1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38 #define pr_fmt(fmt) "TCP: " fmt
39
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 #include <net/proto_memory.h>
43
44 #include <linux/compiler.h>
45 #include <linux/gfp.h>
46 #include <linux/module.h>
47 #include <linux/static_key.h>
48 #include <linux/skbuff_ref.h>
49
50 #include <trace/events/tcp.h>
51 #include <trace/hooks/net.h>
52
53 /* Refresh clocks of a TCP socket,
54 * ensuring monotically increasing values.
55 */
tcp_mstamp_refresh(struct tcp_sock * tp)56 void tcp_mstamp_refresh(struct tcp_sock *tp)
57 {
58 u64 val = tcp_clock_ns();
59
60 tp->tcp_clock_cache = val;
61 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
62 }
63
64 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
65 int push_one, gfp_t gfp);
66
67 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)68 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
69 {
70 struct inet_connection_sock *icsk = inet_csk(sk);
71 struct tcp_sock *tp = tcp_sk(sk);
72 unsigned int prior_packets = tp->packets_out;
73
74 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
75
76 __skb_unlink(skb, &sk->sk_write_queue);
77 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
78
79 if (tp->highest_sack == NULL)
80 tp->highest_sack = skb;
81
82 tp->packets_out += tcp_skb_pcount(skb);
83 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
84 tcp_rearm_rto(sk);
85
86 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
87 tcp_skb_pcount(skb));
88 tcp_check_space(sk);
89 }
90
91 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
92 * window scaling factor due to loss of precision.
93 * If window has been shrunk, what should we make? It is not clear at all.
94 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
95 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
96 * invalid. OK, let's make this for now:
97 */
tcp_acceptable_seq(const struct sock * sk)98 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
99 {
100 const struct tcp_sock *tp = tcp_sk(sk);
101
102 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
103 (tp->rx_opt.wscale_ok &&
104 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
105 return tp->snd_nxt;
106 else
107 return tcp_wnd_end(tp);
108 }
109
110 /* Calculate mss to advertise in SYN segment.
111 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
112 *
113 * 1. It is independent of path mtu.
114 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116 * attached devices, because some buggy hosts are confused by
117 * large MSS.
118 * 4. We do not make 3, we advertise MSS, calculated from first
119 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
120 * This may be overridden via information stored in routing table.
121 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122 * probably even Jumbo".
123 */
tcp_advertise_mss(struct sock * sk)124 static __u16 tcp_advertise_mss(struct sock *sk)
125 {
126 struct tcp_sock *tp = tcp_sk(sk);
127 const struct dst_entry *dst = __sk_dst_get(sk);
128 int mss = tp->advmss;
129
130 if (dst) {
131 unsigned int metric = dst_metric_advmss(dst);
132
133 if (metric < mss) {
134 mss = metric;
135 tp->advmss = mss;
136 }
137 }
138
139 return (__u16)mss;
140 }
141
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143 * This is the first part of cwnd validation mechanism.
144 */
tcp_cwnd_restart(struct sock * sk,s32 delta)145 void tcp_cwnd_restart(struct sock *sk, s32 delta)
146 {
147 struct tcp_sock *tp = tcp_sk(sk);
148 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
149 u32 cwnd = tcp_snd_cwnd(tp);
150
151 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
152
153 tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 restart_cwnd = min(restart_cwnd, cwnd);
155
156 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 cwnd >>= 1;
158 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
159 tp->snd_cwnd_stamp = tcp_jiffies32;
160 tp->snd_cwnd_used = 0;
161 }
162
163 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 struct sock *sk)
166 {
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 const u32 now = tcp_jiffies32;
169
170 if (tcp_packets_in_flight(tp) == 0)
171 tcp_ca_event(sk, CA_EVENT_TX_START);
172
173 tp->lsndtime = now;
174
175 /* If it is a reply for ato after last received
176 * packet, increase pingpong count.
177 */
178 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
179 inet_csk_inc_pingpong_cnt(sk);
180 }
181
182 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)183 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
184 {
185 struct tcp_sock *tp = tcp_sk(sk);
186
187 if (unlikely(tp->compressed_ack)) {
188 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
189 tp->compressed_ack);
190 tp->compressed_ack = 0;
191 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
192 __sock_put(sk);
193 }
194
195 if (unlikely(rcv_nxt != tp->rcv_nxt))
196 return; /* Special ACK sent by DCTCP to reflect ECN */
197 tcp_dec_quickack_mode(sk);
198 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
199 }
200
201 /* Determine a window scaling and initial window to offer.
202 * Based on the assumption that the given amount of space
203 * will be offered. Store the results in the tp structure.
204 * NOTE: for smooth operation initial space offering should
205 * be a multiple of mss if possible. We assume here that mss >= 1.
206 * This MUST be enforced by all callers.
207 */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * __window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
209 __u32 *rcv_wnd, __u32 *__window_clamp,
210 int wscale_ok, __u8 *rcv_wscale,
211 __u32 init_rcv_wnd)
212 {
213 unsigned int space = (__space < 0 ? 0 : __space);
214 u32 window_clamp = READ_ONCE(*__window_clamp);
215
216 /* If no clamp set the clamp to the max possible scaled window */
217 if (window_clamp == 0)
218 window_clamp = (U16_MAX << TCP_MAX_WSCALE);
219 space = min(window_clamp, space);
220
221 /* Quantize space offering to a multiple of mss if possible. */
222 if (space > mss)
223 space = rounddown(space, mss);
224
225 /* NOTE: offering an initial window larger than 32767
226 * will break some buggy TCP stacks. If the admin tells us
227 * it is likely we could be speaking with such a buggy stack
228 * we will truncate our initial window offering to 32K-1
229 * unless the remote has sent us a window scaling option,
230 * which we interpret as a sign the remote TCP is not
231 * misinterpreting the window field as a signed quantity.
232 */
233 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
234 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
235 else
236 (*rcv_wnd) = space;
237
238 if (init_rcv_wnd)
239 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
240
241 *rcv_wscale = 0;
242 if (wscale_ok) {
243 /* Set window scaling on max possible window */
244 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
245 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
246 space = min_t(u32, space, window_clamp);
247 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
248 0, TCP_MAX_WSCALE);
249 }
250 /* Set the clamp no higher than max representable value */
251 WRITE_ONCE(*__window_clamp,
252 min_t(__u32, U16_MAX << (*rcv_wscale), window_clamp));
253 }
254 EXPORT_SYMBOL(tcp_select_initial_window);
255
256 /* Chose a new window to advertise, update state in tcp_sock for the
257 * socket, and return result with RFC1323 scaling applied. The return
258 * value can be stuffed directly into th->window for an outgoing
259 * frame.
260 */
tcp_select_window(struct sock * sk)261 static u16 tcp_select_window(struct sock *sk)
262 {
263 struct tcp_sock *tp = tcp_sk(sk);
264 struct net *net = sock_net(sk);
265 u32 old_win = tp->rcv_wnd;
266 u32 cur_win, new_win;
267
268 /* Make the window 0 if we failed to queue the data because we
269 * are out of memory.
270 */
271 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM)) {
272 tp->pred_flags = 0;
273 tp->rcv_wnd = 0;
274 tp->rcv_wup = tp->rcv_nxt;
275 return 0;
276 }
277
278 cur_win = tcp_receive_window(tp);
279 new_win = __tcp_select_window(sk);
280
281 trace_android_vh_tcp_select_window(sk, &new_win);
282
283 if (new_win < cur_win) {
284 /* Danger Will Robinson!
285 * Don't update rcv_wup/rcv_wnd here or else
286 * we will not be able to advertise a zero
287 * window in time. --DaveM
288 *
289 * Relax Will Robinson.
290 */
291 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
292 /* Never shrink the offered window */
293 if (new_win == 0)
294 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
295 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
296 }
297 }
298
299 tp->rcv_wnd = new_win;
300 tp->rcv_wup = tp->rcv_nxt;
301
302 trace_android_rvh_tcp_select_window(sk, &new_win);
303
304 /* Make sure we do not exceed the maximum possible
305 * scaled window.
306 */
307 if (!tp->rx_opt.rcv_wscale &&
308 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
309 new_win = min(new_win, MAX_TCP_WINDOW);
310 else
311 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
312
313 /* RFC1323 scaling applied */
314 new_win >>= tp->rx_opt.rcv_wscale;
315
316 /* If we advertise zero window, disable fast path. */
317 if (new_win == 0) {
318 tp->pred_flags = 0;
319 if (old_win)
320 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
321 } else if (old_win == 0) {
322 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
323 }
324
325 return new_win;
326 }
327
328 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)329 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
330 {
331 const struct tcp_sock *tp = tcp_sk(sk);
332
333 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
334 if (!(tp->ecn_flags & TCP_ECN_OK))
335 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
336 else if (tcp_ca_needs_ecn(sk) ||
337 tcp_bpf_ca_needs_ecn(sk))
338 INET_ECN_xmit(sk);
339 }
340
341 /* Packet ECN state for a SYN. */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)342 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
343 {
344 struct tcp_sock *tp = tcp_sk(sk);
345 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
346 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
347 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
348
349 if (!use_ecn) {
350 const struct dst_entry *dst = __sk_dst_get(sk);
351
352 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
353 use_ecn = true;
354 }
355
356 tp->ecn_flags = 0;
357
358 if (use_ecn) {
359 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
360 tp->ecn_flags = TCP_ECN_OK;
361 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
362 INET_ECN_xmit(sk);
363 }
364 }
365
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)366 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
367 {
368 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
369 /* tp->ecn_flags are cleared at a later point in time when
370 * SYN ACK is ultimatively being received.
371 */
372 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
373 }
374
375 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)376 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
377 {
378 if (inet_rsk(req)->ecn_ok)
379 th->ece = 1;
380 }
381
382 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
383 * be sent.
384 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)385 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
386 struct tcphdr *th, int tcp_header_len)
387 {
388 struct tcp_sock *tp = tcp_sk(sk);
389
390 if (tp->ecn_flags & TCP_ECN_OK) {
391 /* Not-retransmitted data segment: set ECT and inject CWR. */
392 if (skb->len != tcp_header_len &&
393 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
394 INET_ECN_xmit(sk);
395 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
396 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
397 th->cwr = 1;
398 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
399 }
400 } else if (!tcp_ca_needs_ecn(sk)) {
401 /* ACK or retransmitted segment: clear ECT|CE */
402 INET_ECN_dontxmit(sk);
403 }
404 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
405 th->ece = 1;
406 }
407 }
408
409 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
410 * auto increment end seqno.
411 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)412 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
413 {
414 skb->ip_summed = CHECKSUM_PARTIAL;
415
416 TCP_SKB_CB(skb)->tcp_flags = flags;
417
418 tcp_skb_pcount_set(skb, 1);
419
420 TCP_SKB_CB(skb)->seq = seq;
421 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
422 seq++;
423 TCP_SKB_CB(skb)->end_seq = seq;
424 }
425
tcp_urg_mode(const struct tcp_sock * tp)426 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
427 {
428 return tp->snd_una != tp->snd_up;
429 }
430
431 #define OPTION_SACK_ADVERTISE BIT(0)
432 #define OPTION_TS BIT(1)
433 #define OPTION_MD5 BIT(2)
434 #define OPTION_WSCALE BIT(3)
435 #define OPTION_FAST_OPEN_COOKIE BIT(8)
436 #define OPTION_SMC BIT(9)
437 #define OPTION_MPTCP BIT(10)
438 #define OPTION_AO BIT(11)
439
smc_options_write(__be32 * ptr,u16 * options)440 static void smc_options_write(__be32 *ptr, u16 *options)
441 {
442 #if IS_ENABLED(CONFIG_SMC)
443 if (static_branch_unlikely(&tcp_have_smc)) {
444 if (unlikely(OPTION_SMC & *options)) {
445 *ptr++ = htonl((TCPOPT_NOP << 24) |
446 (TCPOPT_NOP << 16) |
447 (TCPOPT_EXP << 8) |
448 (TCPOLEN_EXP_SMC_BASE));
449 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
450 }
451 }
452 #endif
453 }
454
455 struct tcp_out_options {
456 u16 options; /* bit field of OPTION_* */
457 u16 mss; /* 0 to disable */
458 u8 ws; /* window scale, 0 to disable */
459 u8 num_sack_blocks; /* number of SACK blocks to include */
460 u8 hash_size; /* bytes in hash_location */
461 u8 bpf_opt_len; /* length of BPF hdr option */
462 __u8 *hash_location; /* temporary pointer, overloaded */
463 __u32 tsval, tsecr; /* need to include OPTION_TS */
464 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
465 struct mptcp_out_options mptcp;
466 };
467
mptcp_options_write(struct tcphdr * th,__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)468 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
469 struct tcp_sock *tp,
470 struct tcp_out_options *opts)
471 {
472 #if IS_ENABLED(CONFIG_MPTCP)
473 if (unlikely(OPTION_MPTCP & opts->options))
474 mptcp_write_options(th, ptr, tp, &opts->mptcp);
475 #endif
476 }
477
478 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)479 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
480 enum tcp_synack_type synack_type)
481 {
482 if (unlikely(!skb))
483 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
484
485 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
486 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
487
488 return 0;
489 }
490
491 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)492 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
493 struct request_sock *req,
494 struct sk_buff *syn_skb,
495 enum tcp_synack_type synack_type,
496 struct tcp_out_options *opts,
497 unsigned int *remaining)
498 {
499 struct bpf_sock_ops_kern sock_ops;
500 int err;
501
502 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
503 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
504 !*remaining)
505 return;
506
507 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
508
509 /* init sock_ops */
510 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
511
512 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
513
514 if (req) {
515 /* The listen "sk" cannot be passed here because
516 * it is not locked. It would not make too much
517 * sense to do bpf_setsockopt(listen_sk) based
518 * on individual connection request also.
519 *
520 * Thus, "req" is passed here and the cgroup-bpf-progs
521 * of the listen "sk" will be run.
522 *
523 * "req" is also used here for fastopen even the "sk" here is
524 * a fullsock "child" sk. It is to keep the behavior
525 * consistent between fastopen and non-fastopen on
526 * the bpf programming side.
527 */
528 sock_ops.sk = (struct sock *)req;
529 sock_ops.syn_skb = syn_skb;
530 } else {
531 sock_owned_by_me(sk);
532
533 sock_ops.is_fullsock = 1;
534 sock_ops.sk = sk;
535 }
536
537 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
538 sock_ops.remaining_opt_len = *remaining;
539 /* tcp_current_mss() does not pass a skb */
540 if (skb)
541 bpf_skops_init_skb(&sock_ops, skb, 0);
542
543 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
544
545 if (err || sock_ops.remaining_opt_len == *remaining)
546 return;
547
548 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
549 /* round up to 4 bytes */
550 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
551
552 *remaining -= opts->bpf_opt_len;
553 }
554
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)555 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
556 struct request_sock *req,
557 struct sk_buff *syn_skb,
558 enum tcp_synack_type synack_type,
559 struct tcp_out_options *opts)
560 {
561 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
562 struct bpf_sock_ops_kern sock_ops;
563 int err;
564
565 if (likely(!max_opt_len))
566 return;
567
568 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
569
570 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
571
572 if (req) {
573 sock_ops.sk = (struct sock *)req;
574 sock_ops.syn_skb = syn_skb;
575 } else {
576 sock_owned_by_me(sk);
577
578 sock_ops.is_fullsock = 1;
579 sock_ops.sk = sk;
580 }
581
582 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
583 sock_ops.remaining_opt_len = max_opt_len;
584 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
585 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
586
587 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
588
589 if (err)
590 nr_written = 0;
591 else
592 nr_written = max_opt_len - sock_ops.remaining_opt_len;
593
594 if (nr_written < max_opt_len)
595 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
596 max_opt_len - nr_written);
597 }
598 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)599 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
600 struct request_sock *req,
601 struct sk_buff *syn_skb,
602 enum tcp_synack_type synack_type,
603 struct tcp_out_options *opts,
604 unsigned int *remaining)
605 {
606 }
607
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)608 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
609 struct request_sock *req,
610 struct sk_buff *syn_skb,
611 enum tcp_synack_type synack_type,
612 struct tcp_out_options *opts)
613 {
614 }
615 #endif
616
process_tcp_ao_options(struct tcp_sock * tp,const struct tcp_request_sock * tcprsk,struct tcp_out_options * opts,struct tcp_key * key,__be32 * ptr)617 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
618 const struct tcp_request_sock *tcprsk,
619 struct tcp_out_options *opts,
620 struct tcp_key *key, __be32 *ptr)
621 {
622 #ifdef CONFIG_TCP_AO
623 u8 maclen = tcp_ao_maclen(key->ao_key);
624
625 if (tcprsk) {
626 u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
627
628 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
629 (tcprsk->ao_keyid << 8) |
630 (tcprsk->ao_rcv_next));
631 } else {
632 struct tcp_ao_key *rnext_key;
633 struct tcp_ao_info *ao_info;
634
635 ao_info = rcu_dereference_check(tp->ao_info,
636 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
637 rnext_key = READ_ONCE(ao_info->rnext_key);
638 if (WARN_ON_ONCE(!rnext_key))
639 return ptr;
640 *ptr++ = htonl((TCPOPT_AO << 24) |
641 (tcp_ao_len(key->ao_key) << 16) |
642 (key->ao_key->sndid << 8) |
643 (rnext_key->rcvid));
644 }
645 opts->hash_location = (__u8 *)ptr;
646 ptr += maclen / sizeof(*ptr);
647 if (unlikely(maclen % sizeof(*ptr))) {
648 memset(ptr, TCPOPT_NOP, sizeof(*ptr));
649 ptr++;
650 }
651 #endif
652 return ptr;
653 }
654
655 /* Write previously computed TCP options to the packet.
