1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 #include <net/proto_memory.h>
43 
44 #include <linux/compiler.h>
45 #include <linux/gfp.h>
46 #include <linux/module.h>
47 #include <linux/static_key.h>
48 #include <linux/skbuff_ref.h>
49 
50 #include <trace/events/tcp.h>
51 #include <trace/hooks/net.h>
52 
53 /* Refresh clocks of a TCP socket,
54  * ensuring monotically increasing values.
55  */
tcp_mstamp_refresh(struct tcp_sock * tp)56 void tcp_mstamp_refresh(struct tcp_sock *tp)
57 {
58 	u64 val = tcp_clock_ns();
59 
60 	tp->tcp_clock_cache = val;
61 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
62 }
63 
64 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
65 			   int push_one, gfp_t gfp);
66 
67 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)68 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
69 {
70 	struct inet_connection_sock *icsk = inet_csk(sk);
71 	struct tcp_sock *tp = tcp_sk(sk);
72 	unsigned int prior_packets = tp->packets_out;
73 
74 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
75 
76 	__skb_unlink(skb, &sk->sk_write_queue);
77 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
78 
79 	if (tp->highest_sack == NULL)
80 		tp->highest_sack = skb;
81 
82 	tp->packets_out += tcp_skb_pcount(skb);
83 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
84 		tcp_rearm_rto(sk);
85 
86 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
87 		      tcp_skb_pcount(skb));
88 	tcp_check_space(sk);
89 }
90 
91 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
92  * window scaling factor due to loss of precision.
93  * If window has been shrunk, what should we make? It is not clear at all.
94  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
95  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
96  * invalid. OK, let's make this for now:
97  */
tcp_acceptable_seq(const struct sock * sk)98 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
99 {
100 	const struct tcp_sock *tp = tcp_sk(sk);
101 
102 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
103 	    (tp->rx_opt.wscale_ok &&
104 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
105 		return tp->snd_nxt;
106 	else
107 		return tcp_wnd_end(tp);
108 }
109 
110 /* Calculate mss to advertise in SYN segment.
111  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
112  *
113  * 1. It is independent of path mtu.
114  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116  *    attached devices, because some buggy hosts are confused by
117  *    large MSS.
118  * 4. We do not make 3, we advertise MSS, calculated from first
119  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
120  *    This may be overridden via information stored in routing table.
121  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122  *    probably even Jumbo".
123  */
tcp_advertise_mss(struct sock * sk)124 static __u16 tcp_advertise_mss(struct sock *sk)
125 {
126 	struct tcp_sock *tp = tcp_sk(sk);
127 	const struct dst_entry *dst = __sk_dst_get(sk);
128 	int mss = tp->advmss;
129 
130 	if (dst) {
131 		unsigned int metric = dst_metric_advmss(dst);
132 
133 		if (metric < mss) {
134 			mss = metric;
135 			tp->advmss = mss;
136 		}
137 	}
138 
139 	return (__u16)mss;
140 }
141 
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143  * This is the first part of cwnd validation mechanism.
144  */
tcp_cwnd_restart(struct sock * sk,s32 delta)145 void tcp_cwnd_restart(struct sock *sk, s32 delta)
146 {
147 	struct tcp_sock *tp = tcp_sk(sk);
148 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
149 	u32 cwnd = tcp_snd_cwnd(tp);
150 
151 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
152 
153 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 	restart_cwnd = min(restart_cwnd, cwnd);
155 
156 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 		cwnd >>= 1;
158 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
159 	tp->snd_cwnd_stamp = tcp_jiffies32;
160 	tp->snd_cwnd_used = 0;
161 }
162 
163 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 				struct sock *sk)
166 {
167 	struct inet_connection_sock *icsk = inet_csk(sk);
168 	const u32 now = tcp_jiffies32;
169 
170 	if (tcp_packets_in_flight(tp) == 0)
171 		tcp_ca_event(sk, CA_EVENT_TX_START);
172 
173 	tp->lsndtime = now;
174 
175 	/* If it is a reply for ato after last received
176 	 * packet, increase pingpong count.
177 	 */
178 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
179 		inet_csk_inc_pingpong_cnt(sk);
180 }
181 
182 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)183 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
184 {
185 	struct tcp_sock *tp = tcp_sk(sk);
186 
187 	if (unlikely(tp->compressed_ack)) {
188 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
189 			      tp->compressed_ack);
190 		tp->compressed_ack = 0;
191 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
192 			__sock_put(sk);
193 	}
194 
195 	if (unlikely(rcv_nxt != tp->rcv_nxt))
196 		return;  /* Special ACK sent by DCTCP to reflect ECN */
197 	tcp_dec_quickack_mode(sk);
198 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
199 }
200 
201 /* Determine a window scaling and initial window to offer.
202  * Based on the assumption that the given amount of space
203  * will be offered. Store the results in the tp structure.
204  * NOTE: for smooth operation initial space offering should
205  * be a multiple of mss if possible. We assume here that mss >= 1.
206  * This MUST be enforced by all callers.
207  */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * __window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
209 			       __u32 *rcv_wnd, __u32 *__window_clamp,
210 			       int wscale_ok, __u8 *rcv_wscale,
211 			       __u32 init_rcv_wnd)
212 {
213 	unsigned int space = (__space < 0 ? 0 : __space);
214 	u32 window_clamp = READ_ONCE(*__window_clamp);
215 
216 	/* If no clamp set the clamp to the max possible scaled window */
217 	if (window_clamp == 0)
218 		window_clamp = (U16_MAX << TCP_MAX_WSCALE);
219 	space = min(window_clamp, space);
220 
221 	/* Quantize space offering to a multiple of mss if possible. */
222 	if (space > mss)
223 		space = rounddown(space, mss);
224 
225 	/* NOTE: offering an initial window larger than 32767
226 	 * will break some buggy TCP stacks. If the admin tells us
227 	 * it is likely we could be speaking with such a buggy stack
228 	 * we will truncate our initial window offering to 32K-1
229 	 * unless the remote has sent us a window scaling option,
230 	 * which we interpret as a sign the remote TCP is not
231 	 * misinterpreting the window field as a signed quantity.
232 	 */
233 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
234 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
235 	else
236 		(*rcv_wnd) = space;
237 
238 	if (init_rcv_wnd)
239 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
240 
241 	*rcv_wscale = 0;
242 	if (wscale_ok) {
243 		/* Set window scaling on max possible window */
244 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
245 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
246 		space = min_t(u32, space, window_clamp);
247 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
248 				      0, TCP_MAX_WSCALE);
249 	}
250 	/* Set the clamp no higher than max representable value */
251 	WRITE_ONCE(*__window_clamp,
252 		   min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
253 }
254 EXPORT_SYMBOL(tcp_select_initial_window);
255 
256 /* Chose a new window to advertise, update state in tcp_sock for the
257  * socket, and return result with RFC1323 scaling applied.  The return
258  * value can be stuffed directly into th->window for an outgoing
259  * frame.
260  */
tcp_select_window(struct sock * sk)261 static u16 tcp_select_window(struct sock *sk)
262 {
263 	struct tcp_sock *tp = tcp_sk(sk);
264 	struct net *net = sock_net(sk);
265 	u32 old_win = tp->rcv_wnd;
266 	u32 cur_win, new_win;
267 
268 	/* Make the window 0 if we failed to queue the data because we
269 	 * are out of memory.
270 	 */
271 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) {
272 		tp->pred_flags = 0;
273 		tp->rcv_wnd = 0;
274 		tp->rcv_wup = tp->rcv_nxt;
275 		return 0;
276 	}
277 
278 	cur_win = tcp_receive_window(tp);
279 	new_win = __tcp_select_window(sk);
280 
281 	trace_android_vh_tcp_select_window(sk, &new_win);
282 
283 	if (new_win < cur_win) {
284 		/* Danger Will Robinson!
285 		 * Don't update rcv_wup/rcv_wnd here or else
286 		 * we will not be able to advertise a zero
287 		 * window in time.  --DaveM
288 		 *
289 		 * Relax Will Robinson.
290 		 */
291 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
292 			/* Never shrink the offered window */
293 			if (new_win == 0)
294 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
295 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
296 		}
297 	}
298 
299 	tp->rcv_wnd = new_win;
300 	tp->rcv_wup = tp->rcv_nxt;
301 
302 	trace_android_rvh_tcp_select_window(sk, &new_win);
303 
304 	/* Make sure we do not exceed the maximum possible
305 	 * scaled window.
306 	 */
307 	if (!tp->rx_opt.rcv_wscale &&
308 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
309 		new_win = min(new_win, MAX_TCP_WINDOW);
310 	else
311 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
312 
313 	/* RFC1323 scaling applied */
314 	new_win >>= tp->rx_opt.rcv_wscale;
315 
316 	/* If we advertise zero window, disable fast path. */
317 	if (new_win == 0) {
318 		tp->pred_flags = 0;
319 		if (old_win)
320 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
321 	} else if (old_win == 0) {
322 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
323 	}
324 
325 	return new_win;
326 }
327 
328 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)329 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
330 {
331 	const struct tcp_sock *tp = tcp_sk(sk);
332 
333 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
334 	if (!(tp->ecn_flags & TCP_ECN_OK))
335 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
336 	else if (tcp_ca_needs_ecn(sk) ||
337 		 tcp_bpf_ca_needs_ecn(sk))
338 		INET_ECN_xmit(sk);
339 }
340 
341 /* Packet ECN state for a SYN.  */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)342 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
343 {
344 	struct tcp_sock *tp = tcp_sk(sk);
345 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
346 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
347 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
348 
349 	if (!use_ecn) {
350 		const struct dst_entry *dst = __sk_dst_get(sk);
351 
352 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
353 			use_ecn = true;
354 	}
355 
356 	tp->ecn_flags = 0;
357 
358 	if (use_ecn) {
359 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
360 		tp->ecn_flags = TCP_ECN_OK;
361 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
362 			INET_ECN_xmit(sk);
363 	}
364 }
365 
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)366 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
367 {
368 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
369 		/* tp->ecn_flags are cleared at a later point in time when
370 		 * SYN ACK is ultimatively being received.
371 		 */
372 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
373 }
374 
375 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)376 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
377 {
378 	if (inet_rsk(req)->ecn_ok)
379 		th->ece = 1;
380 }
381 
382 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
383  * be sent.
384  */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)385 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
386 			 struct tcphdr *th, int tcp_header_len)
387 {
388 	struct tcp_sock *tp = tcp_sk(sk);
389 
390 	if (tp->ecn_flags & TCP_ECN_OK) {
391 		/* Not-retransmitted data segment: set ECT and inject CWR. */
392 		if (skb->len != tcp_header_len &&
393 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
394 			INET_ECN_xmit(sk);
395 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
396 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
397 				th->cwr = 1;
398 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
399 			}
400 		} else if (!tcp_ca_needs_ecn(sk)) {
401 			/* ACK or retransmitted segment: clear ECT|CE */
402 			INET_ECN_dontxmit(sk);
403 		}
404 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
405 			th->ece = 1;
406 	}
407 }
408 
409 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
410  * auto increment end seqno.
411  */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)412 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
413 {
414 	skb->ip_summed = CHECKSUM_PARTIAL;
415 
416 	TCP_SKB_CB(skb)->tcp_flags = flags;
417 
418 	tcp_skb_pcount_set(skb, 1);
419 
420 	TCP_SKB_CB(skb)->seq = seq;
421 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
422 		seq++;
423 	TCP_SKB_CB(skb)->end_seq = seq;
424 }
425 
tcp_urg_mode(const struct tcp_sock * tp)426 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
427 {
428 	return tp->snd_una != tp->snd_up;
429 }
430 
431 #define OPTION_SACK_ADVERTISE	BIT(0)
432 #define OPTION_TS		BIT(1)
433 #define OPTION_MD5		BIT(2)
434 #define OPTION_WSCALE		BIT(3)
435 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
436 #define OPTION_SMC		BIT(9)
437 #define OPTION_MPTCP		BIT(10)
438 #define OPTION_AO		BIT(11)
439 
smc_options_write(__be32 * ptr,u16 * options)440 static void smc_options_write(__be32 *ptr, u16 *options)
441 {
442 #if IS_ENABLED(CONFIG_SMC)
443 	if (static_branch_unlikely(&tcp_have_smc)) {
444 		if (unlikely(OPTION_SMC & *options)) {
445 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
446 				       (TCPOPT_NOP  << 16) |
447 				       (TCPOPT_EXP <<  8) |
448 				       (TCPOLEN_EXP_SMC_BASE));
449 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
450 		}
451 	}
452 #endif
453 }
454 
455 struct tcp_out_options {
456 	u16 options;		/* bit field of OPTION_* */
457 	u16 mss;		/* 0 to disable */
458 	u8 ws;			/* window scale, 0 to disable */
459 	u8 num_sack_blocks;	/* number of SACK blocks to include */
460 	u8 hash_size;		/* bytes in hash_location */
461 	u8 bpf_opt_len;		/* length of BPF hdr option */
462 	__u8 *hash_location;	/* temporary pointer, overloaded */
463 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
464 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
465 	struct mptcp_out_options mptcp;
466 };
467 
mptcp_options_write(struct tcphdr * th,__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)468 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
469 				struct tcp_sock *tp,
470 				struct tcp_out_options *opts)
471 {
472 #if IS_ENABLED(CONFIG_MPTCP)
473 	if (unlikely(OPTION_MPTCP & opts->options))
474 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
475 #endif
476 }
477 
478 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)479 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
480 					enum tcp_synack_type synack_type)
481 {
482 	if (unlikely(!skb))
483 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
484 
485 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
486 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
487 
488 	return 0;
489 }
490 
491 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)492 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
493 				  struct request_sock *req,
494 				  struct sk_buff *syn_skb,
495 				  enum tcp_synack_type synack_type,
496 				  struct tcp_out_options *opts,
497 				  unsigned int *remaining)
498 {
499 	struct bpf_sock_ops_kern sock_ops;
500 	int err;
501 
502 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
503 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
504 	    !*remaining)
505 		return;
506 
507 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
508 
509 	/* init sock_ops */
510 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
511 
512 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
513 
514 	if (req) {
515 		/* The listen "sk" cannot be passed here because
516 		 * it is not locked.  It would not make too much
517 		 * sense to do bpf_setsockopt(listen_sk) based
518 		 * on individual connection request also.
519 		 *
520 		 * Thus, "req" is passed here and the cgroup-bpf-progs
521 		 * of the listen "sk" will be run.
522 		 *
523 		 * "req" is also used here for fastopen even the "sk" here is
524 		 * a fullsock "child" sk.  It is to keep the behavior
525 		 * consistent between fastopen and non-fastopen on
526 		 * the bpf programming side.
527 		 */
528 		sock_ops.sk = (struct sock *)req;
529 		sock_ops.syn_skb = syn_skb;
530 	} else {
531 		sock_owned_by_me(sk);
532 
533 		sock_ops.is_fullsock = 1;
534 		sock_ops.sk = sk;
535 	}
536 
537 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
538 	sock_ops.remaining_opt_len = *remaining;
539 	/* tcp_current_mss() does not pass a skb */
540 	if (skb)
541 		bpf_skops_init_skb(&sock_ops, skb, 0);
542 
543 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
544 
545 	if (err || sock_ops.remaining_opt_len == *remaining)
546 		return;
547 
548 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
549 	/* round up to 4 bytes */
550 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
551 
552 	*remaining -= opts->bpf_opt_len;
553 }
554 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)555 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
556 				    struct request_sock *req,
557 				    struct sk_buff *syn_skb,
558 				    enum tcp_synack_type synack_type,
559 				    struct tcp_out_options *opts)
560 {
561 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
562 	struct bpf_sock_ops_kern sock_ops;
563 	int err;
564 
565 	if (likely(!max_opt_len))
566 		return;
567 
568 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
569 
570 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
571 
572 	if (req) {
573 		sock_ops.sk = (struct sock *)req;
574 		sock_ops.syn_skb = syn_skb;
575 	} else {
576 		sock_owned_by_me(sk);
577 
578 		sock_ops.is_fullsock = 1;
579 		sock_ops.sk = sk;
580 	}
581 
582 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
583 	sock_ops.remaining_opt_len = max_opt_len;
584 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
585 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
586 
587 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
588 
589 	if (err)
590 		nr_written = 0;
591 	else
592 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
593 
594 	if (nr_written < max_opt_len)
595 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
596 		       max_opt_len - nr_written);
597 }
598 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)599 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
600 				  struct request_sock *req,
601 				  struct sk_buff *syn_skb,
602 				  enum tcp_synack_type synack_type,
603 				  struct tcp_out_options *opts,
604 				  unsigned int *remaining)
605 {
606 }
607 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)608 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
609 				    struct request_sock *req,
610 				    struct sk_buff *syn_skb,
611 				    enum tcp_synack_type synack_type,
612 				    struct tcp_out_options *opts)
613 {
614 }
615 #endif
616 
process_tcp_ao_options(struct tcp_sock * tp,const struct tcp_request_sock * tcprsk,struct tcp_out_options * opts,struct tcp_key * key,__be32 * ptr)617 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
618 				      const struct tcp_request_sock *tcprsk,
619 				      struct tcp_out_options *opts,
620 				      struct tcp_key *key, __be32 *ptr)
621 {
622 #ifdef CONFIG_TCP_AO
623 	u8 maclen = tcp_ao_maclen(key->ao_key);
624 
625 	if (tcprsk) {
626 		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
627 
628 		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
629 			       (tcprsk->ao_keyid << 8) |
630 			       (tcprsk->ao_rcv_next));
631 	} else {
632 		struct tcp_ao_key *rnext_key;
633 		struct tcp_ao_info *ao_info;
634 
635 		ao_info = rcu_dereference_check(tp->ao_info,
636 			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
637 		rnext_key = READ_ONCE(ao_info->rnext_key);
638 		if (WARN_ON_ONCE(!rnext_key))
639 			return ptr;
640 		*ptr++ = htonl((TCPOPT_AO << 24) |
641 			       (tcp_ao_len(key->ao_key) << 16) |
642 			       (key->ao_key->sndid << 8) |
643 			       (rnext_key->rcvid));
644 	}
645 	opts->hash_location = (__u8 *)ptr;
646 	ptr += maclen / sizeof(*ptr);
647 	if (unlikely(maclen % sizeof(*ptr))) {
648 		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
649 		ptr++;
650 	}
651 #endif
652 	return ptr;
653 }
654 
655 /* Write previously computed TCP options to the packet.
