object(struct zs_pool * pool,unsigned long handle)1249 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1250 {
1251 struct zspage *zspage;
1252 struct page *page;
1253 unsigned long obj, off;
1254 unsigned int obj_idx;
1255
1256 struct size_class *class;
1257 struct mapping_area *area;
1258
1259 obj = handle_to_obj(handle);
1260 obj_to_location(obj, &page, &obj_idx);
1261 zspage = get_zspage(page);
1262 class = zspage_class(pool, zspage);
1263 off = offset_in_page(class->size * obj_idx);
1264
1265 area = this_cpu_ptr(&zs_map_area);
1266 if (off + class->size <= PAGE_SIZE)
1267 kunmap_atomic(area->vm_addr);
1268 else {
1269 struct page *pages[2];
1270
1271 pages[0] = page;
1272 pages[1] = get_next_page(page);
1273 BUG_ON(!pages[1]);
1274
1275 __zs_unmap_object(area, pages, off, class->size);
1276 }
1277 local_unlock(&zs_map_area.lock);
1278
1279 migrate_read_unlock(zspage);
1280 }
1281 EXPORT_SYMBOL_GPL(zs_unmap_object);
1282
1283 /**
1284 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1285 * zsmalloc &size_class.
1286 * @pool: zsmalloc pool to use
1287 *
1288 * The function returns the size of the first huge class - any object of equal
1289 * or bigger size will be stored in zspage consisting of a single physical
1290 * page.
1291 *
1292 * Context: Any context.
1293 *
1294 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1295 */
zs_huge_class_size(struct zs_pool * pool)1296 size_t zs_huge_class_size(struct zs_pool *pool)
1297 {
1298 return huge_class_size;
1299 }
1300 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1301
obj_malloc(struct zs_pool * pool,struct zspage * zspage,unsigned long handle)1302 static unsigned long obj_malloc(struct zs_pool *pool,
1303 struct zspage *zspage, unsigned long handle)
1304 {
1305 int i, nr_page, offset;
1306 unsigned long obj;
1307 struct link_free *link;
1308 struct size_class *class;
1309
1310 struct page *m_page;
1311 unsigned long m_offset;
1312 void *vaddr;
1313
1314 class = pool->size_class[zspage->class];
1315 obj = get_freeobj(zspage);
1316
1317 offset = obj * class->size;
1318 nr_page = offset >> PAGE_SHIFT;
1319 m_offset = offset_in_page(offset);
1320 m_page = get_first_page(zspage);
1321
1322 for (i = 0; i < nr_page; i++)
1323 m_page = get_next_page(m_page);
1324
1325 vaddr = kmap_atomic(m_page);
1326 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1327 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1328 if (likely(!ZsHugePage(zspage)))
1329 /* record handle in the header of allocated chunk */
1330 link->handle = handle | OBJ_ALLOCATED_TAG;
1331 else
1332 /* record handle to page->index */
1333 zspage->first_page->index = handle | OBJ_ALLOCATED_TAG;
1334
1335 kunmap_atomic(vaddr);
1336 mod_zspage_inuse(zspage, 1);
1337
1338 obj = location_to_obj(m_page, obj);
1339 record_obj(handle, obj);
1340
1341 return obj;
1342 }
1343
1344
1345 /**
1346 * zs_malloc - Allocate block of given size from pool.
1347 * @pool: pool to allocate from
1348 * @size: size of block to allocate
1349 * @gfp: gfp flags when allocating object
1350 *
1351 * On success, handle to the allocated object is returned,
1352 * otherwise an ERR_PTR().