656 *
657 * Beware: Something in the Internet is very sensitive to the ordering of
658 * TCP options, we learned this through the hard way, so be careful here.
659 * Luckily we can at least blame others for their non-compliance but from
660 * inter-operability perspective it seems that we're somewhat stuck with
661 * the ordering which we have been using if we want to keep working with
662 * those broken things (not that it currently hurts anybody as there isn't
663 * particular reason why the ordering would need to be changed).
664 *
665 * At least SACK_PERM as the first option is known to lead to a disaster
666 * (but it may well be that other scenarios fail similarly).
667 */
tcp_options_write(struct tcphdr * th,struct tcp_sock * tp,const struct tcp_request_sock * tcprsk,struct tcp_out_options * opts,struct tcp_key * key)668 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
669 const struct tcp_request_sock *tcprsk,
670 struct tcp_out_options *opts,
671 struct tcp_key *key)
672 {
673 __be32 *ptr = (__be32 *)(th + 1);
674 u16 options = opts->options; /* mungable copy */
675
676 if (tcp_key_is_md5(key)) {
677 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
678 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
679 /* overload cookie hash location */
680 opts->hash_location = (__u8 *)ptr;
681 ptr += 4;
682 } else if (tcp_key_is_ao(key)) {
683 ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
684 }
685 if (unlikely(opts->mss)) {
686 *ptr++ = htonl((TCPOPT_MSS << 24) |
687 (TCPOLEN_MSS << 16) |
688 opts->mss);
689 }
690
691 if (likely(OPTION_TS & options)) {
692 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
693 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
694 (TCPOLEN_SACK_PERM << 16) |
695 (TCPOPT_TIMESTAMP << 8) |
696 TCPOLEN_TIMESTAMP);
697 options &= ~OPTION_SACK_ADVERTISE;
698 } else {
699 *ptr++ = htonl((TCPOPT_NOP << 24) |
700 (TCPOPT_NOP << 16) |
701 (TCPOPT_TIMESTAMP << 8) |
702 TCPOLEN_TIMESTAMP);
703 }
704 *ptr++ = htonl(opts->tsval);
705 *ptr++ = htonl(opts->tsecr);
706 }
707
708 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
709 *ptr++ = htonl((TCPOPT_NOP << 24) |
710 (TCPOPT_NOP << 16) |
711 (TCPOPT_SACK_PERM << 8) |
712 TCPOLEN_SACK_PERM);
713 }
714
715 if (unlikely(OPTION_WSCALE & options)) {
716 *ptr++ = htonl((TCPOPT_NOP << 24) |
717 (TCPOPT_WINDOW << 16) |
718 (TCPOLEN_WINDOW << 8) |
719 opts->ws);
720 }
721
722 if (unlikely(opts->num_sack_blocks)) {
723 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
724 tp->duplicate_sack : tp->selective_acks;
725 int this_sack;
726
727 *ptr++ = htonl((TCPOPT_NOP << 24) |
728 (TCPOPT_NOP << 16) |
729 (TCPOPT_SACK << 8) |
730 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
731 TCPOLEN_SACK_PERBLOCK)));
732
733 for (this_sack = 0; this_sack < opts->num_sack_blocks;
734 ++this_sack) {
735 *ptr++ = htonl(sp[this_sack].start_seq);
736 *ptr++ = htonl(sp[this_sack].end_seq);
737 }
738
739 tp->rx_opt.dsack = 0;
740 }
741
742 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
743 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
744 u8 *p = (u8 *)ptr;
745 u32 len; /* Fast Open option length */
746
747 if (foc->exp) {
748 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
749 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
750 TCPOPT_FASTOPEN_MAGIC);
751 p += TCPOLEN_EXP_FASTOPEN_BASE;
752 } else {
753 len = TCPOLEN_FASTOPEN_BASE + foc->len;
754 *p++ = TCPOPT_FASTOPEN;
755 *p++ = len;
756 }
757
758 memcpy(p, foc->val, foc->len);
759 if ((len & 3) == 2) {
760 p[foc->len] = TCPOPT_NOP;
761 p[foc->len + 1] = TCPOPT_NOP;
762 }
763 ptr += (len + 3) >> 2;
764 }
765
766 smc_options_write(ptr, &options);
767
768 mptcp_options_write(th, ptr, tp, opts);
769 }
770
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)771 static void smc_set_option(const struct tcp_sock *tp,
772 struct tcp_out_options *opts,
773 unsigned int *remaining)
774 {
775 #if IS_ENABLED(CONFIG_SMC)
776 if (static_branch_unlikely(&tcp_have_smc)) {
777 if (tp->syn_smc) {
778 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
779 opts->options |= OPTION_SMC;
780 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
781 }
782 }
783 }
784 #endif
785 }
786
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)787 static void smc_set_option_cond(const struct tcp_sock *tp,
788 const struct inet_request_sock *ireq,
789 struct tcp_out_options *opts,
790 unsigned int *remaining)
791 {
792 #if IS_ENABLED(CONFIG_SMC)
793 if (static_branch_unlikely(&tcp_have_smc)) {
794 if (tp->syn_smc && ireq->smc_ok) {
795 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
796 opts->options |= OPTION_SMC;
797 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
798 }
799 }
800 }
801 #endif
802 }
803
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)804 static void mptcp_set_option_cond(const struct request_sock *req,
805 struct tcp_out_options *opts,
806 unsigned int *remaining)
807 {
808 if (rsk_is_mptcp(req)) {
809 unsigned int size;
810
811 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
812 if (*remaining >= size) {
813 opts->options |= OPTION_MPTCP;
814 *remaining -= size;
815 }
816 }
817 }
818 }
819
820 /* Compute TCP options for SYN packets. This is not the final
821 * network wire format yet.
822 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_key * key)823 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
824 struct tcp_out_options *opts,
825 struct tcp_key *key)
826 {
827 struct tcp_sock *tp = tcp_sk(sk);
828 unsigned int remaining = MAX_TCP_OPTION_SPACE;
829 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
830 bool timestamps;
831
832 /* Better than switch (key.type) as it has static branches */
833 if (tcp_key_is_md5(key)) {
834 timestamps = false;
835 opts->options |= OPTION_MD5;
836 remaining -= TCPOLEN_MD5SIG_ALIGNED;
837 } else {
838 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
839 if (tcp_key_is_ao(key)) {
840 opts->options |= OPTION_AO;
841 remaining -= tcp_ao_len_aligned(key->ao_key);
842 }
843 }
844
845 /* We always get an MSS option. The option bytes which will be seen in
846 * normal data packets should timestamps be used, must be in the MSS
847 * advertised. But we subtract them from tp->mss_cache so that
848 * calculations in tcp_sendmsg are simpler etc. So account for this
849 * fact here if necessary. If we don't do this correctly, as a
850 * receiver we won't recognize data packets as being full sized when we
851 * should, and thus we won't abide by the delayed ACK rules correctly.
852 * SACKs don't matter, we never delay an ACK when we have any of those
853 * going out. */
854 opts->mss = tcp_advertise_mss(sk);
855 remaining -= TCPOLEN_MSS_ALIGNED;
856
857 if (likely(timestamps)) {
858 opts->options |= OPTION_TS;
859 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
860 opts->tsecr = tp->rx_opt.ts_recent;
861 remaining -= TCPOLEN_TSTAMP_ALIGNED;
862 }
863 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
864 opts->ws = tp->rx_opt.rcv_wscale;
865 opts->options |= OPTION_WSCALE;
866 remaining -= TCPOLEN_WSCALE_ALIGNED;
867 }
868 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
869 opts->options |= OPTION_SACK_ADVERTISE;
870 if (unlikely(!(OPTION_TS & opts->options)))
871 remaining -= TCPOLEN_SACKPERM_ALIGNED;
872 }
873
874 if (fastopen && fastopen->cookie.len >= 0) {
875 u32 need = fastopen->cookie.len;
876
877 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
878 TCPOLEN_FASTOPEN_BASE;
879 need = (need + 3) & ~3U; /* Align to 32 bits */
880 if (remaining >= need) {
881 opts->options |= OPTION_FAST_OPEN_COOKIE;
882 opts->fastopen_cookie = &fastopen->cookie;
883 remaining -= need;
884 tp->syn_fastopen = 1;
885 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
886 }
887 }
888
889 smc_set_option(tp, opts, &remaining);
890
891 if (sk_is_mptcp(sk)) {
892 unsigned int size;
893
894 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
895 if (remaining >= size) {
896 opts->options |= OPTION_MPTCP;
897 remaining -= size;
898 }
899 }
900 }
901
902 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
903
904 return MAX_TCP_OPTION_SPACE - remaining;
905 }
906
907 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_key * key,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)908 static unsigned int tcp_synack_options(const struct sock *sk,
909 struct request_sock *req,
910 unsigned int mss, struct sk_buff *skb,
911 struct tcp_out_options *opts,
912 const struct tcp_key *key,
913 struct tcp_fastopen_cookie *foc,
914 enum tcp_synack_type synack_type,
915 struct sk_buff *syn_skb)
916 {
917 struct inet_request_sock *ireq = inet_rsk(req);
918 unsigned int remaining = MAX_TCP_OPTION_SPACE;
919
920 if (tcp_key_is_md5(key)) {
921 opts->options |= OPTION_MD5;
922 remaining -= TCPOLEN_MD5SIG_ALIGNED;
923
924 /* We can't fit any SACK blocks in a packet with MD5 + TS
925 * options. There was discussion about disabling SACK
926 * rather than TS in order to fit in better with old,
927 * buggy kernels, but that was deemed to be unnecessary.
928 */
929 if (synack_type != TCP_SYNACK_COOKIE)
930 ireq->tstamp_ok &= !ireq->sack_ok;
931 } else if (tcp_key_is_ao(key)) {
932 opts->options |= OPTION_AO;
933 remaining -= tcp_ao_len_aligned(key->ao_key);
934 ireq->tstamp_ok &= !ireq->sack_ok;
935 }
936
937 /* We always send an MSS option. */
938 opts->mss = mss;
939 remaining -= TCPOLEN_MSS_ALIGNED;
940
941 if (likely(ireq->wscale_ok)) {
942 opts->ws = ireq->rcv_wscale;
943 opts->options |= OPTION_WSCALE;
944 remaining -= TCPOLEN_WSCALE_ALIGNED;
945 }
946 if (likely(ireq->tstamp_ok)) {
947 opts->options |= OPTION_TS;
948 opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
949 tcp_rsk(req)->ts_off;
950 opts->tsecr = READ_ONCE(req->ts_recent);
951 remaining -= TCPOLEN_TSTAMP_ALIGNED;
952 }
953 if (likely(ireq->sack_ok)) {
954 opts->options |= OPTION_SACK_ADVERTISE;
955 if (unlikely(!ireq->tstamp_ok))
956 remaining -= TCPOLEN_SACKPERM_ALIGNED;
957 }
958 if (foc != NULL && foc->len >= 0) {
959 u32 need = foc->len;
960
961 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
962 TCPOLEN_FASTOPEN_BASE;
963 need = (need + 3) & ~3U; /* Align to 32 bits */
964 if (remaining >= need) {
965 opts->options |= OPTION_FAST_OPEN_COOKIE;
966 opts->fastopen_cookie = foc;
967 remaining -= need;
968 }
969 }
970
971 mptcp_set_option_cond(req, opts, &remaining);
972
973 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
974
975 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
976 synack_type, opts, &remaining);
977
978 return MAX_TCP_OPTION_SPACE - remaining;
979 }
980
981 /* Compute TCP options for ESTABLISHED sockets. This is not the
982 * final wire format yet.
983 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_key * key)984 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
985 struct tcp_out_options *opts,
986 struct tcp_key *key)
987 {
988 struct tcp_sock *tp = tcp_sk(sk);
989 unsigned int size = 0;
990 unsigned int eff_sacks;
991
992 opts->options = 0;
993
994 /* Better than switch (key.type) as it has static branches */
995 if (tcp_key_is_md5(key)) {
996 opts->options |= OPTION_MD5;
997 size += TCPOLEN_MD5SIG_ALIGNED;
998 } else if (tcp_key_is_ao(key)) {
999 opts->options |= OPTION_AO;
1000 size += tcp_ao_len_aligned(key->ao_key);
1001 }
1002
1003 if (likely(tp->rx_opt.tstamp_ok)) {
1004 opts->options |= OPTION_TS;
1005 opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
1006 tp->tsoffset : 0;
1007 opts->tsecr = tp->rx_opt.ts_recent;
1008 size += TCPOLEN_TSTAMP_ALIGNED;
1009 }
1010
1011 /* MPTCP options have precedence over SACK for the limited TCP
1012 * option space because a MPTCP connection would be forced to
1013 * fall back to regular TCP if a required multipath option is
1014 * missing. SACK still gets a chance to use whatever space is
1015 * left.
1016 */
1017 if (sk_is_mptcp(sk)) {
1018 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1019 unsigned int opt_size = 0;
1020
1021 if (mptcp_established_options(sk, skb, &opt_size, remaining,
1022 &opts->mptcp)) {
1023 opts->options |= OPTION_MPTCP;
1024 size += opt_size;
1025 }
1026 }
1027
1028 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1029 if (unlikely(eff_sacks)) {
1030 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1031 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1032 TCPOLEN_SACK_PERBLOCK))
1033 return size;
1034
1035 opts->num_sack_blocks =
1036 min_t(unsigned int, eff_sacks,
1037 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1038 TCPOLEN_SACK_PERBLOCK);
1039
1040 size += TCPOLEN_SACK_BASE_ALIGNED +
1041 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1042 }
1043
1044 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1045 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1046 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1047
1048 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1049
1050 size = MAX_TCP_OPTION_SPACE - remaining;
1051 }
1052
1053 return size;
1054 }
1055
1056
1057 /* TCP SMALL QUEUES (TSQ)
1058 *
1059 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1060 * to reduce RTT and bufferbloat.
1061 * We do this using a special skb destructor (tcp_wfree).
1062 *
1063 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1064 * needs to be reallocated in a driver.
1065 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1066 *
1067 * Since transmit from skb destructor is forbidden, we use a tasklet
1068 * to process all sockets that eventually need to send more skbs.
1069 * We use one tasklet per cpu, with its own queue of sockets.
1070 */
1071 struct tsq_tasklet {
1072 struct tasklet_struct tasklet;
1073 struct list_head head; /* queue of tcp sockets */
1074 };
1075 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1076
tcp_tsq_write(struct sock * sk)1077 static void tcp_tsq_write(struct sock *sk)
1078 {
1079 if ((1 << sk->sk_state) &
1080 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1081 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1082 struct tcp_sock *tp = tcp_sk(sk);
1083
1084 if (tp->lost_out > tp->retrans_out &&
1085 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1086 tcp_mstamp_refresh(tp);
1087 tcp_xmit_retransmit_queue(sk);
1088 }
1089
1090 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1091 0, GFP_ATOMIC);
1092 }
1093 }
1094
tcp_tsq_handler(struct sock * sk)1095 static void tcp_tsq_handler(struct sock *sk)
1096 {
1097 bh_lock_sock(sk);
1098 if (!sock_owned_by_user(sk))
1099 tcp_tsq_write(sk);
1100 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1101 sock_hold(sk);
1102 bh_unlock_sock(sk);
1103 }
1104 /*
1105 * One tasklet per cpu tries to send more skbs.
1106 * We run in tasklet context but need to disable irqs when
1107 * transferring tsq->head because tcp_wfree() might
1108 * interrupt us (non NAPI drivers)
1109 */
tcp_tasklet_func(struct tasklet_struct * t)1110 static void tcp_tasklet_func(struct tasklet_struct *t)
1111 {
1112 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet);
1113 LIST_HEAD(list);
1114 unsigned long flags;
1115 struct list_head *q, *n;
1116 struct tcp_sock *tp;
1117 struct sock *sk;
1118
1119 local_irq_save(flags);
1120 list_splice_init(&tsq->head, &list);
1121 local_irq_restore(flags);
1122
1123 list_for_each_safe(q, n, &list) {
1124 tp = list_entry(q, struct tcp_sock, tsq_node);
1125 list_del(&tp->tsq_node);
1126
1127 sk = (struct sock *)tp;
1128 smp_mb__before_atomic();
1129 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1130
1131 tcp_tsq_handler(sk);
1132 sk_free(sk);
1133 }
1134 }
1135
1136 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1137 TCPF_WRITE_TIMER_DEFERRED | \
1138 TCPF_DELACK_TIMER_DEFERRED | \
1139 TCPF_MTU_REDUCED_DEFERRED | \
1140 TCPF_ACK_DEFERRED)
1141 /**
1142 * tcp_release_cb - tcp release_sock() callback
1143 * @sk: socket
1144 *
1145 * called from release_sock() to perform protocol dependent
1146 * actions before socket release.