656  *
657  * Beware: Something in the Internet is very sensitive to the ordering of
658  * TCP options, we learned this through the hard way, so be careful here.
659  * Luckily we can at least blame others for their non-compliance but from
660  * inter-operability perspective it seems that we're somewhat stuck with
661  * the ordering which we have been using if we want to keep working with
662  * those broken things (not that it currently hurts anybody as there isn't
663  * particular reason why the ordering would need to be changed).
664  *
665  * At least SACK_PERM as the first option is known to lead to a disaster
666  * (but it may well be that other scenarios fail similarly).
667  */
tcp_options_write(struct tcphdr * th,struct tcp_sock * tp,const struct tcp_request_sock * tcprsk,struct tcp_out_options * opts,struct tcp_key * key)668 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
669 			      const struct tcp_request_sock *tcprsk,
670 			      struct tcp_out_options *opts,
671 			      struct tcp_key *key)
672 {
673 	__be32 *ptr = (__be32 *)(th + 1);
674 	u16 options = opts->options;	/* mungable copy */
675 
676 	if (tcp_key_is_md5(key)) {
677 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
678 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
679 		/* overload cookie hash location */
680 		opts->hash_location = (__u8 *)ptr;
681 		ptr += 4;
682 	} else if (tcp_key_is_ao(key)) {
683 		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
684 	}
685 	if (unlikely(opts->mss)) {
686 		*ptr++ = htonl((TCPOPT_MSS << 24) |
687 			       (TCPOLEN_MSS << 16) |
688 			       opts->mss);
689 	}
690 
691 	if (likely(OPTION_TS & options)) {
692 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
693 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
694 				       (TCPOLEN_SACK_PERM << 16) |
695 				       (TCPOPT_TIMESTAMP << 8) |
696 				       TCPOLEN_TIMESTAMP);
697 			options &= ~OPTION_SACK_ADVERTISE;
698 		} else {
699 			*ptr++ = htonl((TCPOPT_NOP << 24) |
700 				       (TCPOPT_NOP << 16) |
701 				       (TCPOPT_TIMESTAMP << 8) |
702 				       TCPOLEN_TIMESTAMP);
703 		}
704 		*ptr++ = htonl(opts->tsval);
705 		*ptr++ = htonl(opts->tsecr);
706 	}
707 
708 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
709 		*ptr++ = htonl((TCPOPT_NOP << 24) |
710 			       (TCPOPT_NOP << 16) |
711 			       (TCPOPT_SACK_PERM << 8) |
712 			       TCPOLEN_SACK_PERM);
713 	}
714 
715 	if (unlikely(OPTION_WSCALE & options)) {
716 		*ptr++ = htonl((TCPOPT_NOP << 24) |
717 			       (TCPOPT_WINDOW << 16) |
718 			       (TCPOLEN_WINDOW << 8) |
719 			       opts->ws);
720 	}
721 
722 	if (unlikely(opts->num_sack_blocks)) {
723 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
724 			tp->duplicate_sack : tp->selective_acks;
725 		int this_sack;
726 
727 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
728 			       (TCPOPT_NOP  << 16) |
729 			       (TCPOPT_SACK <<  8) |
730 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
731 						     TCPOLEN_SACK_PERBLOCK)));
732 
733 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
734 		     ++this_sack) {
735 			*ptr++ = htonl(sp[this_sack].start_seq);
736 			*ptr++ = htonl(sp[this_sack].end_seq);
737 		}
738 
739 		tp->rx_opt.dsack = 0;
740 	}
741 
742 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
743 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
744 		u8 *p = (u8 *)ptr;
745 		u32 len; /* Fast Open option length */
746 
747 		if (foc->exp) {
748 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
749 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
750 				     TCPOPT_FASTOPEN_MAGIC);
751 			p += TCPOLEN_EXP_FASTOPEN_BASE;
752 		} else {
753 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
754 			*p++ = TCPOPT_FASTOPEN;
755 			*p++ = len;
756 		}
757 
758 		memcpy(p, foc->val, foc->len);
759 		if ((len & 3) == 2) {
760 			p[foc->len] = TCPOPT_NOP;
761 			p[foc->len + 1] = TCPOPT_NOP;
762 		}
763 		ptr += (len + 3) >> 2;
764 	}
765 
766 	smc_options_write(ptr, &options);
767 
768 	mptcp_options_write(th, ptr, tp, opts);
769 }
770 
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)771 static void smc_set_option(const struct tcp_sock *tp,
772 			   struct tcp_out_options *opts,
773 			   unsigned int *remaining)
774 {
775 #if IS_ENABLED(CONFIG_SMC)
776 	if (static_branch_unlikely(&tcp_have_smc)) {
777 		if (tp->syn_smc) {
778 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
779 				opts->options |= OPTION_SMC;
780 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
781 			}
782 		}
783 	}
784 #endif
785 }
786 
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)787 static void smc_set_option_cond(const struct tcp_sock *tp,
788 				const struct inet_request_sock *ireq,
789 				struct tcp_out_options *opts,
790 				unsigned int *remaining)
791 {
792 #if IS_ENABLED(CONFIG_SMC)
793 	if (static_branch_unlikely(&tcp_have_smc)) {
794 		if (tp->syn_smc && ireq->smc_ok) {
795 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
796 				opts->options |= OPTION_SMC;
797 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
798 			}
799 		}
800 	}
801 #endif
802 }
803 
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)804 static void mptcp_set_option_cond(const struct request_sock *req,
805 				  struct tcp_out_options *opts,
806 				  unsigned int *remaining)
807 {
808 	if (rsk_is_mptcp(req)) {
809 		unsigned int size;
810 
811 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
812 			if (*remaining >= size) {
813 				opts->options |= OPTION_MPTCP;
814 				*remaining -= size;
815 			}
816 		}
817 	}
818 }
819 
820 /* Compute TCP options for SYN packets. This is not the final
821  * network wire format yet.
822  */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_key * key)823 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
824 				struct tcp_out_options *opts,
825 				struct tcp_key *key)
826 {
827 	struct tcp_sock *tp = tcp_sk(sk);
828 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
829 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
830 	bool timestamps;
831 
832 	/* Better than switch (key.type) as it has static branches */
833 	if (tcp_key_is_md5(key)) {
834 		timestamps = false;
835 		opts->options |= OPTION_MD5;
836 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
837 	} else {
838 		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
839 		if (tcp_key_is_ao(key)) {
840 			opts->options |= OPTION_AO;
841 			remaining -= tcp_ao_len_aligned(key->ao_key);
842 		}
843 	}
844 
845 	/* We always get an MSS option.  The option bytes which will be seen in
846 	 * normal data packets should timestamps be used, must be in the MSS
847 	 * advertised.  But we subtract them from tp->mss_cache so that
848 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
849 	 * fact here if necessary.  If we don't do this correctly, as a
850 	 * receiver we won't recognize data packets as being full sized when we
851 	 * should, and thus we won't abide by the delayed ACK rules correctly.
852 	 * SACKs don't matter, we never delay an ACK when we have any of those
853 	 * going out.  */
854 	opts->mss = tcp_advertise_mss(sk);
855 	remaining -= TCPOLEN_MSS_ALIGNED;
856 
857 	if (likely(timestamps)) {
858 		opts->options |= OPTION_TS;
859 		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
860 		opts->tsecr = tp->rx_opt.ts_recent;
861 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
862 	}
863 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
864 		opts->ws = tp->rx_opt.rcv_wscale;
865 		opts->options |= OPTION_WSCALE;
866 		remaining -= TCPOLEN_WSCALE_ALIGNED;
867 	}
868 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
869 		opts->options |= OPTION_SACK_ADVERTISE;
870 		if (unlikely(!(OPTION_TS & opts->options)))
871 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
872 	}
873 
874 	if (fastopen && fastopen->cookie.len >= 0) {
875 		u32 need = fastopen->cookie.len;
876 
877 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
878 					       TCPOLEN_FASTOPEN_BASE;
879 		need = (need + 3) & ~3U;  /* Align to 32 bits */
880 		if (remaining >= need) {
881 			opts->options |= OPTION_FAST_OPEN_COOKIE;
882 			opts->fastopen_cookie = &fastopen->cookie;
883 			remaining -= need;
884 			tp->syn_fastopen = 1;
885 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
886 		}
887 	}
888 
889 	smc_set_option(tp, opts, &remaining);
890 
891 	if (sk_is_mptcp(sk)) {
892 		unsigned int size;
893 
894 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
895 			if (remaining >= size) {
896 				opts->options |= OPTION_MPTCP;
897 				remaining -= size;
898 			}
899 		}
900 	}
901 
902 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
903 
904 	return MAX_TCP_OPTION_SPACE - remaining;
905 }
906 
907 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_key * key,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)908 static unsigned int tcp_synack_options(const struct sock *sk,
909 				       struct request_sock *req,
910 				       unsigned int mss, struct sk_buff *skb,
911 				       struct tcp_out_options *opts,
912 				       const struct tcp_key *key,
913 				       struct tcp_fastopen_cookie *foc,
914 				       enum tcp_synack_type synack_type,
915 				       struct sk_buff *syn_skb)
916 {
917 	struct inet_request_sock *ireq = inet_rsk(req);
918 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
919 
920 	if (tcp_key_is_md5(key)) {
921 		opts->options |= OPTION_MD5;
922 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
923 
924 		/* We can't fit any SACK blocks in a packet with MD5 + TS
925 		 * options. There was discussion about disabling SACK
926 		 * rather than TS in order to fit in better with old,
927 		 * buggy kernels, but that was deemed to be unnecessary.
928 		 */
929 		if (synack_type != TCP_SYNACK_COOKIE)
930 			ireq->tstamp_ok &= !ireq->sack_ok;
931 	} else if (tcp_key_is_ao(key)) {
932 		opts->options |= OPTION_AO;
933 		remaining -= tcp_ao_len_aligned(key->ao_key);
934 		ireq->tstamp_ok &= !ireq->sack_ok;
935 	}
936 
937 	/* We always send an MSS option. */
938 	opts->mss = mss;
939 	remaining -= TCPOLEN_MSS_ALIGNED;
940 
941 	if (likely(ireq->wscale_ok)) {
942 		opts->ws = ireq->rcv_wscale;
943 		opts->options |= OPTION_WSCALE;
944 		remaining -= TCPOLEN_WSCALE_ALIGNED;
945 	}
946 	if (likely(ireq->tstamp_ok)) {
947 		opts->options |= OPTION_TS;
948 		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
949 			      tcp_rsk(req)->ts_off;
950 		opts->tsecr = READ_ONCE(req->ts_recent);
951 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
952 	}
953 	if (likely(ireq->sack_ok)) {
954 		opts->options |= OPTION_SACK_ADVERTISE;
955 		if (unlikely(!ireq->tstamp_ok))
956 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
957 	}
958 	if (foc != NULL && foc->len >= 0) {
959 		u32 need = foc->len;
960 
961 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
962 				   TCPOLEN_FASTOPEN_BASE;
963 		need = (need + 3) & ~3U;  /* Align to 32 bits */
964 		if (remaining >= need) {
965 			opts->options |= OPTION_FAST_OPEN_COOKIE;
966 			opts->fastopen_cookie = foc;
967 			remaining -= need;
968 		}
969 	}
970 
971 	mptcp_set_option_cond(req, opts, &remaining);
972 
973 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
974 
975 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
976 			      synack_type, opts, &remaining);
977 
978 	return MAX_TCP_OPTION_SPACE - remaining;
979 }
980 
981 /* Compute TCP options for ESTABLISHED sockets. This is not the
982  * final wire format yet.
983  */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_key * key)984 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
985 					struct tcp_out_options *opts,
986 					struct tcp_key *key)
987 {
988 	struct tcp_sock *tp = tcp_sk(sk);
989 	unsigned int size = 0;
990 	unsigned int eff_sacks;
991 
992 	opts->options = 0;
993 
994 	/* Better than switch (key.type) as it has static branches */
995 	if (tcp_key_is_md5(key)) {
996 		opts->options |= OPTION_MD5;
997 		size += TCPOLEN_MD5SIG_ALIGNED;
998 	} else if (tcp_key_is_ao(key)) {
999 		opts->options |= OPTION_AO;
1000 		size += tcp_ao_len_aligned(key->ao_key);
1001 	}
1002 
1003 	if (likely(tp->rx_opt.tstamp_ok)) {
1004 		opts->options |= OPTION_TS;
1005 		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
1006 				tp->tsoffset : 0;
1007 		opts->tsecr = tp->rx_opt.ts_recent;
1008 		size += TCPOLEN_TSTAMP_ALIGNED;
1009 	}
1010 
1011 	/* MPTCP options have precedence over SACK for the limited TCP
1012 	 * option space because a MPTCP connection would be forced to
1013 	 * fall back to regular TCP if a required multipath option is
1014 	 * missing. SACK still gets a chance to use whatever space is
1015 	 * left.
1016 	 */
1017 	if (sk_is_mptcp(sk)) {
1018 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1019 		unsigned int opt_size = 0;
1020 
1021 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
1022 					      &opts->mptcp)) {
1023 			opts->options |= OPTION_MPTCP;
1024 			size += opt_size;
1025 		}
1026 	}
1027 
1028 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1029 	if (unlikely(eff_sacks)) {
1030 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1031 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1032 					 TCPOLEN_SACK_PERBLOCK))
1033 			return size;
1034 
1035 		opts->num_sack_blocks =
1036 			min_t(unsigned int, eff_sacks,
1037 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1038 			      TCPOLEN_SACK_PERBLOCK);
1039 
1040 		size += TCPOLEN_SACK_BASE_ALIGNED +
1041 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1042 	}
1043 
1044 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1045 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1046 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1047 
1048 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1049 
1050 		size = MAX_TCP_OPTION_SPACE - remaining;
1051 	}
1052 
1053 	return size;
1054 }
1055 
1056 
1057 /* TCP SMALL QUEUES (TSQ)
1058  *
1059  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1060  * to reduce RTT and bufferbloat.
1061  * We do this using a special skb destructor (tcp_wfree).
1062  *
1063  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1064  * needs to be reallocated in a driver.
1065  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1066  *
1067  * Since transmit from skb destructor is forbidden, we use a tasklet
1068  * to process all sockets that eventually need to send more skbs.
1069  * We use one tasklet per cpu, with its own queue of sockets.
1070  */
1071 struct tsq_tasklet {
1072 	struct tasklet_struct	tasklet;
1073 	struct list_head	head; /* queue of tcp sockets */
1074 };
1075 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1076 
tcp_tsq_write(struct sock * sk)1077 static void tcp_tsq_write(struct sock *sk)
1078 {
1079 	if ((1 << sk->sk_state) &
1080 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1081 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1082 		struct tcp_sock *tp = tcp_sk(sk);
1083 
1084 		if (tp->lost_out > tp->retrans_out &&
1085 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1086 			tcp_mstamp_refresh(tp);
1087 			tcp_xmit_retransmit_queue(sk);
1088 		}
1089 
1090 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1091 			       0, GFP_ATOMIC);
1092 	}
1093 }
1094 
tcp_tsq_handler(struct sock * sk)1095 static void tcp_tsq_handler(struct sock *sk)
1096 {
1097 	bh_lock_sock(sk);
1098 	if (!sock_owned_by_user(sk))
1099 		tcp_tsq_write(sk);
1100 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1101 		sock_hold(sk);
1102 	bh_unlock_sock(sk);
1103 }
1104 /*
1105  * One tasklet per cpu tries to send more skbs.
1106  * We run in tasklet context but need to disable irqs when
1107  * transferring tsq->head because tcp_wfree() might
1108  * interrupt us (non NAPI drivers)
1109  */
tcp_tasklet_func(struct tasklet_struct * t)1110 static void tcp_tasklet_func(struct tasklet_struct *t)
1111 {
1112 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1113 	LIST_HEAD(list);
1114 	unsigned long flags;
1115 	struct list_head *q, *n;
1116 	struct tcp_sock *tp;
1117 	struct sock *sk;
1118 
1119 	local_irq_save(flags);
1120 	list_splice_init(&tsq->head, &list);
1121 	local_irq_restore(flags);
1122 
1123 	list_for_each_safe(q, n, &list) {
1124 		tp = list_entry(q, struct tcp_sock, tsq_node);
1125 		list_del(&tp->tsq_node);
1126 
1127 		sk = (struct sock *)tp;
1128 		smp_mb__before_atomic();
1129 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1130 
1131 		tcp_tsq_handler(sk);
1132 		sk_free(sk);
1133 	}
1134 }
1135 
1136 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1137 			  TCPF_WRITE_TIMER_DEFERRED |	\
1138 			  TCPF_DELACK_TIMER_DEFERRED |	\
1139 			  TCPF_MTU_REDUCED_DEFERRED |	\
1140 			  TCPF_ACK_DEFERRED)
1141 /**
1142  * tcp_release_cb - tcp release_sock() callback
1143  * @sk: socket
1144  *
1145  * called from release_sock() to perform protocol dependent
1146  * actions before socket release.