1353 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1354 */
zs_malloc(struct zs_pool * pool,size_t size,gfp_t gfp)1355 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1356 {
1357 unsigned long handle;
1358 struct size_class *class;
1359 int newfg;
1360 struct zspage *zspage;
1361
1362 if (unlikely(!size))
1363 return (unsigned long)ERR_PTR(-EINVAL);
1364
1365 if (unlikely(size > ZS_MAX_ALLOC_SIZE))
1366 return (unsigned long)ERR_PTR(-ENOSPC);
1367
1368 handle = cache_alloc_handle(pool, gfp);
1369 if (!handle)
1370 return (unsigned long)ERR_PTR(-ENOMEM);
1371
1372 /* extra space in chunk to keep the handle */
1373 size += ZS_HANDLE_SIZE;
1374 class = pool->size_class[get_size_class_index(size)];
1375
1376 /* class->lock effectively protects the zpage migration */
1377 spin_lock(&class->lock);
1378 zspage = find_get_zspage(class);
1379 if (likely(zspage)) {
1380 obj_malloc(pool, zspage, handle);
1381 /* Now move the zspage to another fullness group, if required */
1382 fix_fullness_group(class, zspage);
1383 class_stat_add(class, ZS_OBJS_INUSE, 1);
1384
1385 goto out;
1386 }
1387
1388 spin_unlock(&class->lock);
1389
1390 zspage = alloc_zspage(pool, class, gfp);
1391 if (!zspage) {
1392 cache_free_handle(pool, handle);
1393 return (unsigned long)ERR_PTR(-ENOMEM);
1394 }
1395
1396 spin_lock(&class->lock);
1397 obj_malloc(pool, zspage, handle);
1398 newfg = get_fullness_group(class, zspage);
1399 insert_zspage(class, zspage, newfg);
1400 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1401 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1402 class_stat_add(class, ZS_OBJS_INUSE, 1);
1403
1404 /* We completely set up zspage so mark them as movable */
1405 SetZsPageMovable(pool, zspage);
1406 out:
1407 spin_unlock(&class->lock);
1408
1409 return handle;
1410 }
1411 EXPORT_SYMBOL_GPL(zs_malloc);
1412
obj_free(int class_size,unsigned long obj)1413 static void obj_free(int class_size, unsigned long obj)
1414 {
1415 struct link_free *link;
1416 struct zspage *zspage;
1417 struct page *f_page;
1418 unsigned long f_offset;
1419 unsigned int f_objidx;
1420 void *vaddr;
1421
1422 obj_to_location(obj, &f_page, &f_objidx);
1423 f_offset = offset_in_page(class_size * f_objidx);
1424 zspage = get_zspage(f_page);
1425
1426 vaddr = kmap_atomic(f_page);
1427 link = (struct link_free *)(vaddr + f_offset);
1428
1429 /* Insert this object in containing zspage's freelist */
1430 if (likely(!ZsHugePage(zspage)))
1431 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1432 else
1433 f_page->index = 0;
1434 set_freeobj(zspage, f_objidx);
1435
1436 kunmap_atomic(vaddr);
1437 mod_zspage_inuse(zspage, -1);
1438 }
1439
zs_free(struct zs_pool * pool,unsigned long handle)1440 void zs_free(struct zs_pool *pool, unsigned long handle)
1441 {
1442 struct zspage *zspage;
1443 struct page *f_page;
1444 unsigned long obj;
1445 struct size_class *class;
1446 int fullness;
1447
1448 if (IS_ERR_OR_NULL((void *)handle))
1449 return;
1450
1451 /*
1452 * The pool->migrate_lock protects the race with zpage's migration
1453 * so it's safe to get the page from handle.
1454 */
1455 read_lock(&pool->migrate_lock);
1456 obj = handle_to_obj(handle);
1457 obj_to_page(obj, &f_page);
1458 zspage = get_zspage(f_page);
1459 class = zspage_class(pool, zspage);
1460 spin_lock(&class->lock);
1461 read_unlock(&pool->migrate_lock);
1462
1463 class_stat_sub(class, ZS_OBJS_INUSE, 1);
1464 obj_free(class->size, obj);
1465
1466 fullness = fix_fullness_group(class, zspage);
1467 if (fullness == ZS_INUSE_RATIO_0)
1468 free_zspage(pool, class, zspage);
1469
1470 spin_unlock(&class->lock);
1471 cache_free_handle(pool, handle);
1472 }
1473 EXPORT_SYMBOL_GPL(zs_free);
1474
zs_object_copy(struct size_class * class,unsigned long dst,unsigned long src)1475 static void zs_object_copy(struct size_class *class, unsigned long dst,
1476 unsigned long src)
1477 {
1478 struct page *s_page, *d_page;
1479 unsigned int s_objidx, d_objidx;
1480 unsigned long s_off, d_off;
1481 void *s_addr, *d_addr;
1482 int s_size, d_size, size;
1483 int written = 0;
1484
1485 s_size = d_size = class->size;
1486
1487 obj_to_location(src, &s_page, &s_objidx);
1488 obj_to_location(dst, &d_page, &d_objidx);
1489
1490 s_off = offset_in_page(class->size * s_objidx);
1491 d_off = offset_in_page(class->size * d_objidx);
1492
1493 if (s_off + class->size > PAGE_SIZE)
1494 s_size = PAGE_SIZE - s_off;
1495
1496 if (d_off + class->size > PAGE_SIZE)
1497 d_size = PAGE_SIZE - d_off;
1498
1499 s_addr = kmap_atomic(s_page);
1500 d_addr = kmap_atomic(d_page);
1501
1502 while (1) {
1503 size = min(s_size, d_size);
1504 memcpy(d_addr + d_off, s_addr + s_off, size);
1505 written += size;
1506
1507 if (written == class->size)
1508 break;
1509
1510 s_off += size;
1511 s_size -= size;
1512 d_off += size;
1513 d_size -= size;
1514
1515 /*
1516 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1517 * calls must occurs in reverse order of calls to kmap_atomic().