1147 */
tcp_release_cb(struct sock * sk)1148 void tcp_release_cb(struct sock *sk)
1149 {
1150 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1151 unsigned long nflags;
1152
1153 /* perform an atomic operation only if at least one flag is set */
1154 do {
1155 if (!(flags & TCP_DEFERRED_ALL))
1156 return;
1157 nflags = flags & ~TCP_DEFERRED_ALL;
1158 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1159
1160 if (flags & TCPF_TSQ_DEFERRED) {
1161 tcp_tsq_write(sk);
1162 __sock_put(sk);
1163 }
1164
1165 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1166 tcp_write_timer_handler(sk);
1167 __sock_put(sk);
1168 }
1169 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1170 tcp_delack_timer_handler(sk);
1171 __sock_put(sk);
1172 }
1173 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1174 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1175 __sock_put(sk);
1176 }
1177 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1178 tcp_send_ack(sk);
1179 }
1180 EXPORT_SYMBOL(tcp_release_cb);
1181
tcp_tasklet_init(void)1182 void __init tcp_tasklet_init(void)
1183 {
1184 int i;
1185
1186 for_each_possible_cpu(i) {
1187 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1188
1189 INIT_LIST_HEAD(&tsq->head);
1190 tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1191 }
1192 }
1193
1194 /*
1195 * Write buffer destructor automatically called from kfree_skb.
1196 * We can't xmit new skbs from this context, as we might already
1197 * hold qdisc lock.
1198 */
tcp_wfree(struct sk_buff * skb)1199 void tcp_wfree(struct sk_buff *skb)
1200 {
1201 struct sock *sk = skb->sk;
1202 struct tcp_sock *tp = tcp_sk(sk);
1203 unsigned long flags, nval, oval;
1204 struct tsq_tasklet *tsq;
1205 bool empty;
1206
1207 /* Keep one reference on sk_wmem_alloc.
1208 * Will be released by sk_free() from here or tcp_tasklet_func()
1209 */
1210 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1211
1212 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1213 * Wait until our queues (qdisc + devices) are drained.
1214 * This gives :
1215 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1216 * - chance for incoming ACK (processed by another cpu maybe)
1217 * to migrate this flow (skb->ooo_okay will be eventually set)
1218 */
1219 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1220 goto out;
1221
1222 oval = smp_load_acquire(&sk->sk_tsq_flags);
1223 do {
1224 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1225 goto out;
1226
1227 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1228 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1229
1230 /* queue this socket to tasklet queue */
1231 local_irq_save(flags);
1232 tsq = this_cpu_ptr(&tsq_tasklet);
1233 empty = list_empty(&tsq->head);
1234 list_add(&tp->tsq_node, &tsq->head);
1235 if (empty)
1236 tasklet_schedule(&tsq->tasklet);
1237 local_irq_restore(flags);
1238 return;
1239 out:
1240 sk_free(sk);
1241 }
1242
1243 /* Note: Called under soft irq.
1244 * We can call TCP stack right away, unless socket is owned by user.
1245 */
tcp_pace_kick(struct hrtimer * timer)1246 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1247 {
1248 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1249 struct sock *sk = (struct sock *)tp;
1250
1251 tcp_tsq_handler(sk);
1252 sock_put(sk);
1253
1254 return HRTIMER_NORESTART;
1255 }
1256
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1257 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1258 u64 prior_wstamp)
1259 {
1260 struct tcp_sock *tp = tcp_sk(sk);
1261
1262 if (sk->sk_pacing_status != SK_PACING_NONE) {
1263 unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1264
1265 /* Original sch_fq does not pace first 10 MSS
1266 * Note that tp->data_segs_out overflows after 2^32 packets,
1267 * this is a minor annoyance.
1268 */
1269 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1270 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1271 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1272
1273 /* take into account OS jitter */
1274 len_ns -= min_t(u64, len_ns / 2, credit);
1275 tp->tcp_wstamp_ns += len_ns;
1276 }
1277 }
1278 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1279 }
1280
1281 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1282 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1283 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1284
1285 /* This routine actually transmits TCP packets queued in by
1286 * tcp_do_sendmsg(). This is used by both the initial
1287 * transmission and possible later retransmissions.
1288 * All SKB's seen here are completely headerless. It is our
1289 * job to build the TCP header, and pass the packet down to
1290 * IP so it can do the same plus pass the packet off to the
1291 * device.
1292 *
1293 * We are working here with either a clone of the original
1294 * SKB, or a fresh unique copy made by the retransmit engine.
1295 */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1296 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1297 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1298 {
1299 const struct inet_connection_sock *icsk = inet_csk(sk);
1300 struct inet_sock *inet;
1301 struct tcp_sock *tp;
1302 struct tcp_skb_cb *tcb;
1303 struct tcp_out_options opts;
1304 unsigned int tcp_options_size, tcp_header_size;
1305 struct sk_buff *oskb = NULL;
1306 struct tcp_key key;
1307 struct tcphdr *th;
1308 u64 prior_wstamp;
1309 int err;
1310
1311 BUG_ON(!skb || !tcp_skb_pcount(skb));
1312 tp = tcp_sk(sk);
1313 prior_wstamp = tp->tcp_wstamp_ns;
1314 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1315 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
1316 if (clone_it) {
1317 oskb = skb;
1318
1319 tcp_skb_tsorted_save(oskb) {
1320 if (unlikely(skb_cloned(oskb)))
1321 skb = pskb_copy(oskb, gfp_mask);
1322 else
1323 skb = skb_clone(oskb, gfp_mask);
1324 } tcp_skb_tsorted_restore(oskb);
1325
1326 if (unlikely(!skb))
1327 return -ENOBUFS;
1328 /* retransmit skbs might have a non zero value in skb->dev
1329 * because skb->dev is aliased with skb->rbnode.rb_left
1330 */
1331 skb->dev = NULL;
1332 }
1333
1334 inet = inet_sk(sk);
1335 tcb = TCP_SKB_CB(skb);
1336 memset(&opts, 0, sizeof(opts));
1337
1338 tcp_get_current_key(sk, &key);
1339 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1340 tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1341 } else {
1342 tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1343 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1344 * at receiver : This slightly improve GRO performance.
1345 * Note that we do not force the PSH flag for non GSO packets,
1346 * because they might be sent under high congestion events,
1347 * and in this case it is better to delay the delivery of 1-MSS
1348 * packets and thus the corresponding ACK packet that would
1349 * release the following packet.
1350 */
1351 if (tcp_skb_pcount(skb) > 1)
1352 tcb->tcp_flags |= TCPHDR_PSH;
1353 }
1354 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1355
1356 /* We set skb->ooo_okay to one if this packet can select
1357 * a different TX queue than prior packets of this flow,
1358 * to avoid self inflicted reorders.
1359 * The 'other' queue decision is based on current cpu number
1360 * if XPS is enabled, or sk->sk_txhash otherwise.
1361 * We can switch to another (and better) queue if:
1362 * 1) No packet with payload is in qdisc/device queues.
1363 * Delays in TX completion can defeat the test
1364 * even if packets were already sent.
1365 * 2) Or rtx queue is empty.
1366 * This mitigates above case if ACK packets for
1367 * all prior packets were already processed.
1368 */
1369 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1370 tcp_rtx_queue_empty(sk);
1371
1372 /* If we had to use memory reserve to allocate this skb,
1373 * this might cause drops if packet is looped back :
1374 * Other socket might not have SOCK_MEMALLOC.
1375 * Packets not looped back do not care about pfmemalloc.
1376 */
1377 skb->pfmemalloc = 0;
1378
1379 skb_push(skb, tcp_header_size);
1380 skb_reset_transport_header(skb);
1381
1382 skb_orphan(skb);
1383 skb->sk = sk;
1384 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1385 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1386
1387 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1388
1389 /* Build TCP header and checksum it. */
1390 th = (struct tcphdr *)skb->data;
1391 th->source = inet->inet_sport;
1392 th->dest = inet->inet_dport;
1393 th->seq = htonl(tcb->seq);
1394 th->ack_seq = htonl(rcv_nxt);
1395 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1396 tcb->tcp_flags);
1397
1398 th->check = 0;
1399 th->urg_ptr = 0;
1400
1401 /* The urg_mode check is necessary during a below snd_una win probe */
1402 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1403 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1404 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1405 th->urg = 1;
1406 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1407 th->urg_ptr = htons(0xFFFF);
1408 th->urg = 1;
1409 }
1410 }
1411
1412 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1413 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1414 th->window = htons(tcp_select_window(sk));
1415 tcp_ecn_send(sk, skb, th, tcp_header_size);
1416 } else {
1417 /* RFC1323: The window in SYN & SYN/ACK segments
1418 * is never scaled.
1419 */
1420 th->window = htons(min(tp->rcv_wnd, 65535U));
1421 }
1422
1423 tcp_options_write(th, tp, NULL, &opts, &key);
1424
1425 if (tcp_key_is_md5(&key)) {
1426 #ifdef CONFIG_TCP_MD5SIG
1427 /* Calculate the MD5 hash, as we have all we need now */
1428 sk_gso_disable(sk);
1429 tp->af_specific->calc_md5_hash(opts.hash_location,
1430 key.md5_key, sk, skb);
1431 #endif
1432 } else if (tcp_key_is_ao(&key)) {
1433 int err;
1434
1435 err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1436 opts.hash_location);
1437 if (err) {
1438 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1439 return -ENOMEM;
1440 }
1441 }
1442
1443 /* BPF prog is the last one writing header option */
1444 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1445
1446 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1447 tcp_v6_send_check, tcp_v4_send_check,
1448 sk, skb);
1449
1450 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1451 tcp_event_ack_sent(sk, rcv_nxt);
1452
1453 if (skb->len != tcp_header_size) {
1454 tcp_event_data_sent(tp, sk);
1455 tp->data_segs_out += tcp_skb_pcount(skb);
1456 tp->bytes_sent += skb->len - tcp_header_size;
1457 }
1458
1459 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1460 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1461 tcp_skb_pcount(skb));
1462
1463 tp->segs_out += tcp_skb_pcount(skb);
1464 skb_set_hash_from_sk(skb, sk);
1465 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1466 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1467 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1468
1469 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1470
1471 /* Cleanup our debris for IP stacks */
1472 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1473 sizeof(struct inet6_skb_parm)));
1474
1475 tcp_add_tx_delay(skb, tp);
1476
1477 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1478 inet6_csk_xmit, ip_queue_xmit,
1479 sk, skb, &inet->cork.fl);
1480
1481 if (unlikely(err > 0)) {
1482 tcp_enter_cwr(sk);
1483 err = net_xmit_eval(err);
1484 }
1485 if (!err && oskb) {
1486 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1487 tcp_rate_skb_sent(sk, oskb);
1488 }
1489 return err;
1490 }
1491
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1492 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1493 gfp_t gfp_mask)
1494 {
1495 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1496 tcp_sk(sk)->rcv_nxt);
1497 }
1498
1499 /* This routine just queues the buffer for sending.
1500 *
1501 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1502 * otherwise socket can stall.
1503 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1504 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1505 {
1506 struct tcp_sock *tp = tcp_sk(sk);
1507
1508 /* Advance write_seq and place onto the write_queue. */
1509 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1510 __skb_header_release(skb);
1511 tcp_add_write_queue_tail(sk, skb);
1512 sk_wmem_queued_add(sk, skb->truesize);
1513 sk_mem_charge(sk, skb->truesize);
1514 }
1515
1516 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1517 static int tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1518 {
1519 int tso_segs;
1520
1521 if (skb->len <= mss_now) {
1522 /* Avoid the costly divide in the normal
1523 * non-TSO case.
1524 */
1525 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1526 tcp_skb_pcount_set(skb, 1);
1527 return 1;
1528 }
1529 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1530 tso_segs = DIV_ROUND_UP(skb->len, mss_now);
1531 tcp_skb_pcount_set(skb, tso_segs);
1532 return tso_segs;
1533 }
1534
1535 /* Pcount in the middle of the write queue got changed, we need to do various
1536 * tweaks to fix counters
1537 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1538 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1539 {
1540 struct tcp_sock *tp = tcp_sk(sk);
1541
1542 tp->packets_out -= decr;
1543
1544 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1545 tp->sacked_out -= decr;
1546 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1547 tp->retrans_out -= decr;
1548 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1549 tp->lost_out -= decr;
1550
1551 /* Reno case is special. Sigh... */
1552 if (tcp_is_reno(tp) && decr > 0)
1553 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1554
1555 if (tp->lost_skb_hint &&
1556 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1557 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1558 tp->lost_cnt_hint -= decr;
1559
1560 tcp_verify_left_out(tp);
1561 }
1562
tcp_has_tx_tstamp(const struct sk_buff * skb)1563 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1564 {
1565 return TCP_SKB_CB(skb)->txstamp_ack ||
1566 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1567 }
1568
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1569 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1570 {
1571 struct skb_shared_info *shinfo = skb_shinfo(skb);
1572
1573 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1574 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1575 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1576 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1577
1578 shinfo->tx_flags &= ~tsflags;
1579 shinfo2->tx_flags |= tsflags;
1580 swap(shinfo->tskey, shinfo2->tskey);
1581 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1582 TCP_SKB_CB(skb)->txstamp_ack = 0;
1583 }
1584 }
1585
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1586 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1587 {
1588 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1589 TCP_SKB_CB(skb)->eor = 0;
1590 }
1591
1592 /* Insert buff after skb on the write or rtx queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1593 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1594 struct sk_buff *buff,
1595 struct sock *sk,
1596 enum tcp_queue tcp_queue)
1597 {
1598 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1599 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1600 else
1601 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1602 }
1603
1604 /* Function to create two new TCP segments. Shrinks the given segment
1605 * to the specified size and appends a new segment with the rest of the
1606 * packet to the list. This won't be called frequently, I hope.
1607 * Remember, these are still headerless SKBs at this point.
1608 */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1609 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1610 struct sk_buff *skb, u32 len,
1611 unsigned int mss_now, gfp_t gfp)
1612 {
1613 struct tcp_sock *tp = tcp_sk(sk);
1614 struct sk_buff *buff;
1615 int old_factor;
1616 long limit;
1617 int nlen;
1618 u8 flags;
1619
1620 if (WARN_ON(len > skb->len))
1621 return -EINVAL;
1622
1623 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1624
1625 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1626 * We need some allowance to not penalize applications setting small
1627 * SO_SNDBUF values.
1628 * Also allow first and last skb in retransmit queue to be split.
1629 */
1630 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1631 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1632 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1633 skb != tcp_rtx_queue_head(sk) &&
1634 skb != tcp_rtx_queue_tail(sk))) {
1635 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1636 return -ENOMEM;
1637 }
1638
1639 if (skb_unclone_keeptruesize(skb, gfp))
1640 return -ENOMEM;
1641
1642 /* Get a new skb... force flag on. */
1643 buff = tcp_stream_alloc_skb(sk, gfp, true);
1644 if (!buff)
1645 return -ENOMEM; /* We'll just try again later. */
1646 skb_copy_decrypted(buff, skb);
1647 mptcp_skb_ext_copy(buff, skb);
1648
1649 sk_wmem_queued_add(sk, buff->truesize);
1650 sk_mem_charge(sk, buff->truesize);
1651 nlen = skb->len - len;
1652 buff->truesize += nlen;
1653 skb->truesize -= nlen;
1654
1655 /* Correct the sequence numbers. */
1656 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1657 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1658 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1659
1660 /* PSH and FIN should only be set in the second packet. */
1661 flags = TCP_SKB_CB(skb)->tcp_flags;
1662 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1663 TCP_SKB_CB(buff)->tcp_flags = flags;
1664 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1665 tcp_skb_fragment_eor(skb, buff);
1666
1667 skb_split(skb, buff, len);
1668
1669 skb_set_delivery_time(buff, skb->tstamp, SKB_CLOCK_MONOTONIC);
1670 tcp_fragment_tstamp(skb, buff);
1671
1672 old_factor = tcp_skb_pcount(skb);
1673
1674 /* Fix up tso_factor for both original and new SKB. */
1675 tcp_set_skb_tso_segs(skb, mss_now);
1676 tcp_set_skb_tso_segs(buff, mss_now);
1677
1678 /* Update delivered info for the new segment */
1679 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1680
1681 /* If this packet has been sent out already, we must
1682 * adjust the various packet counters.
1683 */
1684 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1685 int diff = old_factor - tcp_skb_pcount(skb) -
1686 tcp_skb_pcount(buff);
1687
1688 if (diff)
1689 tcp_adjust_pcount(sk, skb, diff);
1690 }
1691
1692 /* Link BUFF into the send queue. */
1693 __skb_header_release(buff);
1694 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1695 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1696 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1697
1698 return 0;
1699 }
1700
1701 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1702 * data is not copied, but immediately discarded.