1147  */
tcp_release_cb(struct sock * sk)1148 void tcp_release_cb(struct sock *sk)
1149 {
1150 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1151 	unsigned long nflags;
1152 
1153 	/* perform an atomic operation only if at least one flag is set */
1154 	do {
1155 		if (!(flags & TCP_DEFERRED_ALL))
1156 			return;
1157 		nflags = flags & ~TCP_DEFERRED_ALL;
1158 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1159 
1160 	if (flags & TCPF_TSQ_DEFERRED) {
1161 		tcp_tsq_write(sk);
1162 		__sock_put(sk);
1163 	}
1164 
1165 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1166 		tcp_write_timer_handler(sk);
1167 		__sock_put(sk);
1168 	}
1169 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1170 		tcp_delack_timer_handler(sk);
1171 		__sock_put(sk);
1172 	}
1173 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1174 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1175 		__sock_put(sk);
1176 	}
1177 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1178 		tcp_send_ack(sk);
1179 }
1180 EXPORT_SYMBOL(tcp_release_cb);
1181 
tcp_tasklet_init(void)1182 void __init tcp_tasklet_init(void)
1183 {
1184 	int i;
1185 
1186 	for_each_possible_cpu(i) {
1187 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1188 
1189 		INIT_LIST_HEAD(&tsq->head);
1190 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1191 	}
1192 }
1193 
1194 /*
1195  * Write buffer destructor automatically called from kfree_skb.
1196  * We can't xmit new skbs from this context, as we might already
1197  * hold qdisc lock.
1198  */
tcp_wfree(struct sk_buff * skb)1199 void tcp_wfree(struct sk_buff *skb)
1200 {
1201 	struct sock *sk = skb->sk;
1202 	struct tcp_sock *tp = tcp_sk(sk);
1203 	unsigned long flags, nval, oval;
1204 	struct tsq_tasklet *tsq;
1205 	bool empty;
1206 
1207 	/* Keep one reference on sk_wmem_alloc.
1208 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1209 	 */
1210 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1211 
1212 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1213 	 * Wait until our queues (qdisc + devices) are drained.
1214 	 * This gives :
1215 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1216 	 * - chance for incoming ACK (processed by another cpu maybe)
1217 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1218 	 */
1219 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1220 		goto out;
1221 
1222 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1223 	do {
1224 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1225 			goto out;
1226 
1227 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1228 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1229 
1230 	/* queue this socket to tasklet queue */
1231 	local_irq_save(flags);
1232 	tsq = this_cpu_ptr(&tsq_tasklet);
1233 	empty = list_empty(&tsq->head);
1234 	list_add(&tp->tsq_node, &tsq->head);
1235 	if (empty)
1236 		tasklet_schedule(&tsq->tasklet);
1237 	local_irq_restore(flags);
1238 	return;
1239 out:
1240 	sk_free(sk);
1241 }
1242 
1243 /* Note: Called under soft irq.
1244  * We can call TCP stack right away, unless socket is owned by user.
1245  */
tcp_pace_kick(struct hrtimer * timer)1246 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1247 {
1248 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1249 	struct sock *sk = (struct sock *)tp;
1250 
1251 	tcp_tsq_handler(sk);
1252 	sock_put(sk);
1253 
1254 	return HRTIMER_NORESTART;
1255 }
1256 
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1257 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1258 				      u64 prior_wstamp)
1259 {
1260 	struct tcp_sock *tp = tcp_sk(sk);
1261 
1262 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1263 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1264 
1265 		/* Original sch_fq does not pace first 10 MSS
1266 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1267 		 * this is a minor annoyance.
1268 		 */
1269 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1270 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1271 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1272 
1273 			/* take into account OS jitter */
1274 			len_ns -= min_t(u64, len_ns / 2, credit);
1275 			tp->tcp_wstamp_ns += len_ns;
1276 		}
1277 	}
1278 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1279 }
1280 
1281 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1282 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1283 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1284 
1285 /* This routine actually transmits TCP packets queued in by
1286  * tcp_do_sendmsg().  This is used by both the initial
1287  * transmission and possible later retransmissions.
1288  * All SKB's seen here are completely headerless.  It is our
1289  * job to build the TCP header, and pass the packet down to
1290  * IP so it can do the same plus pass the packet off to the
1291  * device.
1292  *
1293  * We are working here with either a clone of the original
1294  * SKB, or a fresh unique copy made by the retransmit engine.
1295  */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1296 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1297 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1298 {
1299 	const struct inet_connection_sock *icsk = inet_csk(sk);
1300 	struct inet_sock *inet;
1301 	struct tcp_sock *tp;
1302 	struct tcp_skb_cb *tcb;
1303 	struct tcp_out_options opts;
1304 	unsigned int tcp_options_size, tcp_header_size;
1305 	struct sk_buff *oskb = NULL;
1306 	struct tcp_key key;
1307 	struct tcphdr *th;
1308 	u64 prior_wstamp;
1309 	int err;
1310 
1311 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1312 	tp = tcp_sk(sk);
1313 	prior_wstamp = tp->tcp_wstamp_ns;
1314 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1315 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
1316 	if (clone_it) {
1317 		oskb = skb;
1318 
1319 		tcp_skb_tsorted_save(oskb) {
1320 			if (unlikely(skb_cloned(oskb)))
1321 				skb = pskb_copy(oskb, gfp_mask);
1322 			else
1323 				skb = skb_clone(oskb, gfp_mask);
1324 		} tcp_skb_tsorted_restore(oskb);
1325 
1326 		if (unlikely(!skb))
1327 			return -ENOBUFS;
1328 		/* retransmit skbs might have a non zero value in skb->dev
1329 		 * because skb->dev is aliased with skb->rbnode.rb_left
1330 		 */
1331 		skb->dev = NULL;
1332 	}
1333 
1334 	inet = inet_sk(sk);
1335 	tcb = TCP_SKB_CB(skb);
1336 	memset(&opts, 0, sizeof(opts));
1337 
1338 	tcp_get_current_key(sk, &key);
1339 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1340 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1341 	} else {
1342 		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1343 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1344 		 * at receiver : This slightly improve GRO performance.
1345 		 * Note that we do not force the PSH flag for non GSO packets,
1346 		 * because they might be sent under high congestion events,
1347 		 * and in this case it is better to delay the delivery of 1-MSS
1348 		 * packets and thus the corresponding ACK packet that would
1349 		 * release the following packet.
1350 		 */
1351 		if (tcp_skb_pcount(skb) > 1)
1352 			tcb->tcp_flags |= TCPHDR_PSH;
1353 	}
1354 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1355 
1356 	/* We set skb->ooo_okay to one if this packet can select
1357 	 * a different TX queue than prior packets of this flow,
1358 	 * to avoid self inflicted reorders.
1359 	 * The 'other' queue decision is based on current cpu number
1360 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1361 	 * We can switch to another (and better) queue if:
1362 	 * 1) No packet with payload is in qdisc/device queues.
1363 	 *    Delays in TX completion can defeat the test
1364 	 *    even if packets were already sent.
1365 	 * 2) Or rtx queue is empty.
1366 	 *    This mitigates above case if ACK packets for
1367 	 *    all prior packets were already processed.
1368 	 */
1369 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1370 			tcp_rtx_queue_empty(sk);
1371 
1372 	/* If we had to use memory reserve to allocate this skb,
1373 	 * this might cause drops if packet is looped back :
1374 	 * Other socket might not have SOCK_MEMALLOC.
1375 	 * Packets not looped back do not care about pfmemalloc.
1376 	 */
1377 	skb->pfmemalloc = 0;
1378 
1379 	skb_push(skb, tcp_header_size);
1380 	skb_reset_transport_header(skb);
1381 
1382 	skb_orphan(skb);
1383 	skb->sk = sk;
1384 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1385 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1386 
1387 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1388 
1389 	/* Build TCP header and checksum it. */
1390 	th = (struct tcphdr *)skb->data;
1391 	th->source		= inet->inet_sport;
1392 	th->dest		= inet->inet_dport;
1393 	th->seq			= htonl(tcb->seq);
1394 	th->ack_seq		= htonl(rcv_nxt);
1395 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1396 					tcb->tcp_flags);
1397 
1398 	th->check		= 0;
1399 	th->urg_ptr		= 0;
1400 
1401 	/* The urg_mode check is necessary during a below snd_una win probe */
1402 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1403 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1404 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1405 			th->urg = 1;
1406 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1407 			th->urg_ptr = htons(0xFFFF);
1408 			th->urg = 1;
1409 		}
1410 	}
1411 
1412 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1413 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1414 		th->window      = htons(tcp_select_window(sk));
1415 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1416 	} else {
1417 		/* RFC1323: The window in SYN & SYN/ACK segments
1418 		 * is never scaled.
1419 		 */
1420 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1421 	}
1422 
1423 	tcp_options_write(th, tp, NULL, &opts, &key);
1424 
1425 	if (tcp_key_is_md5(&key)) {
1426 #ifdef CONFIG_TCP_MD5SIG
1427 		/* Calculate the MD5 hash, as we have all we need now */
1428 		sk_gso_disable(sk);
1429 		tp->af_specific->calc_md5_hash(opts.hash_location,
1430 					       key.md5_key, sk, skb);
1431 #endif
1432 	} else if (tcp_key_is_ao(&key)) {
1433 		int err;
1434 
1435 		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1436 					  opts.hash_location);
1437 		if (err) {
1438 			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1439 			return -ENOMEM;
1440 		}
1441 	}
1442 
1443 	/* BPF prog is the last one writing header option */
1444 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1445 
1446 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1447 			   tcp_v6_send_check, tcp_v4_send_check,
1448 			   sk, skb);
1449 
1450 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1451 		tcp_event_ack_sent(sk, rcv_nxt);
1452 
1453 	if (skb->len != tcp_header_size) {
1454 		tcp_event_data_sent(tp, sk);
1455 		tp->data_segs_out += tcp_skb_pcount(skb);
1456 		tp->bytes_sent += skb->len - tcp_header_size;
1457 	}
1458 
1459 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1460 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1461 			      tcp_skb_pcount(skb));
1462 
1463 	tp->segs_out += tcp_skb_pcount(skb);
1464 	skb_set_hash_from_sk(skb, sk);
1465 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1466 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1467 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1468 
1469 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1470 
1471 	/* Cleanup our debris for IP stacks */
1472 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1473 			       sizeof(struct inet6_skb_parm)));
1474 
1475 	tcp_add_tx_delay(skb, tp);
1476 
1477 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1478 				 inet6_csk_xmit, ip_queue_xmit,
1479 				 sk, skb, &inet->cork.fl);
1480 
1481 	if (unlikely(err > 0)) {
1482 		tcp_enter_cwr(sk);
1483 		err = net_xmit_eval(err);
1484 	}
1485 	if (!err && oskb) {
1486 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1487 		tcp_rate_skb_sent(sk, oskb);
1488 	}
1489 	return err;
1490 }
1491 
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1492 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1493 			    gfp_t gfp_mask)
1494 {
1495 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1496 				  tcp_sk(sk)->rcv_nxt);
1497 }
1498 
1499 /* This routine just queues the buffer for sending.
1500  *
1501  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1502  * otherwise socket can stall.
1503  */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1504 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1505 {
1506 	struct tcp_sock *tp = tcp_sk(sk);
1507 
1508 	/* Advance write_seq and place onto the write_queue. */
1509 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1510 	__skb_header_release(skb);
1511 	tcp_add_write_queue_tail(sk, skb);
1512 	sk_wmem_queued_add(sk, skb->truesize);
1513 	sk_mem_charge(sk, skb->truesize);
1514 }
1515 
1516 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1517 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1518 {
1519 	int tso_segs;
1520 
1521 	if (skb->len <= mss_now) {
1522 		/* Avoid the costly divide in the normal
1523 		 * non-TSO case.
1524 		 */
1525 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1526 		tcp_skb_pcount_set(skb, 1);
1527 		return 1;
1528 	}
1529 	TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1530 	tso_segs = DIV_ROUND_UP(skb->len, mss_now);
1531 	tcp_skb_pcount_set(skb, tso_segs);
1532 	return tso_segs;
1533 }
1534 
1535 /* Pcount in the middle of the write queue got changed, we need to do various
1536  * tweaks to fix counters
1537  */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1538 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1539 {
1540 	struct tcp_sock *tp = tcp_sk(sk);
1541 
1542 	tp->packets_out -= decr;
1543 
1544 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1545 		tp->sacked_out -= decr;
1546 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1547 		tp->retrans_out -= decr;
1548 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1549 		tp->lost_out -= decr;
1550 
1551 	/* Reno case is special. Sigh... */
1552 	if (tcp_is_reno(tp) && decr > 0)
1553 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1554 
1555 	if (tp->lost_skb_hint &&
1556 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1557 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1558 		tp->lost_cnt_hint -= decr;
1559 
1560 	tcp_verify_left_out(tp);
1561 }
1562 
tcp_has_tx_tstamp(const struct sk_buff * skb)1563 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1564 {
1565 	return TCP_SKB_CB(skb)->txstamp_ack ||
1566 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1567 }
1568 
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1569 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1570 {
1571 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1572 
1573 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1574 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1575 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1576 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1577 
1578 		shinfo->tx_flags &= ~tsflags;
1579 		shinfo2->tx_flags |= tsflags;
1580 		swap(shinfo->tskey, shinfo2->tskey);
1581 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1582 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1583 	}
1584 }
1585 
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1586 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1587 {
1588 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1589 	TCP_SKB_CB(skb)->eor = 0;
1590 }
1591 
1592 /* Insert buff after skb on the write or rtx queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1593 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1594 					 struct sk_buff *buff,
1595 					 struct sock *sk,
1596 					 enum tcp_queue tcp_queue)
1597 {
1598 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1599 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1600 	else
1601 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1602 }
1603 
1604 /* Function to create two new TCP segments.  Shrinks the given segment
1605  * to the specified size and appends a new segment with the rest of the
1606  * packet to the list.  This won't be called frequently, I hope.
1607  * Remember, these are still headerless SKBs at this point.
1608  */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1609 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1610 		 struct sk_buff *skb, u32 len,
1611 		 unsigned int mss_now, gfp_t gfp)
1612 {
1613 	struct tcp_sock *tp = tcp_sk(sk);
1614 	struct sk_buff *buff;
1615 	int old_factor;
1616 	long limit;
1617 	int nlen;
1618 	u8 flags;
1619 
1620 	if (WARN_ON(len > skb->len))
1621 		return -EINVAL;
1622 
1623 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1624 
1625 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1626 	 * We need some allowance to not penalize applications setting small
1627 	 * SO_SNDBUF values.
1628 	 * Also allow first and last skb in retransmit queue to be split.
1629 	 */
1630 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1631 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1632 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1633 		     skb != tcp_rtx_queue_head(sk) &&
1634 		     skb != tcp_rtx_queue_tail(sk))) {
1635 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1636 		return -ENOMEM;
1637 	}
1638 
1639 	if (skb_unclone_keeptruesize(skb, gfp))
1640 		return -ENOMEM;
1641 
1642 	/* Get a new skb... force flag on. */
1643 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1644 	if (!buff)
1645 		return -ENOMEM; /* We'll just try again later. */
1646 	skb_copy_decrypted(buff, skb);
1647 	mptcp_skb_ext_copy(buff, skb);
1648 
1649 	sk_wmem_queued_add(sk, buff->truesize);
1650 	sk_mem_charge(sk, buff->truesize);
1651 	nlen = skb->len - len;
1652 	buff->truesize += nlen;
1653 	skb->truesize -= nlen;
1654 
1655 	/* Correct the sequence numbers. */
1656 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1657 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1658 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1659 
1660 	/* PSH and FIN should only be set in the second packet. */
1661 	flags = TCP_SKB_CB(skb)->tcp_flags;
1662 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1663 	TCP_SKB_CB(buff)->tcp_flags = flags;
1664 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1665 	tcp_skb_fragment_eor(skb, buff);
1666 
1667 	skb_split(skb, buff, len);
1668 
1669 	skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC);
1670 	tcp_fragment_tstamp(skb, buff);
1671 
1672 	old_factor = tcp_skb_pcount(skb);
1673 
1674 	/* Fix up tso_factor for both original and new SKB.  */
1675 	tcp_set_skb_tso_segs(skb, mss_now);
1676 	tcp_set_skb_tso_segs(buff, mss_now);
1677 
1678 	/* Update delivered info for the new segment */
1679 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1680 
1681 	/* If this packet has been sent out already, we must
1682 	 * adjust the various packet counters.
1683 	 */
1684 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1685 		int diff = old_factor - tcp_skb_pcount(skb) -
1686 			tcp_skb_pcount(buff);
1687 
1688 		if (diff)
1689 			tcp_adjust_pcount(sk, skb, diff);
1690 	}
1691 
1692 	/* Link BUFF into the send queue. */
1693 	__skb_header_release(buff);
1694 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1695 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1696 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1697 
1698 	return 0;
1699 }
1700 
1701 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1702  * data is not copied, but immediately discarded.
