1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/bpf-cgroup.h>
78 #include <linux/uaccess.h>
79 #include <asm/ioctls.h>
80 #include <linux/memblock.h>
81 #include <linux/highmem.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/gso.h>
107 #include <net/xfrm.h>
108 #include <trace/events/udp.h>
109 #include <linux/static_key.h>
110 #include <linux/btf_ids.h>
111 #include <trace/events/skb.h>
112 #include <net/busy_poll.h>
113 #include "udp_impl.h"
114 #include <net/sock_reuseport.h>
115 #include <net/addrconf.h>
116 #include <net/udp_tunnel.h>
117 #include <net/gro.h>
118 #include <net/inet_dscp.h>
119 #if IS_ENABLED(CONFIG_IPV6)
120 #include <net/ipv6_stubs.h>
121 #endif
122 #include <trace/hooks/net.h>
123 
124 struct udp_table udp_table __read_mostly;
125 EXPORT_SYMBOL(udp_table);
126 
127 long sysctl_udp_mem[3] __read_mostly;
128 EXPORT_SYMBOL(sysctl_udp_mem);
129 
130 atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
131 EXPORT_SYMBOL(udp_memory_allocated);
132 DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
133 EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
134 
135 #define MAX_UDP_PORTS 65536
136 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
137 
udp_get_table_prot(struct sock * sk)138 static struct udp_table *udp_get_table_prot(struct sock *sk)
139 {
140 	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
141 }
142 
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)143 static int udp_lib_lport_inuse(struct net *net, __u16 num,
144 			       const struct udp_hslot *hslot,
145 			       unsigned long *bitmap,
146 			       struct sock *sk, unsigned int log)
147 {
148 	struct sock *sk2;
149 	kuid_t uid = sock_i_uid(sk);
150 
151 	sk_for_each(sk2, &hslot->head) {
152 		if (net_eq(sock_net(sk2), net) &&
153 		    sk2 != sk &&
154 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
155 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
156 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
157 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
158 		    inet_rcv_saddr_equal(sk, sk2, true)) {
159 			if (sk2->sk_reuseport && sk->sk_reuseport &&
160 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
161 			    uid_eq(uid, sock_i_uid(sk2))) {
162 				if (!bitmap)
163 					return 0;
164 			} else {
165 				if (!bitmap)
166 					return 1;
167 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
168 					  bitmap);
169 			}
170 		}
171 	}
172 	return 0;
173 }
174 
175 /*
176  * Note: we still hold spinlock of primary hash chain, so no other writer
177  * can insert/delete a socket with local_port == num
178  */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)179 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
180 				struct udp_hslot *hslot2,
181 				struct sock *sk)
182 {
183 	struct sock *sk2;
184 	kuid_t uid = sock_i_uid(sk);
185 	int res = 0;
186 
187 	spin_lock(&hslot2->lock);
188 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
189 		if (net_eq(sock_net(sk2), net) &&
190 		    sk2 != sk &&
191 		    (udp_sk(sk2)->udp_port_hash == num) &&
192 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
193 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
194 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
195 		    inet_rcv_saddr_equal(sk, sk2, true)) {
196 			if (sk2->sk_reuseport && sk->sk_reuseport &&
197 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
198 			    uid_eq(uid, sock_i_uid(sk2))) {
199 				res = 0;
200 			} else {
201 				res = 1;
202 			}
203 			break;
204 		}
205 	}
206 	spin_unlock(&hslot2->lock);
207 	return res;
208 }
209 
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)210 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
211 {
212 	struct net *net = sock_net(sk);
213 	kuid_t uid = sock_i_uid(sk);
214 	struct sock *sk2;
215 
216 	sk_for_each(sk2, &hslot->head) {
217 		if (net_eq(sock_net(sk2), net) &&
218 		    sk2 != sk &&
219 		    sk2->sk_family == sk->sk_family &&
220 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
221 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
222 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
223 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
224 		    inet_rcv_saddr_equal(sk, sk2, false)) {
225 			return reuseport_add_sock(sk, sk2,
226 						  inet_rcv_saddr_any(sk));
227 		}
228 	}
229 
230 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
231 }
232 
233 /**
234  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
235  *
236  *  @sk:          socket struct in question
237  *  @snum:        port number to look up
238  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
239  *                   with NULL address
240  */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)241 int udp_lib_get_port(struct sock *sk, unsigned short snum,
242 		     unsigned int hash2_nulladdr)
243 {
244 	struct udp_table *udptable = udp_get_table_prot(sk);
245 	struct udp_hslot *hslot, *hslot2;
246 	struct net *net = sock_net(sk);
247 	int error = -EADDRINUSE;
248 
249 	if (!snum) {
250 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
251 		unsigned short first, last;
252 		int low, high, remaining;
253 		unsigned int rand;
254 
255 		inet_sk_get_local_port_range(sk, &low, &high);
256 		remaining = (high - low) + 1;
257 
258 		rand = get_random_u32();
259 		first = reciprocal_scale(rand, remaining) + low;
260 		/*
261 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
262 		 */
263 		rand = (rand | 1) * (udptable->mask + 1);
264 		last = first + udptable->mask + 1;
265 		do {
266 			hslot = udp_hashslot(udptable, net, first);
267 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
268 			spin_lock_bh(&hslot->lock);
269 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
270 					    udptable->log);
271 
272 			snum = first;
273 			/*
274 			 * Iterate on all possible values of snum for this hash.
275 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
276 			 * give us randomization and full range coverage.
277 			 */
278 			do {
279 				if (low <= snum && snum <= high &&
280 				    !test_bit(snum >> udptable->log, bitmap) &&
281 				    !inet_is_local_reserved_port(net, snum))
282 					goto found;
283 				snum += rand;
284 			} while (snum != first);
285 			spin_unlock_bh(&hslot->lock);
286 			cond_resched();
287 		} while (++first != last);
288 		goto fail;
289 	} else {
290 		hslot = udp_hashslot(udptable, net, snum);
291 		spin_lock_bh(&hslot->lock);
292 		if (hslot->count > 10) {
293 			int exist;
294 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
295 
296 			slot2          &= udptable->mask;
297 			hash2_nulladdr &= udptable->mask;
298 
299 			hslot2 = udp_hashslot2(udptable, slot2);
300 			if (hslot->count < hslot2->count)
301 				goto scan_primary_hash;
302 
303 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
304 			if (!exist && (hash2_nulladdr != slot2)) {
305 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
306 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
307 							     sk);
308 			}
309 			if (exist)
310 				goto fail_unlock;
311 			else
312 				goto found;
313 		}
314 scan_primary_hash:
315 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
316 			goto fail_unlock;
317 	}
318 found:
319 	inet_sk(sk)->inet_num = snum;
320 	udp_sk(sk)->udp_port_hash = snum;
321 	udp_sk(sk)->udp_portaddr_hash ^= snum;
322 	if (sk_unhashed(sk)) {
323 		if (sk->sk_reuseport &&
324 		    udp_reuseport_add_sock(sk, hslot)) {
325 			inet_sk(sk)->inet_num = 0;
326 			udp_sk(sk)->udp_port_hash = 0;
327 			udp_sk(sk)->udp_portaddr_hash ^= snum;
328 			goto fail_unlock;
329 		}
330 
331 		sock_set_flag(sk, SOCK_RCU_FREE);
332 
333 		sk_add_node_rcu(sk, &hslot->head);
334 		hslot->count++;
335 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
336 
337 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
338 		spin_lock(&hslot2->lock);
339 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
340 		    sk->sk_family == AF_INET6)
341 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
342 					   &hslot2->head);
343 		else
344 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
345 					   &hslot2->head);
346 		hslot2->count++;
347 		spin_unlock(&hslot2->lock);
348 	}
349 
350 	error = 0;
351 fail_unlock:
352 	spin_unlock_bh(&hslot->lock);
353 fail:
354 	return error;
355 }
356 EXPORT_SYMBOL(udp_lib_get_port);
357 
udp_v4_get_port(struct sock * sk,unsigned short snum)358 int udp_v4_get_port(struct sock *sk, unsigned short snum)
359 {
360 	unsigned int hash2_nulladdr =
361 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
362 	unsigned int hash2_partial =
363 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
364 
365 	/* precompute partial secondary hash */
366 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
367 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
368 }
369 
compute_score(struct sock * sk,const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)370 static int compute_score(struct sock *sk, const struct net *net,
371 			 __be32 saddr, __be16 sport,
372 			 __be32 daddr, unsigned short hnum,
373 			 int dif, int sdif)
374 {
375 	int score;
376 	struct inet_sock *inet;
377 	bool dev_match;
378 
379 	if (!net_eq(sock_net(sk), net) ||
380 	    udp_sk(sk)->udp_port_hash != hnum ||
381 	    ipv6_only_sock(sk))
382 		return -1;
383 
384 	if (sk->sk_rcv_saddr != daddr)
385 		return -1;
386 
387 	score = (sk->sk_family == PF_INET) ? 2 : 1;
388 
389 	inet = inet_sk(sk);
390 	if (inet->inet_daddr) {
391 		if (inet->inet_daddr != saddr)
392 			return -1;
393 		score += 4;
394 	}
395 
396 	if (inet->inet_dport) {
397 		if (inet->inet_dport != sport)
398 			return -1;
399 		score += 4;
400 	}
401 
402 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
403 					dif, sdif);
404 	if (!dev_match)
405 		return -1;
406 	if (sk->sk_bound_dev_if)
407 		score += 4;
408 
409 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
410 		score++;
411 	return score;
412 }
413 
414 INDIRECT_CALLABLE_SCOPE
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)415 u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
416 		const __be32 faddr, const __be16 fport)
417 {
418 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
419 
420 	return __inet_ehashfn(laddr, lport, faddr, fport,
421 			      udp_ehash_secret + net_hash_mix(net));
422 }
423 
424 /**
425  * udp4_lib_lookup1() - Simplified lookup using primary hash (destination port)
426  * @net:	Network namespace
427  * @saddr:	Source address, network order
428  * @sport:	Source port, network order
429  * @daddr:	Destination address, network order
430  * @hnum:	Destination port, host order
431  * @dif:	Destination interface index
432  * @sdif:	Destination bridge port index, if relevant
433  * @udptable:	Set of UDP hash tables
434  *
435  * Simplified lookup to be used as fallback if no sockets are found due to a
436  * potential race between (receive) address change, and lookup happening before
437  * the rehash operation. This function ignores SO_REUSEPORT groups while scoring
438  * result sockets, because if we have one, we don't need the fallback at all.
439  *
440  * Called under rcu_read_lock().
441  *
442  * Return: socket with highest matching score if any, NULL if none
443  */
udp4_lib_lookup1(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,const struct udp_table * udptable)444 static struct sock *udp4_lib_lookup1(const struct net *net,
445 				     __be32 saddr, __be16 sport,
446 				     __be32 daddr, unsigned int hnum,
447 				     int dif, int sdif,
448 				     const struct udp_table *udptable)
449 {
450 	unsigned int slot = udp_hashfn(net, hnum, udptable->mask);
451 	struct udp_hslot *hslot = &udptable->hash[slot];
452 	struct sock *sk, *result = NULL;
453 	int score, badness = 0;
454 
455 	sk_for_each_rcu(sk, &hslot->head) {
456 		score = compute_score(sk, net,
457 				      saddr, sport, daddr, hnum, dif, sdif);
458 		if (score > badness) {
459 			result = sk;
460 			badness = score;
461 		}
462 	}
463 
464 	return result;
465 }
466 
467 /* called with rcu_read_lock() */
udp4_lib_lookup2(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)468 static struct sock *udp4_lib_lookup2(const struct net *net,
469 				     __be32 saddr, __be16 sport,
470 				     __be32 daddr, unsigned int hnum,
471 				     int dif, int sdif,
472 				     struct udp_hslot *hslot2,
473 				     struct sk_buff *skb)
474 {
475 	struct sock *sk, *result;
476 	int score, badness;
477 	bool need_rescore;
478 
479 	result = NULL;
480 	badness = 0;
481 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
482 		need_rescore = false;
483 rescore:
484 		score = compute_score(need_rescore ? result : sk, net, saddr,
485 				      sport, daddr, hnum, dif, sdif);
486 		if (score > badness) {
487 			badness = score;
488 
489 			if (need_rescore)
490 				continue;
491 
492 			if (sk->sk_state == TCP_ESTABLISHED) {
493 				result = sk;
494 				continue;
495 			}
496 
497 			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
498 						       saddr, sport, daddr, hnum, udp_ehashfn);
499 			if (!result) {
500 				result = sk;
501 				continue;
502 			}
503 
504 			/* Fall back to scoring if group has connections */
505 			if (!reuseport_has_conns(sk))
506 				return result;
507 
508 			/* Reuseport logic returned an error, keep original score. */
509 			if (IS_ERR(result))
510 				continue;
511 
512 			/* compute_score is too long of a function to be
513 			 * inlined, and calling it again here yields
514 			 * measureable overhead for some
515 			 * workloads. Work around it by jumping
516 			 * backwards to rescore 'result'.