1703 */
__pskb_trim_head(struct sk_buff * skb,int len)1704 static int __pskb_trim_head(struct sk_buff *skb, int len)
1705 {
1706 struct skb_shared_info *shinfo;
1707 int i, k, eat;
1708
1709 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1710 eat = len;
1711 k = 0;
1712 shinfo = skb_shinfo(skb);
1713 for (i = 0; i < shinfo->nr_frags; i++) {
1714 int size = skb_frag_size(&shinfo->frags[i]);
1715
1716 if (size <= eat) {
1717 skb_frag_unref(skb, i);
1718 eat -= size;
1719 } else {
1720 shinfo->frags[k] = shinfo->frags[i];
1721 if (eat) {
1722 skb_frag_off_add(&shinfo->frags[k], eat);
1723 skb_frag_size_sub(&shinfo->frags[k], eat);
1724 eat = 0;
1725 }
1726 k++;
1727 }
1728 }
1729 shinfo->nr_frags = k;
1730
1731 skb->data_len -= len;
1732 skb->len = skb->data_len;
1733 return len;
1734 }
1735
1736 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1737 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1738 {
1739 u32 delta_truesize;
1740
1741 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1742 return -ENOMEM;
1743
1744 delta_truesize = __pskb_trim_head(skb, len);
1745
1746 TCP_SKB_CB(skb)->seq += len;
1747
1748 skb->truesize -= delta_truesize;
1749 sk_wmem_queued_add(sk, -delta_truesize);
1750 if (!skb_zcopy_pure(skb))
1751 sk_mem_uncharge(sk, delta_truesize);
1752
1753 /* Any change of skb->len requires recalculation of tso factor. */
1754 if (tcp_skb_pcount(skb) > 1)
1755 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1756
1757 return 0;
1758 }
1759
1760 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1761 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1762 {
1763 const struct tcp_sock *tp = tcp_sk(sk);
1764 const struct inet_connection_sock *icsk = inet_csk(sk);
1765 int mss_now;
1766
1767 /* Calculate base mss without TCP options:
1768 It is MMS_S - sizeof(tcphdr) of rfc1122
1769 */
1770 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1771
1772 /* Clamp it (mss_clamp does not include tcp options) */
1773 if (mss_now > tp->rx_opt.mss_clamp)
1774 mss_now = tp->rx_opt.mss_clamp;
1775
1776 /* Now subtract optional transport overhead */
1777 mss_now -= icsk->icsk_ext_hdr_len;
1778
1779 /* Then reserve room for full set of TCP options and 8 bytes of data */
1780 mss_now = max(mss_now,
1781 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1782 return mss_now;
1783 }
1784
1785 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1786 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1787 {
1788 /* Subtract TCP options size, not including SACKs */
1789 return __tcp_mtu_to_mss(sk, pmtu) -
1790 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1791 }
1792 EXPORT_SYMBOL(tcp_mtu_to_mss);
1793
1794 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1795 int tcp_mss_to_mtu(struct sock *sk, int mss)
1796 {
1797 const struct tcp_sock *tp = tcp_sk(sk);
1798 const struct inet_connection_sock *icsk = inet_csk(sk);
1799
1800 return mss +
1801 tp->tcp_header_len +
1802 icsk->icsk_ext_hdr_len +
1803 icsk->icsk_af_ops->net_header_len;
1804 }
1805 EXPORT_SYMBOL(tcp_mss_to_mtu);
1806
1807 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1808 void tcp_mtup_init(struct sock *sk)
1809 {
1810 struct tcp_sock *tp = tcp_sk(sk);
1811 struct inet_connection_sock *icsk = inet_csk(sk);
1812 struct net *net = sock_net(sk);
1813
1814 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1815 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1816 icsk->icsk_af_ops->net_header_len;
1817 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1818 icsk->icsk_mtup.probe_size = 0;
1819 if (icsk->icsk_mtup.enabled)
1820 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1821 }
1822 EXPORT_SYMBOL(tcp_mtup_init);
1823
1824 /* This function synchronize snd mss to current pmtu/exthdr set.
1825
1826 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1827 for TCP options, but includes only bare TCP header.
1828
1829 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1830 It is minimum of user_mss and mss received with SYN.
1831 It also does not include TCP options.
1832
1833 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1834
1835 tp->mss_cache is current effective sending mss, including
1836 all tcp options except for SACKs. It is evaluated,
1837 taking into account current pmtu, but never exceeds
1838 tp->rx_opt.mss_clamp.
1839
1840 NOTE1. rfc1122 clearly states that advertised MSS
1841 DOES NOT include either tcp or ip options.
1842
1843 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1844 are READ ONLY outside this function. --ANK (980731)
1845 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1846 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1847 {
1848 struct tcp_sock *tp = tcp_sk(sk);
1849 struct inet_connection_sock *icsk = inet_csk(sk);
1850 int mss_now;
1851
1852 if (icsk->icsk_mtup.search_high > pmtu)
1853 icsk->icsk_mtup.search_high = pmtu;
1854
1855 mss_now = tcp_mtu_to_mss(sk, pmtu);
1856 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1857
1858 /* And store cached results */
1859 icsk->icsk_pmtu_cookie = pmtu;
1860 if (icsk->icsk_mtup.enabled)
1861 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1862 tp->mss_cache = mss_now;
1863
1864 return mss_now;
1865 }
1866 EXPORT_SYMBOL(tcp_sync_mss);
1867
1868 /* Compute the current effective MSS, taking SACKs and IP options,
1869 * and even PMTU discovery events into account.
1870 */
tcp_current_mss(struct sock * sk)1871 unsigned int tcp_current_mss(struct sock *sk)
1872 {
1873 const struct tcp_sock *tp = tcp_sk(sk);
1874 const struct dst_entry *dst = __sk_dst_get(sk);
1875 u32 mss_now;
1876 unsigned int header_len;
1877 struct tcp_out_options opts;
1878 struct tcp_key key;
1879
1880 mss_now = tp->mss_cache;
1881
1882 if (dst) {
1883 u32 mtu = dst_mtu(dst);
1884 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1885 mss_now = tcp_sync_mss(sk, mtu);
1886 }
1887 tcp_get_current_key(sk, &key);
1888 header_len = tcp_established_options(sk, NULL, &opts, &key) +
1889 sizeof(struct tcphdr);
1890 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1891 * some common options. If this is an odd packet (because we have SACK
1892 * blocks etc) then our calculated header_len will be different, and
1893 * we have to adjust mss_now correspondingly */
1894 if (header_len != tp->tcp_header_len) {
1895 int delta = (int) header_len - tp->tcp_header_len;
1896 mss_now -= delta;
1897 }
1898
1899 return mss_now;
1900 }
1901
1902 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1903 * As additional protections, we do not touch cwnd in retransmission phases,
1904 * and if application hit its sndbuf limit recently.
1905 */
tcp_cwnd_application_limited(struct sock * sk)1906 static void tcp_cwnd_application_limited(struct sock *sk)
1907 {
1908 struct tcp_sock *tp = tcp_sk(sk);
1909
1910 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1911 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1912 /* Limited by application or receiver window. */
1913 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1914 u32 win_used = max(tp->snd_cwnd_used, init_win);
1915 if (win_used < tcp_snd_cwnd(tp)) {
1916 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1917 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1918 }
1919 tp->snd_cwnd_used = 0;
1920 }
1921 tp->snd_cwnd_stamp = tcp_jiffies32;
1922 }
1923
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1924 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1925 {
1926 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1927 struct tcp_sock *tp = tcp_sk(sk);
1928
1929 /* Track the strongest available signal of the degree to which the cwnd
1930 * is fully utilized. If cwnd-limited then remember that fact for the
1931 * current window. If not cwnd-limited then track the maximum number of
1932 * outstanding packets in the current window. (If cwnd-limited then we
1933 * chose to not update tp->max_packets_out to avoid an extra else
1934 * clause with no functional impact.)
1935 */
1936 if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1937 is_cwnd_limited ||
1938 (!tp->is_cwnd_limited &&
1939 tp->packets_out > tp->max_packets_out)) {
1940 tp->is_cwnd_limited = is_cwnd_limited;
1941 tp->max_packets_out = tp->packets_out;
1942 tp->cwnd_usage_seq = tp->snd_nxt;
1943 }
1944
1945 if (tcp_is_cwnd_limited(sk)) {
1946 /* Network is feed fully. */
1947 tp->snd_cwnd_used = 0;
1948 tp->snd_cwnd_stamp = tcp_jiffies32;
1949 } else {
1950 /* Network starves. */
1951 if (tp->packets_out > tp->snd_cwnd_used)
1952 tp->snd_cwnd_used = tp->packets_out;
1953
1954 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1955 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1956 !ca_ops->cong_control)
1957 tcp_cwnd_application_limited(sk);
1958
1959 /* The following conditions together indicate the starvation
1960 * is caused by insufficient sender buffer:
1961 * 1) just sent some data (see tcp_write_xmit)
1962 * 2) not cwnd limited (this else condition)
1963 * 3) no more data to send (tcp_write_queue_empty())
1964 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1965 */
1966 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1967 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1968 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1969 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1970 }
1971 }
1972
1973 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1974 static bool tcp_minshall_check(const struct tcp_sock *tp)
1975 {
1976 return after(tp->snd_sml, tp->snd_una) &&
1977 !after(tp->snd_sml, tp->snd_nxt);
1978 }
1979
1980 /* Update snd_sml if this skb is under mss
1981 * Note that a TSO packet might end with a sub-mss segment
1982 * The test is really :
1983 * if ((skb->len % mss) != 0)
1984 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1985 * But we can avoid doing the divide again given we already have
1986 * skb_pcount = skb->len / mss_now
1987 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1988 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1989 const struct sk_buff *skb)
1990 {
1991 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1992 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1993 }
1994
1995 /* Return false, if packet can be sent now without violation Nagle's rules:
1996 * 1. It is full sized. (provided by caller in %partial bool)
1997 * 2. Or it contains FIN. (already checked by caller)
1998 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1999 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
2000 * With Minshall's modification: all sent small packets are ACKed.
2001 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)2002 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
2003 int nonagle)
2004 {
2005 return partial &&
2006 ((nonagle & TCP_NAGLE_CORK) ||
2007 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
2008 }
2009
2010 /* Return how many segs we'd like on a TSO packet,
2011 * depending on current pacing rate, and how close the peer is.
2012 *
2013 * Rationale is:
2014 * - For close peers, we rather send bigger packets to reduce
2015 * cpu costs, because occasional losses will be repaired fast.
2016 * - For long distance/rtt flows, we would like to get ACK clocking
2017 * with 1 ACK per ms.
2018 *
2019 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2020 * in bigger TSO bursts. We we cut the RTT-based allowance in half
2021 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2022 * is below 1500 bytes after 6 * ~500 usec = 3ms.
2023 */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)2024 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2025 int min_tso_segs)
2026 {
2027 unsigned long bytes;
2028 u32 r;
2029
2030 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2031
2032 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2033 if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2034 bytes += sk->sk_gso_max_size >> r;
2035
2036 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2037
2038 return max_t(u32, bytes / mss_now, min_tso_segs);
2039 }
2040
2041 /* Return the number of segments we want in the skb we are transmitting.
2042 * See if congestion control module wants to decide; otherwise, autosize.
2043 */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)2044 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2045 {
2046 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2047 u32 min_tso, tso_segs;
2048
2049 min_tso = ca_ops->min_tso_segs ?
2050 ca_ops->min_tso_segs(sk) :
2051 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2052
2053 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2054 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2055 }
2056
2057 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2058 static unsigned int tcp_mss_split_point(const struct sock *sk,
2059 const struct sk_buff *skb,
2060 unsigned int mss_now,
2061 unsigned int max_segs,
2062 int nonagle)
2063 {
2064 const struct tcp_sock *tp = tcp_sk(sk);
2065 u32 partial, needed, window, max_len;
2066
2067 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2068 max_len = mss_now * max_segs;
2069
2070 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2071 return max_len;
2072
2073 needed = min(skb->len, window);
2074
2075 if (max_len <= needed)
2076 return max_len;
2077
2078 partial = needed % mss_now;
2079 /* If last segment is not a full MSS, check if Nagle rules allow us
2080 * to include this last segment in this skb.
2081 * Otherwise, we'll split the skb at last MSS boundary
2082 */
2083 if (tcp_nagle_check(partial != 0, tp, nonagle))
2084 return needed - partial;
2085
2086 return needed;
2087 }
2088
2089 /* Can at least one segment of SKB be sent right now, according to the
2090 * congestion window rules? If so, return how many segments are allowed.
2091 */
tcp_cwnd_test(const struct tcp_sock * tp)2092 static u32 tcp_cwnd_test(const struct tcp_sock *tp)
2093 {
2094 u32 in_flight, cwnd, halfcwnd;
2095
2096 in_flight = tcp_packets_in_flight(tp);
2097 cwnd = tcp_snd_cwnd(tp);
2098 if (in_flight >= cwnd)
2099 return 0;
2100
2101 /* For better scheduling, ensure we have at least
2102 * 2 GSO packets in flight.
2103 */
2104 halfcwnd = max(cwnd >> 1, 1U);
2105 return min(halfcwnd, cwnd - in_flight);
2106 }
2107
2108 /* Initialize TSO state of a skb.
2109 * This must be invoked the first time we consider transmitting
2110 * SKB onto the wire.
2111 */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2112 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2113 {
2114 int tso_segs = tcp_skb_pcount(skb);
2115
2116 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now))
2117 return tcp_set_skb_tso_segs(skb, mss_now);
2118
2119 return tso_segs;
2120 }
2121
2122
2123 /* Return true if the Nagle test allows this packet to be
2124 * sent now.
2125 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2126 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2127 unsigned int cur_mss, int nonagle)
2128 {
2129 /* Nagle rule does not apply to frames, which sit in the middle of the
2130 * write_queue (they have no chances to get new data).
2131 *
2132 * This is implemented in the callers, where they modify the 'nonagle'
2133 * argument based upon the location of SKB in the send queue.
2134 */
2135 if (nonagle & TCP_NAGLE_PUSH)
2136 return true;
2137
2138 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2139 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2140 return true;
2141
2142 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2143 return true;
2144
2145 return false;
2146 }
2147
2148 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2149 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2150 const struct sk_buff *skb,
2151 unsigned int cur_mss)
2152 {
2153 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2154
2155 if (skb->len > cur_mss)
2156 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2157
2158 return !after(end_seq, tcp_wnd_end(tp));
2159 }
2160
2161 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2162 * which is put after SKB on the list. It is very much like
2163 * tcp_fragment() except that it may make several kinds of assumptions
2164 * in order to speed up the splitting operation. In particular, we
2165 * know that all the data is in scatter-gather pages, and that the
2166 * packet has never been sent out before (and thus is not cloned).
2167 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2168 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2169 unsigned int mss_now, gfp_t gfp)
2170 {
2171 int nlen = skb->len - len;
2172 struct sk_buff *buff;
2173 u8 flags;
2174
2175 /* All of a TSO frame must be composed of paged data. */
2176 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2177
2178 buff = tcp_stream_alloc_skb(sk, gfp, true);
2179 if (unlikely(!buff))
2180 return -ENOMEM;
2181 skb_copy_decrypted(buff, skb);
2182 mptcp_skb_ext_copy(buff, skb);
2183
2184 sk_wmem_queued_add(sk, buff->truesize);
2185 sk_mem_charge(sk, buff->truesize);
2186 buff->truesize += nlen;
2187 skb->truesize -= nlen;
2188
2189 /* Correct the sequence numbers. */
2190 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2191 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2192 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2193
2194 /* PSH and FIN should only be set in the second packet. */
2195 flags = TCP_SKB_CB(skb)->tcp_flags;
2196 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2197 TCP_SKB_CB(buff)->tcp_flags = flags;
2198
2199 tcp_skb_fragment_eor(skb, buff);
2200
2201 skb_split(skb, buff, len);
2202 tcp_fragment_tstamp(skb, buff);
2203
2204 /* Fix up tso_factor for both original and new SKB. */
2205 tcp_set_skb_tso_segs(skb, mss_now);
2206 tcp_set_skb_tso_segs(buff, mss_now);
2207
2208 /* Link BUFF into the send queue. */
2209 __skb_header_release(buff);
2210 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2211
2212 return 0;
2213 }
2214
2215 /* Try to defer sending, if possible, in order to minimize the amount
2216 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2217 *
2218 * This algorithm is from John Heffner.
2219 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2220 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2221 bool *is_cwnd_limited,
2222 bool *is_rwnd_limited,
2223 u32 max_segs)
2224 {
2225 const struct inet_connection_sock *icsk = inet_csk(sk);
2226 u32 send_win, cong_win, limit, in_flight;
2227 struct tcp_sock *tp = tcp_sk(sk);
2228 struct sk_buff *head;
2229 int win_divisor;
2230 s64 delta;
2231
2232 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2233 goto send_now;
2234
2235 /* Avoid bursty behavior by allowing defer
2236 * only if the last write was recent (1 ms).
2237 * Note that tp->tcp_wstamp_ns can be in the future if we have
2238 * packets waiting in a qdisc or device for EDT delivery.
2239 */
2240 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2241 if (delta > 0)
2242 goto send_now;
2243
2244 in_flight = tcp_packets_in_flight(tp);
2245
2246 BUG_ON(tcp_skb_pcount(skb) <= 1);
2247 BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2248
2249 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2250
2251 /* From in_flight test above, we know that cwnd > in_flight. */
2252 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2253
2254 limit = min(send_win, cong_win);
2255
2256 /* If a full-sized TSO skb can be sent, do it. */
2257 if (limit >= max_segs * tp->mss_cache)
2258 goto send_now;
2259
2260 /* Middle in queue won't get any more data, full sendable already? */
2261 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2262 goto send_now;
2263
2264 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2265 if (win_divisor) {
2266 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2267
2268 /* If at least some fraction of a window is available,
2269 * just use it.