1518 * So, to call kunmap_atomic(s_addr) we should first call
1519 * kunmap_atomic(d_addr). For more details see
1520 * Documentation/mm/highmem.rst.
1521 */
1522 if (s_off >= PAGE_SIZE) {
1523 kunmap_atomic(d_addr);
1524 kunmap_atomic(s_addr);
1525 s_page = get_next_page(s_page);
1526 s_addr = kmap_atomic(s_page);
1527 d_addr = kmap_atomic(d_page);
1528 s_size = class->size - written;
1529 s_off = 0;
1530 }
1531
1532 if (d_off >= PAGE_SIZE) {
1533 kunmap_atomic(d_addr);
1534 d_page = get_next_page(d_page);
1535 d_addr = kmap_atomic(d_page);
1536 d_size = class->size - written;
1537 d_off = 0;
1538 }
1539 }
1540
1541 kunmap_atomic(d_addr);
1542 kunmap_atomic(s_addr);
1543 }
1544
1545 /*
1546 * Find alloced object in zspage from index object and
1547 * return handle.
1548 */
find_alloced_obj(struct size_class * class,struct page * page,int * obj_idx)1549 static unsigned long find_alloced_obj(struct size_class *class,
1550 struct page *page, int *obj_idx)
1551 {
1552 unsigned int offset;
1553 int index = *obj_idx;
1554 unsigned long handle = 0;
1555 void *addr = kmap_atomic(page);
1556
1557 offset = get_first_obj_offset(page);
1558 offset += class->size * index;
1559
1560 while (offset < PAGE_SIZE) {
1561 if (obj_allocated(page, addr + offset, &handle))
1562 break;
1563
1564 offset += class->size;
1565 index++;
1566 }
1567
1568 kunmap_atomic(addr);
1569
1570 *obj_idx = index;
1571
1572 return handle;
1573 }
1574
migrate_zspage(struct zs_pool * pool,struct zspage * src_zspage,struct zspage * dst_zspage)1575 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
1576 struct zspage *dst_zspage)
1577 {
1578 unsigned long used_obj, free_obj;
1579 unsigned long handle;
1580 int obj_idx = 0;
1581 struct page *s_page = get_first_page(src_zspage);
1582 struct size_class *class = pool->size_class[src_zspage->class];
1583
1584 while (1) {
1585 handle = find_alloced_obj(class, s_page, &obj_idx);
1586 if (!handle) {
1587 s_page = get_next_page(s_page);
1588 if (!s_page)
1589 break;
1590 obj_idx = 0;
1591 continue;
1592 }
1593
1594 used_obj = handle_to_obj(handle);
1595 free_obj = obj_malloc(pool, dst_zspage, handle);
1596 zs_object_copy(class, free_obj, used_obj);
1597 obj_idx++;
1598 obj_free(class->size, used_obj);
1599
1600 /* Stop if there is no more space */
1601 if (zspage_full(class, dst_zspage))
1602 break;
1603
1604 /* Stop if there are no more objects to migrate */
1605 if (zspage_empty(src_zspage))
1606 break;
1607 }
1608 }
1609
isolate_src_zspage(struct size_class * class)1610 static struct zspage *isolate_src_zspage(struct size_class *class)
1611 {
1612 struct zspage *zspage;
1613 int fg;
1614
1615 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1616 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1617 struct zspage, list);
1618 if (zspage) {
1619 remove_zspage(class, zspage);
1620 return zspage;
1621 }
1622 }
1623
1624 return zspage;
1625 }
1626
isolate_dst_zspage(struct size_class * class)1627 static struct zspage *isolate_dst_zspage(struct size_class *class)
1628 {
1629 struct zspage *zspage;
1630 int fg;
1631
1632 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1633 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1634 struct zspage, list);
1635 if (zspage) {
1636 remove_zspage(class, zspage);
1637 return zspage;
1638 }
1639 }
1640
1641 return zspage;
1642 }
1643
1644 /*
1645 * putback_zspage - add @zspage into right class's fullness list
1646 * @class: destination class
1647 * @zspage: target page
1648 *
1649 * Return @zspage's fullness status
1650 */
putback_zspage(struct size_class * class,struct zspage * zspage)1651 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1652 {
1653 int fullness;
1654
1655 fullness = get_fullness_group(class, zspage);
1656 insert_zspage(class, zspage, fullness);
1657
1658 return fullness;
1659 }
1660
1661 #ifdef CONFIG_COMPACTION
1662 /*
1663 * To prevent zspage destroy during migration, zspage freeing should
1664 * hold locks of all pages in the zspage.