517 			 */
518 			need_rescore = true;
519 			goto rescore;
520 		}
521 	}
522 	return result;
523 }
524 
525 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
526  * harder than this. -DaveM
527  */
__udp4_lib_lookup(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)528 struct sock *__udp4_lib_lookup(const struct net *net, __be32 saddr,
529 		__be16 sport, __be32 daddr, __be16 dport, int dif,
530 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
531 {
532 	unsigned short hnum = ntohs(dport);
533 	unsigned int hash2, slot2;
534 	struct udp_hslot *hslot2;
535 	struct sock *result, *sk;
536 
537 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
538 	slot2 = hash2 & udptable->mask;
539 	hslot2 = &udptable->hash2[slot2];
540 
541 	/* Lookup connected or non-wildcard socket */
542 	result = udp4_lib_lookup2(net, saddr, sport,
543 				  daddr, hnum, dif, sdif,
544 				  hslot2, skb);
545 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
546 		goto done;
547 
548 	/* Lookup redirect from BPF */
549 	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
550 	    udptable == net->ipv4.udp_table) {
551 		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
552 					       saddr, sport, daddr, hnum, dif,
553 					       udp_ehashfn);
554 		if (sk) {
555 			result = sk;
556 			goto done;
557 		}
558 	}
559 
560 	/* Got non-wildcard socket or error on first lookup */
561 	if (result)
562 		goto done;
563 
564 	/* Lookup wildcard sockets */
565 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
566 	slot2 = hash2 & udptable->mask;
567 	hslot2 = &udptable->hash2[slot2];
568 
569 	result = udp4_lib_lookup2(net, saddr, sport,
570 				  htonl(INADDR_ANY), hnum, dif, sdif,
571 				  hslot2, skb);
572 	if (!IS_ERR_OR_NULL(result))
573 		goto done;
574 
575 	/* Primary hash (destination port) lookup as fallback for this race:
576 	 *   1. __ip4_datagram_connect() sets sk_rcv_saddr
577 	 *   2. lookup (this function): new sk_rcv_saddr, hashes not updated yet
578 	 *   3. rehash operation updating _secondary and four-tuple_ hashes
579 	 * The primary hash doesn't need an update after 1., so, thanks to this
580 	 * further step, 1. and 3. don't need to be atomic against the lookup.
581 	 */
582 	result = udp4_lib_lookup1(net, saddr, sport, daddr, hnum, dif, sdif,
583 				  udptable);
584 
585 done:
586 	if (IS_ERR(result))
587 		return NULL;
588 	return result;
589 }
590 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
591 
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)592 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
593 						 __be16 sport, __be16 dport,
594 						 struct udp_table *udptable)
595 {
596 	const struct iphdr *iph = ip_hdr(skb);
597 
598 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
599 				 iph->daddr, dport, inet_iif(skb),
600 				 inet_sdif(skb), udptable, skb);
601 }
602 
udp4_lib_lookup_skb(const struct sk_buff * skb,__be16 sport,__be16 dport)603 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
604 				 __be16 sport, __be16 dport)
605 {
606 	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
607 	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
608 	struct net *net = dev_net(skb->dev);
609 	int iif, sdif;
610 
611 	inet_get_iif_sdif(skb, &iif, &sdif);
612 
613 	return __udp4_lib_lookup(net, iph->saddr, sport,
614 				 iph->daddr, dport, iif,
615 				 sdif, net->ipv4.udp_table, NULL);
616 }
617 
618 /* Must be called under rcu_read_lock().
619  * Does increment socket refcount.
620  */
621 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(const struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)622 struct sock *udp4_lib_lookup(const struct net *net, __be32 saddr, __be16 sport,
623 			     __be32 daddr, __be16 dport, int dif)
624 {
625 	struct sock *sk;
626 
627 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
628 			       dif, 0, net->ipv4.udp_table, NULL);
629 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
630 		sk = NULL;
631 	return sk;
632 }
633 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
634 #endif
635 
__udp_is_mcast_sock(struct net * net,const struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)636 static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
637 				       __be16 loc_port, __be32 loc_addr,
638 				       __be16 rmt_port, __be32 rmt_addr,
639 				       int dif, int sdif, unsigned short hnum)
640 {
641 	const struct inet_sock *inet = inet_sk(sk);
642 
643 	if (!net_eq(sock_net(sk), net) ||
644 	    udp_sk(sk)->udp_port_hash != hnum ||
645 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
646 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
647 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
648 	    ipv6_only_sock(sk) ||
649 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
650 		return false;
651 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
652 		return false;
653 	return true;
654 }
655 
656 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
657 EXPORT_SYMBOL(udp_encap_needed_key);
658 
659 #if IS_ENABLED(CONFIG_IPV6)
660 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
661 EXPORT_SYMBOL(udpv6_encap_needed_key);
662 #endif
663 
udp_encap_enable(void)664 void udp_encap_enable(void)
665 {
666 	static_branch_inc(&udp_encap_needed_key);
667 }
668 EXPORT_SYMBOL(udp_encap_enable);
669 
udp_encap_disable(void)670 void udp_encap_disable(void)
671 {
672 	static_branch_dec(&udp_encap_needed_key);
673 }
674 EXPORT_SYMBOL(udp_encap_disable);
675 
676 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
677  * through error handlers in encapsulations looking for a match.
678  */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)679 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
680 {
681 	int i;
682 
683 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
684 		int (*handler)(struct sk_buff *skb, u32 info);
685 		const struct ip_tunnel_encap_ops *encap;
686 
687 		encap = rcu_dereference(iptun_encaps[i]);
688 		if (!encap)
689 			continue;
690 		handler = encap->err_handler;
691 		if (handler && !handler(skb, info))
692 			return 0;
693 	}
694 
695 	return -ENOENT;
696 }
697 
698 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
699  * reversing source and destination port: this will match tunnels that force the
700  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
701  * lwtunnels might actually break this assumption by being configured with
702  * different destination ports on endpoints, in this case we won't be able to
703  * trace ICMP messages back to them.
704  *
705  * If this doesn't match any socket, probe tunnels with arbitrary destination
706  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
707  * we've sent packets to won't necessarily match the local destination port.
708  *
709  * Then ask the tunnel implementation to match the error against a valid
710  * association.
711  *
712  * Return an error if we can't find a match, the socket if we need further
713  * processing, zero otherwise.
714  */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sock * sk,struct sk_buff * skb,u32 info)715 static struct sock *__udp4_lib_err_encap(struct net *net,
716 					 const struct iphdr *iph,
717 					 struct udphdr *uh,
718 					 struct udp_table *udptable,
719 					 struct sock *sk,
720 					 struct sk_buff *skb, u32 info)
721 {
722 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
723 	int network_offset, transport_offset;
724 	struct udp_sock *up;
725 
726 	network_offset = skb_network_offset(skb);
727 	transport_offset = skb_transport_offset(skb);
728 
729 	/* Network header needs to point to the outer IPv4 header inside ICMP */
730 	skb_reset_network_header(skb);
731 
732 	/* Transport header needs to point to the UDP header */
733 	skb_set_transport_header(skb, iph->ihl << 2);
734 
735 	if (sk) {
736 		up = udp_sk(sk);
737 
738 		lookup = READ_ONCE(up->encap_err_lookup);
739 		if (lookup && lookup(sk, skb))
740 			sk = NULL;
741 
742 		goto out;
743 	}
744 
745 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
746 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
747 			       udptable, NULL);
748 	if (sk) {
749 		up = udp_sk(sk);
750 
751 		lookup = READ_ONCE(up->encap_err_lookup);
752 		if (!lookup || lookup(sk, skb))
753 			sk = NULL;
754 	}
755 
756 out:
757 	if (!sk)
758 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
759 
760 	skb_set_transport_header(skb, transport_offset);
761 	skb_set_network_header(skb, network_offset);
762 
763 	return sk;
764 }
765 
766 /*
767  * This routine is called by the ICMP module when it gets some
768  * sort of error condition.  If err < 0 then the socket should
769  * be closed and the error returned to the user.  If err > 0
770  * it's just the icmp type << 8 | icmp code.
771  * Header points to the ip header of the error packet. We move
772  * on past this. Then (as it used to claim before adjustment)
773  * header points to the first 8 bytes of the udp header.  We need
774  * to find the appropriate port.
775  */
776 
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)777 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
778 {
779 	struct inet_sock *inet;
780 	const struct iphdr *iph = (const struct iphdr *)skb->data;
781 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
782 	const int type = icmp_hdr(skb)->type;
783 	const int code = icmp_hdr(skb)->code;
784 	bool tunnel = false;
785 	struct sock *sk;
786 	int harderr;
787 	int err;
788 	struct net *net = dev_net(skb->dev);
789 
790 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
791 			       iph->saddr, uh->source, skb->dev->ifindex,
792 			       inet_sdif(skb), udptable, NULL);
793 
794 	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
795 		/* No socket for error: try tunnels before discarding */
796 		if (static_branch_unlikely(&udp_encap_needed_key)) {
797 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
798 						  info);
799 			if (!sk)
800 				return 0;
801 		} else
802 			sk = ERR_PTR(-ENOENT);
803 
804 		if (IS_ERR(sk)) {
805 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
806 			return PTR_ERR(sk);
807 		}
808 
809 		tunnel = true;
810 	}
811 
812 	err = 0;
813 	harderr = 0;
814 	inet = inet_sk(sk);
815 
816 	switch (type) {
817 	default:
818 	case ICMP_TIME_EXCEEDED:
819 		err = EHOSTUNREACH;
820 		break;
821 	case ICMP_SOURCE_QUENCH:
822 		goto out;
823 	case ICMP_PARAMETERPROB:
824 		err = EPROTO;
825 		harderr = 1;
826 		break;
827 	case ICMP_DEST_UNREACH:
828 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
829 			ipv4_sk_update_pmtu(skb, sk, info);
830 			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
831 				err = EMSGSIZE;
832 				harderr = 1;
833 				break;
834 			}
835 			goto out;
836 		}
837 		err = EHOSTUNREACH;
838 		if (code <= NR_ICMP_UNREACH) {
839 			harderr = icmp_err_convert[code].fatal;
840 			err = icmp_err_convert[code].errno;
841 		}
842 		break;
843 	case ICMP_REDIRECT:
844 		ipv4_sk_redirect(skb, sk);
845 		goto out;
846 	}
847 
848 	/*
849 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
850 	 *	4.1.3.3.
851 	 */
852 	if (tunnel) {
853 		/* ...not for tunnels though: we don't have a sending socket */
854 		if (udp_sk(sk)->encap_err_rcv)
855 			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
856 						  (u8 *)(uh+1));
857 		goto out;
858 	}
859 	if (!inet_test_bit(RECVERR, sk)) {
860 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
861 			goto out;
862 	} else
863 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
864 
865 	sk->sk_err = err;
866 	sk_error_report(sk);
867 out:
868 	return 0;
869 }
870 
udp_err(struct sk_buff * skb,u32 info)871 int udp_err(struct sk_buff *skb, u32 info)
872 {
873 	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
874 }
875 
876 /*
877  * Throw away all pending data and cancel the corking. Socket is locked.
878  */
udp_flush_pending_frames(struct sock * sk)879 void udp_flush_pending_frames(struct sock *sk)
880 {
881 	struct udp_sock *up = udp_sk(sk);
882 
883 	if (up->pending) {
884 		up->len = 0;
885 		WRITE_ONCE(up->pending, 0);
886 		ip_flush_pending_frames(sk);
887 	}
888 }
889 EXPORT_SYMBOL(udp_flush_pending_frames);
890 
891 /**
892  * 	udp4_hwcsum  -  handle outgoing HW checksumming
893  * 	@skb: 	sk_buff containing the filled-in UDP header
894  * 	        (checksum field must be zeroed out)
895  *	@src:	source IP address
896  *	@dst:	destination IP address
897  */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)898 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
899 {
900 	struct udphdr *uh = udp_hdr(skb);
901 	int offset = skb_transport_offset(skb);
902 	int len = skb->len - offset;
903 	int hlen = len;
904 	__wsum csum = 0;
905 
906 	if (!skb_has_frag_list(skb)) {
907 		/*
908 		 * Only one fragment on the socket.
909 		 */
910 		skb->csum_start = skb_transport_header(skb) - skb->head;
911 		skb->csum_offset = offsetof(struct udphdr, check);
912 		uh->check = ~csum_tcpudp_magic(src, dst, len,
913 					       IPPROTO_UDP, 0);
914 	} else {
915 		struct sk_buff *frags;
916 
917 		/*
918 		 * HW-checksum won't work as there are two or more
919 		 * fragments on the socket so that all csums of sk_buffs
920 		 * should be together
921 		 */
922 		skb_walk_frags(skb, frags) {
923 			csum = csum_add(csum, frags->csum);
924 			hlen -= frags->len;
925 		}
926 
927 		csum = skb_checksum(skb, offset, hlen, csum);
928 		skb->ip_summed = CHECKSUM_NONE;
929 
930 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
931 		if (uh->check == 0)
932 			uh->check = CSUM_MANGLED_0;
933 	}
934 }
935 EXPORT_SYMBOL_GPL(udp4_hwcsum);
936 
937 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
938  * for the simple case like when setting the checksum for a UDP tunnel.