2270 */
2271 chunk /= win_divisor;
2272 if (limit >= chunk)
2273 goto send_now;
2274 } else {
2275 /* Different approach, try not to defer past a single
2276 * ACK. Receiver should ACK every other full sized
2277 * frame, so if we have space for more than 3 frames
2278 * then send now.
2279 */
2280 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2281 goto send_now;
2282 }
2283
2284 /* TODO : use tsorted_sent_queue ? */
2285 head = tcp_rtx_queue_head(sk);
2286 if (!head)
2287 goto send_now;
2288 delta = tp->tcp_clock_cache - head->tstamp;
2289 /* If next ACK is likely to come too late (half srtt), do not defer */
2290 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2291 goto send_now;
2292
2293 /* Ok, it looks like it is advisable to defer.
2294 * Three cases are tracked :
2295 * 1) We are cwnd-limited
2296 * 2) We are rwnd-limited
2297 * 3) We are application limited.
2298 */
2299 if (cong_win < send_win) {
2300 if (cong_win <= skb->len) {
2301 *is_cwnd_limited = true;
2302 return true;
2303 }
2304 } else {
2305 if (send_win <= skb->len) {
2306 *is_rwnd_limited = true;
2307 return true;
2308 }
2309 }
2310
2311 /* If this packet won't get more data, do not wait. */
2312 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2313 TCP_SKB_CB(skb)->eor)
2314 goto send_now;
2315
2316 return true;
2317
2318 send_now:
2319 return false;
2320 }
2321
tcp_mtu_check_reprobe(struct sock * sk)2322 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2323 {
2324 struct inet_connection_sock *icsk = inet_csk(sk);
2325 struct tcp_sock *tp = tcp_sk(sk);
2326 struct net *net = sock_net(sk);
2327 u32 interval;
2328 s32 delta;
2329
2330 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2331 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2332 if (unlikely(delta >= interval * HZ)) {
2333 int mss = tcp_current_mss(sk);
2334
2335 /* Update current search range */
2336 icsk->icsk_mtup.probe_size = 0;
2337 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2338 sizeof(struct tcphdr) +
2339 icsk->icsk_af_ops->net_header_len;
2340 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2341
2342 /* Update probe time stamp */
2343 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2344 }
2345 }
2346
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2347 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2348 {
2349 struct sk_buff *skb, *next;
2350
2351 skb = tcp_send_head(sk);
2352 tcp_for_write_queue_from_safe(skb, next, sk) {
2353 if (len <= skb->len)
2354 break;
2355
2356 if (tcp_has_tx_tstamp(skb) || !tcp_skb_can_collapse(skb, next))
2357 return false;
2358
2359 len -= skb->len;
2360 }
2361
2362 return true;
2363 }
2364
tcp_clone_payload(struct sock * sk,struct sk_buff * to,int probe_size)2365 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2366 int probe_size)
2367 {
2368 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2369 int i, todo, len = 0, nr_frags = 0;
2370 const struct sk_buff *skb;
2371
2372 if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2373 return -ENOMEM;
2374
2375 skb_queue_walk(&sk->sk_write_queue, skb) {
2376 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2377
2378 if (skb_headlen(skb))
2379 return -EINVAL;
2380
2381 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2382 if (len >= probe_size)
2383 goto commit;
2384 todo = min_t(int, skb_frag_size(fragfrom),
2385 probe_size - len);
2386 len += todo;
2387 if (lastfrag &&
2388 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2389 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2390 skb_frag_size(lastfrag)) {
2391 skb_frag_size_add(lastfrag, todo);
2392 continue;
2393 }
2394 if (unlikely(nr_frags == MAX_SKB_FRAGS))
2395 return -E2BIG;
2396 skb_frag_page_copy(fragto, fragfrom);
2397 skb_frag_off_copy(fragto, fragfrom);
2398 skb_frag_size_set(fragto, todo);
2399 nr_frags++;
2400 lastfrag = fragto++;
2401 }
2402 }
2403 commit:
2404 WARN_ON_ONCE(len != probe_size);
2405 for (i = 0; i < nr_frags; i++)
2406 skb_frag_ref(to, i);
2407
2408 skb_shinfo(to)->nr_frags = nr_frags;
2409 to->truesize += probe_size;
2410 to->len += probe_size;
2411 to->data_len += probe_size;
2412 __skb_header_release(to);
2413 return 0;
2414 }
2415
2416 /* tcp_mtu_probe() and tcp_grow_skb() can both eat an skb (src) if
2417 * all its payload was moved to another one (dst).
2418 * Make sure to transfer tcp_flags, eor, and tstamp.
2419 */
tcp_eat_one_skb(struct sock * sk,struct sk_buff * dst,struct sk_buff * src)2420 static void tcp_eat_one_skb(struct sock *sk,
2421 struct sk_buff *dst,
2422 struct sk_buff *src)
2423 {
2424 TCP_SKB_CB(dst)->tcp_flags |= TCP_SKB_CB(src)->tcp_flags;
2425 TCP_SKB_CB(dst)->eor = TCP_SKB_CB(src)->eor;
2426 tcp_skb_collapse_tstamp(dst, src);
2427 tcp_unlink_write_queue(src, sk);
2428 tcp_wmem_free_skb(sk, src);
2429 }
2430
2431 /* Create a new MTU probe if we are ready.
2432 * MTU probe is regularly attempting to increase the path MTU by
2433 * deliberately sending larger packets. This discovers routing
2434 * changes resulting in larger path MTUs.
2435 *
2436 * Returns 0 if we should wait to probe (no cwnd available),
2437 * 1 if a probe was sent,
2438 * -1 otherwise
2439 */
tcp_mtu_probe(struct sock * sk)2440 static int tcp_mtu_probe(struct sock *sk)
2441 {
2442 struct inet_connection_sock *icsk = inet_csk(sk);
2443 struct tcp_sock *tp = tcp_sk(sk);
2444 struct sk_buff *skb, *nskb, *next;
2445 struct net *net = sock_net(sk);
2446 int probe_size;
2447 int size_needed;
2448 int copy, len;
2449 int mss_now;
2450 int interval;
2451
2452 /* Not currently probing/verifying,
2453 * not in recovery,
2454 * have enough cwnd, and
2455 * not SACKing (the variable headers throw things off)
2456 */
2457 if (likely(!icsk->icsk_mtup.enabled ||
2458 icsk->icsk_mtup.probe_size ||
2459 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2460 tcp_snd_cwnd(tp) < 11 ||
2461 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2462 return -1;
2463
2464 /* Use binary search for probe_size between tcp_mss_base,
2465 * and current mss_clamp. if (search_high - search_low)
2466 * smaller than a threshold, backoff from probing.
2467 */
2468 mss_now = tcp_current_mss(sk);
2469 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2470 icsk->icsk_mtup.search_low) >> 1);
2471 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2472 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2473 /* When misfortune happens, we are reprobing actively,
2474 * and then reprobe timer has expired. We stick with current
2475 * probing process by not resetting search range to its orignal.
2476 */
2477 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2478 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2479 /* Check whether enough time has elaplased for
2480 * another round of probing.
2481 */
2482 tcp_mtu_check_reprobe(sk);
2483 return -1;
2484 }
2485
2486 /* Have enough data in the send queue to probe? */
2487 if (tp->write_seq - tp->snd_nxt < size_needed)
2488 return -1;
2489
2490 if (tp->snd_wnd < size_needed)
2491 return -1;
2492 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2493 return 0;
2494
2495 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2496 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2497 if (!tcp_packets_in_flight(tp))
2498 return -1;
2499 else
2500 return 0;
2501 }
2502
2503 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2504 return -1;
2505
2506 /* We're allowed to probe. Build it now. */
2507 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2508 if (!nskb)
2509 return -1;
2510
2511 /* build the payload, and be prepared to abort if this fails. */
2512 if (tcp_clone_payload(sk, nskb, probe_size)) {
2513 tcp_skb_tsorted_anchor_cleanup(nskb);
2514 consume_skb(nskb);
2515 return -1;
2516 }
2517 sk_wmem_queued_add(sk, nskb->truesize);
2518 sk_mem_charge(sk, nskb->truesize);
2519
2520 skb = tcp_send_head(sk);
2521 skb_copy_decrypted(nskb, skb);
2522 mptcp_skb_ext_copy(nskb, skb);
2523
2524 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2525 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2526 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2527
2528 tcp_insert_write_queue_before(nskb, skb, sk);
2529 tcp_highest_sack_replace(sk, skb, nskb);
2530
2531 len = 0;
2532 tcp_for_write_queue_from_safe(skb, next, sk) {
2533 copy = min_t(int, skb->len, probe_size - len);
2534
2535 if (skb->len <= copy) {
2536 tcp_eat_one_skb(sk, nskb, skb);
2537 } else {
2538 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2539 ~(TCPHDR_FIN|TCPHDR_PSH);
2540 __pskb_trim_head(skb, copy);
2541 tcp_set_skb_tso_segs(skb, mss_now);
2542 TCP_SKB_CB(skb)->seq += copy;
2543 }
2544
2545 len += copy;
2546
2547 if (len >= probe_size)
2548 break;
2549 }
2550 tcp_init_tso_segs(nskb, nskb->len);
2551
2552 /* We're ready to send. If this fails, the probe will
2553 * be resegmented into mss-sized pieces by tcp_write_xmit().
2554 */
2555 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2556 /* Decrement cwnd here because we are sending
2557 * effectively two packets. */
2558 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2559 tcp_event_new_data_sent(sk, nskb);
2560
2561 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2562 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2563 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2564
2565 return 1;
2566 }
2567
2568 return -1;
2569 }
2570
tcp_pacing_check(struct sock * sk)2571 static bool tcp_pacing_check(struct sock *sk)
2572 {
2573 struct tcp_sock *tp = tcp_sk(sk);
2574
2575 if (!tcp_needs_internal_pacing(sk))
2576 return false;
2577
2578 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2579 return false;
2580
2581 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2582 hrtimer_start(&tp->pacing_timer,
2583 ns_to_ktime(tp->tcp_wstamp_ns),
2584 HRTIMER_MODE_ABS_PINNED_SOFT);
2585 sock_hold(sk);
2586 }
2587 return true;
2588 }
2589
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2590 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2591 {
2592 const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2593
2594 /* No skb in the rtx queue. */
2595 if (!node)
2596 return true;
2597
2598 /* Only one skb in rtx queue. */
2599 return !node->rb_left && !node->rb_right;
2600 }
2601
2602 /* TCP Small Queues :
2603 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2604 * (These limits are doubled for retransmits)
2605 * This allows for :
2606 * - better RTT estimation and ACK scheduling
2607 * - faster recovery
2608 * - high rates
2609 * Alas, some drivers / subsystems require a fair amount
2610 * of queued bytes to ensure line rate.
2611 * One example is wifi aggregation (802.11 AMPDU)
2612 */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2613 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2614 unsigned int factor)
2615 {
2616 unsigned long limit;
2617
2618 limit = max_t(unsigned long,
2619 2 * skb->truesize,
2620 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2621 if (sk->sk_pacing_status == SK_PACING_NONE)
2622 limit = min_t(unsigned long, limit,
2623 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2624 limit <<= factor;
2625
2626 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2627 tcp_sk(sk)->tcp_tx_delay) {
2628 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2629 tcp_sk(sk)->tcp_tx_delay;
2630
2631 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2632 * approximate our needs assuming an ~100% skb->truesize overhead.
2633 * USEC_PER_SEC is approximated by 2^20.
2634 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2635 */
2636 extra_bytes >>= (20 - 1);
2637 limit += extra_bytes;
2638 }
2639 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2640 /* Always send skb if rtx queue is empty or has one skb.
2641 * No need to wait for TX completion to call us back,
2642 * after softirq/tasklet schedule.
2643 * This helps when TX completions are delayed too much.
2644 */
2645 if (tcp_rtx_queue_empty_or_single_skb(sk))
2646 return false;
2647
2648 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2649 /* It is possible TX completion already happened
2650 * before we set TSQ_THROTTLED, so we must
2651 * test again the condition.
2652 */
2653 smp_mb__after_atomic();
2654 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2655 return true;
2656 }
2657 return false;
2658 }
2659
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2660 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2661 {
2662 const u32 now = tcp_jiffies32;
2663 enum tcp_chrono old = tp->chrono_type;
2664
2665 if (old > TCP_CHRONO_UNSPEC)
2666 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2667 tp->chrono_start = now;
2668 tp->chrono_type = new;
2669 }
2670
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2671 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2672 {
2673 struct tcp_sock *tp = tcp_sk(sk);
2674
2675 /* If there are multiple conditions worthy of tracking in a
2676 * chronograph then the highest priority enum takes precedence
2677 * over the other conditions. So that if something "more interesting"
2678 * starts happening, stop the previous chrono and start a new one.
2679 */
2680 if (type > tp->chrono_type)
2681 tcp_chrono_set(tp, type);
2682 }
2683
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2684 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2685 {
2686 struct tcp_sock *tp = tcp_sk(sk);
2687
2688
2689 /* There are multiple conditions worthy of tracking in a
2690 * chronograph, so that the highest priority enum takes
2691 * precedence over the other conditions (see tcp_chrono_start).
2692 * If a condition stops, we only stop chrono tracking if
2693 * it's the "most interesting" or current chrono we are
2694 * tracking and starts busy chrono if we have pending data.
2695 */
2696 if (tcp_rtx_and_write_queues_empty(sk))
2697 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2698 else if (type == tp->chrono_type)
2699 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2700 }
2701
2702 /* First skb in the write queue is smaller than ideal packet size.
2703 * Check if we can move payload from the second skb in the queue.
2704 */
tcp_grow_skb(struct sock * sk,struct sk_buff * skb,int amount)2705 static void tcp_grow_skb(struct sock *sk, struct sk_buff *skb, int amount)
2706 {
2707 struct sk_buff *next_skb = skb->next;
2708 unsigned int nlen;
2709
2710 if (tcp_skb_is_last(sk, skb))
2711 return;
2712
2713 if (!tcp_skb_can_collapse(skb, next_skb))
2714 return;
2715
2716 nlen = min_t(u32, amount, next_skb->len);
2717 if (!nlen || !skb_shift(skb, next_skb, nlen))
2718 return;
2719
2720 TCP_SKB_CB(skb)->end_seq += nlen;
2721 TCP_SKB_CB(next_skb)->seq += nlen;
2722
2723 if (!next_skb->len) {
2724 /* In case FIN is set, we need to update end_seq */
2725 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2726
2727 tcp_eat_one_skb(sk, skb, next_skb);
2728 }
2729 }
2730
2731 /* This routine writes packets to the network. It advances the
2732 * send_head. This happens as incoming acks open up the remote
2733 * window for us.
2734 *
2735 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2736 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2737 * account rare use of URG, this is not a big flaw.
2738 *
2739 * Send at most one packet when push_one > 0. Temporarily ignore
2740 * cwnd limit to force at most one packet out when push_one == 2.
2741
2742 * Returns true, if no segments are in flight and we have queued segments,
2743 * but cannot send anything now because of SWS or another problem.
2744 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2745 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2746 int push_one, gfp_t gfp)
2747 {
2748 struct tcp_sock *tp = tcp_sk(sk);
2749 struct sk_buff *skb;
2750 unsigned int tso_segs, sent_pkts;
2751 u32 cwnd_quota, max_segs;
2752 int result;
2753 bool is_cwnd_limited = false, is_rwnd_limited = false;
2754
2755 sent_pkts = 0;
2756
2757 tcp_mstamp_refresh(tp);
2758 if (!push_one) {
2759 /* Do MTU probing. */
2760 result = tcp_mtu_probe(sk);
2761 if (!result) {
2762 return false;
2763 } else if (result > 0) {
2764 sent_pkts = 1;
2765 }
2766 }
2767
2768 max_segs = tcp_tso_segs(sk, mss_now);
2769 while ((skb = tcp_send_head(sk))) {
2770 unsigned int limit;
2771 int missing_bytes;
2772
2773 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2774 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2775 tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2776 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, SKB_CLOCK_MONOTONIC);
2777 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2778 tcp_init_tso_segs(skb, mss_now);
2779 goto repair; /* Skip network transmission */
2780 }
2781
2782 if (tcp_pacing_check(sk))
2783 break;
2784
2785 cwnd_quota = tcp_cwnd_test(tp);
2786 if (!cwnd_quota) {
2787 if (push_one == 2)
2788 /* Force out a loss probe pkt. */
2789 cwnd_quota = 1;
2790 else
2791 break;
2792 }
2793 cwnd_quota = min(cwnd_quota, max_segs);
2794 missing_bytes = cwnd_quota * mss_now - skb->len;
2795 if (missing_bytes > 0)
2796 tcp_grow_skb(sk, skb, missing_bytes);
2797
2798 tso_segs = tcp_set_skb_tso_segs(skb, mss_now);
2799
2800 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2801 is_rwnd_limited = true;
2802 break;
2803 }
2804
2805 if (tso_segs == 1) {
2806 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2807 (tcp_skb_is_last(sk, skb) ?