1703  */
__pskb_trim_head(struct sk_buff * skb,int len)1704 static int __pskb_trim_head(struct sk_buff *skb, int len)
1705 {
1706 	struct skb_shared_info *shinfo;
1707 	int i, k, eat;
1708 
1709 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1710 	eat = len;
1711 	k = 0;
1712 	shinfo = skb_shinfo(skb);
1713 	for (i = 0; i < shinfo->nr_frags; i++) {
1714 		int size = skb_frag_size(&shinfo->frags[i]);
1715 
1716 		if (size <= eat) {
1717 			skb_frag_unref(skb, i);
1718 			eat -= size;
1719 		} else {
1720 			shinfo->frags[k] = shinfo->frags[i];
1721 			if (eat) {
1722 				skb_frag_off_add(&shinfo->frags[k], eat);
1723 				skb_frag_size_sub(&shinfo->frags[k], eat);
1724 				eat = 0;
1725 			}
1726 			k++;
1727 		}
1728 	}
1729 	shinfo->nr_frags = k;
1730 
1731 	skb->data_len -= len;
1732 	skb->len = skb->data_len;
1733 	return len;
1734 }
1735 
1736 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1737 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1738 {
1739 	u32 delta_truesize;
1740 
1741 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1742 		return -ENOMEM;
1743 
1744 	delta_truesize = __pskb_trim_head(skb, len);
1745 
1746 	TCP_SKB_CB(skb)->seq += len;
1747 
1748 	skb->truesize	   -= delta_truesize;
1749 	sk_wmem_queued_add(sk, -delta_truesize);
1750 	if (!skb_zcopy_pure(skb))
1751 		sk_mem_uncharge(sk, delta_truesize);
1752 
1753 	/* Any change of skb->len requires recalculation of tso factor. */
1754 	if (tcp_skb_pcount(skb) > 1)
1755 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1756 
1757 	return 0;
1758 }
1759 
1760 /* Calculate MSS not accounting any TCP options.  */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1761 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1762 {
1763 	const struct tcp_sock *tp = tcp_sk(sk);
1764 	const struct inet_connection_sock *icsk = inet_csk(sk);
1765 	int mss_now;
1766 
1767 	/* Calculate base mss without TCP options:
1768 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1769 	 */
1770 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1771 
1772 	/* Clamp it (mss_clamp does not include tcp options) */
1773 	if (mss_now > tp->rx_opt.mss_clamp)
1774 		mss_now = tp->rx_opt.mss_clamp;
1775 
1776 	/* Now subtract optional transport overhead */
1777 	mss_now -= icsk->icsk_ext_hdr_len;
1778 
1779 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1780 	mss_now = max(mss_now,
1781 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1782 	return mss_now;
1783 }
1784 
1785 /* Calculate MSS. Not accounting for SACKs here.  */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1786 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1787 {
1788 	/* Subtract TCP options size, not including SACKs */
1789 	return __tcp_mtu_to_mss(sk, pmtu) -
1790 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1791 }
1792 EXPORT_SYMBOL(tcp_mtu_to_mss);
1793 
1794 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1795 int tcp_mss_to_mtu(struct sock *sk, int mss)
1796 {
1797 	const struct tcp_sock *tp = tcp_sk(sk);
1798 	const struct inet_connection_sock *icsk = inet_csk(sk);
1799 
1800 	return mss +
1801 	      tp->tcp_header_len +
1802 	      icsk->icsk_ext_hdr_len +
1803 	      icsk->icsk_af_ops->net_header_len;
1804 }
1805 EXPORT_SYMBOL(tcp_mss_to_mtu);
1806 
1807 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1808 void tcp_mtup_init(struct sock *sk)
1809 {
1810 	struct tcp_sock *tp = tcp_sk(sk);
1811 	struct inet_connection_sock *icsk = inet_csk(sk);
1812 	struct net *net = sock_net(sk);
1813 
1814 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1815 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1816 			       icsk->icsk_af_ops->net_header_len;
1817 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1818 	icsk->icsk_mtup.probe_size = 0;
1819 	if (icsk->icsk_mtup.enabled)
1820 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1821 }
1822 EXPORT_SYMBOL(tcp_mtup_init);
1823 
1824 /* This function synchronize snd mss to current pmtu/exthdr set.
1825 
1826    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1827    for TCP options, but includes only bare TCP header.
1828 
1829    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1830    It is minimum of user_mss and mss received with SYN.
1831    It also does not include TCP options.
1832 
1833    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1834 
1835    tp->mss_cache is current effective sending mss, including
1836    all tcp options except for SACKs. It is evaluated,
1837    taking into account current pmtu, but never exceeds
1838    tp->rx_opt.mss_clamp.
1839 
1840    NOTE1. rfc1122 clearly states that advertised MSS
1841    DOES NOT include either tcp or ip options.
1842 
1843    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1844    are READ ONLY outside this function.		--ANK (980731)
1845  */
tcp_sync_mss(struct sock * sk,u32 pmtu)1846 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1847 {
1848 	struct tcp_sock *tp = tcp_sk(sk);
1849 	struct inet_connection_sock *icsk = inet_csk(sk);
1850 	int mss_now;
1851 
1852 	if (icsk->icsk_mtup.search_high > pmtu)
1853 		icsk->icsk_mtup.search_high = pmtu;
1854 
1855 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1856 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1857 
1858 	/* And store cached results */
1859 	icsk->icsk_pmtu_cookie = pmtu;
1860 	if (icsk->icsk_mtup.enabled)
1861 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1862 	tp->mss_cache = mss_now;
1863 
1864 	return mss_now;
1865 }
1866 EXPORT_SYMBOL(tcp_sync_mss);
1867 
1868 /* Compute the current effective MSS, taking SACKs and IP options,
1869  * and even PMTU discovery events into account.
1870  */
tcp_current_mss(struct sock * sk)1871 unsigned int tcp_current_mss(struct sock *sk)
1872 {
1873 	const struct tcp_sock *tp = tcp_sk(sk);
1874 	const struct dst_entry *dst = __sk_dst_get(sk);
1875 	u32 mss_now;
1876 	unsigned int header_len;
1877 	struct tcp_out_options opts;
1878 	struct tcp_key key;
1879 
1880 	mss_now = tp->mss_cache;
1881 
1882 	if (dst) {
1883 		u32 mtu = dst_mtu(dst);
1884 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1885 			mss_now = tcp_sync_mss(sk, mtu);
1886 	}
1887 	tcp_get_current_key(sk, &key);
1888 	header_len = tcp_established_options(sk, NULL, &opts, &key) +
1889 		     sizeof(struct tcphdr);
1890 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1891 	 * some common options. If this is an odd packet (because we have SACK
1892 	 * blocks etc) then our calculated header_len will be different, and
1893 	 * we have to adjust mss_now correspondingly */
1894 	if (header_len != tp->tcp_header_len) {
1895 		int delta = (int) header_len - tp->tcp_header_len;
1896 		mss_now -= delta;
1897 	}
1898 
1899 	return mss_now;
1900 }
1901 
1902 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1903  * As additional protections, we do not touch cwnd in retransmission phases,
1904  * and if application hit its sndbuf limit recently.
1905  */
tcp_cwnd_application_limited(struct sock * sk)1906 static void tcp_cwnd_application_limited(struct sock *sk)
1907 {
1908 	struct tcp_sock *tp = tcp_sk(sk);
1909 
1910 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1911 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1912 		/* Limited by application or receiver window. */
1913 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1914 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1915 		if (win_used < tcp_snd_cwnd(tp)) {
1916 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1917 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1918 		}
1919 		tp->snd_cwnd_used = 0;
1920 	}
1921 	tp->snd_cwnd_stamp = tcp_jiffies32;
1922 }
1923 
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1924 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1925 {
1926 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1927 	struct tcp_sock *tp = tcp_sk(sk);
1928 
1929 	/* Track the strongest available signal of the degree to which the cwnd
1930 	 * is fully utilized. If cwnd-limited then remember that fact for the
1931 	 * current window. If not cwnd-limited then track the maximum number of
1932 	 * outstanding packets in the current window. (If cwnd-limited then we
1933 	 * chose to not update tp->max_packets_out to avoid an extra else
1934 	 * clause with no functional impact.)
1935 	 */
1936 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1937 	    is_cwnd_limited ||
1938 	    (!tp->is_cwnd_limited &&
1939 	     tp->packets_out > tp->max_packets_out)) {
1940 		tp->is_cwnd_limited = is_cwnd_limited;
1941 		tp->max_packets_out = tp->packets_out;
1942 		tp->cwnd_usage_seq = tp->snd_nxt;
1943 	}
1944 
1945 	if (tcp_is_cwnd_limited(sk)) {
1946 		/* Network is feed fully. */
1947 		tp->snd_cwnd_used = 0;
1948 		tp->snd_cwnd_stamp = tcp_jiffies32;
1949 	} else {
1950 		/* Network starves. */
1951 		if (tp->packets_out > tp->snd_cwnd_used)
1952 			tp->snd_cwnd_used = tp->packets_out;
1953 
1954 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1955 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1956 		    !ca_ops->cong_control)
1957 			tcp_cwnd_application_limited(sk);
1958 
1959 		/* The following conditions together indicate the starvation
1960 		 * is caused by insufficient sender buffer:
1961 		 * 1) just sent some data (see tcp_write_xmit)
1962 		 * 2) not cwnd limited (this else condition)
1963 		 * 3) no more data to send (tcp_write_queue_empty())
1964 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1965 		 */
1966 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1967 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1968 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1969 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1970 	}
1971 }
1972 
1973 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1974 static bool tcp_minshall_check(const struct tcp_sock *tp)
1975 {
1976 	return after(tp->snd_sml, tp->snd_una) &&
1977 		!after(tp->snd_sml, tp->snd_nxt);
1978 }
1979 
1980 /* Update snd_sml if this skb is under mss
1981  * Note that a TSO packet might end with a sub-mss segment
1982  * The test is really :
1983  * if ((skb->len % mss) != 0)
1984  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1985  * But we can avoid doing the divide again given we already have
1986  *  skb_pcount = skb->len / mss_now
1987  */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1988 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1989 				const struct sk_buff *skb)
1990 {
1991 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1992 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1993 }
1994 
1995 /* Return false, if packet can be sent now without violation Nagle's rules:
1996  * 1. It is full sized. (provided by caller in %partial bool)
1997  * 2. Or it contains FIN. (already checked by caller)
1998  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1999  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
2000  *    With Minshall's modification: all sent small packets are ACKed.
2001  */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)2002 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
2003 			    int nonagle)
2004 {
2005 	return partial &&
2006 		((nonagle & TCP_NAGLE_CORK) ||
2007 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
2008 }
2009 
2010 /* Return how many segs we'd like on a TSO packet,
2011  * depending on current pacing rate, and how close the peer is.
2012  *
2013  * Rationale is:
2014  * - For close peers, we rather send bigger packets to reduce
2015  *   cpu costs, because occasional losses will be repaired fast.
2016  * - For long distance/rtt flows, we would like to get ACK clocking
2017  *   with 1 ACK per ms.
2018  *
2019  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2020  * in bigger TSO bursts. We we cut the RTT-based allowance in half
2021  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2022  * is below 1500 bytes after 6 * ~500 usec = 3ms.
2023  */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)2024 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2025 			    int min_tso_segs)
2026 {
2027 	unsigned long bytes;
2028 	u32 r;
2029 
2030 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2031 
2032 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2033 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2034 		bytes += sk->sk_gso_max_size >> r;
2035 
2036 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2037 
2038 	return max_t(u32, bytes / mss_now, min_tso_segs);
2039 }
2040 
2041 /* Return the number of segments we want in the skb we are transmitting.
2042  * See if congestion control module wants to decide; otherwise, autosize.
2043  */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)2044 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2045 {
2046 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2047 	u32 min_tso, tso_segs;
2048 
2049 	min_tso = ca_ops->min_tso_segs ?
2050 			ca_ops->min_tso_segs(sk) :
2051 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2052 
2053 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2054 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2055 }
2056 
2057 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2058 static unsigned int tcp_mss_split_point(const struct sock *sk,
2059 					const struct sk_buff *skb,
2060 					unsigned int mss_now,
2061 					unsigned int max_segs,
2062 					int nonagle)
2063 {
2064 	const struct tcp_sock *tp = tcp_sk(sk);
2065 	u32 partial, needed, window, max_len;
2066 
2067 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2068 	max_len = mss_now * max_segs;
2069 
2070 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2071 		return max_len;
2072 
2073 	needed = min(skb->len, window);
2074 
2075 	if (max_len <= needed)
2076 		return max_len;
2077 
2078 	partial = needed % mss_now;
2079 	/* If last segment is not a full MSS, check if Nagle rules allow us
2080 	 * to include this last segment in this skb.
2081 	 * Otherwise, we'll split the skb at last MSS boundary
2082 	 */
2083 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2084 		return needed - partial;
2085 
2086 	return needed;
2087 }
2088 
2089 /* Can at least one segment of SKB be sent right now, according to the
2090  * congestion window rules?  If so, return how many segments are allowed.
2091  */
tcp_cwnd_test(const struct tcp_sock * tp)2092 static u32 tcp_cwnd_test(const struct tcp_sock *tp)
2093 {
2094 	u32 in_flight, cwnd, halfcwnd;
2095 
2096 	in_flight = tcp_packets_in_flight(tp);
2097 	cwnd = tcp_snd_cwnd(tp);
2098 	if (in_flight >= cwnd)
2099 		return 0;
2100 
2101 	/* For better scheduling, ensure we have at least
2102 	 * 2 GSO packets in flight.
2103 	 */
2104 	halfcwnd = max(cwnd >> 1, 1U);
2105 	return min(halfcwnd, cwnd - in_flight);
2106 }
2107 
2108 /* Initialize TSO state of a skb.
2109  * This must be invoked the first time we consider transmitting
2110  * SKB onto the wire.
2111  */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2112 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2113 {
2114 	int tso_segs = tcp_skb_pcount(skb);
2115 
2116 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now))
2117 		return tcp_set_skb_tso_segs(skb, mss_now);
2118 
2119 	return tso_segs;
2120 }
2121 
2122 
2123 /* Return true if the Nagle test allows this packet to be
2124  * sent now.
2125  */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2126 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2127 				  unsigned int cur_mss, int nonagle)
2128 {
2129 	/* Nagle rule does not apply to frames, which sit in the middle of the
2130 	 * write_queue (they have no chances to get new data).
2131 	 *
2132 	 * This is implemented in the callers, where they modify the 'nonagle'
2133 	 * argument based upon the location of SKB in the send queue.
2134 	 */
2135 	if (nonagle & TCP_NAGLE_PUSH)
2136 		return true;
2137 
2138 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2139 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2140 		return true;
2141 
2142 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2143 		return true;
2144 
2145 	return false;
2146 }
2147 
2148 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2149 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2150 			     const struct sk_buff *skb,
2151 			     unsigned int cur_mss)
2152 {
2153 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2154 
2155 	if (skb->len > cur_mss)
2156 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2157 
2158 	return !after(end_seq, tcp_wnd_end(tp));
2159 }
2160 
2161 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2162  * which is put after SKB on the list.  It is very much like
2163  * tcp_fragment() except that it may make several kinds of assumptions
2164  * in order to speed up the splitting operation.  In particular, we
2165  * know that all the data is in scatter-gather pages, and that the
2166  * packet has never been sent out before (and thus is not cloned).
2167  */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2168 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2169 			unsigned int mss_now, gfp_t gfp)
2170 {
2171 	int nlen = skb->len - len;
2172 	struct sk_buff *buff;
2173 	u8 flags;
2174 
2175 	/* All of a TSO frame must be composed of paged data.  */
2176 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2177 
2178 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2179 	if (unlikely(!buff))
2180 		return -ENOMEM;
2181 	skb_copy_decrypted(buff, skb);
2182 	mptcp_skb_ext_copy(buff, skb);
2183 
2184 	sk_wmem_queued_add(sk, buff->truesize);
2185 	sk_mem_charge(sk, buff->truesize);
2186 	buff->truesize += nlen;
2187 	skb->truesize -= nlen;
2188 
2189 	/* Correct the sequence numbers. */
2190 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2191 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2192 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2193 
2194 	/* PSH and FIN should only be set in the second packet. */
2195 	flags = TCP_SKB_CB(skb)->tcp_flags;
2196 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2197 	TCP_SKB_CB(buff)->tcp_flags = flags;
2198 
2199 	tcp_skb_fragment_eor(skb, buff);
2200 
2201 	skb_split(skb, buff, len);
2202 	tcp_fragment_tstamp(skb, buff);
2203 
2204 	/* Fix up tso_factor for both original and new SKB.  */
2205 	tcp_set_skb_tso_segs(skb, mss_now);
2206 	tcp_set_skb_tso_segs(buff, mss_now);
2207 
2208 	/* Link BUFF into the send queue. */
2209 	__skb_header_release(buff);
2210 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2211 
2212 	return 0;
2213 }
2214 
2215 /* Try to defer sending, if possible, in order to minimize the amount
2216  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2217  *
2218  * This algorithm is from John Heffner.
2219  */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2220 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2221 				 bool *is_cwnd_limited,
2222 				 bool *is_rwnd_limited,
2223 				 u32 max_segs)
2224 {
2225 	const struct inet_connection_sock *icsk = inet_csk(sk);
2226 	u32 send_win, cong_win, limit, in_flight;
2227 	struct tcp_sock *tp = tcp_sk(sk);
2228 	struct sk_buff *head;
2229 	int win_divisor;
2230 	s64 delta;
2231 
2232 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2233 		goto send_now;
2234 
2235 	/* Avoid bursty behavior by allowing defer
2236 	 * only if the last write was recent (1 ms).
2237 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2238 	 * packets waiting in a qdisc or device for EDT delivery.