939  */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)940 void udp_set_csum(bool nocheck, struct sk_buff *skb,
941 		  __be32 saddr, __be32 daddr, int len)
942 {
943 	struct udphdr *uh = udp_hdr(skb);
944 
945 	if (nocheck) {
946 		uh->check = 0;
947 	} else if (skb_is_gso(skb)) {
948 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
949 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
950 		uh->check = 0;
951 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
952 		if (uh->check == 0)
953 			uh->check = CSUM_MANGLED_0;
954 	} else {
955 		skb->ip_summed = CHECKSUM_PARTIAL;
956 		skb->csum_start = skb_transport_header(skb) - skb->head;
957 		skb->csum_offset = offsetof(struct udphdr, check);
958 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
959 	}
960 }
961 EXPORT_SYMBOL(udp_set_csum);
962 
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)963 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
964 			struct inet_cork *cork)
965 {
966 	struct sock *sk = skb->sk;
967 	struct inet_sock *inet = inet_sk(sk);
968 	struct udphdr *uh;
969 	int err;
970 	int is_udplite = IS_UDPLITE(sk);
971 	int offset = skb_transport_offset(skb);
972 	int len = skb->len - offset;
973 	int datalen = len - sizeof(*uh);
974 	__wsum csum = 0;
975 
976 	/*
977 	 * Create a UDP header
978 	 */
979 	uh = udp_hdr(skb);
980 	uh->source = inet->inet_sport;
981 	uh->dest = fl4->fl4_dport;
982 	uh->len = htons(len);
983 	uh->check = 0;
984 
985 	if (cork->gso_size) {
986 		const int hlen = skb_network_header_len(skb) +
987 				 sizeof(struct udphdr);
988 
989 		if (hlen + min(datalen, cork->gso_size) > cork->fragsize) {
990 			kfree_skb(skb);
991 			return -EMSGSIZE;
992 		}
993 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
994 			kfree_skb(skb);
995 			return -EINVAL;
996 		}
997 		if (sk->sk_no_check_tx) {
998 			kfree_skb(skb);
999 			return -EINVAL;
1000 		}
1001 		if (is_udplite || dst_xfrm(skb_dst(skb))) {
1002 			kfree_skb(skb);
1003 			return -EIO;
1004 		}
1005 
1006 		if (datalen > cork->gso_size) {
1007 			skb_shinfo(skb)->gso_size = cork->gso_size;
1008 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
1009 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
1010 								 cork->gso_size);
1011 
1012 			/* Don't checksum the payload, skb will get segmented */
1013 			goto csum_partial;
1014 		}
1015 	}
1016 
1017 	if (is_udplite)  				 /*     UDP-Lite      */
1018 		csum = udplite_csum(skb);
1019 
1020 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
1021 
1022 		skb->ip_summed = CHECKSUM_NONE;
1023 		goto send;
1024 
1025 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
1026 csum_partial:
1027 
1028 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
1029 		goto send;
1030 
1031 	} else
1032 		csum = udp_csum(skb);
1033 
1034 	/* add protocol-dependent pseudo-header */
1035 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
1036 				      sk->sk_protocol, csum);
1037 	if (uh->check == 0)
1038 		uh->check = CSUM_MANGLED_0;
1039 
1040 send:
1041 	err = ip_send_skb(sock_net(sk), skb);
1042 	if (err) {
1043 		if (err == -ENOBUFS &&
1044 		    !inet_test_bit(RECVERR, sk)) {
1045 			UDP_INC_STATS(sock_net(sk),
1046 				      UDP_MIB_SNDBUFERRORS, is_udplite);
1047 			err = 0;
1048 		}
1049 	} else
1050 		UDP_INC_STATS(sock_net(sk),
1051 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
1052 	return err;
1053 }
1054 
1055 /*
1056  * Push out all pending data as one UDP datagram. Socket is locked.
1057  */
udp_push_pending_frames(struct sock * sk)1058 int udp_push_pending_frames(struct sock *sk)
1059 {
1060 	struct udp_sock  *up = udp_sk(sk);
1061 	struct inet_sock *inet = inet_sk(sk);
1062 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1063 	struct sk_buff *skb;
1064 	int err = 0;
1065 
1066 	skb = ip_finish_skb(sk, fl4);
1067 	if (!skb)
1068 		goto out;
1069 
1070 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1071 
1072 out:
1073 	up->len = 0;
1074 	WRITE_ONCE(up->pending, 0);
1075 	return err;
1076 }
1077 EXPORT_SYMBOL(udp_push_pending_frames);
1078 
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1079 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1080 {
1081 	switch (cmsg->cmsg_type) {
1082 	case UDP_SEGMENT:
1083 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1084 			return -EINVAL;
1085 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1086 		return 0;
1087 	default:
1088 		return -EINVAL;
1089 	}
1090 }
1091 
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1092 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1093 {
1094 	struct cmsghdr *cmsg;
1095 	bool need_ip = false;
1096 	int err;
1097 
1098 	for_each_cmsghdr(cmsg, msg) {
1099 		if (!CMSG_OK(msg, cmsg))
1100 			return -EINVAL;
1101 
1102 		if (cmsg->cmsg_level != SOL_UDP) {
1103 			need_ip = true;
1104 			continue;
1105 		}
1106 
1107 		err = __udp_cmsg_send(cmsg, gso_size);
1108 		if (err)
1109 			return err;
1110 	}
1111 
1112 	return need_ip;
1113 }
1114 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1115 
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1116 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1117 {
1118 	struct inet_sock *inet = inet_sk(sk);
1119 	struct udp_sock *up = udp_sk(sk);
1120 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1121 	struct flowi4 fl4_stack;
1122 	struct flowi4 *fl4;
1123 	int ulen = len;
1124 	struct ipcm_cookie ipc;
1125 	struct rtable *rt = NULL;
1126 	int free = 0;
1127 	int connected = 0;
1128 	__be32 daddr, faddr, saddr;
1129 	u8 tos, scope;
1130 	__be16 dport;
1131 	int err, is_udplite = IS_UDPLITE(sk);
1132 	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1133 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1134 	struct sk_buff *skb;
1135 	struct ip_options_data opt_copy;
1136 	int uc_index;
1137 
1138 	trace_android_rvh_udp_sendmsg(sk, msg, len);
1139 
1140 	if (len > 0xFFFF)
1141 		return -EMSGSIZE;
1142 
1143 	/*
1144 	 *	Check the flags.
1145 	 */
1146 
1147 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1148 		return -EOPNOTSUPP;
1149 
1150 	trace_android_vh_uplink_send_msg(sk);
1151 
1152 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1153 
1154 	fl4 = &inet->cork.fl.u.ip4;
1155 	if (READ_ONCE(up->pending)) {
1156 		/*
1157 		 * There are pending frames.
1158 		 * The socket lock must be held while it's corked.
1159 		 */
1160 		lock_sock(sk);
1161 		if (likely(up->pending)) {
1162 			if (unlikely(up->pending != AF_INET)) {
1163 				release_sock(sk);
1164 				return -EINVAL;
1165 			}
1166 			goto do_append_data;
1167 		}
1168 		release_sock(sk);
1169 	}
1170 	ulen += sizeof(struct udphdr);
1171 
1172 	/*
1173 	 *	Get and verify the address.
1174 	 */
1175 	if (usin) {
1176 		if (msg->msg_namelen < sizeof(*usin))
1177 			return -EINVAL;
1178 		if (usin->sin_family != AF_INET) {
1179 			if (usin->sin_family != AF_UNSPEC)
1180 				return -EAFNOSUPPORT;
1181 		}
1182 
1183 		daddr = usin->sin_addr.s_addr;
1184 		dport = usin->sin_port;
1185 		if (dport == 0)
1186 			return -EINVAL;
1187 	} else {
1188 		if (sk->sk_state != TCP_ESTABLISHED)
1189 			return -EDESTADDRREQ;
1190 		daddr = inet->inet_daddr;
1191 		dport = inet->inet_dport;
1192 		/* Open fast path for connected socket.
1193 		   Route will not be used, if at least one option is set.
1194 		 */
1195 		connected = 1;
1196 	}
1197 
1198 	trace_android_vh_udp_v4_connect(sk, daddr, dport, AF_INET);
1199 
1200 	ipcm_init_sk(&ipc, inet);
1201 	ipc.gso_size = READ_ONCE(up->gso_size);
1202 
1203 	if (msg->msg_controllen) {
1204 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1205 		if (err > 0) {
1206 			err = ip_cmsg_send(sk, msg, &ipc,
1207 					   sk->sk_family == AF_INET6);
1208 			connected = 0;
1209 		}
1210 		if (unlikely(err < 0)) {
1211 			kfree(ipc.opt);
1212 			return err;
1213 		}
1214 		if (ipc.opt)
1215 			free = 1;
1216 	}
1217 	if (!ipc.opt) {
1218 		struct ip_options_rcu *inet_opt;
1219 
1220 		rcu_read_lock();
1221 		inet_opt = rcu_dereference(inet->inet_opt);
1222 		if (inet_opt) {
1223 			memcpy(&opt_copy, inet_opt,
1224 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1225 			ipc.opt = &opt_copy.opt;
1226 		}
1227 		rcu_read_unlock();
1228 	}
1229 
1230 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1231 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1232 					    (struct sockaddr *)usin,
1233 					    &msg->msg_namelen,
1234 					    &ipc.addr);
1235 		if (err)
1236 			goto out_free;
1237 		if (usin) {
1238 			if (usin->sin_port == 0) {
1239 				/* BPF program set invalid port. Reject it. */
1240 				err = -EINVAL;
1241 				goto out_free;
1242 			}
1243 			daddr = usin->sin_addr.s_addr;
1244 			dport = usin->sin_port;
1245 		}
1246 	}
1247 
1248 	saddr = ipc.addr;
1249 	ipc.addr = faddr = daddr;
1250 
1251 	if (ipc.opt && ipc.opt->opt.srr) {
1252 		if (!daddr) {
1253 			err = -EINVAL;
1254 			goto out_free;
1255 		}
1256 		faddr = ipc.opt->opt.faddr;
1257 		connected = 0;
1258 	}
1259 	tos = get_rttos(&ipc, inet);
1260 	scope = ip_sendmsg_scope(inet, &ipc, msg);
1261 	if (scope == RT_SCOPE_LINK)
1262 		connected = 0;
1263 
1264 	uc_index = READ_ONCE(inet->uc_index);
1265 	if (ipv4_is_multicast(daddr)) {
1266 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1267 			ipc.oif = READ_ONCE(inet->mc_index);
1268 		if (!saddr)
1269 			saddr = READ_ONCE(inet->mc_addr);
1270 		connected = 0;
1271 	} else if (!ipc.oif) {
1272 		ipc.oif = uc_index;
1273 	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1274 		/* oif is set, packet is to local broadcast and
1275 		 * uc_index is set. oif is most likely set
1276 		 * by sk_bound_dev_if. If uc_index != oif check if the
1277 		 * oif is an L3 master and uc_index is an L3 slave.
1278 		 * If so, we want to allow the send using the uc_index.
1279 		 */
1280 		if (ipc.oif != uc_index &&
1281 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1282 							      uc_index)) {
1283 			ipc.oif = uc_index;
1284 		}
1285 	}
1286 
1287 	if (connected)
1288 		rt = dst_rtable(sk_dst_check(sk, 0));
1289 
1290 	if (!rt) {
1291 		struct net *net = sock_net(sk);
1292 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1293 
1294 		fl4 = &fl4_stack;
1295 
1296 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1297 				   sk->sk_protocol, flow_flags, faddr, saddr,
1298 				   dport, inet->inet_sport, sk->sk_uid);
1299 
1300 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1301 		rt = ip_route_output_flow(net, fl4, sk);
1302 		if (IS_ERR(rt)) {
1303 			err = PTR_ERR(rt);
1304 			rt = NULL;
1305 			if (err == -ENETUNREACH)
1306 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1307 			goto out;
1308 		}
1309 
1310 		err = -EACCES;
1311 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1312 		    !sock_flag(sk, SOCK_BROADCAST))
1313 			goto out;
1314 		if (connected)
1315 			sk_dst_set(sk, dst_clone(&rt->dst));
1316 	}
1317 
1318 	if (msg->msg_flags&MSG_CONFIRM)
1319 		goto do_confirm;
1320 back_from_confirm:
1321 
1322 	saddr = fl4->saddr;
1323 	if (!ipc.addr)
1324 		daddr = ipc.addr = fl4->daddr;
1325 
1326 	/* Lockless fast path for the non-corking case. */
1327 	if (!corkreq) {
1328 		struct inet_cork cork;
1329 
1330 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1331 				  sizeof(struct udphdr), &ipc, &rt,
1332 				  &cork, msg->msg_flags);
1333 		err = PTR_ERR(skb);
1334 		if (!IS_ERR_OR_NULL(skb))
1335 			err = udp_send_skb(skb, fl4, &cork);
1336 		goto out;
1337 	}
1338 
1339 	lock_sock(sk);
1340 	if (unlikely(up->pending)) {
1341 		/* The socket is already corked while preparing it. */
1342 		/* ... which is an evident application bug. --ANK */
1343 		release_sock(sk);
1344 
1345 		net_dbg_ratelimited("socket already corked\n");
1346 		err = -EINVAL;
1347 		goto out;
1348 	}
1349 	/*
1350 	 *	Now cork the socket to pend data.
1351 	 */
1352 	fl4 = &inet->cork.fl.u.ip4;
1353 	fl4->daddr = daddr;
1354 	fl4->saddr = saddr;
1355 	fl4->fl4_dport = dport;
1356 	fl4->fl4_sport = inet->inet_sport;
1357 	WRITE_ONCE(up->pending, AF_INET);
1358 
1359 do_append_data:
1360 	up->len += ulen;
1361 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1362 			     sizeof(struct udphdr), &ipc, &rt,
1363 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1364 	if (err)
1365 		udp_flush_pending_frames(sk);
1366 	else if (!corkreq)
1367 		err = udp_push_pending_frames(sk);
1368 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1369 		WRITE_ONCE(up->pending, 0);
1370 	release_sock(sk);
1371 
1372 out:
1373 	ip_rt_put(rt);
1374 out_free:
1375 	if (free)
1376 		kfree(ipc.opt);
1377 	if (!err)
1378 		return len;
1379 	/*
1380 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1381 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1382 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1383 	 * things).  We could add another new stat but at least for now that
1384 	 * seems like overkill.