2808 nonagle : TCP_NAGLE_PUSH))))
2809 break;
2810 } else {
2811 if (!push_one &&
2812 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2813 &is_rwnd_limited, max_segs))
2814 break;
2815 }
2816
2817 limit = mss_now;
2818 if (tso_segs > 1 && !tcp_urg_mode(tp))
2819 limit = tcp_mss_split_point(sk, skb, mss_now,
2820 cwnd_quota,
2821 nonagle);
2822
2823 if (skb->len > limit &&
2824 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2825 break;
2826
2827 if (tcp_small_queue_check(sk, skb, 0))
2828 break;
2829
2830 /* Argh, we hit an empty skb(), presumably a thread
2831 * is sleeping in sendmsg()/sk_stream_wait_memory().
2832 * We do not want to send a pure-ack packet and have
2833 * a strange looking rtx queue with empty packet(s).
2834 */
2835 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2836 break;
2837
2838 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2839 break;
2840
2841 repair:
2842 /* Advance the send_head. This one is sent out.
2843 * This call will increment packets_out.
2844 */
2845 tcp_event_new_data_sent(sk, skb);
2846
2847 tcp_minshall_update(tp, mss_now, skb);
2848 sent_pkts += tcp_skb_pcount(skb);
2849
2850 if (push_one)
2851 break;
2852 }
2853
2854 if (is_rwnd_limited)
2855 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2856 else
2857 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2858
2859 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2860 if (likely(sent_pkts || is_cwnd_limited))
2861 tcp_cwnd_validate(sk, is_cwnd_limited);
2862
2863 if (likely(sent_pkts)) {
2864 if (tcp_in_cwnd_reduction(sk))
2865 tp->prr_out += sent_pkts;
2866
2867 /* Send one loss probe per tail loss episode. */
2868 if (push_one != 2)
2869 tcp_schedule_loss_probe(sk, false);
2870 return false;
2871 }
2872 return !tp->packets_out && !tcp_write_queue_empty(sk);
2873 }
2874
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2875 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2876 {
2877 struct inet_connection_sock *icsk = inet_csk(sk);
2878 struct tcp_sock *tp = tcp_sk(sk);
2879 u32 timeout, timeout_us, rto_delta_us;
2880 int early_retrans;
2881
2882 /* Don't do any loss probe on a Fast Open connection before 3WHS
2883 * finishes.
2884 */
2885 if (rcu_access_pointer(tp->fastopen_rsk))
2886 return false;
2887
2888 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2889 /* Schedule a loss probe in 2*RTT for SACK capable connections
2890 * not in loss recovery, that are either limited by cwnd or application.
2891 */
2892 if ((early_retrans != 3 && early_retrans != 4) ||
2893 !tp->packets_out || !tcp_is_sack(tp) ||
2894 (icsk->icsk_ca_state != TCP_CA_Open &&
2895 icsk->icsk_ca_state != TCP_CA_CWR))
2896 return false;
2897
2898 /* Probe timeout is 2*rtt. Add minimum RTO to account
2899 * for delayed ack when there's one outstanding packet. If no RTT
2900 * sample is available then probe after TCP_TIMEOUT_INIT.
2901 */
2902 if (tp->srtt_us) {
2903 timeout_us = tp->srtt_us >> 2;
2904 if (tp->packets_out == 1)
2905 timeout_us += tcp_rto_min_us(sk);
2906 else
2907 timeout_us += TCP_TIMEOUT_MIN_US;
2908 timeout = usecs_to_jiffies(timeout_us);
2909 } else {
2910 timeout = TCP_TIMEOUT_INIT;
2911 }
2912
2913 /* If the RTO formula yields an earlier time, then use that time. */
2914 rto_delta_us = advancing_rto ?
2915 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2916 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2917 if (rto_delta_us > 0)
2918 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2919
2920 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2921 return true;
2922 }
2923
2924 /* Thanks to skb fast clones, we can detect if a prior transmit of
2925 * a packet is still in a qdisc or driver queue.
2926 * In this case, there is very little point doing a retransmit !
2927 */
skb_still_in_host_queue(struct sock * sk,const struct sk_buff * skb)2928 static bool skb_still_in_host_queue(struct sock *sk,
2929 const struct sk_buff *skb)
2930 {
2931 if (unlikely(skb_fclone_busy(sk, skb))) {
2932 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2933 smp_mb__after_atomic();
2934 if (skb_fclone_busy(sk, skb)) {
2935 NET_INC_STATS(sock_net(sk),
2936 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2937 return true;
2938 }
2939 }
2940 return false;
2941 }
2942
2943 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2944 * retransmit the last segment.
2945 */
tcp_send_loss_probe(struct sock * sk)2946 void tcp_send_loss_probe(struct sock *sk)
2947 {
2948 struct tcp_sock *tp = tcp_sk(sk);
2949 struct sk_buff *skb;
2950 int pcount;
2951 int mss = tcp_current_mss(sk);
2952
2953 /* At most one outstanding TLP */
2954 if (tp->tlp_high_seq)
2955 goto rearm_timer;
2956
2957 tp->tlp_retrans = 0;
2958 skb = tcp_send_head(sk);
2959 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2960 pcount = tp->packets_out;
2961 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2962 if (tp->packets_out > pcount)
2963 goto probe_sent;
2964 goto rearm_timer;
2965 }
2966 skb = skb_rb_last(&sk->tcp_rtx_queue);
2967 if (unlikely(!skb)) {
2968 WARN_ONCE(tp->packets_out,
2969 "invalid inflight: %u state %u cwnd %u mss %d\n",
2970 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2971 inet_csk(sk)->icsk_pending = 0;
2972 return;
2973 }
2974
2975 if (skb_still_in_host_queue(sk, skb))
2976 goto rearm_timer;
2977
2978 pcount = tcp_skb_pcount(skb);
2979 if (WARN_ON(!pcount))
2980 goto rearm_timer;
2981
2982 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2983 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2984 (pcount - 1) * mss, mss,
2985 GFP_ATOMIC)))
2986 goto rearm_timer;
2987 skb = skb_rb_next(skb);
2988 }
2989
2990 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2991 goto rearm_timer;
2992
2993 if (__tcp_retransmit_skb(sk, skb, 1))
2994 goto rearm_timer;
2995
2996 tp->tlp_retrans = 1;
2997
2998 probe_sent:
2999 /* Record snd_nxt for loss detection. */
3000 tp->tlp_high_seq = tp->snd_nxt;
3001
3002 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
3003 /* Reset s.t. tcp_rearm_rto will restart timer from now */
3004 inet_csk(sk)->icsk_pending = 0;
3005 rearm_timer:
3006 tcp_rearm_rto(sk);
3007 }
3008
3009 /* Push out any pending frames which were held back due to
3010 * TCP_CORK or attempt at coalescing tiny packets.
3011 * The socket must be locked by the caller.
3012 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)3013 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
3014 int nonagle)
3015 {
3016 /* If we are closed, the bytes will have to remain here.
3017 * In time closedown will finish, we empty the write queue and
3018 * all will be happy.
3019 */
3020 if (unlikely(sk->sk_state == TCP_CLOSE))
3021 return;
3022
3023 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
3024 sk_gfp_mask(sk, GFP_ATOMIC)))
3025 tcp_check_probe_timer(sk);
3026 }
3027
3028 /* Send _single_ skb sitting at the send head. This function requires
3029 * true push pending frames to setup probe timer etc.
3030 */
tcp_push_one(struct sock * sk,unsigned int mss_now)3031 void tcp_push_one(struct sock *sk, unsigned int mss_now)
3032 {
3033 struct sk_buff *skb = tcp_send_head(sk);
3034
3035 BUG_ON(!skb || skb->len < mss_now);
3036
3037 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
3038 }
3039
3040 /* This function returns the amount that we can raise the
3041 * usable window based on the following constraints
3042 *
3043 * 1. The window can never be shrunk once it is offered (RFC 793)
3044 * 2. We limit memory per socket
3045 *
3046 * RFC 1122:
3047 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3048 * RECV.NEXT + RCV.WIN fixed until:
3049 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3050 *
3051 * i.e. don't raise the right edge of the window until you can raise
3052 * it at least MSS bytes.
3053 *
3054 * Unfortunately, the recommended algorithm breaks header prediction,
3055 * since header prediction assumes th->window stays fixed.
3056 *
3057 * Strictly speaking, keeping th->window fixed violates the receiver
3058 * side SWS prevention criteria. The problem is that under this rule
3059 * a stream of single byte packets will cause the right side of the
3060 * window to always advance by a single byte.
3061 *
3062 * Of course, if the sender implements sender side SWS prevention
3063 * then this will not be a problem.
3064 *
3065 * BSD seems to make the following compromise:
3066 *
3067 * If the free space is less than the 1/4 of the maximum
3068 * space available and the free space is less than 1/2 mss,
3069 * then set the window to 0.
3070 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3071 * Otherwise, just prevent the window from shrinking
3072 * and from being larger than the largest representable value.
3073 *
3074 * This prevents incremental opening of the window in the regime
3075 * where TCP is limited by the speed of the reader side taking
3076 * data out of the TCP receive queue. It does nothing about
3077 * those cases where the window is constrained on the sender side
3078 * because the pipeline is full.
3079 *
3080 * BSD also seems to "accidentally" limit itself to windows that are a
3081 * multiple of MSS, at least until the free space gets quite small.
3082 * This would appear to be a side effect of the mbuf implementation.
3083 * Combining these two algorithms results in the observed behavior
3084 * of having a fixed window size at almost all times.
3085 *
3086 * Below we obtain similar behavior by forcing the offered window to
3087 * a multiple of the mss when it is feasible to do so.
3088 *
3089 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3090 * Regular options like TIMESTAMP are taken into account.
3091 */
__tcp_select_window(struct sock * sk)3092 u32 __tcp_select_window(struct sock *sk)
3093 {
3094 struct inet_connection_sock *icsk = inet_csk(sk);
3095 struct tcp_sock *tp = tcp_sk(sk);
3096 struct net *net = sock_net(sk);
3097 /* MSS for the peer's data. Previous versions used mss_clamp
3098 * here. I don't know if the value based on our guesses
3099 * of peer's MSS is better for the performance. It's more correct
3100 * but may be worse for the performance because of rcv_mss
3101 * fluctuations. --SAW 1998/11/1
3102 */
3103 int mss = icsk->icsk_ack.rcv_mss;
3104 int free_space = tcp_space(sk);
3105 int allowed_space = tcp_full_space(sk);
3106 int full_space, window;
3107
3108 if (sk_is_mptcp(sk))
3109 mptcp_space(sk, &free_space, &allowed_space);
3110
3111 full_space = min_t(int, tp->window_clamp, allowed_space);
3112
3113 if (unlikely(mss > full_space)) {
3114 mss = full_space;
3115 if (mss <= 0)
3116 return 0;
3117 }
3118
3119 /* Only allow window shrink if the sysctl is enabled and we have
3120 * a non-zero scaling factor in effect.
3121 */
3122 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3123 goto shrink_window_allowed;
3124
3125 /* do not allow window to shrink */
3126
3127 if (free_space < (full_space >> 1)) {
3128 icsk->icsk_ack.quick = 0;
3129
3130 if (tcp_under_memory_pressure(sk))
3131 tcp_adjust_rcv_ssthresh(sk);
3132
3133 /* free_space might become our new window, make sure we don't
3134 * increase it due to wscale.
3135 */
3136 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3137
3138 /* if free space is less than mss estimate, or is below 1/16th
3139 * of the maximum allowed, try to move to zero-window, else
3140 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3141 * new incoming data is dropped due to memory limits.
3142 * With large window, mss test triggers way too late in order
3143 * to announce zero window in time before rmem limit kicks in.
3144 */
3145 if (free_space < (allowed_space >> 4) || free_space < mss)
3146 return 0;
3147 }
3148
3149 if (free_space > tp->rcv_ssthresh)
3150 free_space = tp->rcv_ssthresh;
3151
3152 /* Don't do rounding if we are using window scaling, since the
3153 * scaled window will not line up with the MSS boundary anyway.
3154 */
3155 if (tp->rx_opt.rcv_wscale) {
3156 window = free_space;
3157
3158 /* Advertise enough space so that it won't get scaled away.
3159 * Import case: prevent zero window announcement if
3160 * 1<<rcv_wscale > mss.
3161 */
3162 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3163 } else {
3164 window = tp->rcv_wnd;
3165 /* Get the largest window that is a nice multiple of mss.
3166 * Window clamp already applied above.
3167 * If our current window offering is within 1 mss of the
3168 * free space we just keep it. This prevents the divide
3169 * and multiply from happening most of the time.
3170 * We also don't do any window rounding when the free space
3171 * is too small.
3172 */
3173 if (window <= free_space - mss || window > free_space)
3174 window = rounddown(free_space, mss);
3175 else if (mss == full_space &&
3176 free_space > window + (full_space >> 1))
3177 window = free_space;
3178 }
3179
3180 return window;
3181
3182 shrink_window_allowed:
3183 /* new window should always be an exact multiple of scaling factor */
3184 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3185
3186 if (free_space < (full_space >> 1)) {
3187 icsk->icsk_ack.quick = 0;
3188
3189 if (tcp_under_memory_pressure(sk))
3190 tcp_adjust_rcv_ssthresh(sk);
3191
3192 /* if free space is too low, return a zero window */
3193 if (free_space < (allowed_space >> 4) || free_space < mss ||
3194 free_space < (1 << tp->rx_opt.rcv_wscale))
3195 return 0;
3196 }
3197
3198 if (free_space > tp->rcv_ssthresh) {
3199 free_space = tp->rcv_ssthresh;
3200 /* new window should always be an exact multiple of scaling factor
3201 *
3202 * For this case, we ALIGN "up" (increase free_space) because
3203 * we know free_space is not zero here, it has been reduced from
3204 * the memory-based limit, and rcv_ssthresh is not a hard limit
3205 * (unlike sk_rcvbuf).
3206 */
3207 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3208 }
3209
3210 return free_space;
3211 }
3212
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3213 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3214 const struct sk_buff *next_skb)
3215 {
3216 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3217 const struct skb_shared_info *next_shinfo =
3218 skb_shinfo(next_skb);
3219 struct skb_shared_info *shinfo = skb_shinfo(skb);
3220
3221 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3222 shinfo->tskey = next_shinfo->tskey;
3223 TCP_SKB_CB(skb)->txstamp_ack |=
3224 TCP_SKB_CB(next_skb)->txstamp_ack;
3225 }
3226 }
3227
3228 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3229 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3230 {
3231 struct tcp_sock *tp = tcp_sk(sk);
3232 struct sk_buff *next_skb = skb_rb_next(skb);
3233 int next_skb_size;
3234
3235 next_skb_size = next_skb->len;
3236
3237 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3238
3239 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3240 return false;
3241
3242 tcp_highest_sack_replace(sk, next_skb, skb);
3243
3244 /* Update sequence range on original skb. */
3245 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3246
3247 /* Merge over control information. This moves PSH/FIN etc. over */
3248 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3249
3250 /* All done, get rid of second SKB and account for it so
3251 * packet counting does not break.
3252 */
3253 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3254 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3255
3256 /* changed transmit queue under us so clear hints */
3257 tcp_clear_retrans_hints_partial(tp);
3258 if (next_skb == tp->retransmit_skb_hint)
3259 tp->retransmit_skb_hint = skb;
3260
3261 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3262
3263 tcp_skb_collapse_tstamp(skb, next_skb);
3264
3265 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3266 return true;
3267 }
3268
3269 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3270 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3271 {
3272 if (tcp_skb_pcount(skb) > 1)
3273 return false;
3274 if (skb_cloned(skb))
3275 return false;
3276 if (!skb_frags_readable(skb))
3277 return false;
3278 /* Some heuristics for collapsing over SACK'd could be invented */
3279 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3280 return false;
3281
3282 return true;
3283 }
3284
3285 /* Collapse packets in the retransmit queue to make to create
3286 * less packets on the wire. This is only done on retransmission.
3287 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3288 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3289 int space)
3290 {
3291 struct tcp_sock *tp = tcp_sk(sk);
3292 struct sk_buff *skb = to, *tmp;
3293 bool first = true;
3294
3295 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3296 return;
3297 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3298 return;
3299
3300 skb_rbtree_walk_from_safe(skb, tmp) {
3301 if (!tcp_can_collapse(sk, skb))
3302 break;
3303
3304 if (!tcp_skb_can_collapse(to, skb))
3305 break;
3306
3307 space -= skb->len;
3308
3309 if (first) {
3310 first = false;
3311 continue;
3312 }
3313
3314 if (space < 0)
3315 break;
3316
3317 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3318 break;
3319
3320 if (!tcp_collapse_retrans(sk, to))
3321 break;
3322 }
3323 }
3324
3325 /* This retransmits one SKB. Policy decisions and retransmit queue
3326 * state updates are done by the caller. Returns non-zero if an
3327 * error occurred which prevented the send.
3328 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3329 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3330 {
3331 struct inet_connection_sock *icsk = inet_csk(sk);
3332 struct tcp_sock *tp = tcp_sk(sk);
3333 unsigned int cur_mss;
3334 int diff, len, err;
3335 int avail_wnd;
3336
3337 /* Inconclusive MTU probe */
3338 if (icsk->icsk_mtup.probe_size)
3339 icsk->icsk_mtup.probe_size = 0;
3340
3341 if (skb_still_in_host_queue(sk, skb))
3342 return -EBUSY;
3343
3344 start:
3345 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3346 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3347 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3348 TCP_SKB_CB(skb)->seq++;
3349 goto start;
3350 }
3351 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3352 WARN_ON_ONCE(1);
3353 return -EINVAL;
3354 }
3355 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3356 return -ENOMEM;
3357 }
3358
3359 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3360 return -EHOSTUNREACH; /* Routing failure or similar. */
3361
3362 cur_mss = tcp_current_mss(sk);
3363 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3364
3365 /* If receiver has shrunk his window, and skb is out of
3366 * new window, do not retransmit it. The exception is the
3367 * case, when window is shrunk to zero. In this case
3368 * our retransmit of one segment serves as a zero window probe.