2239 	 */
2240 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2241 	if (delta > 0)
2242 		goto send_now;
2243 
2244 	in_flight = tcp_packets_in_flight(tp);
2245 
2246 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2247 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2248 
2249 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2250 
2251 	/* From in_flight test above, we know that cwnd > in_flight.  */
2252 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2253 
2254 	limit = min(send_win, cong_win);
2255 
2256 	/* If a full-sized TSO skb can be sent, do it. */
2257 	if (limit >= max_segs * tp->mss_cache)
2258 		goto send_now;
2259 
2260 	/* Middle in queue won't get any more data, full sendable already? */
2261 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2262 		goto send_now;
2263 
2264 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2265 	if (win_divisor) {
2266 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2267 
2268 		/* If at least some fraction of a window is available,
2269 		 * just use it.
2270 		 */
2271 		chunk /= win_divisor;
2272 		if (limit >= chunk)
2273 			goto send_now;
2274 	} else {
2275 		/* Different approach, try not to defer past a single
2276 		 * ACK.  Receiver should ACK every other full sized
2277 		 * frame, so if we have space for more than 3 frames
2278 		 * then send now.
2279 		 */
2280 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2281 			goto send_now;
2282 	}
2283 
2284 	/* TODO : use tsorted_sent_queue ? */
2285 	head = tcp_rtx_queue_head(sk);
2286 	if (!head)
2287 		goto send_now;
2288 	delta = tp->tcp_clock_cache - head->tstamp;
2289 	/* If next ACK is likely to come too late (half srtt), do not defer */
2290 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2291 		goto send_now;
2292 
2293 	/* Ok, it looks like it is advisable to defer.
2294 	 * Three cases are tracked :
2295 	 * 1) We are cwnd-limited
2296 	 * 2) We are rwnd-limited
2297 	 * 3) We are application limited.
2298 	 */
2299 	if (cong_win < send_win) {
2300 		if (cong_win <= skb->len) {
2301 			*is_cwnd_limited = true;
2302 			return true;
2303 		}
2304 	} else {
2305 		if (send_win <= skb->len) {
2306 			*is_rwnd_limited = true;
2307 			return true;
2308 		}
2309 	}
2310 
2311 	/* If this packet won't get more data, do not wait. */
2312 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2313 	    TCP_SKB_CB(skb)->eor)
2314 		goto send_now;
2315 
2316 	return true;
2317 
2318 send_now:
2319 	return false;
2320 }
2321 
tcp_mtu_check_reprobe(struct sock * sk)2322 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2323 {
2324 	struct inet_connection_sock *icsk = inet_csk(sk);
2325 	struct tcp_sock *tp = tcp_sk(sk);
2326 	struct net *net = sock_net(sk);
2327 	u32 interval;
2328 	s32 delta;
2329 
2330 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2331 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2332 	if (unlikely(delta >= interval * HZ)) {
2333 		int mss = tcp_current_mss(sk);
2334 
2335 		/* Update current search range */
2336 		icsk->icsk_mtup.probe_size = 0;
2337 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2338 			sizeof(struct tcphdr) +
2339 			icsk->icsk_af_ops->net_header_len;
2340 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2341 
2342 		/* Update probe time stamp */
2343 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2344 	}
2345 }
2346 
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2347 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2348 {
2349 	struct sk_buff *skb, *next;
2350 
2351 	skb = tcp_send_head(sk);
2352 	tcp_for_write_queue_from_safe(skb, next, sk) {
2353 		if (len <= skb->len)
2354 			break;
2355 
2356 		if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2357 			return false;
2358 
2359 		len -= skb->len;
2360 	}
2361 
2362 	return true;
2363 }
2364 
tcp_clone_payload(struct sock * sk,struct sk_buff * to,int probe_size)2365 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2366 			     int probe_size)
2367 {
2368 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2369 	int i, todo, len = 0, nr_frags = 0;
2370 	const struct sk_buff *skb;
2371 
2372 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2373 		return -ENOMEM;
2374 
2375 	skb_queue_walk(&sk->sk_write_queue, skb) {
2376 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2377 
2378 		if (skb_headlen(skb))
2379 			return -EINVAL;
2380 
2381 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2382 			if (len >= probe_size)
2383 				goto commit;
2384 			todo = min_t(int, skb_frag_size(fragfrom),
2385 				     probe_size - len);
2386 			len += todo;
2387 			if (lastfrag &&
2388 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2389 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2390 						      skb_frag_size(lastfrag)) {
2391 				skb_frag_size_add(lastfrag, todo);
2392 				continue;
2393 			}
2394 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2395 				return -E2BIG;
2396 			skb_frag_page_copy(fragto, fragfrom);
2397 			skb_frag_off_copy(fragto, fragfrom);
2398 			skb_frag_size_set(fragto, todo);
2399 			nr_frags++;
2400 			lastfrag = fragto++;
2401 		}
2402 	}
2403 commit:
2404 	WARN_ON_ONCE(len != probe_size);
2405 	for (i = 0; i < nr_frags; i++)
2406 		skb_frag_ref(to, i);
2407 
2408 	skb_shinfo(to)->nr_frags = nr_frags;
2409 	to->truesize += probe_size;
2410 	to->len += probe_size;
2411 	to->data_len += probe_size;
2412 	__skb_header_release(to);
2413 	return 0;
2414 }
2415 
2416 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if
2417  * all its payload was moved to another one (dst).
2418  * Make sure to transfer tcp_flags, eor, and tstamp.
2419  */
tcp_eat_one_skb(struct sock * sk,struct sk_buff * dst,struct sk_buff * src)2420 static void tcp_eat_one_skb(struct sock *sk,
2421 			    struct sk_buff *dst,
2422 			    struct sk_buff *src)
2423 {
2424 	TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags;
2425 	TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor;
2426 	tcp_skb_collapse_tstamp(dst, src);
2427 	tcp_unlink_write_queue(src, sk);
2428 	tcp_wmem_free_skb(sk, src);
2429 }
2430 
2431 /* Create a new MTU probe if we are ready.
2432  * MTU probe is regularly attempting to increase the path MTU by
2433  * deliberately sending larger packets.  This discovers routing
2434  * changes resulting in larger path MTUs.
2435  *
2436  * Returns 0 if we should wait to probe (no cwnd available),
2437  *         1 if a probe was sent,
2438  *         -1 otherwise
2439  */
tcp_mtu_probe(struct sock * sk)2440 static int tcp_mtu_probe(struct sock *sk)
2441 {
2442 	struct inet_connection_sock *icsk = inet_csk(sk);
2443 	struct tcp_sock *tp = tcp_sk(sk);
2444 	struct sk_buff *skb, *nskb, *next;
2445 	struct net *net = sock_net(sk);
2446 	int probe_size;
2447 	int size_needed;
2448 	int copy, len;
2449 	int mss_now;
2450 	int interval;
2451 
2452 	/* Not currently probing/verifying,
2453 	 * not in recovery,
2454 	 * have enough cwnd, and
2455 	 * not SACKing (the variable headers throw things off)
2456 	 */
2457 	if (likely(!icsk->icsk_mtup.enabled ||
2458 		   icsk->icsk_mtup.probe_size ||
2459 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2460 		   tcp_snd_cwnd(tp) < 11 ||
2461 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2462 		return -1;
2463 
2464 	/* Use binary search for probe_size between tcp_mss_base,
2465 	 * and current mss_clamp. if (search_high - search_low)
2466 	 * smaller than a threshold, backoff from probing.
2467 	 */
2468 	mss_now = tcp_current_mss(sk);
2469 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2470 				    icsk->icsk_mtup.search_low) >> 1);
2471 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2472 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2473 	/* When misfortune happens, we are reprobing actively,
2474 	 * and then reprobe timer has expired. We stick with current
2475 	 * probing process by not resetting search range to its orignal.
2476 	 */
2477 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2478 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2479 		/* Check whether enough time has elaplased for
2480 		 * another round of probing.
2481 		 */
2482 		tcp_mtu_check_reprobe(sk);
2483 		return -1;
2484 	}
2485 
2486 	/* Have enough data in the send queue to probe? */
2487 	if (tp->write_seq - tp->snd_nxt < size_needed)
2488 		return -1;
2489 
2490 	if (tp->snd_wnd < size_needed)
2491 		return -1;
2492 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2493 		return 0;
2494 
2495 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2496 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2497 		if (!tcp_packets_in_flight(tp))
2498 			return -1;
2499 		else
2500 			return 0;
2501 	}
2502 
2503 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2504 		return -1;
2505 
2506 	/* We're allowed to probe.  Build it now. */
2507 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2508 	if (!nskb)
2509 		return -1;
2510 
2511 	/* build the payload, and be prepared to abort if this fails. */
2512 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2513 		tcp_skb_tsorted_anchor_cleanup(nskb);
2514 		consume_skb(nskb);
2515 		return -1;
2516 	}
2517 	sk_wmem_queued_add(sk, nskb->truesize);
2518 	sk_mem_charge(sk, nskb->truesize);
2519 
2520 	skb = tcp_send_head(sk);
2521 	skb_copy_decrypted(nskb, skb);
2522 	mptcp_skb_ext_copy(nskb, skb);
2523 
2524 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2525 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2526 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2527 
2528 	tcp_insert_write_queue_before(nskb, skb, sk);
2529 	tcp_highest_sack_replace(sk, skb, nskb);
2530 
2531 	len = 0;
2532 	tcp_for_write_queue_from_safe(skb, next, sk) {
2533 		copy = min_t(int, skb->len, probe_size - len);
2534 
2535 		if (skb->len <= copy) {
2536 			tcp_eat_one_skb(sk, nskb, skb);
2537 		} else {
2538 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2539 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2540 			__pskb_trim_head(skb, copy);
2541 			tcp_set_skb_tso_segs(skb, mss_now);
2542 			TCP_SKB_CB(skb)->seq += copy;
2543 		}
2544 
2545 		len += copy;
2546 
2547 		if (len >= probe_size)
2548 			break;
2549 	}
2550 	tcp_init_tso_segs(nskb, nskb->len);
2551 
2552 	/* We're ready to send.  If this fails, the probe will
2553 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2554 	 */
2555 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2556 		/* Decrement cwnd here because we are sending
2557 		 * effectively two packets. */
2558 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2559 		tcp_event_new_data_sent(sk, nskb);
2560 
2561 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2562 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2563 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2564 
2565 		return 1;
2566 	}
2567 
2568 	return -1;
2569 }
2570 
tcp_pacing_check(struct sock * sk)2571 static bool tcp_pacing_check(struct sock *sk)
2572 {
2573 	struct tcp_sock *tp = tcp_sk(sk);
2574 
2575 	if (!tcp_needs_internal_pacing(sk))
2576 		return false;
2577 
2578 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2579 		return false;
2580 
2581 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2582 		hrtimer_start(&tp->pacing_timer,
2583 			      ns_to_ktime(tp->tcp_wstamp_ns),
2584 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2585 		sock_hold(sk);
2586 	}
2587 	return true;
2588 }
2589 
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2590 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2591 {
2592 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2593 
2594 	/* No skb in the rtx queue. */
2595 	if (!node)
2596 		return true;
2597 
2598 	/* Only one skb in rtx queue. */
2599 	return !node->rb_left && !node->rb_right;
2600 }
2601 
2602 /* TCP Small Queues :
2603  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2604  * (These limits are doubled for retransmits)
2605  * This allows for :
2606  *  - better RTT estimation and ACK scheduling
2607  *  - faster recovery
2608  *  - high rates
2609  * Alas, some drivers / subsystems require a fair amount
2610  * of queued bytes to ensure line rate.
2611  * One example is wifi aggregation (802.11 AMPDU)
2612  */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2613 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2614 				  unsigned int factor)
2615 {
2616 	unsigned long limit;
2617 
2618 	limit = max_t(unsigned long,
2619 		      2 * skb->truesize,
2620 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2621 	if (sk->sk_pacing_status == SK_PACING_NONE)
2622 		limit = min_t(unsigned long, limit,
2623 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2624 	limit <<= factor;
2625 
2626 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2627 	    tcp_sk(sk)->tcp_tx_delay) {
2628 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2629 				  tcp_sk(sk)->tcp_tx_delay;
2630 
2631 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2632 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2633 		 * USEC_PER_SEC is approximated by 2^20.
2634 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2635 		 */
2636 		extra_bytes >>= (20 - 1);
2637 		limit += extra_bytes;
2638 	}
2639 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2640 		/* Always send skb if rtx queue is empty or has one skb.
2641 		 * No need to wait for TX completion to call us back,
2642 		 * after softirq/tasklet schedule.
2643 		 * This helps when TX completions are delayed too much.
2644 		 */
2645 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2646 			return false;
2647 
2648 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2649 		/* It is possible TX completion already happened
2650 		 * before we set TSQ_THROTTLED, so we must
2651 		 * test again the condition.
2652 		 */
2653 		smp_mb__after_atomic();
2654 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2655 			return true;
2656 	}
2657 	return false;
2658 }
2659 
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2660 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2661 {
2662 	const u32 now = tcp_jiffies32;
2663 	enum tcp_chrono old = tp->chrono_type;
2664 
2665 	if (old > TCP_CHRONO_UNSPEC)
2666 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2667 	tp->chrono_start = now;
2668 	tp->chrono_type = new;
2669 }
2670 
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2671 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2672 {
2673 	struct tcp_sock *tp = tcp_sk(sk);
2674 
2675 	/* If there are multiple conditions worthy of tracking in a
2676 	 * chronograph then the highest priority enum takes precedence
2677 	 * over the other conditions. So that if something "more interesting"
2678 	 * starts happening, stop the previous chrono and start a new one.
2679 	 */
2680 	if (type > tp->chrono_type)
2681 		tcp_chrono_set(tp, type);
2682 }
2683 
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2684 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2685 {
2686 	struct tcp_sock *tp = tcp_sk(sk);
2687 
2688 
2689 	/* There are multiple conditions worthy of tracking in a
2690 	 * chronograph, so that the highest priority enum takes
2691 	 * precedence over the other conditions (see tcp_chrono_start).
2692 	 * If a condition stops, we only stop chrono tracking if
2693 	 * it's the "most interesting" or current chrono we are
2694 	 * tracking and starts busy chrono if we have pending data.
2695 	 */
2696 	if (tcp_rtx_and_write_queues_empty(sk))
2697 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2698 	else if (type == tp->chrono_type)
2699 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2700 }
2701 
2702 /* First skb in the write queue is smaller than ideal packet size.
2703  * Check if we can move payload from the second skb in the queue.
2704  */
tcp_grow_skb(struct sock * sk,struct sk_buff * skb,int amount)2705 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount)
2706 {
2707 	struct sk_buff *next_skb = skb->next;
2708 	unsigned int nlen;
2709 
2710 	if (tcp_skb_is_last(sk, skb))
2711 		return;
2712 
2713 	if (!tcp_skb_can_collapse(skb, next_skb))
2714 		return;
2715 
2716 	nlen = min_t(u32, amount, next_skb->len);
2717 	if (!nlen || !skb_shift(skb, next_skb, nlen))
2718 		return;
2719 
2720 	TCP_SKB_CB(skb)->end_seq += nlen;
2721 	TCP_SKB_CB(next_skb)->seq += nlen;
2722 
2723 	if (!next_skb->len) {
2724 		/* In case FIN is set, we need to update end_seq */
2725 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2726 
2727 		tcp_eat_one_skb(sk, skb, next_skb);
2728 	}
2729 }
2730 
2731 /* This routine writes packets to the network.  It advances the
2732  * send_head.  This happens as incoming acks open up the remote
2733  * window for us.
2734  *
2735  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2736  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2737  * account rare use of URG, this is not a big flaw.
2738  *
2739  * Send at most one packet when push_one > 0. Temporarily ignore
2740  * cwnd limit to force at most one packet out when push_one == 2.
2741 
2742  * Returns true, if no segments are in flight and we have queued segments,
2743  * but cannot send anything now because of SWS or another problem.
2744  */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2745 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2746 			   int push_one, gfp_t gfp)
2747 {
2748 	struct tcp_sock *tp = tcp_sk(sk);
2749 	struct sk_buff *skb;
2750 	unsigned int tso_segs, sent_pkts;
2751 	u32 cwnd_quota, max_segs;
2752 	int result;
2753 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2754 
2755 	sent_pkts = 0;
2756 
2757 	tcp_mstamp_refresh(tp);
2758 	if (!push_one) {
2759 		/* Do MTU probing. */
2760 		result = tcp_mtu_probe(sk);
2761 		if (!result) {
2762 			return false;
2763 		} else if (result > 0) {
2764 			sent_pkts = 1;
2765 		}
2766 	}
2767 
2768 	max_segs = tcp_tso_segs(sk, mss_now);
2769 	while ((skb = tcp_send_head(sk))) {
2770 		unsigned int limit;
2771 		int missing_bytes;
2772 
2773 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2774 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2775 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2776 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
2777 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2778 			tcp_init_tso_segs(skb, mss_now);
2779 			goto repair; /* Skip network transmission */
2780 		}
2781 
2782 		if (tcp_pacing_check(sk))
2783 			break;
2784 
2785 		cwnd_quota = tcp_cwnd_test(tp);
2786 		if (!cwnd_quota) {
2787 			if (push_one == 2)
2788 				/* Force out a loss probe pkt. */
2789 				cwnd_quota = 1;
2790 			else
2791 				break;
2792 		}
2793 		cwnd_quota = min(cwnd_quota, max_segs);
2794 		missing_bytes = cwnd_quota * mss_now - skb->len;
2795 		if (missing_bytes > 0)
2796 			tcp_grow_skb(sk, skb, missing_bytes);
2797 
2798 		tso_segs = tcp_set_skb_tso_segs(skb, mss_now);
2799 
2800 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2801 			is_rwnd_limited = true;
2802 			break;
2803 		}
2804 
2805 		if (tso_segs == 1) {
2806 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2807 						     (tcp_skb_is_last(sk, skb) ?