1385 	 */
1386 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1387 		UDP_INC_STATS(sock_net(sk),
1388 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1389 	}
1390 	return err;
1391 
1392 do_confirm:
1393 	if (msg->msg_flags & MSG_PROBE)
1394 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1395 	if (!(msg->msg_flags&MSG_PROBE) || len)
1396 		goto back_from_confirm;
1397 	err = 0;
1398 	goto out;
1399 }
1400 EXPORT_SYMBOL(udp_sendmsg);
1401 
udp_splice_eof(struct socket * sock)1402 void udp_splice_eof(struct socket *sock)
1403 {
1404 	struct sock *sk = sock->sk;
1405 	struct udp_sock *up = udp_sk(sk);
1406 
1407 	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1408 		return;
1409 
1410 	lock_sock(sk);
1411 	if (up->pending && !udp_test_bit(CORK, sk))
1412 		udp_push_pending_frames(sk);
1413 	release_sock(sk);
1414 }
1415 EXPORT_SYMBOL_GPL(udp_splice_eof);
1416 
1417 #define UDP_SKB_IS_STATELESS 0x80000000
1418 
1419 /* all head states (dst, sk, nf conntrack) except skb extensions are
1420  * cleared by udp_rcv().
1421  *
1422  * We need to preserve secpath, if present, to eventually process
1423  * IP_CMSG_PASSSEC at recvmsg() time.
1424  *
1425  * Other extensions can be cleared.
1426  */
udp_try_make_stateless(struct sk_buff * skb)1427 static bool udp_try_make_stateless(struct sk_buff *skb)
1428 {
1429 	if (!skb_has_extensions(skb))
1430 		return true;
1431 
1432 	if (!secpath_exists(skb)) {
1433 		skb_ext_reset(skb);
1434 		return true;
1435 	}
1436 
1437 	return false;
1438 }
1439 
udp_set_dev_scratch(struct sk_buff * skb)1440 static void udp_set_dev_scratch(struct sk_buff *skb)
1441 {
1442 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1443 
1444 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1445 	scratch->_tsize_state = skb->truesize;
1446 #if BITS_PER_LONG == 64
1447 	scratch->len = skb->len;
1448 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1449 	scratch->is_linear = !skb_is_nonlinear(skb);
1450 #endif
1451 	if (udp_try_make_stateless(skb))
1452 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1453 }
1454 
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1455 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1456 {
1457 	/* We come here after udp_lib_checksum_complete() returned 0.
1458 	 * This means that __skb_checksum_complete() might have
1459 	 * set skb->csum_valid to 1.
1460 	 * On 64bit platforms, we can set csum_unnecessary
1461 	 * to true, but only if the skb is not shared.
1462 	 */
1463 #if BITS_PER_LONG == 64
1464 	if (!skb_shared(skb))
1465 		udp_skb_scratch(skb)->csum_unnecessary = true;
1466 #endif
1467 }
1468 
udp_skb_truesize(struct sk_buff * skb)1469 static int udp_skb_truesize(struct sk_buff *skb)
1470 {
1471 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1472 }
1473 
udp_skb_has_head_state(struct sk_buff * skb)1474 static bool udp_skb_has_head_state(struct sk_buff *skb)
1475 {
1476 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1477 }
1478 
1479 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,unsigned int size,int partial,bool rx_queue_lock_held)1480 static void udp_rmem_release(struct sock *sk, unsigned int size,
1481 			     int partial, bool rx_queue_lock_held)
1482 {
1483 	struct udp_sock *up = udp_sk(sk);
1484 	struct sk_buff_head *sk_queue;
1485 	unsigned int amt;
1486 
1487 	if (likely(partial)) {
1488 		up->forward_deficit += size;
1489 		size = up->forward_deficit;
1490 		if (size < READ_ONCE(up->forward_threshold) &&
1491 		    !skb_queue_empty(&up->reader_queue))
1492 			return;
1493 	} else {
1494 		size += up->forward_deficit;
1495 	}
1496 	up->forward_deficit = 0;
1497 
1498 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1499 	 * if the called don't held it already
1500 	 */
1501 	sk_queue = &sk->sk_receive_queue;
1502 	if (!rx_queue_lock_held)
1503 		spin_lock(&sk_queue->lock);
1504 
1505 	amt = (size + sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1506 	sk_forward_alloc_add(sk, size - amt);
1507 
1508 	if (amt)
1509 		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1510 
1511 	atomic_sub(size, &sk->sk_rmem_alloc);
1512 
1513 	/* this can save us from acquiring the rx queue lock on next receive */
1514 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1515 
1516 	if (!rx_queue_lock_held)
1517 		spin_unlock(&sk_queue->lock);
1518 }
1519 
1520 /* Note: called with reader_queue.lock held.
1521  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1522  * This avoids a cache line miss while receive_queue lock is held.
1523  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1524  */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1525 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1526 {
1527 	prefetch(&skb->data);
1528 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1529 }
1530 EXPORT_SYMBOL(udp_skb_destructor);
1531 
1532 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1533 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1534 {
1535 	prefetch(&skb->data);
1536 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1537 }
1538 
1539 /* Idea of busylocks is to let producers grab an extra spinlock
1540  * to relieve pressure on the receive_queue spinlock shared by consumer.
1541  * Under flood, this means that only one producer can be in line
1542  * trying to acquire the receive_queue spinlock.
1543  * These busylock can be allocated on a per cpu manner, instead of a
1544  * per socket one (that would consume a cache line per socket)
1545  */
1546 static int udp_busylocks_log __read_mostly;
1547 static spinlock_t *udp_busylocks __read_mostly;
1548 
busylock_acquire(void * ptr)1549 static spinlock_t *busylock_acquire(void *ptr)
1550 {
1551 	spinlock_t *busy;
1552 
1553 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1554 	spin_lock(busy);
1555 	return busy;
1556 }
1557 
busylock_release(spinlock_t * busy)1558 static void busylock_release(spinlock_t *busy)
1559 {
1560 	if (busy)
1561 		spin_unlock(busy);
1562 }
1563 
udp_rmem_schedule(struct sock * sk,int size)1564 static int udp_rmem_schedule(struct sock *sk, int size)
1565 {
1566 	int delta;
1567 
1568 	delta = size - sk->sk_forward_alloc;
1569 	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1570 		return -ENOBUFS;
1571 
1572 	return 0;
1573 }
1574 
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1575 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1576 {
1577 	struct sk_buff_head *list = &sk->sk_receive_queue;
1578 	unsigned int rmem, rcvbuf;
1579 	spinlock_t *busy = NULL;
1580 	int size, err = -ENOMEM;
1581 
1582 	trace_android_vh_udp_enqueue_schedule_skb(sk, skb);
1583 
1584 	rmem = atomic_read(&sk->sk_rmem_alloc);
1585 	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1586 	size = skb->truesize;
1587 
1588 	/* Immediately drop when the receive queue is full.
1589 	 * Cast to unsigned int performs the boundary check for INT_MAX.
1590 	 */
1591 	if (rmem + size > rcvbuf) {
1592 		if (rcvbuf > INT_MAX >> 1)
1593 			goto drop;
1594 
1595 		/* Always allow at least one packet for small buffer. */
1596 		if (rmem > rcvbuf)
1597 			goto drop;
1598 	}
1599 
1600 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1601 	 * having linear skbs :
1602 	 * - Reduce memory overhead and thus increase receive queue capacity
1603 	 * - Less cache line misses at copyout() time
1604 	 * - Less work at consume_skb() (less alien page frag freeing)
1605 	 */
1606 	if (rmem > (rcvbuf >> 1)) {
1607 		skb_condense(skb);
1608 		size = skb->truesize;
1609 		busy = busylock_acquire(sk);
1610 	}
1611 
1612 	udp_set_dev_scratch(skb);
1613 
1614 	atomic_add(size, &sk->sk_rmem_alloc);
1615 
1616 	spin_lock(&list->lock);
1617 	err = udp_rmem_schedule(sk, size);
1618 	if (err) {
1619 		spin_unlock(&list->lock);
1620 		goto uncharge_drop;
1621 	}
1622 
1623 	sk_forward_alloc_add(sk, -size);
1624 
1625 	/* no need to setup a destructor, we will explicitly release the
1626 	 * forward allocated memory on dequeue
1627 	 */
1628 	sock_skb_set_dropcount(sk, skb);
1629 
1630 	__skb_queue_tail(list, skb);
1631 	spin_unlock(&list->lock);
1632 
1633 	if (!sock_flag(sk, SOCK_DEAD))
1634 		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1635 
1636 	busylock_release(busy);
1637 	return 0;
1638 
1639 uncharge_drop:
1640 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1641 
1642 drop:
1643 	atomic_inc(&sk->sk_drops);
1644 	busylock_release(busy);
1645 	return err;
1646 }
1647 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1648 
udp_destruct_common(struct sock * sk)1649 void udp_destruct_common(struct sock *sk)
1650 {
1651 	/* reclaim completely the forward allocated memory */
1652 	struct udp_sock *up = udp_sk(sk);
1653 	unsigned int total = 0;
1654 	struct sk_buff *skb;
1655 
1656 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1657 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1658 		total += skb->truesize;
1659 		kfree_skb(skb);
1660 	}
1661 	udp_rmem_release(sk, total, 0, true);
1662 }
1663 EXPORT_SYMBOL_GPL(udp_destruct_common);
1664 
udp_destruct_sock(struct sock * sk)1665 static void udp_destruct_sock(struct sock *sk)
1666 {
1667 	udp_destruct_common(sk);
1668 	inet_sock_destruct(sk);
1669 }
1670 
udp_init_sock(struct sock * sk)1671 int udp_init_sock(struct sock *sk)
1672 {
1673 	udp_lib_init_sock(sk);
1674 	sk->sk_destruct = udp_destruct_sock;
1675 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1676 	return 0;
1677 }
1678 
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1679 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1680 {
1681 	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
1682 		sk_peek_offset_bwd(sk, len);
1683 
1684 	if (!skb_unref(skb))
1685 		return;
1686 
1687 	/* In the more common cases we cleared the head states previously,
1688 	 * see __udp_queue_rcv_skb().
1689 	 */
1690 	if (unlikely(udp_skb_has_head_state(skb)))
1691 		skb_release_head_state(skb);
1692 	__consume_stateless_skb(skb);
1693 }
1694 EXPORT_SYMBOL_GPL(skb_consume_udp);
1695 
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,unsigned int * total)1696 static struct sk_buff *__first_packet_length(struct sock *sk,
1697 					     struct sk_buff_head *rcvq,
1698 					     unsigned int *total)
1699 {
1700 	struct sk_buff *skb;
1701 
1702 	while ((skb = skb_peek(rcvq)) != NULL) {
1703 		if (udp_lib_checksum_complete(skb)) {
1704 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1705 					IS_UDPLITE(sk));
1706 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1707 					IS_UDPLITE(sk));
1708 			atomic_inc(&sk->sk_drops);
1709 			__skb_unlink(skb, rcvq);
1710 			*total += skb->truesize;
1711 			kfree_skb(skb);
1712 		} else {
1713 			udp_skb_csum_unnecessary_set(skb);
1714 			break;
1715 		}
1716 	}
1717 	return skb;
1718 }
1719 
1720 /**
1721  *	first_packet_length	- return length of first packet in receive queue
1722  *	@sk: socket
1723  *
1724  *	Drops all bad checksum frames, until a valid one is found.
1725  *	Returns the length of found skb, or -1 if none is found.
1726  */
first_packet_length(struct sock * sk)1727 static int first_packet_length(struct sock *sk)
1728 {
1729 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1730 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1731 	unsigned int total = 0;
1732 	struct sk_buff *skb;
1733 	int res;
1734 
1735 	spin_lock_bh(&rcvq->lock);
1736 	skb = __first_packet_length(sk, rcvq, &total);
1737 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1738 		spin_lock(&sk_queue->lock);
1739 		skb_queue_splice_tail_init(sk_queue, rcvq);
1740 		spin_unlock(&sk_queue->lock);
1741 
1742 		skb = __first_packet_length(sk, rcvq, &total);
1743 	}
1744 	res = skb ? skb->len : -1;
1745 	if (total)
1746 		udp_rmem_release(sk, total, 1, false);
1747 	spin_unlock_bh(&rcvq->lock);
1748 	return res;
1749 }
1750 
1751 /*
1752  *	IOCTL requests applicable to the UDP protocol
1753  */
1754 
udp_ioctl(struct sock * sk,int cmd,int * karg)1755 int udp_ioctl(struct sock *sk, int cmd, int *karg)
1756 {
1757 	switch (cmd) {
1758 	case SIOCOUTQ:
1759 	{
1760 		*karg = sk_wmem_alloc_get(sk);
1761 		return 0;
1762 	}
1763 
1764 	case SIOCINQ:
1765 	{
1766 		*karg = max_t(int, 0, first_packet_length(sk));
1767 		return 0;
1768 	}
1769 
1770 	default:
1771 		return -ENOIOCTLCMD;
1772 	}
1773 
1774 	return 0;
1775 }
1776 EXPORT_SYMBOL(udp_ioctl);
1777 
__skb_recv_udp(struct sock * sk,unsigned int flags,int * off,int * err)1778 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1779 			       int *off, int *err)
1780 {
1781 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1782 	struct sk_buff_head *queue;
1783 	struct sk_buff *last;
1784 	long timeo;
1785 	int error;
1786 
1787 	queue = &udp_sk(sk)->reader_queue;
1788 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1789 	do {
1790 		struct sk_buff *skb;
1791 
1792 		error = sock_error(sk);
1793 		if (error)
1794 			break;
1795 
1796 		error = -EAGAIN;
1797 		do {
1798 			spin_lock_bh(&queue->lock);
1799 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1800 							err, &last);
1801 			if (skb) {
1802 				if (!(flags & MSG_PEEK))
1803 					udp_skb_destructor(sk, skb);
1804 				spin_unlock_bh(&queue->lock);
1805 				return skb;
1806 			}
1807 
1808 			if (skb_queue_empty_lockless(sk_queue)) {
1809 				spin_unlock_bh(&queue->lock);
1810 				goto busy_check;
1811 			}
1812 
1813 			/* refill the reader queue and walk it again
1814 			 * keep both queues locked to avoid re-acquiring
1815 			 * the sk_receive_queue lock if fwd memory scheduling
1816 			 * is needed.