3369 */
3370 if (avail_wnd <= 0) {
3371 if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3372 return -EAGAIN;
3373 avail_wnd = cur_mss;
3374 }
3375
3376 len = cur_mss * segs;
3377 if (len > avail_wnd) {
3378 len = rounddown(avail_wnd, cur_mss);
3379 if (!len)
3380 len = avail_wnd;
3381 }
3382 if (skb->len > len) {
3383 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3384 cur_mss, GFP_ATOMIC))
3385 return -ENOMEM; /* We'll try again later. */
3386 } else {
3387 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3388 return -ENOMEM;
3389
3390 diff = tcp_skb_pcount(skb);
3391 tcp_set_skb_tso_segs(skb, cur_mss);
3392 diff -= tcp_skb_pcount(skb);
3393 if (diff)
3394 tcp_adjust_pcount(sk, skb, diff);
3395 avail_wnd = min_t(int, avail_wnd, cur_mss);
3396 if (skb->len < avail_wnd)
3397 tcp_retrans_try_collapse(sk, skb, avail_wnd);
3398 }
3399
3400 /* RFC3168, section 6.1.1.1. ECN fallback */
3401 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3402 tcp_ecn_clear_syn(sk, skb);
3403
3404 /* Update global and local TCP statistics. */
3405 segs = tcp_skb_pcount(skb);
3406 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3407 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3408 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3409 tp->total_retrans += segs;
3410 tp->bytes_retrans += skb->len;
3411
3412 /* make sure skb->data is aligned on arches that require it
3413 * and check if ack-trimming & collapsing extended the headroom
3414 * beyond what csum_start can cover.
3415 */
3416 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3417 skb_headroom(skb) >= 0xFFFF)) {
3418 struct sk_buff *nskb;
3419
3420 tcp_skb_tsorted_save(skb) {
3421 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3422 if (nskb) {
3423 nskb->dev = NULL;
3424 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3425 } else {
3426 err = -ENOBUFS;
3427 }
3428 } tcp_skb_tsorted_restore(skb);
3429
3430 if (!err) {
3431 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3432 tcp_rate_skb_sent(sk, skb);
3433 }
3434 } else {
3435 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3436 }
3437
3438 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3439 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3440 TCP_SKB_CB(skb)->seq, segs, err);
3441
3442 if (likely(!err)) {
3443 trace_tcp_retransmit_skb(sk, skb);
3444 } else if (err != -EBUSY) {
3445 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3446 }
3447
3448 /* To avoid taking spuriously low RTT samples based on a timestamp
3449 * for a transmit that never happened, always mark EVER_RETRANS
3450 */
3451 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3452
3453 return err;
3454 }
3455
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3456 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3457 {
3458 struct tcp_sock *tp = tcp_sk(sk);
3459 int err = __tcp_retransmit_skb(sk, skb, segs);
3460
3461 if (err == 0) {
3462 #if FASTRETRANS_DEBUG > 0
3463 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3464 net_dbg_ratelimited("retrans_out leaked\n");
3465 }
3466 #endif
3467 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3468 tp->retrans_out += tcp_skb_pcount(skb);
3469 }
3470
3471 /* Save stamp of the first (attempted) retransmit. */
3472 if (!tp->retrans_stamp)
3473 tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3474
3475 if (tp->undo_retrans < 0)
3476 tp->undo_retrans = 0;
3477 tp->undo_retrans += tcp_skb_pcount(skb);
3478 return err;
3479 }
3480
3481 /* This gets called after a retransmit timeout, and the initially
3482 * retransmitted data is acknowledged. It tries to continue
3483 * resending the rest of the retransmit queue, until either
3484 * we've sent it all or the congestion window limit is reached.
3485 */
tcp_xmit_retransmit_queue(struct sock * sk)3486 void tcp_xmit_retransmit_queue(struct sock *sk)
3487 {
3488 const struct inet_connection_sock *icsk = inet_csk(sk);
3489 struct sk_buff *skb, *rtx_head, *hole = NULL;
3490 struct tcp_sock *tp = tcp_sk(sk);
3491 bool rearm_timer = false;
3492 u32 max_segs;
3493 int mib_idx;
3494
3495 if (!tp->packets_out)
3496 return;
3497
3498 rtx_head = tcp_rtx_queue_head(sk);
3499 skb = tp->retransmit_skb_hint ?: rtx_head;
3500 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3501 skb_rbtree_walk_from(skb) {
3502 __u8 sacked;
3503 int segs;
3504
3505 if (tcp_pacing_check(sk))
3506 break;
3507
3508 /* we could do better than to assign each time */
3509 if (!hole)
3510 tp->retransmit_skb_hint = skb;
3511
3512 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3513 if (segs <= 0)
3514 break;
3515 sacked = TCP_SKB_CB(skb)->sacked;
3516 /* In case tcp_shift_skb_data() have aggregated large skbs,
3517 * we need to make sure not sending too bigs TSO packets
3518 */
3519 segs = min_t(int, segs, max_segs);
3520
3521 if (tp->retrans_out >= tp->lost_out) {
3522 break;
3523 } else if (!(sacked & TCPCB_LOST)) {
3524 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3525 hole = skb;
3526 continue;
3527
3528 } else {
3529 if (icsk->icsk_ca_state != TCP_CA_Loss)
3530 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3531 else
3532 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3533 }
3534
3535 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3536 continue;
3537
3538 if (tcp_small_queue_check(sk, skb, 1))
3539 break;
3540
3541 if (tcp_retransmit_skb(sk, skb, segs))
3542 break;
3543
3544 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3545
3546 if (tcp_in_cwnd_reduction(sk))
3547 tp->prr_out += tcp_skb_pcount(skb);
3548
3549 if (skb == rtx_head &&
3550 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3551 rearm_timer = true;
3552
3553 }
3554 if (rearm_timer)
3555 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3556 inet_csk(sk)->icsk_rto,
3557 TCP_RTO_MAX);
3558 }
3559
3560 /* We allow to exceed memory limits for FIN packets to expedite
3561 * connection tear down and (memory) recovery.
3562 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3563 * or even be forced to close flow without any FIN.
3564 * In general, we want to allow one skb per socket to avoid hangs
3565 * with edge trigger epoll()
3566 */
sk_forced_mem_schedule(struct sock * sk,int size)3567 void sk_forced_mem_schedule(struct sock *sk, int size)
3568 {
3569 int delta, amt;
3570
3571 delta = size - sk->sk_forward_alloc;
3572 if (delta <= 0)
3573 return;
3574 amt = sk_mem_pages(delta);
3575 sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3576 sk_memory_allocated_add(sk, amt);
3577
3578 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3579 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3580 gfp_memcg_charge() | __GFP_NOFAIL);
3581 }
3582
3583 /* Send a FIN. The caller locks the socket for us.
3584 * We should try to send a FIN packet really hard, but eventually give up.
3585 */
tcp_send_fin(struct sock * sk)3586 void tcp_send_fin(struct sock *sk)
3587 {
3588 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3589 struct tcp_sock *tp = tcp_sk(sk);
3590
3591 /* Optimization, tack on the FIN if we have one skb in write queue and
3592 * this skb was not yet sent, or we are under memory pressure.
3593 * Note: in the latter case, FIN packet will be sent after a timeout,
3594 * as TCP stack thinks it has already been transmitted.
3595 */
3596 tskb = tail;
3597 if (!tskb && tcp_under_memory_pressure(sk))
3598 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3599
3600 if (tskb) {
3601 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3602 TCP_SKB_CB(tskb)->end_seq++;
3603 tp->write_seq++;
3604 if (!tail) {
3605 /* This means tskb was already sent.
3606 * Pretend we included the FIN on previous transmit.
3607 * We need to set tp->snd_nxt to the value it would have
3608 * if FIN had been sent. This is because retransmit path
3609 * does not change tp->snd_nxt.
3610 */
3611 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3612 return;
3613 }
3614 } else {
3615 skb = alloc_skb_fclone(MAX_TCP_HEADER,
3616 sk_gfp_mask(sk, GFP_ATOMIC |
3617 __GFP_NOWARN));
3618 if (unlikely(!skb))
3619 return;
3620
3621 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3622 skb_reserve(skb, MAX_TCP_HEADER);
3623 sk_forced_mem_schedule(sk, skb->truesize);
3624 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3625 tcp_init_nondata_skb(skb, tp->write_seq,
3626 TCPHDR_ACK | TCPHDR_FIN);
3627 tcp_queue_skb(sk, skb);
3628 }
3629 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3630 }
3631
3632 /* We get here when a process closes a file descriptor (either due to
3633 * an explicit close() or as a byproduct of exit()'ing) and there
3634 * was unread data in the receive queue. This behavior is recommended
3635 * by RFC 2525, section 2.17. -DaveM
3636 */
tcp_send_active_reset(struct sock * sk,gfp_t priority,enum sk_rst_reason reason)3637 void tcp_send_active_reset(struct sock *sk, gfp_t priority,
3638 enum sk_rst_reason reason)
3639 {
3640 struct sk_buff *skb;
3641
3642 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3643
3644 /* NOTE: No TCP options attached and we never retransmit this. */
3645 skb = alloc_skb(MAX_TCP_HEADER, priority);
3646 if (!skb) {
3647 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3648 return;
3649 }
3650
3651 /* Reserve space for headers and prepare control bits. */
3652 skb_reserve(skb, MAX_TCP_HEADER);
3653 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3654 TCPHDR_ACK | TCPHDR_RST);
3655 tcp_mstamp_refresh(tcp_sk(sk));
3656 /* Send it off. */
3657 if (tcp_transmit_skb(sk, skb, 0, priority))
3658 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3659
3660 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3661 * skb here is different to the troublesome skb, so use NULL
3662 */
3663 trace_tcp_send_reset(sk, NULL, reason);
3664 }
3665 EXPORT_SYMBOL_GPL(tcp_send_active_reset);
3666
3667 /* Send a crossed SYN-ACK during socket establishment.
3668 * WARNING: This routine must only be called when we have already sent
3669 * a SYN packet that crossed the incoming SYN that caused this routine
3670 * to get called. If this assumption fails then the initial rcv_wnd
3671 * and rcv_wscale values will not be correct.
3672 */
tcp_send_synack(struct sock * sk)3673 int tcp_send_synack(struct sock *sk)
3674 {
3675 struct sk_buff *skb;
3676
3677 skb = tcp_rtx_queue_head(sk);
3678 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3679 pr_err("%s: wrong queue state\n", __func__);
3680 return -EFAULT;
3681 }
3682 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3683 if (skb_cloned(skb)) {
3684 struct sk_buff *nskb;
3685
3686 tcp_skb_tsorted_save(skb) {
3687 nskb = skb_copy(skb, GFP_ATOMIC);
3688 } tcp_skb_tsorted_restore(skb);
3689 if (!nskb)
3690 return -ENOMEM;
3691 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3692 tcp_highest_sack_replace(sk, skb, nskb);
3693 tcp_rtx_queue_unlink_and_free(skb, sk);
3694 __skb_header_release(nskb);
3695 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3696 sk_wmem_queued_add(sk, nskb->truesize);
3697 sk_mem_charge(sk, nskb->truesize);
3698 skb = nskb;
3699 }
3700
3701 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3702 tcp_ecn_send_synack(sk, skb);
3703 }
3704 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3705 }
3706
3707 /**
3708 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3709 * @sk: listener socket
3710 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3711 * should not use it again.
3712 * @req: request_sock pointer
3713 * @foc: cookie for tcp fast open
3714 * @synack_type: Type of synack to prepare
3715 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3716 */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3717 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3718 struct request_sock *req,
3719 struct tcp_fastopen_cookie *foc,
3720 enum tcp_synack_type synack_type,
3721 struct sk_buff *syn_skb)
3722 {
3723 struct inet_request_sock *ireq = inet_rsk(req);
3724 const struct tcp_sock *tp = tcp_sk(sk);
3725 struct tcp_out_options opts;
3726 struct tcp_key key = {};
3727 struct sk_buff *skb;
3728 int tcp_header_size;
3729 struct tcphdr *th;
3730 int mss;
3731 u64 now;
3732
3733 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3734 if (unlikely(!skb)) {
3735 dst_release(dst);
3736 return NULL;
3737 }
3738 /* Reserve space for headers. */
3739 skb_reserve(skb, MAX_TCP_HEADER);
3740
3741 switch (synack_type) {
3742 case TCP_SYNACK_NORMAL:
3743 skb_set_owner_w(skb, req_to_sk(req));
3744 break;
3745 case TCP_SYNACK_COOKIE:
3746 /* Under synflood, we do not attach skb to a socket,
3747 * to avoid false sharing.
3748 */
3749 break;
3750 case TCP_SYNACK_FASTOPEN:
3751 /* sk is a const pointer, because we want to express multiple
3752 * cpu might call us concurrently.
3753 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3754 */
3755 skb_set_owner_w(skb, (struct sock *)sk);
3756 break;
3757 }
3758 skb_dst_set(skb, dst);
3759
3760 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3761
3762 memset(&opts, 0, sizeof(opts));
3763 now = tcp_clock_ns();
3764 #ifdef CONFIG_SYN_COOKIES
3765 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3766 skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3767 SKB_CLOCK_MONOTONIC);
3768 else
3769 #endif
3770 {
3771 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3772 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3773 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3774 }
3775
3776 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3777 rcu_read_lock();
3778 #endif
3779 if (tcp_rsk_used_ao(req)) {
3780 #ifdef CONFIG_TCP_AO
3781 struct tcp_ao_key *ao_key = NULL;
3782 u8 keyid = tcp_rsk(req)->ao_keyid;
3783 u8 rnext = tcp_rsk(req)->ao_rcv_next;
3784
3785 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3786 keyid, -1);
3787 /* If there is no matching key - avoid sending anything,
3788 * especially usigned segments. It could try harder and lookup
3789 * for another peer-matching key, but the peer has requested
3790 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3791 */
3792 if (unlikely(!ao_key)) {
3793 trace_tcp_ao_synack_no_key(sk, keyid, rnext);
3794 rcu_read_unlock();
3795 kfree_skb(skb);
3796 net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3797 keyid);
3798 return NULL;
3799 }
3800 key.ao_key = ao_key;
3801 key.type = TCP_KEY_AO;
3802 #endif
3803 } else {
3804 #ifdef CONFIG_TCP_MD5SIG
3805 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3806 req_to_sk(req));
3807 if (key.md5_key)
3808 key.type = TCP_KEY_MD5;
3809 #endif
3810 }
3811 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3812 /* bpf program will be interested in the tcp_flags */
3813 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3814 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3815 &key, foc, synack_type, syn_skb)
3816 + sizeof(*th);
3817
3818 skb_push(skb, tcp_header_size);
3819 skb_reset_transport_header(skb);
3820
3821 th = (struct tcphdr *)skb->data;
3822 memset(th, 0, sizeof(struct tcphdr));
3823 th->syn = 1;
3824 th->ack = 1;
3825 tcp_ecn_make_synack(req, th);
3826 th->source = htons(ireq->ir_num);
3827 th->dest = ireq->ir_rmt_port;
3828 skb->mark = ireq->ir_mark;
3829 skb->ip_summed = CHECKSUM_PARTIAL;
3830 th->seq = htonl(tcp_rsk(req)->snt_isn);
3831 /* XXX data is queued and acked as is. No buffer/window check */
3832 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3833
3834 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3835 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3836 tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3837 th->doff = (tcp_header_size >> 2);
3838 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3839
3840 /* Okay, we have all we need - do the md5 hash if needed */
3841 if (tcp_key_is_md5(&key)) {
3842 #ifdef CONFIG_TCP_MD5SIG
3843 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3844 key.md5_key, req_to_sk(req), skb);
3845 #endif
3846 } else if (tcp_key_is_ao(&key)) {
3847 #ifdef CONFIG_TCP_AO
3848 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3849 key.ao_key, req, skb,
3850 opts.hash_location - (u8 *)th, 0);
3851 #endif
3852 }
3853 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3854 rcu_read_unlock();
3855 #endif
3856
3857 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3858 synack_type, &opts);
3859
3860 skb_set_delivery_time(skb, now, SKB_CLOCK_MONOTONIC);
3861 tcp_add_tx_delay(skb, tp);
3862
3863 return skb;
3864 }
3865 EXPORT_SYMBOL(tcp_make_synack);
3866
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3867 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3868 {
3869 struct inet_connection_sock *icsk = inet_csk(sk);
3870 const struct tcp_congestion_ops *ca;
3871 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3872
3873 if (ca_key == TCP_CA_UNSPEC)
3874 return;
3875
3876 rcu_read_lock();
3877 ca = tcp_ca_find_key(ca_key);
3878 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3879 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3880 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3881 icsk->icsk_ca_ops = ca;
3882 }
3883 rcu_read_unlock();
3884 }
3885
3886 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3887 static void tcp_connect_init(struct sock *sk)
3888 {
3889 const struct dst_entry *dst = __sk_dst_get(sk);
3890 struct tcp_sock *tp = tcp_sk(sk);
3891 __u8 rcv_wscale;
3892 u32 rcv_wnd;
3893
3894 /* We'll fix this up when we get a response from the other end.