1665 */
lock_zspage(struct zspage * zspage)1666 static void lock_zspage(struct zspage *zspage)
1667 {
1668 struct page *curr_page, *page;
1669
1670 /*
1671 * Pages we haven't locked yet can be migrated off the list while we're
1672 * trying to lock them, so we need to be careful and only attempt to
1673 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1674 * may no longer belong to the zspage. This means that we may wait for
1675 * the wrong page to unlock, so we must take a reference to the page
1676 * prior to waiting for it to unlock outside migrate_read_lock().
1677 */
1678 while (1) {
1679 migrate_read_lock(zspage);
1680 page = get_first_page(zspage);
1681 if (trylock_page(page))
1682 break;
1683 get_page(page);
1684 migrate_read_unlock(zspage);
1685 wait_on_page_locked(page);
1686 put_page(page);
1687 }
1688
1689 curr_page = page;
1690 while ((page = get_next_page(curr_page))) {
1691 if (trylock_page(page)) {
1692 curr_page = page;
1693 } else {
1694 get_page(page);
1695 migrate_read_unlock(zspage);
1696 wait_on_page_locked(page);
1697 put_page(page);
1698 migrate_read_lock(zspage);
1699 }
1700 }
1701 migrate_read_unlock(zspage);
1702 }
1703 #endif /* CONFIG_COMPACTION */
1704
migrate_lock_init(struct zspage * zspage)1705 static void migrate_lock_init(struct zspage *zspage)
1706 {
1707 rwlock_init(&zspage->lock);
1708 }
1709
migrate_read_lock(struct zspage * zspage)1710 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1711 {
1712 read_lock(&zspage->lock);
1713 }
1714
migrate_read_unlock(struct zspage * zspage)1715 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1716 {
1717 read_unlock(&zspage->lock);
1718 }
1719
migrate_write_lock(struct zspage * zspage)1720 static void migrate_write_lock(struct zspage *zspage)
1721 {
1722 write_lock(&zspage->lock);
1723 }
1724
migrate_write_unlock(struct zspage * zspage)1725 static void migrate_write_unlock(struct zspage *zspage)
1726 {
1727 write_unlock(&zspage->lock);
1728 }
1729
1730 #ifdef CONFIG_COMPACTION
1731
1732 static const struct movable_operations zsmalloc_mops;
1733
replace_sub_page(struct size_class * class,struct zspage * zspage,struct page * newpage,struct page * oldpage)1734 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1735 struct page *newpage, struct page *oldpage)
1736 {
1737 struct page *page;
1738 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1739 int idx = 0;
1740
1741 page = get_first_page(zspage);
1742 do {
1743 if (page == oldpage)
1744 pages[idx] = newpage;
1745 else
1746 pages[idx] = page;
1747 idx++;
1748 } while ((page = get_next_page(page)) != NULL);
1749
1750 create_page_chain(class, zspage, pages);
1751 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1752 if (unlikely(ZsHugePage(zspage)))
1753 newpage->index = oldpage->index;
1754 __SetPageMovable(newpage, &zsmalloc_mops);
1755 }
1756
zs_page_isolate(struct page * page,isolate_mode_t mode)1757 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1758 {
1759 /*
1760 * Page is locked so zspage couldn't be destroyed. For detail, look at
1761 * lock_zspage in free_zspage.