2808 						      nonagle : TCP_NAGLE_PUSH))))
2809 				break;
2810 		} else {
2811 			if (!push_one &&
2812 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2813 						 &is_rwnd_limited, max_segs))
2814 				break;
2815 		}
2816 
2817 		limit = mss_now;
2818 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2819 			limit = tcp_mss_split_point(sk, skb, mss_now,
2820 						    cwnd_quota,
2821 						    nonagle);
2822 
2823 		if (skb->len > limit &&
2824 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2825 			break;
2826 
2827 		if (tcp_small_queue_check(sk, skb, 0))
2828 			break;
2829 
2830 		/* Argh, we hit an empty skb(), presumably a thread
2831 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2832 		 * We do not want to send a pure-ack packet and have
2833 		 * a strange looking rtx queue with empty packet(s).
2834 		 */
2835 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2836 			break;
2837 
2838 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2839 			break;
2840 
2841 repair:
2842 		/* Advance the send_head.  This one is sent out.
2843 		 * This call will increment packets_out.
2844 		 */
2845 		tcp_event_new_data_sent(sk, skb);
2846 
2847 		tcp_minshall_update(tp, mss_now, skb);
2848 		sent_pkts += tcp_skb_pcount(skb);
2849 
2850 		if (push_one)
2851 			break;
2852 	}
2853 
2854 	if (is_rwnd_limited)
2855 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2856 	else
2857 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2858 
2859 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2860 	if (likely(sent_pkts || is_cwnd_limited))
2861 		tcp_cwnd_validate(sk, is_cwnd_limited);
2862 
2863 	if (likely(sent_pkts)) {
2864 		if (tcp_in_cwnd_reduction(sk))
2865 			tp->prr_out += sent_pkts;
2866 
2867 		/* Send one loss probe per tail loss episode. */
2868 		if (push_one != 2)
2869 			tcp_schedule_loss_probe(sk, false);
2870 		return false;
2871 	}
2872 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2873 }
2874 
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2875 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2876 {
2877 	struct inet_connection_sock *icsk = inet_csk(sk);
2878 	struct tcp_sock *tp = tcp_sk(sk);
2879 	u32 timeout, timeout_us, rto_delta_us;
2880 	int early_retrans;
2881 
2882 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2883 	 * finishes.
2884 	 */
2885 	if (rcu_access_pointer(tp->fastopen_rsk))
2886 		return false;
2887 
2888 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2889 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2890 	 * not in loss recovery, that are either limited by cwnd or application.
2891 	 */
2892 	if ((early_retrans != 3 && early_retrans != 4) ||
2893 	    !tp->packets_out || !tcp_is_sack(tp) ||
2894 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2895 	     icsk->icsk_ca_state != TCP_CA_CWR))
2896 		return false;
2897 
2898 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2899 	 * for delayed ack when there's one outstanding packet. If no RTT
2900 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2901 	 */
2902 	if (tp->srtt_us) {
2903 		timeout_us = tp->srtt_us >> 2;
2904 		if (tp->packets_out == 1)
2905 			timeout_us += tcp_rto_min_us(sk);
2906 		else
2907 			timeout_us += TCP_TIMEOUT_MIN_US;
2908 		timeout = usecs_to_jiffies(timeout_us);
2909 	} else {
2910 		timeout = TCP_TIMEOUT_INIT;
2911 	}
2912 
2913 	/* If the RTO formula yields an earlier time, then use that time. */
2914 	rto_delta_us = advancing_rto ?
2915 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2916 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2917 	if (rto_delta_us > 0)
2918 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2919 
2920 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2921 	return true;
2922 }
2923 
2924 /* Thanks to skb fast clones, we can detect if a prior transmit of
2925  * a packet is still in a qdisc or driver queue.
2926  * In this case, there is very little point doing a retransmit !
2927  */
skb_still_in_host_queue(struct sock * sk,const struct sk_buff * skb)2928 static bool skb_still_in_host_queue(struct sock *sk,
2929 				    const struct sk_buff *skb)
2930 {
2931 	if (unlikely(skb_fclone_busy(sk, skb))) {
2932 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2933 		smp_mb__after_atomic();
2934 		if (skb_fclone_busy(sk, skb)) {
2935 			NET_INC_STATS(sock_net(sk),
2936 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2937 			return true;
2938 		}
2939 	}
2940 	return false;
2941 }
2942 
2943 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2944  * retransmit the last segment.
2945  */
tcp_send_loss_probe(struct sock * sk)2946 void tcp_send_loss_probe(struct sock *sk)
2947 {
2948 	struct tcp_sock *tp = tcp_sk(sk);
2949 	struct sk_buff *skb;
2950 	int pcount;
2951 	int mss = tcp_current_mss(sk);
2952 
2953 	/* At most one outstanding TLP */
2954 	if (tp->tlp_high_seq)
2955 		goto rearm_timer;
2956 
2957 	tp->tlp_retrans = 0;
2958 	skb = tcp_send_head(sk);
2959 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2960 		pcount = tp->packets_out;
2961 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2962 		if (tp->packets_out > pcount)
2963 			goto probe_sent;
2964 		goto rearm_timer;
2965 	}
2966 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2967 	if (unlikely(!skb)) {
2968 		WARN_ONCE(tp->packets_out,
2969 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2970 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2971 		inet_csk(sk)->icsk_pending = 0;
2972 		return;
2973 	}
2974 
2975 	if (skb_still_in_host_queue(sk, skb))
2976 		goto rearm_timer;
2977 
2978 	pcount = tcp_skb_pcount(skb);
2979 	if (WARN_ON(!pcount))
2980 		goto rearm_timer;
2981 
2982 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2983 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2984 					  (pcount - 1) * mss, mss,
2985 					  GFP_ATOMIC)))
2986 			goto rearm_timer;
2987 		skb = skb_rb_next(skb);
2988 	}
2989 
2990 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2991 		goto rearm_timer;
2992 
2993 	if (__tcp_retransmit_skb(sk, skb, 1))
2994 		goto rearm_timer;
2995 
2996 	tp->tlp_retrans = 1;
2997 
2998 probe_sent:
2999 	/* Record snd_nxt for loss detection. */
3000 	tp->tlp_high_seq = tp->snd_nxt;
3001 
3002 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
3003 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
3004 	inet_csk(sk)->icsk_pending = 0;
3005 rearm_timer:
3006 	tcp_rearm_rto(sk);
3007 }
3008 
3009 /* Push out any pending frames which were held back due to
3010  * TCP_CORK or attempt at coalescing tiny packets.
3011  * The socket must be locked by the caller.
3012  */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)3013 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
3014 			       int nonagle)
3015 {
3016 	/* If we are closed, the bytes will have to remain here.
3017 	 * In time closedown will finish, we empty the write queue and
3018 	 * all will be happy.
3019 	 */
3020 	if (unlikely(sk->sk_state == TCP_CLOSE))
3021 		return;
3022 
3023 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
3024 			   sk_gfp_mask(sk, GFP_ATOMIC)))
3025 		tcp_check_probe_timer(sk);
3026 }
3027 
3028 /* Send _single_ skb sitting at the send head. This function requires
3029  * true push pending frames to setup probe timer etc.
3030  */
tcp_push_one(struct sock * sk,unsigned int mss_now)3031 void tcp_push_one(struct sock *sk, unsigned int mss_now)
3032 {
3033 	struct sk_buff *skb = tcp_send_head(sk);
3034 
3035 	BUG_ON(!skb || skb->len < mss_now);
3036 
3037 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
3038 }
3039 
3040 /* This function returns the amount that we can raise the
3041  * usable window based on the following constraints
3042  *
3043  * 1. The window can never be shrunk once it is offered (RFC 793)
3044  * 2. We limit memory per socket
3045  *
3046  * RFC 1122:
3047  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3048  *  RECV.NEXT + RCV.WIN fixed until:
3049  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3050  *
3051  * i.e. don't raise the right edge of the window until you can raise
3052  * it at least MSS bytes.
3053  *
3054  * Unfortunately, the recommended algorithm breaks header prediction,
3055  * since header prediction assumes th->window stays fixed.
3056  *
3057  * Strictly speaking, keeping th->window fixed violates the receiver
3058  * side SWS prevention criteria. The problem is that under this rule
3059  * a stream of single byte packets will cause the right side of the
3060  * window to always advance by a single byte.
3061  *
3062  * Of course, if the sender implements sender side SWS prevention
3063  * then this will not be a problem.
3064  *
3065  * BSD seems to make the following compromise:
3066  *
3067  *	If the free space is less than the 1/4 of the maximum
3068  *	space available and the free space is less than 1/2 mss,
3069  *	then set the window to 0.
3070  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3071  *	Otherwise, just prevent the window from shrinking
3072  *	and from being larger than the largest representable value.
3073  *
3074  * This prevents incremental opening of the window in the regime
3075  * where TCP is limited by the speed of the reader side taking
3076  * data out of the TCP receive queue. It does nothing about
3077  * those cases where the window is constrained on the sender side
3078  * because the pipeline is full.
3079  *
3080  * BSD also seems to "accidentally" limit itself to windows that are a
3081  * multiple of MSS, at least until the free space gets quite small.
3082  * This would appear to be a side effect of the mbuf implementation.
3083  * Combining these two algorithms results in the observed behavior
3084  * of having a fixed window size at almost all times.
3085  *
3086  * Below we obtain similar behavior by forcing the offered window to
3087  * a multiple of the mss when it is feasible to do so.
3088  *
3089  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3090  * Regular options like TIMESTAMP are taken into account.
3091  */
__tcp_select_window(struct sock * sk)3092 u32 __tcp_select_window(struct sock *sk)
3093 {
3094 	struct inet_connection_sock *icsk = inet_csk(sk);
3095 	struct tcp_sock *tp = tcp_sk(sk);
3096 	struct net *net = sock_net(sk);
3097 	/* MSS for the peer's data.  Previous versions used mss_clamp
3098 	 * here.  I don't know if the value based on our guesses
3099 	 * of peer's MSS is better for the performance.  It's more correct
3100 	 * but may be worse for the performance because of rcv_mss
3101 	 * fluctuations.  --SAW  1998/11/1
3102 	 */
3103 	int mss = icsk->icsk_ack.rcv_mss;
3104 	int free_space = tcp_space(sk);
3105 	int allowed_space = tcp_full_space(sk);
3106 	int full_space, window;
3107 
3108 	if (sk_is_mptcp(sk))
3109 		mptcp_space(sk, &free_space, &allowed_space);
3110 
3111 	full_space = min_t(int, tp->window_clamp, allowed_space);
3112 
3113 	if (unlikely(mss > full_space)) {
3114 		mss = full_space;
3115 		if (mss <= 0)
3116 			return 0;
3117 	}
3118 
3119 	/* Only allow window shrink if the sysctl is enabled and we have
3120 	 * a non-zero scaling factor in effect.
3121 	 */
3122 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3123 		goto shrink_window_allowed;
3124 
3125 	/* do not allow window to shrink */
3126 
3127 	if (free_space < (full_space >> 1)) {
3128 		icsk->icsk_ack.quick = 0;
3129 
3130 		if (tcp_under_memory_pressure(sk))
3131 			tcp_adjust_rcv_ssthresh(sk);
3132 
3133 		/* free_space might become our new window, make sure we don't
3134 		 * increase it due to wscale.
3135 		 */
3136 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3137 
3138 		/* if free space is less than mss estimate, or is below 1/16th
3139 		 * of the maximum allowed, try to move to zero-window, else
3140 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3141 		 * new incoming data is dropped due to memory limits.
3142 		 * With large window, mss test triggers way too late in order
3143 		 * to announce zero window in time before rmem limit kicks in.
3144 		 */
3145 		if (free_space < (allowed_space >> 4) || free_space < mss)
3146 			return 0;
3147 	}
3148 
3149 	if (free_space > tp->rcv_ssthresh)
3150 		free_space = tp->rcv_ssthresh;
3151 
3152 	/* Don't do rounding if we are using window scaling, since the
3153 	 * scaled window will not line up with the MSS boundary anyway.
3154 	 */
3155 	if (tp->rx_opt.rcv_wscale) {
3156 		window = free_space;
3157 
3158 		/* Advertise enough space so that it won't get scaled away.
3159 		 * Import case: prevent zero window announcement if
3160 		 * 1<<rcv_wscale > mss.
3161 		 */
3162 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3163 	} else {
3164 		window = tp->rcv_wnd;
3165 		/* Get the largest window that is a nice multiple of mss.
3166 		 * Window clamp already applied above.
3167 		 * If our current window offering is within 1 mss of the
3168 		 * free space we just keep it. This prevents the divide
3169 		 * and multiply from happening most of the time.
3170 		 * We also don't do any window rounding when the free space
3171 		 * is too small.
3172 		 */
3173 		if (window <= free_space - mss || window > free_space)
3174 			window = rounddown(free_space, mss);
3175 		else if (mss == full_space &&
3176 			 free_space > window + (full_space >> 1))
3177 			window = free_space;
3178 	}
3179 
3180 	return window;
3181 
3182 shrink_window_allowed:
3183 	/* new window should always be an exact multiple of scaling factor */
3184 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3185 
3186 	if (free_space < (full_space >> 1)) {
3187 		icsk->icsk_ack.quick = 0;
3188 
3189 		if (tcp_under_memory_pressure(sk))
3190 			tcp_adjust_rcv_ssthresh(sk);
3191 
3192 		/* if free space is too low, return a zero window */
3193 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3194 			free_space < (1 << tp->rx_opt.rcv_wscale))
3195 			return 0;
3196 	}
3197 
3198 	if (free_space > tp->rcv_ssthresh) {
3199 		free_space = tp->rcv_ssthresh;
3200 		/* new window should always be an exact multiple of scaling factor
3201 		 *
3202 		 * For this case, we ALIGN "up" (increase free_space) because
3203 		 * we know free_space is not zero here, it has been reduced from
3204 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3205 		 * (unlike sk_rcvbuf).
3206 		 */
3207 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3208 	}
3209 
3210 	return free_space;
3211 }
3212 
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3213 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3214 			     const struct sk_buff *next_skb)
3215 {
3216 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3217 		const struct skb_shared_info *next_shinfo =
3218 			skb_shinfo(next_skb);
3219 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3220 
3221 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3222 		shinfo->tskey = next_shinfo->tskey;
3223 		TCP_SKB_CB(skb)->txstamp_ack |=
3224 			TCP_SKB_CB(next_skb)->txstamp_ack;
3225 	}
3226 }
3227 
3228 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3229 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3230 {
3231 	struct tcp_sock *tp = tcp_sk(sk);
3232 	struct sk_buff *next_skb = skb_rb_next(skb);
3233 	int next_skb_size;
3234 
3235 	next_skb_size = next_skb->len;
3236 
3237 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3238 
3239 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3240 		return false;
3241 
3242 	tcp_highest_sack_replace(sk, next_skb, skb);
3243 
3244 	/* Update sequence range on original skb. */
3245 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3246 
3247 	/* Merge over control information. This moves PSH/FIN etc. over */
3248 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3249 
3250 	/* All done, get rid of second SKB and account for it so
3251 	 * packet counting does not break.
3252 	 */
3253 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3254 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3255 
3256 	/* changed transmit queue under us so clear hints */
3257 	tcp_clear_retrans_hints_partial(tp);
3258 	if (next_skb == tp->retransmit_skb_hint)
3259 		tp->retransmit_skb_hint = skb;
3260 
3261 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3262 
3263 	tcp_skb_collapse_tstamp(skb, next_skb);
3264 
3265 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3266 	return true;
3267 }
3268 
3269 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3270 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3271 {
3272 	if (tcp_skb_pcount(skb) > 1)
3273 		return false;
3274 	if (skb_cloned(skb))
3275 		return false;
3276 	if (!skb_frags_readable(skb))
3277 		return false;
3278 	/* Some heuristics for collapsing over SACK'd could be invented */
3279 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3280 		return false;
3281 
3282 	return true;
3283 }
3284 
3285 /* Collapse packets in the retransmit queue to make to create
3286  * less packets on the wire. This is only done on retransmission.
3287  */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3288 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3289 				     int space)
3290 {
3291 	struct tcp_sock *tp = tcp_sk(sk);
3292 	struct sk_buff *skb = to, *tmp;
3293 	bool first = true;
3294 
3295 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3296 		return;
3297 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3298 		return;
3299 
3300 	skb_rbtree_walk_from_safe(skb, tmp) {
3301 		if (!tcp_can_collapse(sk, skb))
3302 			break;
3303 
3304 		if (!tcp_skb_can_collapse(to, skb))
3305 			break;
3306 
3307 		space -= skb->len;
3308 
3309 		if (first) {
3310 			first = false;
3311 			continue;
3312 		}
3313 
3314 		if (space < 0)
3315 			break;
3316 
3317 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3318 			break;
3319 
3320 		if (!tcp_collapse_retrans(sk, to))
3321 			break;
3322 	}
3323 }
3324 
3325 /* This retransmits one SKB.  Policy decisions and retransmit queue
3326  * state updates are done by the caller.  Returns non-zero if an
3327  * error occurred which prevented the send.