3895 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3896 */
3897 tp->tcp_header_len = sizeof(struct tcphdr);
3898 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3899 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3900
3901 tcp_ao_connect_init(sk);
3902
3903 /* If user gave his TCP_MAXSEG, record it to clamp */
3904 if (tp->rx_opt.user_mss)
3905 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3906 tp->max_window = 0;
3907 tcp_mtup_init(sk);
3908 tcp_sync_mss(sk, dst_mtu(dst));
3909
3910 tcp_ca_dst_init(sk, dst);
3911
3912 if (!tp->window_clamp)
3913 WRITE_ONCE(tp->window_clamp, dst_metric(dst, RTAX_WINDOW));
3914 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3915
3916 tcp_initialize_rcv_mss(sk);
3917
3918 /* limit the window selection if the user enforce a smaller rx buffer */
3919 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3920 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3921 WRITE_ONCE(tp->window_clamp, tcp_full_space(sk));
3922
3923 rcv_wnd = tcp_rwnd_init_bpf(sk);
3924 if (rcv_wnd == 0)
3925 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3926
3927 tcp_select_initial_window(sk, tcp_full_space(sk),
3928 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3929 &tp->rcv_wnd,
3930 &tp->window_clamp,
3931 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3932 &rcv_wscale,
3933 rcv_wnd);
3934
3935 tp->rx_opt.rcv_wscale = rcv_wscale;
3936 tp->rcv_ssthresh = tp->rcv_wnd;
3937
3938 WRITE_ONCE(sk->sk_err, 0);
3939 sock_reset_flag(sk, SOCK_DONE);
3940 tp->snd_wnd = 0;
3941 tcp_init_wl(tp, 0);
3942 tcp_write_queue_purge(sk);
3943 tp->snd_una = tp->write_seq;
3944 tp->snd_sml = tp->write_seq;
3945 tp->snd_up = tp->write_seq;
3946 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3947
3948 if (likely(!tp->repair))
3949 tp->rcv_nxt = 0;
3950 else
3951 tp->rcv_tstamp = tcp_jiffies32;
3952 tp->rcv_wup = tp->rcv_nxt;
3953 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3954
3955 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3956 inet_csk(sk)->icsk_retransmits = 0;
3957 tcp_clear_retrans(tp);
3958 }
3959
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3960 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3961 {
3962 struct tcp_sock *tp = tcp_sk(sk);
3963 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3964
3965 tcb->end_seq += skb->len;
3966 __skb_header_release(skb);
3967 sk_wmem_queued_add(sk, skb->truesize);
3968 sk_mem_charge(sk, skb->truesize);
3969 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3970 tp->packets_out += tcp_skb_pcount(skb);
3971 }
3972
3973 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3974 * queue a data-only packet after the regular SYN, such that regular SYNs
3975 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3976 * only the SYN sequence, the data are retransmitted in the first ACK.
3977 * If cookie is not cached or other error occurs, falls back to send a
3978 * regular SYN with Fast Open cookie request option.
3979 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3980 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3981 {
3982 struct inet_connection_sock *icsk = inet_csk(sk);
3983 struct tcp_sock *tp = tcp_sk(sk);
3984 struct tcp_fastopen_request *fo = tp->fastopen_req;
3985 struct page_frag *pfrag = sk_page_frag(sk);
3986 struct sk_buff *syn_data;
3987 int space, err = 0;
3988
3989 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3990 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3991 goto fallback;
3992
3993 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3994 * user-MSS. Reserve maximum option space for middleboxes that add
3995 * private TCP options. The cost is reduced data space in SYN :(
3996 */
3997 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3998 /* Sync mss_cache after updating the mss_clamp */
3999 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4000
4001 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
4002 MAX_TCP_OPTION_SPACE;
4003
4004 space = min_t(size_t, space, fo->size);
4005
4006 if (space &&
4007 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
4008 pfrag, sk->sk_allocation))
4009 goto fallback;
4010 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
4011 if (!syn_data)
4012 goto fallback;
4013 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
4014 if (space) {
4015 space = min_t(size_t, space, pfrag->size - pfrag->offset);
4016 space = tcp_wmem_schedule(sk, space);
4017 }
4018 if (space) {
4019 space = copy_page_from_iter(pfrag->page, pfrag->offset,
4020 space, &fo->data->msg_iter);
4021 if (unlikely(!space)) {
4022 tcp_skb_tsorted_anchor_cleanup(syn_data);
4023 kfree_skb(syn_data);
4024 goto fallback;
4025 }
4026 skb_fill_page_desc(syn_data, 0, pfrag->page,
4027 pfrag->offset, space);
4028 page_ref_inc(pfrag->page);
4029 pfrag->offset += space;
4030 skb_len_add(syn_data, space);
4031 skb_zcopy_set(syn_data, fo->uarg, NULL);
4032 }
4033 /* No more data pending in inet_wait_for_connect() */
4034 if (space == fo->size)
4035 fo->data = NULL;
4036 fo->copied = space;
4037
4038 tcp_connect_queue_skb(sk, syn_data);
4039 if (syn_data->len)
4040 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
4041
4042 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
4043
4044 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, SKB_CLOCK_MONOTONIC);
4045
4046 /* Now full SYN+DATA was cloned and sent (or not),
4047 * remove the SYN from the original skb (syn_data)
4048 * we keep in write queue in case of a retransmit, as we
4049 * also have the SYN packet (with no data) in the same queue.
4050 */
4051 TCP_SKB_CB(syn_data)->seq++;
4052 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4053 if (!err) {
4054 tp->syn_data = (fo->copied > 0);
4055 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4056 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4057 goto done;
4058 }
4059
4060 /* data was not sent, put it in write_queue */
4061 __skb_queue_tail(&sk->sk_write_queue, syn_data);
4062 tp->packets_out -= tcp_skb_pcount(syn_data);
4063
4064 fallback:
4065 /* Send a regular SYN with Fast Open cookie request option */
4066 if (fo->cookie.len > 0)
4067 fo->cookie.len = 0;
4068 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4069 if (err)
4070 tp->syn_fastopen = 0;
4071 done:
4072 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
4073 return err;
4074 }
4075
4076 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)4077 int tcp_connect(struct sock *sk)
4078 {
4079 struct tcp_sock *tp = tcp_sk(sk);
4080 struct sk_buff *buff;
4081 int err;
4082
4083 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4084
4085 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4086 /* Has to be checked late, after setting daddr/saddr/ops.
4087 * Return error if the peer has both a md5 and a tcp-ao key
4088 * configured as this is ambiguous.
4089 */
4090 if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4091 lockdep_sock_is_held(sk)))) {
4092 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4093 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4094 struct tcp_ao_info *ao_info;
4095
4096 ao_info = rcu_dereference_check(tp->ao_info,
4097 lockdep_sock_is_held(sk));
4098 if (ao_info) {
4099 /* This is an extra check: tcp_ao_required() in
4100 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4101 * md5 keys on ao_required socket.
4102 */
4103 needs_ao |= ao_info->ao_required;
4104 WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4105 }
4106 if (needs_md5 && needs_ao)
4107 return -EKEYREJECTED;
4108
4109 /* If we have a matching md5 key and no matching tcp-ao key
4110 * then free up ao_info if allocated.
4111 */
4112 if (needs_md5) {
4113 tcp_ao_destroy_sock(sk, false);
4114 } else if (needs_ao) {
4115 tcp_clear_md5_list(sk);
4116 kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4117 lockdep_sock_is_held(sk)));
4118 }
4119 }
4120 #endif
4121 #ifdef CONFIG_TCP_AO
4122 if (unlikely(rcu_dereference_protected(tp->ao_info,
4123 lockdep_sock_is_held(sk)))) {
4124 /* Don't allow connecting if ao is configured but no
4125 * matching key is found.
4126 */
4127 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4128 return -EKEYREJECTED;
4129 }
4130 #endif
4131
4132 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4133 return -EHOSTUNREACH; /* Routing failure or similar. */
4134
4135 tcp_connect_init(sk);
4136
4137 if (unlikely(tp->repair)) {
4138 tcp_finish_connect(sk, NULL);
4139 return 0;
4140 }
4141
4142 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4143 if (unlikely(!buff))
4144 return -ENOBUFS;
4145
4146 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
4147 tcp_mstamp_refresh(tp);
4148 tp->retrans_stamp = tcp_time_stamp_ts(tp);
4149 tcp_connect_queue_skb(sk, buff);
4150 tcp_ecn_send_syn(sk, buff);
4151 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4152
4153 /* Send off SYN; include data in Fast Open. */
4154 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4155 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4156 if (err == -ECONNREFUSED)
4157 return err;
4158
4159 /* We change tp->snd_nxt after the tcp_transmit_skb() call
4160 * in order to make this packet get counted in tcpOutSegs.
4161 */
4162 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4163 tp->pushed_seq = tp->write_seq;
4164
4165 trace_android_vh_tcp_connect(buff);
4166
4167 buff = tcp_send_head(sk);
4168 if (unlikely(buff)) {
4169 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4170 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
4171 }
4172 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4173
4174 /* Timer for repeating the SYN until an answer. */
4175 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4176 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4177 return 0;
4178 }
4179 EXPORT_SYMBOL(tcp_connect);
4180
tcp_delack_max(const struct sock * sk)4181 u32 tcp_delack_max(const struct sock *sk)
4182 {
4183 u32 delack_from_rto_min = max(tcp_rto_min(sk), 2) - 1;
4184
4185 return min(inet_csk(sk)->icsk_delack_max, delack_from_rto_min);
4186 }
4187
4188 /* Send out a delayed ack, the caller does the policy checking
4189 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
4190 * for details.
4191 */
tcp_send_delayed_ack(struct sock * sk)4192 void tcp_send_delayed_ack(struct sock *sk)
4193 {
4194 struct inet_connection_sock *icsk = inet_csk(sk);
4195 int ato = icsk->icsk_ack.ato;
4196 unsigned long timeout;
4197
4198 if (ato > TCP_DELACK_MIN) {
4199 const struct tcp_sock *tp = tcp_sk(sk);
4200 int max_ato = HZ / 2;
4201
4202 if (inet_csk_in_pingpong_mode(sk) ||
4203 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4204 max_ato = TCP_DELACK_MAX;
4205
4206 /* Slow path, intersegment interval is "high". */
4207
4208 /* If some rtt estimate is known, use it to bound delayed ack.
4209 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4210 * directly.
4211 */
4212 if (tp->srtt_us) {
4213 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4214 TCP_DELACK_MIN);
4215
4216 if (rtt < max_ato)
4217 max_ato = rtt;
4218 }
4219
4220 ato = min(ato, max_ato);
4221 }
4222
4223 ato = min_t(u32, ato, tcp_delack_max(sk));
4224
4225 /* Stay within the limit we were given */
4226 timeout = jiffies + ato;
4227
4228 /* Use new timeout only if there wasn't a older one earlier. */
4229 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4230 /* If delack timer is about to expire, send ACK now. */
4231 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4232 tcp_send_ack(sk);
4233 return;
4234 }
4235
4236 if (!time_before(timeout, icsk->icsk_ack.timeout))
4237 timeout = icsk->icsk_ack.timeout;
4238 }
4239 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4240 icsk->icsk_ack.timeout = timeout;
4241 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4242 }
4243
4244 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)4245 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4246 {
4247 struct sk_buff *buff;
4248
4249 /* If we have been reset, we may not send again. */
4250 if (sk->sk_state == TCP_CLOSE)
4251 return;
4252
4253 /* We are not putting this on the write queue, so
4254 * tcp_transmit_skb() will set the ownership to this
4255 * sock.
4256 */
4257 buff = alloc_skb(MAX_TCP_HEADER,
4258 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4259 if (unlikely(!buff)) {
4260 struct inet_connection_sock *icsk = inet_csk(sk);
4261 unsigned long delay;
4262
4263 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4264 if (delay < TCP_RTO_MAX)
4265 icsk->icsk_ack.retry++;
4266 inet_csk_schedule_ack(sk);
4267 icsk->icsk_ack.ato = TCP_ATO_MIN;
4268 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4269 return;
4270 }
4271
4272 /* Reserve space for headers and prepare control bits. */
4273 skb_reserve(buff, MAX_TCP_HEADER);
4274 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4275
4276 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
4277 * too much.
4278 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4279 */
4280 skb_set_tcp_pure_ack(buff);
4281
4282 /* Send it off, this clears delayed acks for us. */
4283 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4284 }
4285 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4286
tcp_send_ack(struct sock * sk)4287 void tcp_send_ack(struct sock *sk)
4288 {
4289 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4290 }
4291
4292 /* This routine sends a packet with an out of date sequence
4293 * number. It assumes the other end will try to ack it.
4294 *
4295 * Question: what should we make while urgent mode?
4296 * 4.4BSD forces sending single byte of data. We cannot send
4297 * out of window data, because we have SND.NXT==SND.MAX...
4298 *
4299 * Current solution: to send TWO zero-length segments in urgent mode:
4300 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4301 * out-of-date with SND.UNA-1 to probe window.
4302 */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4303 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4304 {
4305 struct tcp_sock *tp = tcp_sk(sk);
4306 struct sk_buff *skb;
4307
4308 /* We don't queue it, tcp_transmit_skb() sets ownership. */
4309 skb = alloc_skb(MAX_TCP_HEADER,
4310 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4311 if (!skb)
4312 return -1;
4313
4314 /* Reserve space for headers and set control bits. */
4315 skb_reserve(skb, MAX_TCP_HEADER);
4316 /* Use a previous sequence. This should cause the other
4317 * end to send an ack. Don't queue or clone SKB, just
4318 * send it.
4319 */
4320 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4321 NET_INC_STATS(sock_net(sk), mib);
4322 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4323 }
4324
4325 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4326 void tcp_send_window_probe(struct sock *sk)
4327 {
4328 if (sk->sk_state == TCP_ESTABLISHED) {
4329 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4330 tcp_mstamp_refresh(tcp_sk(sk));
4331 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4332 }
4333 }
4334
4335 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4336 int tcp_write_wakeup(struct sock *sk, int mib)
4337 {
4338 struct tcp_sock *tp = tcp_sk(sk);
4339 struct sk_buff *skb;
4340
4341 if (sk->sk_state == TCP_CLOSE)
4342 return -1;
4343
4344 skb = tcp_send_head(sk);
4345 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4346 int err;
4347 unsigned int mss = tcp_current_mss(sk);
4348 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4349
4350 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4351 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4352
4353 /* We are probing the opening of a window
4354 * but the window size is != 0
4355 * must have been a result SWS avoidance ( sender )
4356 */
4357 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4358 skb->len > mss) {
4359 seg_size = min(seg_size, mss);
4360 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4361 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4362 skb, seg_size, mss, GFP_ATOMIC))
4363 return -1;
4364 } else if (!tcp_skb_pcount(skb))
4365 tcp_set_skb_tso_segs(skb, mss);
4366
4367 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4368 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4369 if (!err)
4370 tcp_event_new_data_sent(sk, skb);
4371 return err;
4372 } else {
4373 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4374 tcp_xmit_probe_skb(sk, 1, mib);
4375 return tcp_xmit_probe_skb(sk, 0, mib);
4376 }
4377 }
4378
4379 /* A window probe timeout has occurred. If window is not closed send
4380 * a partial packet else a zero probe.
4381 */
tcp_send_probe0(struct sock * sk)4382 void tcp_send_probe0(struct sock *sk)
4383 {
4384 struct inet_connection_sock *icsk = inet_csk(sk);
4385 struct tcp_sock *tp = tcp_sk(sk);
4386 struct net *net = sock_net(sk);
4387 unsigned long timeout;
4388 int err;
4389
4390 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4391
4392 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4393 /* Cancel probe timer, if it is not required. */
4394 icsk->icsk_probes_out = 0;
4395 icsk->icsk_backoff = 0;
4396 icsk->icsk_probes_tstamp = 0;
4397 return;
4398 }
4399
4400 icsk->icsk_probes_out++;
4401 if (err <= 0) {
4402 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4403 icsk->icsk_backoff++;
4404 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4405 } else {
4406 /* If packet was not sent due to local congestion,
4407 * Let senders fight for local resources conservatively.
4408 */
4409 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4410 }
4411
4412 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4413 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4414 }
4415
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4416 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4417 {
4418 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4419 struct flowi fl;
4420 int res;
4421
4422 /* Paired with WRITE_ONCE() in sock_setsockopt() */
4423 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4424 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4425 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4426 NULL);
4427 if (!res) {
4428 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4429 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4430 if (unlikely(tcp_passive_fastopen(sk))) {
4431 /* sk has const attribute because listeners are lockless.
4432 * However in this case, we are dealing with a passive fastopen
4433 * socket thus we can change total_retrans value.
4434 */
4435 tcp_sk_rw(sk)->total_retrans++;
4436 }
4437 trace_tcp_retransmit_synack(sk, req);
4438 }
4439 return res;
4440 }
4441 EXPORT_SYMBOL(tcp_rtx_synack);
4442