1762 */
1763 VM_BUG_ON_PAGE(PageIsolated(page), page);
1764
1765 return true;
1766 }
1767
zs_page_migrate(struct page * newpage,struct page * page,enum migrate_mode mode)1768 static int zs_page_migrate(struct page *newpage, struct page *page,
1769 enum migrate_mode mode)
1770 {
1771 struct zs_pool *pool;
1772 struct size_class *class;
1773 struct zspage *zspage;
1774 struct page *dummy;
1775 void *s_addr, *d_addr, *addr;
1776 unsigned int offset;
1777 unsigned long handle;
1778 unsigned long old_obj, new_obj;
1779 unsigned int obj_idx;
1780
1781 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1782
1783 /* We're committed, tell the world that this is a Zsmalloc page. */
1784 __SetPageZsmalloc(newpage);
1785
1786 /* The page is locked, so this pointer must remain valid */
1787 zspage = get_zspage(page);
1788 pool = zspage->pool;
1789
1790 /*
1791 * The pool migrate_lock protects the race between zpage migration
1792 * and zs_free.
1793 */
1794 write_lock(&pool->migrate_lock);
1795 class = zspage_class(pool, zspage);
1796
1797 /*
1798 * the class lock protects zpage alloc/free in the zspage.
1799 */
1800 spin_lock(&class->lock);
1801 /* the migrate_write_lock protects zpage access via zs_map_object */
1802 migrate_write_lock(zspage);
1803
1804 offset = get_first_obj_offset(page);
1805 s_addr = kmap_atomic(page);
1806
1807 /*
1808 * Here, any user cannot access all objects in the zspage so let's move.
1809 */
1810 d_addr = kmap_atomic(newpage);
1811 copy_page(d_addr, s_addr);
1812 kunmap_atomic(d_addr);
1813
1814 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1815 addr += class->size) {
1816 if (obj_allocated(page, addr, &handle)) {
1817
1818 old_obj = handle_to_obj(handle);
1819 obj_to_location(old_obj, &dummy, &obj_idx);
1820 new_obj = (unsigned long)location_to_obj(newpage,
1821 obj_idx);
1822 record_obj(handle, new_obj);
1823 }
1824 }
1825 kunmap_atomic(s_addr);
1826
1827 replace_sub_page(class, zspage, newpage, page);
1828 /*
1829 * Since we complete the data copy and set up new zspage structure,
1830 * it's okay to release migration_lock.
1831 */
1832 write_unlock(&pool->migrate_lock);
1833 spin_unlock(&class->lock);
1834 migrate_write_unlock(zspage);
1835
1836 get_page(newpage);
1837 if (page_zone(newpage) != page_zone(page)) {
1838 dec_zone_page_state(page, NR_ZSPAGES);
1839 inc_zone_page_state(newpage, NR_ZSPAGES);
1840 }
1841
1842 reset_page(page);
1843 put_page(page);
1844
1845 return MIGRATEPAGE_SUCCESS;
1846 }
1847
zs_page_putback(struct page * page)1848 static void zs_page_putback(struct page *page)
1849 {
1850 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1851 }
1852
1853 static const struct movable_operations zsmalloc_mops = {
1854 .isolate_page = zs_page_isolate,
1855 .migrate_page = zs_page_migrate,
1856 .putback_page = zs_page_putback,
1857 };
1858
1859 /*
1860 * Caller should hold page_lock of all pages in the zspage
1861 * In here, we cannot use zspage meta data.