1817 			 */
1818 			spin_lock(&sk_queue->lock);
1819 			skb_queue_splice_tail_init(sk_queue, queue);
1820 
1821 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1822 							err, &last);
1823 			if (skb && !(flags & MSG_PEEK))
1824 				udp_skb_dtor_locked(sk, skb);
1825 			spin_unlock(&sk_queue->lock);
1826 			spin_unlock_bh(&queue->lock);
1827 			if (skb)
1828 				return skb;
1829 
1830 busy_check:
1831 			if (!sk_can_busy_loop(sk))
1832 				break;
1833 
1834 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1835 		} while (!skb_queue_empty_lockless(sk_queue));
1836 
1837 		/* sk_queue is empty, reader_queue may contain peeked packets */
1838 	} while (timeo &&
1839 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1840 					      &error, &timeo,
1841 					      (struct sk_buff *)sk_queue));
1842 
1843 	*err = error;
1844 	return NULL;
1845 }
1846 EXPORT_SYMBOL(__skb_recv_udp);
1847 
udp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1848 int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1849 {
1850 	struct sk_buff *skb;
1851 	int err;
1852 
1853 try_again:
1854 	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1855 	if (!skb)
1856 		return err;
1857 
1858 	if (udp_lib_checksum_complete(skb)) {
1859 		int is_udplite = IS_UDPLITE(sk);
1860 		struct net *net = sock_net(sk);
1861 
1862 		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1863 		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1864 		atomic_inc(&sk->sk_drops);
1865 		kfree_skb(skb);
1866 		goto try_again;
1867 	}
1868 
1869 	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1870 	return recv_actor(sk, skb);
1871 }
1872 EXPORT_SYMBOL(udp_read_skb);
1873 
1874 /*
1875  * 	This should be easy, if there is something there we
1876  * 	return it, otherwise we block.
1877  */
1878 
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)1879 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1880 		int *addr_len)
1881 {
1882 	struct inet_sock *inet = inet_sk(sk);
1883 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1884 	struct sk_buff *skb;
1885 	unsigned int ulen, copied;
1886 	int off, err, peeking = flags & MSG_PEEK;
1887 	int is_udplite = IS_UDPLITE(sk);
1888 	bool checksum_valid = false;
1889 
1890 	if (flags & MSG_ERRQUEUE)
1891 		return ip_recv_error(sk, msg, len, addr_len);
1892 
1893 try_again:
1894 	off = sk_peek_offset(sk, flags);
1895 	skb = __skb_recv_udp(sk, flags, &off, &err);
1896 	if (!skb)
1897 		return err;
1898 
1899 	ulen = udp_skb_len(skb);
1900 	copied = len;
1901 	if (copied > ulen - off)
1902 		copied = ulen - off;
1903 	else if (copied < ulen)
1904 		msg->msg_flags |= MSG_TRUNC;
1905 
1906 	/*
1907 	 * If checksum is needed at all, try to do it while copying the
1908 	 * data.  If the data is truncated, or if we only want a partial
1909 	 * coverage checksum (UDP-Lite), do it before the copy.
1910 	 */
1911 
1912 	if (copied < ulen || peeking ||
1913 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1914 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1915 				!__udp_lib_checksum_complete(skb);
1916 		if (!checksum_valid)
1917 			goto csum_copy_err;
1918 	}
1919 
1920 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1921 		if (udp_skb_is_linear(skb))
1922 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1923 		else
1924 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1925 	} else {
1926 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1927 
1928 		if (err == -EINVAL)
1929 			goto csum_copy_err;
1930 	}
1931 
1932 	if (unlikely(err)) {
1933 		if (!peeking) {
1934 			atomic_inc(&sk->sk_drops);
1935 			UDP_INC_STATS(sock_net(sk),
1936 				      UDP_MIB_INERRORS, is_udplite);
1937 		}
1938 		kfree_skb(skb);
1939 		return err;
1940 	}
1941 
1942 	if (!peeking)
1943 		UDP_INC_STATS(sock_net(sk),
1944 			      UDP_MIB_INDATAGRAMS, is_udplite);
1945 
1946 	sock_recv_cmsgs(msg, sk, skb);
1947 
1948 	/* Copy the address. */
1949 	if (sin) {
1950 		sin->sin_family = AF_INET;
1951 		sin->sin_port = udp_hdr(skb)->source;
1952 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1953 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1954 		*addr_len = sizeof(*sin);
1955 
1956 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1957 						      (struct sockaddr *)sin,
1958 						      addr_len);
1959 	}
1960 
1961 	if (udp_test_bit(GRO_ENABLED, sk))
1962 		udp_cmsg_recv(msg, sk, skb);
1963 
1964 	if (inet_cmsg_flags(inet))
1965 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1966 
1967 	err = copied;
1968 	if (flags & MSG_TRUNC)
1969 		err = ulen;
1970 
1971 	trace_android_rvh_udp_recvmsg(sk, msg, len, flags, addr_len);
1972 
1973 	skb_consume_udp(sk, skb, peeking ? -err : err);
1974 	return err;
1975 
1976 csum_copy_err:
1977 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1978 				 udp_skb_destructor)) {
1979 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1980 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1981 	}
1982 	kfree_skb(skb);
1983 
1984 	/* starting over for a new packet, but check if we need to yield */
1985 	cond_resched();
1986 	msg->msg_flags &= ~MSG_TRUNC;
1987 	goto try_again;
1988 }
1989 
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1990 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1991 {
1992 	/* This check is replicated from __ip4_datagram_connect() and
1993 	 * intended to prevent BPF program called below from accessing bytes
1994 	 * that are out of the bound specified by user in addr_len.
1995 	 */
1996 	if (addr_len < sizeof(struct sockaddr_in))
1997 		return -EINVAL;
1998 
1999 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
2000 }
2001 EXPORT_SYMBOL(udp_pre_connect);
2002 
__udp_disconnect(struct sock * sk,int flags)2003 int __udp_disconnect(struct sock *sk, int flags)
2004 {
2005 	struct inet_sock *inet = inet_sk(sk);
2006 	/*
2007 	 *	1003.1g - break association.
2008 	 */
2009 
2010 	sk->sk_state = TCP_CLOSE;
2011 	inet->inet_daddr = 0;
2012 	inet->inet_dport = 0;
2013 	sock_rps_reset_rxhash(sk);
2014 	sk->sk_bound_dev_if = 0;
2015 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
2016 		inet_reset_saddr(sk);
2017 		if (sk->sk_prot->rehash &&
2018 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2019 			sk->sk_prot->rehash(sk);
2020 	}
2021 
2022 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2023 		sk->sk_prot->unhash(sk);
2024 		inet->inet_sport = 0;
2025 	}
2026 	sk_dst_reset(sk);
2027 	return 0;
2028 }
2029 EXPORT_SYMBOL(__udp_disconnect);
2030 
udp_disconnect(struct sock * sk,int flags)2031 int udp_disconnect(struct sock *sk, int flags)
2032 {
2033 	lock_sock(sk);
2034 	__udp_disconnect(sk, flags);
2035 	release_sock(sk);
2036 	return 0;
2037 }
2038 EXPORT_SYMBOL(udp_disconnect);
2039 
udp_lib_unhash(struct sock * sk)2040 void udp_lib_unhash(struct sock *sk)
2041 {
2042 	if (sk_hashed(sk)) {
2043 		struct udp_table *udptable = udp_get_table_prot(sk);
2044 		struct udp_hslot *hslot, *hslot2;
2045 
2046 		hslot  = udp_hashslot(udptable, sock_net(sk),
2047 				      udp_sk(sk)->udp_port_hash);
2048 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2049 
2050 		spin_lock_bh(&hslot->lock);
2051 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2052 			reuseport_detach_sock(sk);
2053 		if (sk_del_node_init_rcu(sk)) {
2054 			hslot->count--;
2055 			inet_sk(sk)->inet_num = 0;
2056 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2057 
2058 			spin_lock(&hslot2->lock);
2059 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2060 			hslot2->count--;
2061 			spin_unlock(&hslot2->lock);
2062 		}
2063 		spin_unlock_bh(&hslot->lock);
2064 	}
2065 }
2066 EXPORT_SYMBOL(udp_lib_unhash);
2067 
2068 /*
2069  * inet_rcv_saddr was changed, we must rehash secondary hash
2070  */
udp_lib_rehash(struct sock * sk,u16 newhash)2071 void udp_lib_rehash(struct sock *sk, u16 newhash)
2072 {
2073 	if (sk_hashed(sk)) {
2074 		struct udp_table *udptable = udp_get_table_prot(sk);
2075 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2076 
2077 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2078 		nhslot2 = udp_hashslot2(udptable, newhash);
2079 		udp_sk(sk)->udp_portaddr_hash = newhash;
2080 
2081 		if (hslot2 != nhslot2 ||
2082 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2083 			hslot = udp_hashslot(udptable, sock_net(sk),
2084 					     udp_sk(sk)->udp_port_hash);
2085 			/* we must lock primary chain too */
2086 			spin_lock_bh(&hslot->lock);
2087 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2088 				reuseport_detach_sock(sk);
2089 
2090 			if (hslot2 != nhslot2) {
2091 				spin_lock(&hslot2->lock);
2092 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2093 				hslot2->count--;
2094 				spin_unlock(&hslot2->lock);
2095 
2096 				spin_lock(&nhslot2->lock);
2097 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2098 							 &nhslot2->head);
2099 				nhslot2->count++;
2100 				spin_unlock(&nhslot2->lock);
2101 			}
2102 
2103 			spin_unlock_bh(&hslot->lock);
2104 		}
2105 	}
2106 }
2107 EXPORT_SYMBOL(udp_lib_rehash);
2108 
udp_v4_rehash(struct sock * sk)2109 void udp_v4_rehash(struct sock *sk)
2110 {
2111 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2112 					  inet_sk(sk)->inet_rcv_saddr,
2113 					  inet_sk(sk)->inet_num);
2114 	udp_lib_rehash(sk, new_hash);
2115 }
2116 
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2117 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2118 {
2119 	int rc;
2120 
2121 	if (inet_sk(sk)->inet_daddr) {
2122 		sock_rps_save_rxhash(sk, skb);
2123 		sk_mark_napi_id(sk, skb);
2124 		sk_incoming_cpu_update(sk);
2125 	} else {
2126 		sk_mark_napi_id_once(sk, skb);
2127 	}
2128 
2129 	rc = __udp_enqueue_schedule_skb(sk, skb);
2130 	if (rc < 0) {
2131 		int is_udplite = IS_UDPLITE(sk);
2132 		int drop_reason;
2133 
2134 		/* Note that an ENOMEM error is charged twice */
2135 		if (rc == -ENOMEM) {
2136 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2137 					is_udplite);
2138 			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2139 		} else {
2140 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2141 				      is_udplite);
2142 			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2143 		}
2144 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2145 		trace_udp_fail_queue_rcv_skb(rc, sk, skb);
2146 		sk_skb_reason_drop(sk, skb, drop_reason);
2147 		return -1;
2148 	}
2149 
2150 	return 0;
2151 }
2152 
2153 /* returns:
2154  *  -1: error
2155  *   0: success
2156  *  >0: "udp encap" protocol resubmission
2157  *
2158  * Note that in the success and error cases, the skb is assumed to
2159  * have either been requeued or freed.
2160  */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2161 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2162 {
2163 	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2164 	struct udp_sock *up = udp_sk(sk);
2165 	int is_udplite = IS_UDPLITE(sk);
2166 
2167 	/*
2168 	 *	Charge it to the socket, dropping if the queue is full.
2169 	 */
2170 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2171 		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2172 		goto drop;
2173 	}
2174 	nf_reset_ct(skb);
2175 
2176 	if (static_branch_unlikely(&udp_encap_needed_key) &&
2177 	    READ_ONCE(up->encap_type)) {
2178 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2179 
2180 		/*
2181 		 * This is an encapsulation socket so pass the skb to
2182 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2183 		 * fall through and pass this up the UDP socket.
2184 		 * up->encap_rcv() returns the following value:
2185 		 * =0 if skb was successfully passed to the encap
2186 		 *    handler or was discarded by it.
2187 		 * >0 if skb should be passed on to UDP.
2188 		 * <0 if skb should be resubmitted as proto -N
2189 		 */
2190 
2191 		/* if we're overly short, let UDP handle it */
2192 		encap_rcv = READ_ONCE(up->encap_rcv);
2193 		if (encap_rcv) {
2194 			int ret;
2195 
2196 			/* Verify checksum before giving to encap */
2197 			if (udp_lib_checksum_complete(skb))
2198 				goto csum_error;
2199 
2200 			ret = encap_rcv(sk, skb);
2201 			if (ret <= 0) {
2202 				__UDP_INC_STATS(sock_net(sk),
2203 						UDP_MIB_INDATAGRAMS,
2204 						is_udplite);
2205 				return -ret;
2206 			}
2207 		}
2208 
2209 		/* FALLTHROUGH -- it's a UDP Packet */
2210 	}
2211 
2212 	/*
2213 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2214 	 */
2215 	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2216 		u16 pcrlen = READ_ONCE(up->pcrlen);
2217 
2218 		/*
2219 		 * MIB statistics other than incrementing the error count are
2220 		 * disabled for the following two types of errors: these depend
2221 		 * on the application settings, not on the functioning of the
2222 		 * protocol stack as such.