3328  */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3329 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3330 {
3331 	struct inet_connection_sock *icsk = inet_csk(sk);
3332 	struct tcp_sock *tp = tcp_sk(sk);
3333 	unsigned int cur_mss;
3334 	int diff, len, err;
3335 	int avail_wnd;
3336 
3337 	/* Inconclusive MTU probe */
3338 	if (icsk->icsk_mtup.probe_size)
3339 		icsk->icsk_mtup.probe_size = 0;
3340 
3341 	if (skb_still_in_host_queue(sk, skb))
3342 		return -EBUSY;
3343 
3344 start:
3345 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3346 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3347 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3348 			TCP_SKB_CB(skb)->seq++;
3349 			goto start;
3350 		}
3351 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3352 			WARN_ON_ONCE(1);
3353 			return -EINVAL;
3354 		}
3355 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3356 			return -ENOMEM;
3357 	}
3358 
3359 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3360 		return -EHOSTUNREACH; /* Routing failure or similar. */
3361 
3362 	cur_mss = tcp_current_mss(sk);
3363 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3364 
3365 	/* If receiver has shrunk his window, and skb is out of
3366 	 * new window, do not retransmit it. The exception is the
3367 	 * case, when window is shrunk to zero. In this case
3368 	 * our retransmit of one segment serves as a zero window probe.
3369 	 */
3370 	if (avail_wnd <= 0) {
3371 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3372 			return -EAGAIN;
3373 		avail_wnd = cur_mss;
3374 	}
3375 
3376 	len = cur_mss * segs;
3377 	if (len > avail_wnd) {
3378 		len = rounddown(avail_wnd, cur_mss);
3379 		if (!len)
3380 			len = avail_wnd;
3381 	}
3382 	if (skb->len > len) {
3383 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3384 				 cur_mss, GFP_ATOMIC))
3385 			return -ENOMEM; /* We'll try again later. */
3386 	} else {
3387 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3388 			return -ENOMEM;
3389 
3390 		diff = tcp_skb_pcount(skb);
3391 		tcp_set_skb_tso_segs(skb, cur_mss);
3392 		diff -= tcp_skb_pcount(skb);
3393 		if (diff)
3394 			tcp_adjust_pcount(sk, skb, diff);
3395 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3396 		if (skb->len < avail_wnd)
3397 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3398 	}
3399 
3400 	/* RFC3168, section 6.1.1.1. ECN fallback */
3401 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3402 		tcp_ecn_clear_syn(sk, skb);
3403 
3404 	/* Update global and local TCP statistics. */
3405 	segs = tcp_skb_pcount(skb);
3406 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3407 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3408 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3409 	tp->total_retrans += segs;
3410 	tp->bytes_retrans += skb->len;
3411 
3412 	/* make sure skb->data is aligned on arches that require it
3413 	 * and check if ack-trimming & collapsing extended the headroom
3414 	 * beyond what csum_start can cover.
3415 	 */
3416 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3417 		     skb_headroom(skb) >= 0xFFFF)) {
3418 		struct sk_buff *nskb;
3419 
3420 		tcp_skb_tsorted_save(skb) {
3421 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3422 			if (nskb) {
3423 				nskb->dev = NULL;
3424 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3425 			} else {
3426 				err = -ENOBUFS;
3427 			}
3428 		} tcp_skb_tsorted_restore(skb);
3429 
3430 		if (!err) {
3431 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3432 			tcp_rate_skb_sent(sk, skb);
3433 		}
3434 	} else {
3435 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3436 	}
3437 
3438 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3439 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3440 				  TCP_SKB_CB(skb)->seq, segs, err);
3441 
3442 	if (likely(!err)) {
3443 		trace_tcp_retransmit_skb(sk, skb);
3444 	} else if (err != -EBUSY) {
3445 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3446 	}
3447 
3448 	/* To avoid taking spuriously low RTT samples based on a timestamp
3449 	 * for a transmit that never happened, always mark EVER_RETRANS
3450 	 */
3451 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3452 
3453 	return err;
3454 }
3455 
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3456 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3457 {
3458 	struct tcp_sock *tp = tcp_sk(sk);
3459 	int err = __tcp_retransmit_skb(sk, skb, segs);
3460 
3461 	if (err == 0) {
3462 #if FASTRETRANS_DEBUG > 0
3463 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3464 			net_dbg_ratelimited("retrans_out leaked\n");
3465 		}
3466 #endif
3467 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3468 		tp->retrans_out += tcp_skb_pcount(skb);
3469 	}
3470 
3471 	/* Save stamp of the first (attempted) retransmit. */
3472 	if (!tp->retrans_stamp)
3473 		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3474 
3475 	if (tp->undo_retrans < 0)
3476 		tp->undo_retrans = 0;
3477 	tp->undo_retrans += tcp_skb_pcount(skb);
3478 	return err;
3479 }
3480 
3481 /* This gets called after a retransmit timeout, and the initially
3482  * retransmitted data is acknowledged.  It tries to continue
3483  * resending the rest of the retransmit queue, until either
3484  * we've sent it all or the congestion window limit is reached.
3485  */
tcp_xmit_retransmit_queue(struct sock * sk)3486 void tcp_xmit_retransmit_queue(struct sock *sk)
3487 {
3488 	const struct inet_connection_sock *icsk = inet_csk(sk);
3489 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3490 	struct tcp_sock *tp = tcp_sk(sk);
3491 	bool rearm_timer = false;
3492 	u32 max_segs;
3493 	int mib_idx;
3494 
3495 	if (!tp->packets_out)
3496 		return;
3497 
3498 	rtx_head = tcp_rtx_queue_head(sk);
3499 	skb = tp->retransmit_skb_hint ?: rtx_head;
3500 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3501 	skb_rbtree_walk_from(skb) {
3502 		__u8 sacked;
3503 		int segs;
3504 
3505 		if (tcp_pacing_check(sk))
3506 			break;
3507 
3508 		/* we could do better than to assign each time */
3509 		if (!hole)
3510 			tp->retransmit_skb_hint = skb;
3511 
3512 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3513 		if (segs <= 0)
3514 			break;
3515 		sacked = TCP_SKB_CB(skb)->sacked;
3516 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3517 		 * we need to make sure not sending too bigs TSO packets
3518 		 */
3519 		segs = min_t(int, segs, max_segs);
3520 
3521 		if (tp->retrans_out >= tp->lost_out) {
3522 			break;
3523 		} else if (!(sacked & TCPCB_LOST)) {
3524 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3525 				hole = skb;
3526 			continue;
3527 
3528 		} else {
3529 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3530 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3531 			else
3532 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3533 		}
3534 
3535 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3536 			continue;
3537 
3538 		if (tcp_small_queue_check(sk, skb, 1))
3539 			break;
3540 
3541 		if (tcp_retransmit_skb(sk, skb, segs))
3542 			break;
3543 
3544 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3545 
3546 		if (tcp_in_cwnd_reduction(sk))
3547 			tp->prr_out += tcp_skb_pcount(skb);
3548 
3549 		if (skb == rtx_head &&
3550 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3551 			rearm_timer = true;
3552 
3553 	}
3554 	if (rearm_timer)
3555 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3556 				     inet_csk(sk)->icsk_rto,
3557 				     TCP_RTO_MAX);
3558 }
3559 
3560 /* We allow to exceed memory limits for FIN packets to expedite
3561  * connection tear down and (memory) recovery.
3562  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3563  * or even be forced to close flow without any FIN.
3564  * In general, we want to allow one skb per socket to avoid hangs
3565  * with edge trigger epoll()
3566  */
sk_forced_mem_schedule(struct sock * sk,int size)3567 void sk_forced_mem_schedule(struct sock *sk, int size)
3568 {
3569 	int delta, amt;
3570 
3571 	delta = size - sk->sk_forward_alloc;
3572 	if (delta <= 0)
3573 		return;
3574 	amt = sk_mem_pages(delta);
3575 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3576 	sk_memory_allocated_add(sk, amt);
3577 
3578 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3579 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3580 					gfp_memcg_charge() | __GFP_NOFAIL);
3581 }
3582 
3583 /* Send a FIN. The caller locks the socket for us.
3584  * We should try to send a FIN packet really hard, but eventually give up.
3585  */
tcp_send_fin(struct sock * sk)3586 void tcp_send_fin(struct sock *sk)
3587 {
3588 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3589 	struct tcp_sock *tp = tcp_sk(sk);
3590 
3591 	/* Optimization, tack on the FIN if we have one skb in write queue and
3592 	 * this skb was not yet sent, or we are under memory pressure.
3593 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3594 	 * as TCP stack thinks it has already been transmitted.
3595 	 */
3596 	tskb = tail;
3597 	if (!tskb && tcp_under_memory_pressure(sk))
3598 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3599 
3600 	if (tskb) {
3601 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3602 		TCP_SKB_CB(tskb)->end_seq++;
3603 		tp->write_seq++;
3604 		if (!tail) {
3605 			/* This means tskb was already sent.
3606 			 * Pretend we included the FIN on previous transmit.
3607 			 * We need to set tp->snd_nxt to the value it would have
3608 			 * if FIN had been sent. This is because retransmit path
3609 			 * does not change tp->snd_nxt.
3610 			 */
3611 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3612 			return;
3613 		}
3614 	} else {
3615 		skb = alloc_skb_fclone(MAX_TCP_HEADER,
3616 				       sk_gfp_mask(sk, GFP_ATOMIC |
3617 						       __GFP_NOWARN));
3618 		if (unlikely(!skb))
3619 			return;
3620 
3621 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3622 		skb_reserve(skb, MAX_TCP_HEADER);
3623 		sk_forced_mem_schedule(sk, skb->truesize);
3624 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3625 		tcp_init_nondata_skb(skb, tp->write_seq,
3626 				     TCPHDR_ACK | TCPHDR_FIN);
3627 		tcp_queue_skb(sk, skb);
3628 	}
3629 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3630 }
3631 
3632 /* We get here when a process closes a file descriptor (either due to
3633  * an explicit close() or as a byproduct of exit()'ing) and there
3634  * was unread data in the receive queue.  This behavior is recommended
3635  * by RFC 2525, section 2.17.  -DaveM
3636  */
tcp_send_active_reset(struct sock * sk,gfp_t priority,enum sk_rst_reason reason)3637 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
3638 			   enum sk_rst_reason reason)
3639 {
3640 	struct sk_buff *skb;
3641 
3642 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3643 
3644 	/* NOTE: No TCP options attached and we never retransmit this. */
3645 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3646 	if (!skb) {
3647 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3648 		return;
3649 	}
3650 
3651 	/* Reserve space for headers and prepare control bits. */
3652 	skb_reserve(skb, MAX_TCP_HEADER);
3653 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3654 			     TCPHDR_ACK | TCPHDR_RST);
3655 	tcp_mstamp_refresh(tcp_sk(sk));
3656 	/* Send it off. */
3657 	if (tcp_transmit_skb(sk, skb, 0, priority))
3658 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3659 
3660 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3661 	 * skb here is different to the troublesome skb, so use NULL
3662 	 */
3663 	trace_tcp_send_reset(sk, NULL, reason);
3664 }
3665 EXPORT_SYMBOL_GPL(tcp_send_active_reset);
3666 
3667 /* Send a crossed SYN-ACK during socket establishment.
3668  * WARNING: This routine must only be called when we have already sent
3669  * a SYN packet that crossed the incoming SYN that caused this routine
3670  * to get called. If this assumption fails then the initial rcv_wnd
3671  * and rcv_wscale values will not be correct.
3672  */
tcp_send_synack(struct sock * sk)3673 int tcp_send_synack(struct sock *sk)
3674 {
3675 	struct sk_buff *skb;
3676 
3677 	skb = tcp_rtx_queue_head(sk);
3678 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3679 		pr_err("%s: wrong queue state\n", __func__);
3680 		return -EFAULT;
3681 	}
3682 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3683 		if (skb_cloned(skb)) {
3684 			struct sk_buff *nskb;
3685 
3686 			tcp_skb_tsorted_save(skb) {
3687 				nskb = skb_copy(skb, GFP_ATOMIC);
3688 			} tcp_skb_tsorted_restore(skb);
3689 			if (!nskb)
3690 				return -ENOMEM;
3691 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3692 			tcp_highest_sack_replace(sk, skb, nskb);
3693 			tcp_rtx_queue_unlink_and_free(skb, sk);
3694 			__skb_header_release(nskb);
3695 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3696 			sk_wmem_queued_add(sk, nskb->truesize);
3697 			sk_mem_charge(sk, nskb->truesize);
3698 			skb = nskb;
3699 		}
3700 
3701 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3702 		tcp_ecn_send_synack(sk, skb);
3703 	}
3704 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3705 }
3706 
3707 /**
3708  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3709  * @sk: listener socket
3710  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3711  *       should not use it again.
3712  * @req: request_sock pointer
3713  * @foc: cookie for tcp fast open
3714  * @synack_type: Type of synack to prepare
3715  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3716  */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3717 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3718 				struct request_sock *req,
3719 				struct tcp_fastopen_cookie *foc,
3720 				enum tcp_synack_type synack_type,
3721 				struct sk_buff *syn_skb)
3722 {
3723 	struct inet_request_sock *ireq = inet_rsk(req);
3724 	const struct tcp_sock *tp = tcp_sk(sk);
3725 	struct tcp_out_options opts;
3726 	struct tcp_key key = {};
3727 	struct sk_buff *skb;
3728 	int tcp_header_size;
3729 	struct tcphdr *th;
3730 	int mss;
3731 	u64 now;
3732 
3733 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3734 	if (unlikely(!skb)) {
3735 		dst_release(dst);
3736 		return NULL;
3737 	}
3738 	/* Reserve space for headers. */
3739 	skb_reserve(skb, MAX_TCP_HEADER);
3740 
3741 	switch (synack_type) {
3742 	case TCP_SYNACK_NORMAL:
3743 		skb_set_owner_w(skb, req_to_sk(req));
3744 		break;
3745 	case TCP_SYNACK_COOKIE:
3746 		/* Under synflood, we do not attach skb to a socket,
3747 		 * to avoid false sharing.
3748 		 */
3749 		break;
3750 	case TCP_SYNACK_FASTOPEN:
3751 		/* sk is a const pointer, because we want to express multiple
3752 		 * cpu might call us concurrently.
3753 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3754 		 */
3755 		skb_set_owner_w(skb, (struct sock *)sk);
3756 		break;
3757 	}
3758 	skb_dst_set(skb, dst);
3759 
3760 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3761 
3762 	memset(&opts, 0, sizeof(opts));
3763 	now = tcp_clock_ns();
3764 #ifdef CONFIG_SYN_COOKIES
3765 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3766 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3767 				      SKB_CLOCK_MONOTONIC);
3768 	else
3769 #endif
3770 	{
3771 		skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3772 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3773 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3774 	}
3775 
3776 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3777 	rcu_read_lock();
3778 #endif
3779 	if (tcp_rsk_used_ao(req)) {
3780 #ifdef CONFIG_TCP_AO
3781 		struct tcp_ao_key *ao_key = NULL;
3782 		u8 keyid = tcp_rsk(req)->ao_keyid;
3783 		u8 rnext = tcp_rsk(req)->ao_rcv_next;
3784 
3785 		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3786 							    keyid, -1);
3787 		/* If there is no matching key - avoid sending anything,
3788 		 * especially usigned segments. It could try harder and lookup
3789 		 * for another peer-matching key, but the peer has requested
3790 		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3791 		 */
3792 		if (unlikely(!ao_key)) {
3793 			trace_tcp_ao_synack_no_key(sk, keyid, rnext);
3794 			rcu_read_unlock();
3795 			kfree_skb(skb);
3796 			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3797 					     keyid);
3798 			return NULL;
3799 		}
3800 		key.ao_key = ao_key;
3801 		key.type = TCP_KEY_AO;
3802 #endif
3803 	} else {
3804 #ifdef CONFIG_TCP_MD5SIG
3805 		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3806 					req_to_sk(req));
3807 		if (key.md5_key)
3808 			key.type = TCP_KEY_MD5;
3809 #endif
3810 	}
3811 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3812 	/* bpf program will be interested in the tcp_flags */
3813 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3814 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3815 					     &key, foc, synack_type, syn_skb)
3816 					+ sizeof(*th);
3817 
3818 	skb_push(skb, tcp_header_size);
3819 	skb_reset_transport_header(skb);
3820 
3821 	th = (struct tcphdr *)skb->data;
3822 	memset(th, 0, sizeof(struct tcphdr));
3823 	th->syn = 1;
3824 	th->ack = 1;
3825 	tcp_ecn_make_synack(req, th);
3826 	th->source = htons(ireq->ir_num);
3827 	th->dest = ireq->ir_rmt_port;
3828 	skb->mark = ireq->ir_mark;
3829 	skb->ip_summed = CHECKSUM_PARTIAL;
3830 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3831 	/* XXX data is queued and acked as is. No buffer/window check */
3832 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3833 
3834 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3835 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3836 	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3837 	th->doff = (tcp_header_size >> 2);
3838 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3839 
3840 	/* Okay, we have all we need - do the md5 hash if needed */
3841 	if (tcp_key_is_md5(&key)) {
3842 #ifdef CONFIG_TCP_MD5SIG
3843 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3844 					key.md5_key, req_to_sk(req), skb);
3845 #endif
3846 	} else if (tcp_key_is_ao(&key)) {
3847 #ifdef CONFIG_TCP_AO
3848 		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3849 					key.ao_key, req, skb,
3850 					opts.hash_location - (u8 *)th, 0);
3851 #endif
3852 	}
3853 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3854 	rcu_read_unlock();
3855 #endif
3856 
3857 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3858 				synack_type, &opts);
3859 
3860 	skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3861 	tcp_add_tx_delay(skb, tp);
3862 
3863 	return skb;
3864 }
3865 EXPORT_SYMBOL(tcp_make_synack);
3866 
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3867 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3868 {
3869 	struct inet_connection_sock *icsk = inet_csk(sk);
3870 	const struct tcp_congestion_ops *ca;
3871 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3872 
3873 	if (ca_key == TCP_CA_UNSPEC)
3874 		return;
3875 
3876 	rcu_read_lock();
3877 	ca = tcp_ca_find_key(ca_key);
3878 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3879 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3880 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3881 		icsk->icsk_ca_ops = ca;
3882 	}
3883 	rcu_read_unlock();
3884 }
3885 
3886 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3887 static void tcp_connect_init(struct sock *sk)
3888 {
3889 	const struct dst_entry *dst = __sk_dst_get(sk);
3890 	struct tcp_sock *tp = tcp_sk(sk);
3891 	__u8 rcv_wscale;
3892 	u32 rcv_wnd;
3893 
3894 	/* We'll fix this up when we get a response from the other end.