1862 */
async_free_zspage(struct work_struct * work)1863 static void async_free_zspage(struct work_struct *work)
1864 {
1865 int i;
1866 struct size_class *class;
1867 struct zspage *zspage, *tmp;
1868 LIST_HEAD(free_pages);
1869 struct zs_pool *pool = container_of(work, struct zs_pool,
1870 free_work);
1871
1872 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1873 class = pool->size_class[i];
1874 if (class->index != i)
1875 continue;
1876
1877 spin_lock(&class->lock);
1878 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1879 &free_pages);
1880 spin_unlock(&class->lock);
1881 }
1882
1883 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1884 list_del(&zspage->list);
1885 lock_zspage(zspage);
1886
1887 class = zspage_class(pool, zspage);
1888 spin_lock(&class->lock);
1889 class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
1890 __free_zspage(pool, class, zspage);
1891 spin_unlock(&class->lock);
1892 }
1893 };
1894
kick_deferred_free(struct zs_pool * pool)1895 static void kick_deferred_free(struct zs_pool *pool)
1896 {
1897 schedule_work(&pool->free_work);
1898 }
1899
zs_flush_migration(struct zs_pool * pool)1900 static void zs_flush_migration(struct zs_pool *pool)
1901 {
1902 flush_work(&pool->free_work);
1903 }
1904
init_deferred_free(struct zs_pool * pool)1905 static void init_deferred_free(struct zs_pool *pool)
1906 {
1907 INIT_WORK(&pool->free_work, async_free_zspage);
1908 }
1909
SetZsPageMovable(struct zs_pool * pool,struct zspage * zspage)1910 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1911 {
1912 struct page *page = get_first_page(zspage);
1913
1914 do {
1915 WARN_ON(!trylock_page(page));
1916 __SetPageMovable(page, &zsmalloc_mops);
1917 unlock_page(page);
1918 } while ((page = get_next_page(page)) != NULL);
1919 }
1920 #else
zs_flush_migration(struct zs_pool * pool)1921 static inline void zs_flush_migration(struct zs_pool *pool) { }
1922 #endif
1923
1924 /*
1925 *
1926 * Based on the number of unused allocated objects calculate
1927 * and return the number of pages that we can free.
1928 */
zs_can_compact(struct size_class * class)1929 static unsigned long zs_can_compact(struct size_class *class)
1930 {
1931 unsigned long obj_wasted;
1932 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
1933 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
1934
1935 if (obj_allocated <= obj_used)
1936 return 0;
1937
1938 obj_wasted = obj_allocated - obj_used;
1939 obj_wasted /= class->objs_per_zspage;
1940
1941 return obj_wasted * class->pages_per_zspage;
1942 }
1943
__zs_compact(struct zs_pool * pool,struct size_class * class)1944 static unsigned long __zs_compact(struct zs_pool *pool,
1945 struct size_class *class)
1946 {
1947 struct zspage *src_zspage = NULL;
1948 struct zspage *dst_zspage = NULL;
1949 unsigned long pages_freed = 0;
1950
1951 /*
1952 * protect the race between zpage migration and zs_free
1953 * as well as zpage allocation/free
1954 */
1955 write_lock(&pool->migrate_lock);
1956 spin_lock(&class->lock);
1957 while (zs_can_compact(class)) {
1958 int fg;
1959
1960 if (!dst_zspage) {
1961 dst_zspage = isolate_dst_zspage(class);
1962 if (!dst_zspage)
1963 break;
1964 }
1965
1966 src_zspage = isolate_src_zspage(class);
1967 if (!src_zspage)
1968 break;
1969
1970 migrate_write_lock(src_zspage);
1971 migrate_zspage(pool, src_zspage, dst_zspage);
1972 migrate_write_unlock(src_zspage);
1973
1974 fg = putback_zspage(class, src_zspage);
1975 if (fg == ZS_INUSE_RATIO_0) {
1976 free_zspage(pool, class, src_zspage);
1977 pages_freed += class->pages_per_zspage;
1978 }
1979 src_zspage = NULL;
1980
1981 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
1982 || rwlock_is_contended(&pool->migrate_lock)) {
1983 putback_zspage(class, dst_zspage);
1984 dst_zspage = NULL;
1985
1986 spin_unlock(&class->lock);
1987 write_unlock(&pool->migrate_lock);
1988 cond_resched();
1989 write_lock(&pool->migrate_lock);
1990 spin_lock(&class->lock);
1991 }
1992 }
1993
1994 if (src_zspage)
1995 putback_zspage(class, src_zspage);
1996
1997 if (dst_zspage)
1998 putback_zspage(class, dst_zspage);
1999
2000 spin_unlock(&class->lock);
2001 write_unlock(&pool->migrate_lock);
2002
2003 return pages_freed;
2004 }
2005
zs_compact(struct zs_pool * pool)2006 unsigned long zs_compact(struct zs_pool *pool)
2007 {
2008 int i;
2009 struct size_class *class;
2010 unsigned long pages_freed = 0;
2011
2012 /*
2013 * Pool compaction is performed under pool->migrate_lock so it is basically
2014 * single-threaded. Having more than one thread in __zs_compact()
2015 * will increase pool->migrate_lock contention, which will impact other
2016 * zsmalloc operations that need pool->migrate_lock.