2223 		 *
2224 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2225 		 * way ... to ... at least let the receiving application block
2226 		 * delivery of packets with coverage values less than a value
2227 		 * provided by the application."
2228 		 */
2229 		if (pcrlen == 0) {          /* full coverage was set  */
2230 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2231 					    UDP_SKB_CB(skb)->cscov, skb->len);
2232 			goto drop;
2233 		}
2234 		/* The next case involves violating the min. coverage requested
2235 		 * by the receiver. This is subtle: if receiver wants x and x is
2236 		 * greater than the buffersize/MTU then receiver will complain
2237 		 * that it wants x while sender emits packets of smaller size y.
2238 		 * Therefore the above ...()->partial_cov statement is essential.
2239 		 */
2240 		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2241 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2242 					    UDP_SKB_CB(skb)->cscov, pcrlen);
2243 			goto drop;
2244 		}
2245 	}
2246 
2247 	prefetch(&sk->sk_rmem_alloc);
2248 	if (rcu_access_pointer(sk->sk_filter) &&
2249 	    udp_lib_checksum_complete(skb))
2250 			goto csum_error;
2251 
2252 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2253 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2254 		goto drop;
2255 	}
2256 
2257 	udp_csum_pull_header(skb);
2258 
2259 	ipv4_pktinfo_prepare(sk, skb, true);
2260 	return __udp_queue_rcv_skb(sk, skb);
2261 
2262 csum_error:
2263 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2264 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2265 drop:
2266 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2267 	atomic_inc(&sk->sk_drops);
2268 	sk_skb_reason_drop(sk, skb, drop_reason);
2269 	return -1;
2270 }
2271 
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2272 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2273 {
2274 	struct sk_buff *next, *segs;
2275 	int ret;
2276 
2277 	if (likely(!udp_unexpected_gso(sk, skb)))
2278 		return udp_queue_rcv_one_skb(sk, skb);
2279 
2280 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2281 	__skb_push(skb, -skb_mac_offset(skb));
2282 	segs = udp_rcv_segment(sk, skb, true);
2283 	skb_list_walk_safe(segs, skb, next) {
2284 		__skb_pull(skb, skb_transport_offset(skb));
2285 
2286 		udp_post_segment_fix_csum(skb);
2287 		ret = udp_queue_rcv_one_skb(sk, skb);
2288 		if (ret > 0)
2289 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2290 	}
2291 	return 0;
2292 }
2293 
2294 /* For TCP sockets, sk_rx_dst is protected by socket lock
2295  * For UDP, we use xchg() to guard against concurrent changes.
2296  */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2297 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2298 {
2299 	struct dst_entry *old;
2300 
2301 	if (dst_hold_safe(dst)) {
2302 		old = unrcu_pointer(xchg(&sk->sk_rx_dst, RCU_INITIALIZER(dst)));
2303 		dst_release(old);
2304 		return old != dst;
2305 	}
2306 	return false;
2307 }
2308 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2309 
2310 /*
2311  *	Multicasts and broadcasts go to each listener.
2312  *
2313  *	Note: called only from the BH handler context.
2314  */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2315 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2316 				    struct udphdr  *uh,
2317 				    __be32 saddr, __be32 daddr,
2318 				    struct udp_table *udptable,
2319 				    int proto)
2320 {
2321 	struct sock *sk, *first = NULL;
2322 	unsigned short hnum = ntohs(uh->dest);
2323 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2324 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2325 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2326 	int dif = skb->dev->ifindex;
2327 	int sdif = inet_sdif(skb);
2328 	struct hlist_node *node;
2329 	struct sk_buff *nskb;
2330 
2331 	if (use_hash2) {
2332 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2333 			    udptable->mask;
2334 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2335 start_lookup:
2336 		hslot = &udptable->hash2[hash2];
2337 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2338 	}
2339 
2340 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2341 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2342 					 uh->source, saddr, dif, sdif, hnum))
2343 			continue;
2344 
2345 		if (!first) {
2346 			first = sk;
2347 			continue;
2348 		}
2349 		nskb = skb_clone(skb, GFP_ATOMIC);
2350 
2351 		if (unlikely(!nskb)) {
2352 			atomic_inc(&sk->sk_drops);
2353 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2354 					IS_UDPLITE(sk));
2355 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2356 					IS_UDPLITE(sk));
2357 			continue;
2358 		}
2359 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2360 			consume_skb(nskb);
2361 	}
2362 
2363 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2364 	if (use_hash2 && hash2 != hash2_any) {
2365 		hash2 = hash2_any;
2366 		goto start_lookup;
2367 	}
2368 
2369 	if (first) {
2370 		if (udp_queue_rcv_skb(first, skb) > 0)
2371 			consume_skb(skb);
2372 	} else {
2373 		kfree_skb(skb);
2374 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2375 				proto == IPPROTO_UDPLITE);
2376 	}
2377 	return 0;
2378 }
2379 
2380 /* Initialize UDP checksum. If exited with zero value (success),
2381  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2382  * Otherwise, csum completion requires checksumming packet body,
2383  * including udp header and folding it to skb->csum.
2384  */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2385 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2386 				 int proto)
2387 {
2388 	int err;
2389 
2390 	UDP_SKB_CB(skb)->partial_cov = 0;
2391 	UDP_SKB_CB(skb)->cscov = skb->len;
2392 
2393 	if (proto == IPPROTO_UDPLITE) {
2394 		err = udplite_checksum_init(skb, uh);
2395 		if (err)
2396 			return err;
2397 
2398 		if (UDP_SKB_CB(skb)->partial_cov) {
2399 			skb->csum = inet_compute_pseudo(skb, proto);
2400 			return 0;
2401 		}
2402 	}
2403 
2404 	/* Note, we are only interested in != 0 or == 0, thus the
2405 	 * force to int.
2406 	 */
2407 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2408 							inet_compute_pseudo);
2409 	if (err)
2410 		return err;
2411 
2412 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2413 		/* If SW calculated the value, we know it's bad */
2414 		if (skb->csum_complete_sw)
2415 			return 1;
2416 
2417 		/* HW says the value is bad. Let's validate that.
2418 		 * skb->csum is no longer the full packet checksum,
2419 		 * so don't treat it as such.
2420 		 */
2421 		skb_checksum_complete_unset(skb);
2422 	}
2423 
2424 	return 0;
2425 }
2426 
2427 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2428  * return code conversion for ip layer consumption
2429  */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2430 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2431 			       struct udphdr *uh)
2432 {
2433 	int ret;
2434 
2435 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2436 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2437 
2438 	trace_android_vh_udp_unicast_rcv_skb(skb, sk);
2439 	ret = udp_queue_rcv_skb(sk, skb);
2440 
2441 	/* a return value > 0 means to resubmit the input, but
2442 	 * it wants the return to be -protocol, or 0
2443 	 */
2444 	if (ret > 0)
2445 		return -ret;
2446 	return 0;
2447 }
2448 
2449 /*
2450  *	All we need to do is get the socket, and then do a checksum.
2451  */
2452 
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2453 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2454 		   int proto)
2455 {
2456 	struct sock *sk = NULL;
2457 	struct udphdr *uh;
2458 	unsigned short ulen;
2459 	struct rtable *rt = skb_rtable(skb);
2460 	__be32 saddr, daddr;
2461 	struct net *net = dev_net(skb->dev);
2462 	bool refcounted;
2463 	int drop_reason;
2464 
2465 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2466 
2467 	/*
2468 	 *  Validate the packet.
2469 	 */
2470 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2471 		goto drop;		/* No space for header. */
2472 
2473 	uh   = udp_hdr(skb);
2474 	ulen = ntohs(uh->len);
2475 	saddr = ip_hdr(skb)->saddr;
2476 	daddr = ip_hdr(skb)->daddr;
2477 
2478 	if (ulen > skb->len)
2479 		goto short_packet;
2480 
2481 	if (proto == IPPROTO_UDP) {
2482 		/* UDP validates ulen. */
2483 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2484 			goto short_packet;
2485 		uh = udp_hdr(skb);
2486 	}
2487 
2488 	if (udp4_csum_init(skb, uh, proto))
2489 		goto csum_error;
2490 
2491 	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2492 			     &refcounted, udp_ehashfn);
2493 	if (IS_ERR(sk))
2494 		goto no_sk;
2495 
2496 	if (sk) {
2497 		struct dst_entry *dst = skb_dst(skb);
2498 		int ret;
2499 
2500 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2501 			udp_sk_rx_dst_set(sk, dst);
2502 
2503 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2504 		if (refcounted)
2505 			sock_put(sk);
2506 		return ret;
2507 	}
2508 
2509 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2510 		return __udp4_lib_mcast_deliver(net, skb, uh,
2511 						saddr, daddr, udptable, proto);
2512 
2513 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2514 	if (sk)
2515 		return udp_unicast_rcv_skb(sk, skb, uh);
2516 no_sk:
2517 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2518 		goto drop;
2519 	nf_reset_ct(skb);
2520 
2521 	/* No socket. Drop packet silently, if checksum is wrong */
2522 	if (udp_lib_checksum_complete(skb))
2523 		goto csum_error;
2524 
2525 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2526 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2527 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2528 
2529 	/*
2530 	 * Hmm.  We got an UDP packet to a port to which we
2531 	 * don't wanna listen.  Ignore it.
2532 	 */
2533 	sk_skb_reason_drop(sk, skb, drop_reason);
2534 	return 0;
2535 
2536 short_packet:
2537 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2538 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2539 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2540 			    &saddr, ntohs(uh->source),
2541 			    ulen, skb->len,
2542 			    &daddr, ntohs(uh->dest));
2543 	goto drop;
2544 
2545 csum_error:
2546 	/*
2547 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2548 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2549 	 */
2550 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2551 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2552 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2553 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2554 			    ulen);
2555 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2556 drop:
2557 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2558 	sk_skb_reason_drop(sk, skb, drop_reason);
2559 	return 0;
2560 }
2561 
2562 /* We can only early demux multicast if there is a single matching socket.
2563  * If more than one socket found returns NULL
2564  */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2565 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2566 						  __be16 loc_port, __be32 loc_addr,
2567 						  __be16 rmt_port, __be32 rmt_addr,
2568 						  int dif, int sdif)
2569 {
2570 	struct udp_table *udptable = net->ipv4.udp_table;
2571 	unsigned short hnum = ntohs(loc_port);
2572 	struct sock *sk, *result;
2573 	struct udp_hslot *hslot;
2574 	unsigned int slot;
2575 
2576 	slot = udp_hashfn(net, hnum, udptable->mask);
2577 	hslot = &udptable->hash[slot];
2578 
2579 	/* Do not bother scanning a too big list */
2580 	if (hslot->count > 10)
2581 		return NULL;
2582 
2583 	result = NULL;
2584 	sk_for_each_rcu(sk, &hslot->head) {
2585 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2586 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2587 			if (result)
2588 				return NULL;
2589 			result = sk;
2590 		}
2591 	}
2592 
2593 	return result;
2594 }
2595 
2596 /* For unicast we should only early demux connected sockets or we can
2597  * break forwarding setups.  The chains here can be long so only check
2598  * if the first socket is an exact match and if not move on.
2599  */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2600 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2601 					    __be16 loc_port, __be32 loc_addr,
2602 					    __be16 rmt_port, __be32 rmt_addr,
2603 					    int dif, int sdif)
2604 {
2605 	struct udp_table *udptable = net->ipv4.udp_table;
2606 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2607 	unsigned short hnum = ntohs(loc_port);
2608 	unsigned int hash2, slot2;
2609 	struct udp_hslot *hslot2;
2610 	__portpair ports;
2611 	struct sock *sk;
2612 
2613 	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2614 	slot2 = hash2 & udptable->mask;
2615 	hslot2 = &udptable->hash2[slot2];
2616 	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2617 
2618 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2619 		if (inet_match(net, sk, acookie, ports, dif, sdif))
2620 			return sk;
2621 		/* Only check first socket in chain */
2622 		break;
2623 	}
2624 	return NULL;
2625 }
2626 
udp_v4_early_demux(struct sk_buff * skb)2627 int udp_v4_early_demux(struct sk_buff *skb)
2628 {
2629 	struct net *net = dev_net(skb->dev);
2630 	struct in_device *in_dev = NULL;
2631 	const struct iphdr *iph;
2632 	const struct udphdr *uh;
2633 	struct sock *sk = NULL;
2634 	struct dst_entry *dst;
2635 	int dif = skb->dev->ifindex;
2636 	int sdif = inet_sdif(skb);
2637 	int ours;
2638 
2639 	/* validate the packet */
2640 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2641 		return 0;
2642 
2643 	iph = ip_hdr(skb);
2644 	uh = udp_hdr(skb);
2645 
2646 	if (skb->pkt_type == PACKET_MULTICAST) {
2647 		in_dev = __in_dev_get_rcu(skb->dev);
2648 
2649 		if (!in_dev)
2650 			return 0;
2651 
2652 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2653 				       iph->protocol);
2654 		if (!ours)
2655 			return 0;
2656 
2657 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2658 						   uh->source, iph->saddr,
2659 						   dif, sdif);
2660 	} else if (skb->pkt_type == PACKET_HOST) {
2661 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2662 					     uh->source, iph->saddr, dif, sdif);
2663 	}
2664 
2665 	if (!sk)
2666 		return 0;
2667 
2668 	skb->sk = sk;
2669 	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2670 	skb->destructor = sock_pfree;
2671 	dst = rcu_dereference(sk->sk_rx_dst);
2672 
2673 	if (dst)
2674 		dst = dst_check(dst, 0);
2675 	if (dst) {
2676 		u32 itag = 0;
2677 
2678 		/* set noref for now.