3895 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3896 	 */
3897 	tp->tcp_header_len = sizeof(struct tcphdr);
3898 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3899 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3900 
3901 	tcp_ao_connect_init(sk);
3902 
3903 	/* If user gave his TCP_MAXSEG, record it to clamp */
3904 	if (tp->rx_opt.user_mss)
3905 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3906 	tp->max_window = 0;
3907 	tcp_mtup_init(sk);
3908 	tcp_sync_mss(sk, dst_mtu(dst));
3909 
3910 	tcp_ca_dst_init(sk, dst);
3911 
3912 	if (!tp->window_clamp)
3913 		WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3914 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3915 
3916 	tcp_initialize_rcv_mss(sk);
3917 
3918 	/* limit the window selection if the user enforce a smaller rx buffer */
3919 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3920 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3921 		WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3922 
3923 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3924 	if (rcv_wnd == 0)
3925 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3926 
3927 	tcp_select_initial_window(sk, tcp_full_space(sk),
3928 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3929 				  &tp->rcv_wnd,
3930 				  &tp->window_clamp,
3931 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3932 				  &rcv_wscale,
3933 				  rcv_wnd);
3934 
3935 	tp->rx_opt.rcv_wscale = rcv_wscale;
3936 	tp->rcv_ssthresh = tp->rcv_wnd;
3937 
3938 	WRITE_ONCE(sk->sk_err, 0);
3939 	sock_reset_flag(sk, SOCK_DONE);
3940 	tp->snd_wnd = 0;
3941 	tcp_init_wl(tp, 0);
3942 	tcp_write_queue_purge(sk);
3943 	tp->snd_una = tp->write_seq;
3944 	tp->snd_sml = tp->write_seq;
3945 	tp->snd_up = tp->write_seq;
3946 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3947 
3948 	if (likely(!tp->repair))
3949 		tp->rcv_nxt = 0;
3950 	else
3951 		tp->rcv_tstamp = tcp_jiffies32;
3952 	tp->rcv_wup = tp->rcv_nxt;
3953 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3954 
3955 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3956 	inet_csk(sk)->icsk_retransmits = 0;
3957 	tcp_clear_retrans(tp);
3958 }
3959 
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3960 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3961 {
3962 	struct tcp_sock *tp = tcp_sk(sk);
3963 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3964 
3965 	tcb->end_seq += skb->len;
3966 	__skb_header_release(skb);
3967 	sk_wmem_queued_add(sk, skb->truesize);
3968 	sk_mem_charge(sk, skb->truesize);
3969 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3970 	tp->packets_out += tcp_skb_pcount(skb);
3971 }
3972 
3973 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3974  * queue a data-only packet after the regular SYN, such that regular SYNs
3975  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3976  * only the SYN sequence, the data are retransmitted in the first ACK.
3977  * If cookie is not cached or other error occurs, falls back to send a
3978  * regular SYN with Fast Open cookie request option.
3979  */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3980 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3981 {
3982 	struct inet_connection_sock *icsk = inet_csk(sk);
3983 	struct tcp_sock *tp = tcp_sk(sk);
3984 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3985 	struct page_frag *pfrag = sk_page_frag(sk);
3986 	struct sk_buff *syn_data;
3987 	int space, err = 0;
3988 
3989 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3990 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3991 		goto fallback;
3992 
3993 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3994 	 * user-MSS. Reserve maximum option space for middleboxes that add
3995 	 * private TCP options. The cost is reduced data space in SYN :(
3996 	 */
3997 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3998 	/* Sync mss_cache after updating the mss_clamp */
3999 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4000 
4001 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
4002 		MAX_TCP_OPTION_SPACE;
4003 
4004 	space = min_t(size_t, space, fo->size);
4005 
4006 	if (space &&
4007 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
4008 				  pfrag, sk->sk_allocation))
4009 		goto fallback;
4010 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
4011 	if (!syn_data)
4012 		goto fallback;
4013 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
4014 	if (space) {
4015 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
4016 		space = tcp_wmem_schedule(sk, space);
4017 	}
4018 	if (space) {
4019 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
4020 					    space, &fo->data->msg_iter);
4021 		if (unlikely(!space)) {
4022 			tcp_skb_tsorted_anchor_cleanup(syn_data);
4023 			kfree_skb(syn_data);
4024 			goto fallback;
4025 		}
4026 		skb_fill_page_desc(syn_data, 0, pfrag->page,
4027 				   pfrag->offset, space);
4028 		page_ref_inc(pfrag->page);
4029 		pfrag->offset += space;
4030 		skb_len_add(syn_data, space);
4031 		skb_zcopy_set(syn_data, fo->uarg, NULL);
4032 	}
4033 	/* No more data pending in inet_wait_for_connect() */
4034 	if (space == fo->size)
4035 		fo->data = NULL;
4036 	fo->copied = space;
4037 
4038 	tcp_connect_queue_skb(sk, syn_data);
4039 	if (syn_data->len)
4040 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
4041 
4042 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
4043 
4044 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC);
4045 
4046 	/* Now full SYN+DATA was cloned and sent (or not),
4047 	 * remove the SYN from the original skb (syn_data)
4048 	 * we keep in write queue in case of a retransmit, as we
4049 	 * also have the SYN packet (with no data) in the same queue.
4050 	 */
4051 	TCP_SKB_CB(syn_data)->seq++;
4052 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4053 	if (!err) {
4054 		tp->syn_data = (fo->copied > 0);
4055 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4056 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4057 		goto done;
4058 	}
4059 
4060 	/* data was not sent, put it in write_queue */
4061 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4062 	tp->packets_out -= tcp_skb_pcount(syn_data);
4063 
4064 fallback:
4065 	/* Send a regular SYN with Fast Open cookie request option */
4066 	if (fo->cookie.len > 0)
4067 		fo->cookie.len = 0;
4068 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4069 	if (err)
4070 		tp->syn_fastopen = 0;
4071 done:
4072 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4073 	return err;
4074 }
4075 
4076 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)4077 int tcp_connect(struct sock *sk)
4078 {
4079 	struct tcp_sock *tp = tcp_sk(sk);
4080 	struct sk_buff *buff;
4081 	int err;
4082 
4083 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4084 
4085 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4086 	/* Has to be checked late, after setting daddr/saddr/ops.
4087 	 * Return error if the peer has both a md5 and a tcp-ao key
4088 	 * configured as this is ambiguous.
4089 	 */
4090 	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4091 					       lockdep_sock_is_held(sk)))) {
4092 		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4093 		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4094 		struct tcp_ao_info *ao_info;
4095 
4096 		ao_info = rcu_dereference_check(tp->ao_info,
4097 						lockdep_sock_is_held(sk));
4098 		if (ao_info) {
4099 			/* This is an extra check: tcp_ao_required() in
4100 			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4101 			 * md5 keys on ao_required socket.
4102 			 */
4103 			needs_ao |= ao_info->ao_required;
4104 			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4105 		}
4106 		if (needs_md5 && needs_ao)
4107 			return -EKEYREJECTED;
4108 
4109 		/* If we have a matching md5 key and no matching tcp-ao key
4110 		 * then free up ao_info if allocated.
4111 		 */
4112 		if (needs_md5) {
4113 			tcp_ao_destroy_sock(sk, false);
4114 		} else if (needs_ao) {
4115 			tcp_clear_md5_list(sk);
4116 			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4117 						  lockdep_sock_is_held(sk)));
4118 		}
4119 	}
4120 #endif
4121 #ifdef CONFIG_TCP_AO
4122 	if (unlikely(rcu_dereference_protected(tp->ao_info,
4123 					       lockdep_sock_is_held(sk)))) {
4124 		/* Don't allow connecting if ao is configured but no
4125 		 * matching key is found.
4126 		 */
4127 		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4128 			return -EKEYREJECTED;
4129 	}
4130 #endif
4131 
4132 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4133 		return -EHOSTUNREACH; /* Routing failure or similar. */
4134 
4135 	tcp_connect_init(sk);
4136 
4137 	if (unlikely(tp->repair)) {
4138 		tcp_finish_connect(sk, NULL);
4139 		return 0;
4140 	}
4141 
4142 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4143 	if (unlikely(!buff))
4144 		return -ENOBUFS;
4145 
4146 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
4147 	tcp_mstamp_refresh(tp);
4148 	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4149 	tcp_connect_queue_skb(sk, buff);
4150 	tcp_ecn_send_syn(sk, buff);
4151 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4152 
4153 	/* Send off SYN; include data in Fast Open. */
4154 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4155 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4156 	if (err == -ECONNREFUSED)
4157 		return err;
4158 
4159 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4160 	 * in order to make this packet get counted in tcpOutSegs.
4161 	 */
4162 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4163 	tp->pushed_seq = tp->write_seq;
4164 
4165 	trace_android_vh_tcp_connect(buff);
4166 
4167 	buff = tcp_send_head(sk);
4168 	if (unlikely(buff)) {
4169 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4170 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4171 	}
4172 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4173 
4174 	/* Timer for repeating the SYN until an answer. */
4175 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4176 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4177 	return 0;
4178 }
4179 EXPORT_SYMBOL(tcp_connect);
4180 
tcp_delack_max(const struct sock * sk)4181 u32 tcp_delack_max(const struct sock *sk)
4182 {
4183 	u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1;
4184 
4185 	return min(inet_csk(sk)->icsk_delack_max, delack_from_rto_min);
4186 }
4187 
4188 /* Send out a delayed ack, the caller does the policy checking
4189  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4190  * for details.
4191  */
tcp_send_delayed_ack(struct sock * sk)4192 void tcp_send_delayed_ack(struct sock *sk)
4193 {
4194 	struct inet_connection_sock *icsk = inet_csk(sk);
4195 	int ato = icsk->icsk_ack.ato;
4196 	unsigned long timeout;
4197 
4198 	if (ato > TCP_DELACK_MIN) {
4199 		const struct tcp_sock *tp = tcp_sk(sk);
4200 		int max_ato = HZ / 2;
4201 
4202 		if (inet_csk_in_pingpong_mode(sk) ||
4203 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4204 			max_ato = TCP_DELACK_MAX;
4205 
4206 		/* Slow path, intersegment interval is "high". */
4207 
4208 		/* If some rtt estimate is known, use it to bound delayed ack.
4209 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4210 		 * directly.
4211 		 */
4212 		if (tp->srtt_us) {
4213 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4214 					TCP_DELACK_MIN);
4215 
4216 			if (rtt < max_ato)
4217 				max_ato = rtt;
4218 		}
4219 
4220 		ato = min(ato, max_ato);
4221 	}
4222 
4223 	ato = min_t(u32, ato, tcp_delack_max(sk));
4224 
4225 	/* Stay within the limit we were given */
4226 	timeout = jiffies + ato;
4227 
4228 	/* Use new timeout only if there wasn't a older one earlier. */
4229 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4230 		/* If delack timer is about to expire, send ACK now. */
4231 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4232 			tcp_send_ack(sk);
4233 			return;
4234 		}
4235 
4236 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4237 			timeout = icsk->icsk_ack.timeout;
4238 	}
4239 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4240 	icsk->icsk_ack.timeout = timeout;
4241 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4242 }
4243 
4244 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)4245 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4246 {
4247 	struct sk_buff *buff;
4248 
4249 	/* If we have been reset, we may not send again. */
4250 	if (sk->sk_state == TCP_CLOSE)
4251 		return;
4252 
4253 	/* We are not putting this on the write queue, so
4254 	 * tcp_transmit_skb() will set the ownership to this
4255 	 * sock.
4256 	 */
4257 	buff = alloc_skb(MAX_TCP_HEADER,
4258 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4259 	if (unlikely(!buff)) {
4260 		struct inet_connection_sock *icsk = inet_csk(sk);
4261 		unsigned long delay;
4262 
4263 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4264 		if (delay < TCP_RTO_MAX)
4265 			icsk->icsk_ack.retry++;
4266 		inet_csk_schedule_ack(sk);
4267 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4268 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4269 		return;
4270 	}
4271 
4272 	/* Reserve space for headers and prepare control bits. */
4273 	skb_reserve(buff, MAX_TCP_HEADER);
4274 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4275 
4276 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4277 	 * too much.
4278 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4279 	 */
4280 	skb_set_tcp_pure_ack(buff);
4281 
4282 	/* Send it off, this clears delayed acks for us. */
4283 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4284 }
4285 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4286 
tcp_send_ack(struct sock * sk)4287 void tcp_send_ack(struct sock *sk)
4288 {
4289 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4290 }
4291 
4292 /* This routine sends a packet with an out of date sequence
4293  * number. It assumes the other end will try to ack it.
4294  *
4295  * Question: what should we make while urgent mode?
4296  * 4.4BSD forces sending single byte of data. We cannot send
4297  * out of window data, because we have SND.NXT==SND.MAX...
4298  *
4299  * Current solution: to send TWO zero-length segments in urgent mode:
4300  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4301  * out-of-date with SND.UNA-1 to probe window.
4302  */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4303 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4304 {
4305 	struct tcp_sock *tp = tcp_sk(sk);
4306 	struct sk_buff *skb;
4307 
4308 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4309 	skb = alloc_skb(MAX_TCP_HEADER,
4310 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4311 	if (!skb)
4312 		return -1;
4313 
4314 	/* Reserve space for headers and set control bits. */
4315 	skb_reserve(skb, MAX_TCP_HEADER);
4316 	/* Use a previous sequence.  This should cause the other
4317 	 * end to send an ack.  Don't queue or clone SKB, just
4318 	 * send it.
4319 	 */
4320 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4321 	NET_INC_STATS(sock_net(sk), mib);
4322 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4323 }
4324 
4325 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4326 void tcp_send_window_probe(struct sock *sk)
4327 {
4328 	if (sk->sk_state == TCP_ESTABLISHED) {
4329 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4330 		tcp_mstamp_refresh(tcp_sk(sk));
4331 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4332 	}
4333 }
4334 
4335 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4336 int tcp_write_wakeup(struct sock *sk, int mib)
4337 {
4338 	struct tcp_sock *tp = tcp_sk(sk);
4339 	struct sk_buff *skb;
4340 
4341 	if (sk->sk_state == TCP_CLOSE)
4342 		return -1;
4343 
4344 	skb = tcp_send_head(sk);
4345 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4346 		int err;
4347 		unsigned int mss = tcp_current_mss(sk);
4348 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4349 
4350 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4351 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4352 
4353 		/* We are probing the opening of a window
4354 		 * but the window size is != 0
4355 		 * must have been a result SWS avoidance ( sender )
4356 		 */
4357 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4358 		    skb->len > mss) {
4359 			seg_size = min(seg_size, mss);
4360 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4361 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4362 					 skb, seg_size, mss, GFP_ATOMIC))
4363 				return -1;
4364 		} else if (!tcp_skb_pcount(skb))
4365 			tcp_set_skb_tso_segs(skb, mss);
4366 
4367 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4368 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4369 		if (!err)
4370 			tcp_event_new_data_sent(sk, skb);
4371 		return err;
4372 	} else {
4373 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4374 			tcp_xmit_probe_skb(sk, 1, mib);
4375 		return tcp_xmit_probe_skb(sk, 0, mib);
4376 	}
4377 }
4378 
4379 /* A window probe timeout has occurred.  If window is not closed send
4380  * a partial packet else a zero probe.
4381  */
tcp_send_probe0(struct sock * sk)4382 void tcp_send_probe0(struct sock *sk)
4383 {
4384 	struct inet_connection_sock *icsk = inet_csk(sk);
4385 	struct tcp_sock *tp = tcp_sk(sk);
4386 	struct net *net = sock_net(sk);
4387 	unsigned long timeout;
4388 	int err;
4389 
4390 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4391 
4392 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4393 		/* Cancel probe timer, if it is not required. */
4394 		icsk->icsk_probes_out = 0;
4395 		icsk->icsk_backoff = 0;
4396 		icsk->icsk_probes_tstamp = 0;
4397 		return;
4398 	}
4399 
4400 	icsk->icsk_probes_out++;
4401 	if (err <= 0) {
4402 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4403 			icsk->icsk_backoff++;
4404 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4405 	} else {
4406 		/* If packet was not sent due to local congestion,
4407 		 * Let senders fight for local resources conservatively.
4408 		 */
4409 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4410 	}
4411 
4412 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4413 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4414 }
4415 
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4416 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4417 {
4418 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4419 	struct flowi fl;
4420 	int res;
4421 
4422 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4423 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4424 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4425 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4426 				  NULL);
4427 	if (!res) {
4428 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4429 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4430 		if (unlikely(tcp_passive_fastopen(sk))) {
4431 			/* sk has const attribute because listeners are lockless.
4432 			 * However in this case, we are dealing with a passive fastopen
4433 			 * socket thus we can change total_retrans value.
4434 			 */
4435 			tcp_sk_rw(sk)->total_retrans++;
4436 		}
4437 		trace_tcp_retransmit_synack(sk, req);
4438 	}
4439 	return res;
4440 }
4441 EXPORT_SYMBOL(tcp_rtx_synack);
4442