2017 */
2018 if (atomic_xchg(&pool->compaction_in_progress, 1))
2019 return 0;
2020
2021 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2022 class = pool->size_class[i];
2023 if (class->index != i)
2024 continue;
2025 pages_freed += __zs_compact(pool, class);
2026 }
2027 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2028 atomic_set(&pool->compaction_in_progress, 0);
2029
2030 return pages_freed;
2031 }
2032 EXPORT_SYMBOL_GPL(zs_compact);
2033
zs_pool_stats(struct zs_pool * pool,struct zs_pool_stats * stats)2034 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2035 {
2036 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2037 }
2038 EXPORT_SYMBOL_GPL(zs_pool_stats);
2039
zs_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)2040 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2041 struct shrink_control *sc)
2042 {
2043 unsigned long pages_freed;
2044 struct zs_pool *pool = shrinker->private_data;
2045
2046 /*
2047 * Compact classes and calculate compaction delta.
2048 * Can run concurrently with a manually triggered
2049 * (by user) compaction.
2050 */
2051 pages_freed = zs_compact(pool);
2052
2053 return pages_freed ? pages_freed : SHRINK_STOP;
2054 }
2055
zs_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)2056 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2057 struct shrink_control *sc)
2058 {
2059 int i;
2060 struct size_class *class;
2061 unsigned long pages_to_free = 0;
2062 struct zs_pool *pool = shrinker->private_data;
2063 bool bypass = false;
2064
2065 trace_android_vh_zs_shrinker_bypass(&bypass);
2066 if (bypass)
2067 return 0;
2068
2069 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2070 class = pool->size_class[i];
2071 if (class->index != i)
2072 continue;
2073
2074 pages_to_free += zs_can_compact(class);
2075 }
2076 trace_android_vh_zs_shrinker_adjust(&pages_to_free);
2077
2078 return pages_to_free;
2079 }
2080
zs_unregister_shrinker(struct zs_pool * pool)2081 static void zs_unregister_shrinker(struct zs_pool *pool)
2082 {
2083 shrinker_free(pool->shrinker);
2084 }
2085
zs_register_shrinker(struct zs_pool * pool)2086 static int zs_register_shrinker(struct zs_pool *pool)
2087 {
2088 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
2089 if (!pool->shrinker)
2090 return -ENOMEM;
2091
2092 pool->shrinker->scan_objects = zs_shrinker_scan;
2093 pool->shrinker->count_objects = zs_shrinker_count;
2094 pool->shrinker->batch = 0;
2095 pool->shrinker->private_data = pool;
2096
2097 shrinker_register(pool->shrinker);
2098
2099 return 0;
2100 }
2101
calculate_zspage_chain_size(int class_size)2102 static int calculate_zspage_chain_size(int class_size)
2103 {
2104 int i, min_waste = INT_MAX;
2105 int chain_size = 1;
2106
2107 if (is_power_of_2(class_size))
2108 return chain_size;
2109
2110 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2111 int waste;
2112
2113 waste = (i * PAGE_SIZE) % class_size;
2114 if (waste < min_waste) {
2115 min_waste = waste;
2116 chain_size = i;
2117 }
2118 }
2119
2120 return chain_size;
2121 }
2122
2123 /**
2124 * zs_create_pool - Creates an allocation pool to work from.
2125 * @name: pool name to be created
2126 *
2127 * This function must be called before anything when using
2128 * the zsmalloc allocator.
2129 *
2130 * On success, a pointer to the newly created pool is returned,
2131 * otherwise NULL.
2132 */
zs_create_pool(const char * name)2133 struct zs_pool *zs_create_pool(const char *name)
2134 {
2135 int i;
2136 struct zs_pool *pool;
2137 struct size_class *prev_class = NULL;
2138
2139 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2140 if (!pool)
2141 return NULL;
2142
2143 init_deferred_free(pool);
2144 rwlock_init(&pool->migrate_lock);
2145 atomic_set(&pool->compaction_in_progress, 0);
2146
2147 pool->name = kstrdup(name, GFP_KERNEL);
2148 if (!pool->name)
2149 goto err;
2150
2151 if (create_cache(pool))
2152 goto err;
2153
2154 /*
2155 * Iterate reversely, because, size of size_class that we want to use
2156 * for merging should be larger or equal to current size.