2679 		 * any place which wants to hold dst has to call
2680 		 * dst_hold_safe()
2681 		 */
2682 		skb_dst_set_noref(skb, dst);
2683 
2684 		/* for unconnected multicast sockets we need to validate
2685 		 * the source on each packet
2686 		 */
2687 		if (!inet_sk(sk)->inet_daddr && in_dev)
2688 			return ip_mc_validate_source(skb, iph->daddr,
2689 						     iph->saddr,
2690 						     iph->tos & INET_DSCP_MASK,
2691 						     skb->dev, in_dev, &itag);
2692 	}
2693 	return 0;
2694 }
2695 
udp_rcv(struct sk_buff * skb)2696 int udp_rcv(struct sk_buff *skb)
2697 {
2698 	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2699 }
2700 
udp_destroy_sock(struct sock * sk)2701 void udp_destroy_sock(struct sock *sk)
2702 {
2703 	struct udp_sock *up = udp_sk(sk);
2704 	bool slow = lock_sock_fast(sk);
2705 
2706 	/* protects from races with udp_abort() */
2707 	sock_set_flag(sk, SOCK_DEAD);
2708 	udp_flush_pending_frames(sk);
2709 	unlock_sock_fast(sk, slow);
2710 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2711 		if (up->encap_type) {
2712 			void (*encap_destroy)(struct sock *sk);
2713 			encap_destroy = READ_ONCE(up->encap_destroy);
2714 			if (encap_destroy)
2715 				encap_destroy(sk);
2716 		}
2717 		if (udp_test_bit(ENCAP_ENABLED, sk))
2718 			static_branch_dec(&udp_encap_needed_key);
2719 	}
2720 }
2721 
set_xfrm_gro_udp_encap_rcv(__u16 encap_type,unsigned short family,struct sock * sk)2722 static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2723 				       struct sock *sk)
2724 {
2725 #ifdef CONFIG_XFRM
2726 	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2727 		if (family == AF_INET)
2728 			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2729 		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2730 			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2731 	}
2732 #endif
2733 }
2734 
2735 /*
2736  *	Socket option code for UDP
2737  */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2738 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2739 		       sockptr_t optval, unsigned int optlen,
2740 		       int (*push_pending_frames)(struct sock *))
2741 {
2742 	struct udp_sock *up = udp_sk(sk);
2743 	int val, valbool;
2744 	int err = 0;
2745 	int is_udplite = IS_UDPLITE(sk);
2746 
2747 	if (level == SOL_SOCKET) {
2748 		err = sk_setsockopt(sk, level, optname, optval, optlen);
2749 
2750 		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2751 			sockopt_lock_sock(sk);
2752 			/* paired with READ_ONCE in udp_rmem_release() */
2753 			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2754 			sockopt_release_sock(sk);
2755 		}
2756 		return err;
2757 	}
2758 
2759 	if (optlen < sizeof(int))
2760 		return -EINVAL;
2761 
2762 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2763 		return -EFAULT;
2764 
2765 	valbool = val ? 1 : 0;
2766 
2767 	switch (optname) {
2768 	case UDP_CORK:
2769 		if (val != 0) {
2770 			udp_set_bit(CORK, sk);
2771 		} else {
2772 			udp_clear_bit(CORK, sk);
2773 			lock_sock(sk);
2774 			push_pending_frames(sk);
2775 			release_sock(sk);
2776 		}
2777 		break;
2778 
2779 	case UDP_ENCAP:
2780 		switch (val) {
2781 		case 0:
2782 #ifdef CONFIG_XFRM
2783 		case UDP_ENCAP_ESPINUDP:
2784 			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2785 #if IS_ENABLED(CONFIG_IPV6)
2786 			if (sk->sk_family == AF_INET6)
2787 				WRITE_ONCE(up->encap_rcv,
2788 					   ipv6_stub->xfrm6_udp_encap_rcv);
2789 			else
2790 #endif
2791 				WRITE_ONCE(up->encap_rcv,
2792 					   xfrm4_udp_encap_rcv);
2793 #endif
2794 			fallthrough;
2795 		case UDP_ENCAP_L2TPINUDP:
2796 			WRITE_ONCE(up->encap_type, val);
2797 			udp_tunnel_encap_enable(sk);
2798 			break;
2799 		default:
2800 			err = -ENOPROTOOPT;
2801 			break;
2802 		}
2803 		break;
2804 
2805 	case UDP_NO_CHECK6_TX:
2806 		udp_set_no_check6_tx(sk, valbool);
2807 		break;
2808 
2809 	case UDP_NO_CHECK6_RX:
2810 		udp_set_no_check6_rx(sk, valbool);
2811 		break;
2812 
2813 	case UDP_SEGMENT:
2814 		if (val < 0 || val > USHRT_MAX)
2815 			return -EINVAL;
2816 		WRITE_ONCE(up->gso_size, val);
2817 		break;
2818 
2819 	case UDP_GRO:
2820 
2821 		/* when enabling GRO, accept the related GSO packet type */
2822 		if (valbool)
2823 			udp_tunnel_encap_enable(sk);
2824 		udp_assign_bit(GRO_ENABLED, sk, valbool);
2825 		udp_assign_bit(ACCEPT_L4, sk, valbool);
2826 		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2827 		break;
2828 
2829 	/*
2830 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2831 	 */
2832 	/* The sender sets actual checksum coverage length via this option.
2833 	 * The case coverage > packet length is handled by send module. */
2834 	case UDPLITE_SEND_CSCOV:
2835 		if (!is_udplite)         /* Disable the option on UDP sockets */
2836 			return -ENOPROTOOPT;
2837 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2838 			val = 8;
2839 		else if (val > USHRT_MAX)
2840 			val = USHRT_MAX;
2841 		WRITE_ONCE(up->pcslen, val);
2842 		udp_set_bit(UDPLITE_SEND_CC, sk);
2843 		break;
2844 
2845 	/* The receiver specifies a minimum checksum coverage value. To make
2846 	 * sense, this should be set to at least 8 (as done below). If zero is
2847 	 * used, this again means full checksum coverage.                     */
2848 	case UDPLITE_RECV_CSCOV:
2849 		if (!is_udplite)         /* Disable the option on UDP sockets */
2850 			return -ENOPROTOOPT;
2851 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2852 			val = 8;
2853 		else if (val > USHRT_MAX)
2854 			val = USHRT_MAX;
2855 		WRITE_ONCE(up->pcrlen, val);
2856 		udp_set_bit(UDPLITE_RECV_CC, sk);
2857 		break;
2858 
2859 	default:
2860 		err = -ENOPROTOOPT;
2861 		break;
2862 	}
2863 
2864 	return err;
2865 }
2866 EXPORT_SYMBOL(udp_lib_setsockopt);
2867 
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2868 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2869 		   unsigned int optlen)
2870 {
2871 	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2872 		return udp_lib_setsockopt(sk, level, optname,
2873 					  optval, optlen,
2874 					  udp_push_pending_frames);
2875 	return ip_setsockopt(sk, level, optname, optval, optlen);
2876 }
2877 
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2878 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2879 		       char __user *optval, int __user *optlen)
2880 {
2881 	struct udp_sock *up = udp_sk(sk);
2882 	int val, len;
2883 
2884 	if (get_user(len, optlen))
2885 		return -EFAULT;
2886 
2887 	if (len < 0)
2888 		return -EINVAL;
2889 
2890 	len = min_t(unsigned int, len, sizeof(int));
2891 
2892 	switch (optname) {
2893 	case UDP_CORK:
2894 		val = udp_test_bit(CORK, sk);
2895 		break;
2896 
2897 	case UDP_ENCAP:
2898 		val = READ_ONCE(up->encap_type);
2899 		break;
2900 
2901 	case UDP_NO_CHECK6_TX:
2902 		val = udp_get_no_check6_tx(sk);
2903 		break;
2904 
2905 	case UDP_NO_CHECK6_RX:
2906 		val = udp_get_no_check6_rx(sk);
2907 		break;
2908 
2909 	case UDP_SEGMENT:
2910 		val = READ_ONCE(up->gso_size);
2911 		break;
2912 
2913 	case UDP_GRO:
2914 		val = udp_test_bit(GRO_ENABLED, sk);
2915 		break;
2916 
2917 	/* The following two cannot be changed on UDP sockets, the return is
2918 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2919 	case UDPLITE_SEND_CSCOV:
2920 		val = READ_ONCE(up->pcslen);
2921 		break;
2922 
2923 	case UDPLITE_RECV_CSCOV:
2924 		val = READ_ONCE(up->pcrlen);
2925 		break;
2926 
2927 	default:
2928 		return -ENOPROTOOPT;
2929 	}
2930 
2931 	if (put_user(len, optlen))
2932 		return -EFAULT;
2933 	if (copy_to_user(optval, &val, len))
2934 		return -EFAULT;
2935 	return 0;
2936 }
2937 EXPORT_SYMBOL(udp_lib_getsockopt);
2938 
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2939 int udp_getsockopt(struct sock *sk, int level, int optname,
2940 		   char __user *optval, int __user *optlen)
2941 {
2942 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2943 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2944 	return ip_getsockopt(sk, level, optname, optval, optlen);
2945 }
2946 
2947 /**
2948  * 	udp_poll - wait for a UDP event.
2949  *	@file: - file struct
2950  *	@sock: - socket
2951  *	@wait: - poll table
2952  *
2953  *	This is same as datagram poll, except for the special case of
2954  *	blocking sockets. If application is using a blocking fd
2955  *	and a packet with checksum error is in the queue;
2956  *	then it could get return from select indicating data available
2957  *	but then block when reading it. Add special case code
2958  *	to work around these arguably broken applications.