2157 */
2158 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2159 int size;
2160 int pages_per_zspage;
2161 int objs_per_zspage;
2162 struct size_class *class;
2163 int fullness;
2164
2165 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2166 if (size > ZS_MAX_ALLOC_SIZE)
2167 size = ZS_MAX_ALLOC_SIZE;
2168 pages_per_zspage = calculate_zspage_chain_size(size);
2169 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2170
2171 /*
2172 * We iterate from biggest down to smallest classes,
2173 * so huge_class_size holds the size of the first huge
2174 * class. Any object bigger than or equal to that will
2175 * endup in the huge class.
2176 */
2177 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2178 !huge_class_size) {
2179 huge_class_size = size;
2180 /*
2181 * The object uses ZS_HANDLE_SIZE bytes to store the
2182 * handle. We need to subtract it, because zs_malloc()
2183 * unconditionally adds handle size before it performs
2184 * size class search - so object may be smaller than
2185 * huge class size, yet it still can end up in the huge
2186 * class because it grows by ZS_HANDLE_SIZE extra bytes
2187 * right before class lookup.
2188 */
2189 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2190 }
2191
2192 /*
2193 * size_class is used for normal zsmalloc operation such
2194 * as alloc/free for that size. Although it is natural that we
2195 * have one size_class for each size, there is a chance that we
2196 * can get more memory utilization if we use one size_class for
2197 * many different sizes whose size_class have same
2198 * characteristics. So, we makes size_class point to
2199 * previous size_class if possible.
2200 */
2201 if (prev_class) {
2202 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2203 pool->size_class[i] = prev_class;
2204 continue;
2205 }
2206 }
2207
2208 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2209 if (!class)
2210 goto err;
2211
2212 class->size = size;
2213 class->index = i;
2214 class->pages_per_zspage = pages_per_zspage;
2215 class->objs_per_zspage = objs_per_zspage;
2216 spin_lock_init(&class->lock);
2217 pool->size_class[i] = class;
2218
2219 fullness = ZS_INUSE_RATIO_0;
2220 while (fullness < NR_FULLNESS_GROUPS) {
2221 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2222 fullness++;
2223 }
2224
2225 prev_class = class;
2226 }
2227
2228 /* debug only, don't abort if it fails */
2229 zs_pool_stat_create(pool, name);
2230
2231 /*
2232 * Not critical since shrinker is only used to trigger internal
2233 * defragmentation of the pool which is pretty optional thing. If
2234 * registration fails we still can use the pool normally and user can
2235 * trigger compaction manually. Thus, ignore return code.
2236 */
2237 zs_register_shrinker(pool);
2238
2239 return pool;
2240
2241 err:
2242 zs_destroy_pool(pool);
2243 return NULL;
2244 }
2245 EXPORT_SYMBOL_GPL(zs_create_pool);
2246
zs_destroy_pool(struct zs_pool * pool)2247 void zs_destroy_pool(struct zs_pool *pool)
2248 {
2249 int i;
2250
2251 zs_unregister_shrinker(pool);
2252 zs_flush_migration(pool);
2253 zs_pool_stat_destroy(pool);
2254
2255 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2256 int fg;
2257 struct size_class *class = pool->size_class[i];
2258
2259 if (!class)
2260 continue;
2261
2262 if (class->index != i)
2263 continue;
2264
2265 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2266 if (list_empty(&class->fullness_list[fg]))
2267 continue;
2268
2269 pr_err("Class-%d fullness group %d is not empty\n",
2270 class->size, fg);
2271 }
2272 kfree(class);
2273 }
2274
2275 destroy_cache(pool);
2276 kfree(pool->name);
2277 kfree(pool);
2278 }
2279 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2280
zs_init(void)2281 static int __init zs_init(void)
2282 {
2283 int ret;
2284
2285 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2286 zs_cpu_prepare, zs_cpu_dead);
2287 if (ret)
2288 goto out;
2289
2290 #ifdef CONFIG_ZPOOL
2291 zpool_register_driver(&zs_zpool_driver);
2292 #endif
2293
2294 zs_stat_init();
2295
2296 return 0;
2297
2298 out:
2299 return ret;
2300 }
2301
zs_exit(void)2302 static void __exit zs_exit(void)
2303 {
2304 #ifdef CONFIG_ZPOOL
2305 zpool_unregister_driver(&zs_zpool_driver);
2306 #endif
2307 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2308
2309 zs_stat_exit();
2310 }
2311
2312 module_init(zs_init);
2313 module_exit(zs_exit);
2314
2315 MODULE_LICENSE("Dual BSD/GPL");
2316 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2317 MODULE_DESCRIPTION("zsmalloc memory allocator");
2318