2959  */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2960 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2961 {
2962 	__poll_t mask = datagram_poll(file, sock, wait);
2963 	struct sock *sk = sock->sk;
2964 
2965 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2966 		mask |= EPOLLIN | EPOLLRDNORM;
2967 
2968 	/* Check for false positives due to checksum errors */
2969 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2970 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2971 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2972 
2973 	/* psock ingress_msg queue should not contain any bad checksum frames */
2974 	if (sk_is_readable(sk))
2975 		mask |= EPOLLIN | EPOLLRDNORM;
2976 	return mask;
2977 
2978 }
2979 EXPORT_SYMBOL(udp_poll);
2980 
udp_abort(struct sock * sk,int err)2981 int udp_abort(struct sock *sk, int err)
2982 {
2983 	if (!has_current_bpf_ctx())
2984 		lock_sock(sk);
2985 
2986 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2987 	 * with close()
2988 	 */
2989 	if (sock_flag(sk, SOCK_DEAD))
2990 		goto out;
2991 
2992 	sk->sk_err = err;
2993 	sk_error_report(sk);
2994 	__udp_disconnect(sk, 0);
2995 
2996 out:
2997 	if (!has_current_bpf_ctx())
2998 		release_sock(sk);
2999 
3000 	return 0;
3001 }
3002 EXPORT_SYMBOL_GPL(udp_abort);
3003 
3004 struct proto udp_prot = {
3005 	.name			= "UDP",
3006 	.owner			= THIS_MODULE,
3007 	.close			= udp_lib_close,
3008 	.pre_connect		= udp_pre_connect,
3009 	.connect		= ip4_datagram_connect,
3010 	.disconnect		= udp_disconnect,
3011 	.ioctl			= udp_ioctl,
3012 	.init			= udp_init_sock,
3013 	.destroy		= udp_destroy_sock,
3014 	.setsockopt		= udp_setsockopt,
3015 	.getsockopt		= udp_getsockopt,
3016 	.sendmsg		= udp_sendmsg,
3017 	.recvmsg		= udp_recvmsg,
3018 	.splice_eof		= udp_splice_eof,
3019 	.release_cb		= ip4_datagram_release_cb,
3020 	.hash			= udp_lib_hash,
3021 	.unhash			= udp_lib_unhash,
3022 	.rehash			= udp_v4_rehash,
3023 	.get_port		= udp_v4_get_port,
3024 	.put_port		= udp_lib_unhash,
3025 #ifdef CONFIG_BPF_SYSCALL
3026 	.psock_update_sk_prot	= udp_bpf_update_proto,
3027 #endif
3028 	.memory_allocated	= &udp_memory_allocated,
3029 	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
3030 
3031 	.sysctl_mem		= sysctl_udp_mem,
3032 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
3033 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
3034 	.obj_size		= sizeof(struct udp_sock),
3035 	.h.udp_table		= NULL,
3036 	.diag_destroy		= udp_abort,
3037 };
3038 EXPORT_SYMBOL(udp_prot);
3039 
3040 /* ------------------------------------------------------------------------ */
3041 #ifdef CONFIG_PROC_FS
3042 
3043 static unsigned short seq_file_family(const struct seq_file *seq);
seq_sk_match(struct seq_file * seq,const struct sock * sk)3044 static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
3045 {
3046 	unsigned short family = seq_file_family(seq);
3047 
3048 	/* AF_UNSPEC is used as a match all */
3049 	return ((family == AF_UNSPEC || family == sk->sk_family) &&
3050 		net_eq(sock_net(sk), seq_file_net(seq)));
3051 }
3052 
3053 #ifdef CONFIG_BPF_SYSCALL
3054 static const struct seq_operations bpf_iter_udp_seq_ops;
3055 #endif
udp_get_table_seq(struct seq_file * seq,struct net * net)3056 static struct udp_table *udp_get_table_seq(struct seq_file *seq,
3057 					   struct net *net)
3058 {
3059 	const struct udp_seq_afinfo *afinfo;
3060 
3061 #ifdef CONFIG_BPF_SYSCALL
3062 	if (seq->op == &bpf_iter_udp_seq_ops)
3063 		return net->ipv4.udp_table;
3064 #endif
3065 
3066 	afinfo = pde_data(file_inode(seq->file));
3067 	return afinfo->udp_table ? : net->ipv4.udp_table;
3068 }
3069 
udp_get_first(struct seq_file * seq,int start)3070 static struct sock *udp_get_first(struct seq_file *seq, int start)
3071 {
3072 	struct udp_iter_state *state = seq->private;
3073 	struct net *net = seq_file_net(seq);
3074 	struct udp_table *udptable;
3075 	struct sock *sk;
3076 
3077 	udptable = udp_get_table_seq(seq, net);
3078 
3079 	for (state->bucket = start; state->bucket <= udptable->mask;
3080 	     ++state->bucket) {
3081 		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3082 
3083 		if (hlist_empty(&hslot->head))
3084 			continue;
3085 
3086 		spin_lock_bh(&hslot->lock);
3087 		sk_for_each(sk, &hslot->head) {
3088 			if (seq_sk_match(seq, sk))
3089 				goto found;
3090 		}
3091 		spin_unlock_bh(&hslot->lock);
3092 	}
3093 	sk = NULL;
3094 found:
3095 	return sk;
3096 }
3097 
udp_get_next(struct seq_file * seq,struct sock * sk)3098 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3099 {
3100 	struct udp_iter_state *state = seq->private;
3101 	struct net *net = seq_file_net(seq);
3102 	struct udp_table *udptable;
3103 
3104 	do {
3105 		sk = sk_next(sk);
3106 	} while (sk && !seq_sk_match(seq, sk));
3107 
3108 	if (!sk) {
3109 		udptable = udp_get_table_seq(seq, net);
3110 
3111 		if (state->bucket <= udptable->mask)
3112 			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3113 
3114 		return udp_get_first(seq, state->bucket + 1);
3115 	}
3116 	return sk;
3117 }
3118 
udp_get_idx(struct seq_file * seq,loff_t pos)3119 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3120 {
3121 	struct sock *sk = udp_get_first(seq, 0);
3122 
3123 	if (sk)
3124 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3125 			--pos;
3126 	return pos ? NULL : sk;
3127 }
3128 
udp_seq_start(struct seq_file * seq,loff_t * pos)3129 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3130 {
3131 	struct udp_iter_state *state = seq->private;
3132 	state->bucket = MAX_UDP_PORTS;
3133 
3134 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3135 }
3136 EXPORT_SYMBOL(udp_seq_start);
3137 
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3138 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3139 {
3140 	struct sock *sk;
3141 
3142 	if (v == SEQ_START_TOKEN)
3143 		sk = udp_get_idx(seq, 0);
3144 	else
3145 		sk = udp_get_next(seq, v);
3146 
3147 	++*pos;
3148 	return sk;
3149 }
3150 EXPORT_SYMBOL(udp_seq_next);
3151 
udp_seq_stop(struct seq_file * seq,void * v)3152 void udp_seq_stop(struct seq_file *seq, void *v)
3153 {
3154 	struct udp_iter_state *state = seq->private;
3155 	struct udp_table *udptable;
3156 
3157 	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3158 
3159 	if (state->bucket <= udptable->mask)
3160 		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3161 }
3162 EXPORT_SYMBOL(udp_seq_stop);
3163 
3164 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3165 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3166 		int bucket)
3167 {
3168 	struct inet_sock *inet = inet_sk(sp);
3169 	__be32 dest = inet->inet_daddr;
3170 	__be32 src  = inet->inet_rcv_saddr;
3171 	__u16 destp	  = ntohs(inet->inet_dport);
3172 	__u16 srcp	  = ntohs(inet->inet_sport);
3173 
3174 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3175 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3176 		bucket, src, srcp, dest, destp, sp->sk_state,
3177 		sk_wmem_alloc_get(sp),
3178 		udp_rqueue_get(sp),
3179 		0, 0L, 0,
3180 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3181 		0, sock_i_ino(sp),
3182 		refcount_read(&sp->sk_refcnt), sp,
3183 		atomic_read(&sp->sk_drops));
3184 }
3185 
udp4_seq_show(struct seq_file * seq,void * v)3186 int udp4_seq_show(struct seq_file *seq, void *v)
3187 {
3188 	seq_setwidth(seq, 127);
3189 	if (v == SEQ_START_TOKEN)
3190 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3191 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3192 			   "inode ref pointer drops");
3193 	else {
3194 		struct udp_iter_state *state = seq->private;
3195 
3196 		udp4_format_sock(v, seq, state->bucket);
3197 	}
3198 	seq_pad(seq, '\n');
3199 	return 0;
3200 }
3201 
3202 #ifdef CONFIG_BPF_SYSCALL
3203 struct bpf_iter__udp {
3204 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3205 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3206 	uid_t uid __aligned(8);
3207 	int bucket __aligned(8);
3208 };
3209 
3210 struct bpf_udp_iter_state {
3211 	struct udp_iter_state state;
3212 	unsigned int cur_sk;
3213 	unsigned int end_sk;
3214 	unsigned int max_sk;
3215 	int offset;
3216 	struct sock **batch;
3217 	bool st_bucket_done;
3218 };
3219 
3220 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3221 				      unsigned int new_batch_sz);
bpf_iter_udp_batch(struct seq_file * seq)3222 static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3223 {
3224 	struct bpf_udp_iter_state *iter = seq->private;
3225 	struct udp_iter_state *state = &iter->state;
3226 	struct net *net = seq_file_net(seq);
3227 	int resume_bucket, resume_offset;
3228 	struct udp_table *udptable;
3229 	unsigned int batch_sks = 0;
3230 	bool resized = false;
3231 	struct sock *sk;
3232 
3233 	resume_bucket = state->bucket;
3234 	resume_offset = iter->offset;
3235 
3236 	/* The current batch is done, so advance the bucket. */
3237 	if (iter->st_bucket_done)
3238 		state->bucket++;
3239 
3240 	udptable = udp_get_table_seq(seq, net);
3241 
3242 again:
3243 	/* New batch for the next bucket.
3244 	 * Iterate over the hash table to find a bucket with sockets matching
3245 	 * the iterator attributes, and return the first matching socket from
3246 	 * the bucket. The remaining matched sockets from the bucket are batched
3247 	 * before releasing the bucket lock. This allows BPF programs that are
3248 	 * called in seq_show to acquire the bucket lock if needed.
3249 	 */
3250 	iter->cur_sk = 0;
3251 	iter->end_sk = 0;
3252 	iter->st_bucket_done = false;
3253 	batch_sks = 0;
3254 
3255 	for (; state->bucket <= udptable->mask; state->bucket++) {
3256 		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3257 
3258 		if (hlist_empty(&hslot2->head))
3259 			continue;
3260 
3261 		iter->offset = 0;
3262 		spin_lock_bh(&hslot2->lock);
3263 		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3264 			if (seq_sk_match(seq, sk)) {
3265 				/* Resume from the last iterated socket at the
3266 				 * offset in the bucket before iterator was stopped.
3267 				 */
3268 				if (state->bucket == resume_bucket &&
3269 				    iter->offset < resume_offset) {
3270 					++iter->offset;
3271 					continue;
3272 				}
3273 				if (iter->end_sk < iter->max_sk) {
3274 					sock_hold(sk);
3275 					iter->batch[iter->end_sk++] = sk;
3276 				}
3277 				batch_sks++;
3278 			}
3279 		}
3280 		spin_unlock_bh(&hslot2->lock);
3281 
3282 		if (iter->end_sk)
3283 			break;
3284 	}
3285 
3286 	/* All done: no batch made. */
3287 	if (!iter->end_sk)
3288 		return NULL;
3289 
3290 	if (iter->end_sk == batch_sks) {
3291 		/* Batching is done for the current bucket; return the first
3292 		 * socket to be iterated from the batch.
3293 		 */
3294 		iter->st_bucket_done = true;
3295 		goto done;
3296 	}
3297 	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3298 		resized = true;
3299 		/* After allocating a larger batch, retry one more time to grab
3300 		 * the whole bucket.
3301 		 */
3302 		goto again;
3303 	}
3304 done:
3305 	return iter->batch[0];
3306 }
3307 
bpf_iter_udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3308 static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3309 {
3310 	struct bpf_udp_iter_state *iter = seq->private;
3311 	struct sock *sk;
3312 
3313 	/* Whenever seq_next() is called, the iter->cur_sk is
3314 	 * done with seq_show(), so unref the iter->cur_sk.
3315 	 */
3316 	if (iter->cur_sk < iter->end_sk) {
3317 		sock_put(iter->batch[iter->cur_sk++]);
3318 		++iter->offset;
3319 	}
3320 
3321 	/* After updating iter->cur_sk, check if there are more sockets
3322 	 * available in the current bucket batch.
3323 	 */
3324 	if (iter->cur_sk < iter->end_sk)
3325 		sk = iter->batch[iter->cur_sk];
3326 	else
3327 		/* Prepare a new batch. */
3328 		sk = bpf_iter_udp_batch(seq);
3329 
3330 	++*pos;
3331 	return sk;
3332 }
3333 
bpf_iter_udp_seq_start(struct seq_file * seq,loff_t * pos)3334 static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3335 {
3336 	/* bpf iter does not support lseek, so it always
3337 	 * continue from where it was stop()-ped.
3338 	 */
3339 	if (*pos)
3340 		return bpf_iter_udp_batch(seq);
3341 
3342 	return SEQ_START_TOKEN;
3343 }
3344 
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3345 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3346 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3347 {
3348 	struct bpf_iter__udp ctx;
3349 
3350 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3351 	ctx.meta = meta;
3352 	ctx.udp_sk = udp_sk;
3353 	ctx.uid = uid;
3354 	ctx.bucket = bucket;
3355 	return bpf_iter_run_prog(prog, &ctx);
3356 }
3357 
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3358 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3359 {
3360 	struct udp_iter_state *state = seq->private;
3361 	struct bpf_iter_meta meta;
3362 	struct bpf_prog *prog;
3363 	struct sock *sk = v;
3364 	uid_t uid;
3365 	int ret;
3366 
3367 	if (v == SEQ_START_TOKEN)
3368 		return 0;
3369 
3370 	lock_sock(sk);
3371 
3372 	if (unlikely(sk_unhashed(sk))) {
3373 		ret = SEQ_SKIP;
3374 		goto unlock;
3375 	}
3376 
3377 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3378 	meta.seq = seq;
3379 	prog = bpf_iter_get_info(&meta, false);
3380 	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3381 
3382 unlock:
3383 	release_sock(sk);
3384 	return ret;
3385 }
3386 
bpf_iter_udp_put_batch(struct bpf_udp_iter_state * iter)3387 static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3388 {
3389 	while (iter->cur_sk < iter->end_sk)
3390 		sock_put(iter->batch[iter->cur_sk++]);
3391 }
3392 
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3393 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3394 {
3395 	struct bpf_udp_iter_state *iter = seq->private;
3396 	struct bpf_iter_meta meta;
3397 	struct bpf_prog *prog;
3398 
3399 	if (!v) {
3400 		meta.seq = seq;
3401 		prog = bpf_iter_get_info(&meta, true);
3402 		if (prog)
3403 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3404 	}
3405 
3406 	if (iter->cur_sk < iter->end_sk) {
3407 		bpf_iter_udp_put_batch(iter);
3408 		iter->st_bucket_done = false;
3409 	}
3410 }
3411 
3412 static const struct seq_operations bpf_iter_udp_seq_ops = {
3413 	.start		= bpf_iter_udp_seq_start,
3414 	.next		= bpf_iter_udp_seq_next,
3415 	.stop		= bpf_iter_udp_seq_stop,
3416 	.show		= bpf_iter_udp_seq_show,
3417 };
3418 #endif
3419 
seq_file_family(const struct seq_file * seq)3420 static unsigned short seq_file_family(const struct seq_file *seq)
3421 {
3422 	const struct udp_seq_afinfo *afinfo;
3423 
3424 #ifdef CONFIG_BPF_SYSCALL
3425 	/* BPF iterator: bpf programs to filter sockets. */
3426 	if (seq->op == &bpf_iter_udp_seq_ops)
3427 		return AF_UNSPEC;
3428 #endif
3429 
3430 	/* Proc fs iterator */
3431 	afinfo = pde_data(file_inode(seq->file));
3432 	return afinfo->family;
3433 }
3434 
3435 const struct seq_operations udp_seq_ops = {
3436 	.start		= udp_seq_start,
3437 	.next		= udp_seq_next,
3438 	.stop		= udp_seq_stop,
3439 	.show		= udp4_seq_show,
3440 };
3441 EXPORT_SYMBOL(udp_seq_ops);
3442 
3443 static struct udp_seq_afinfo udp4_seq_afinfo = {
3444 	.family		= AF_INET,
3445 	.udp_table	= NULL,
3446 };
3447 
udp4_proc_init_net(struct net * net)3448 static int __net_init udp4_proc_init_net(struct net *net)
3449 {
3450 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3451 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3452 		return -ENOMEM;
3453 	return 0;
3454 }
3455 
udp4_proc_exit_net(struct net * net)3456 static void __net_exit udp4_proc_exit_net(struct net *net)
3457 {
3458 	remove_proc_entry("udp", net->proc_net);
3459 }
3460 
3461 static struct pernet_operations udp4_net_ops = {
3462 	.init = udp4_proc_init_net,
3463 	.exit = udp4_proc_exit_net,
3464 };
3465 
udp4_proc_init(void)3466 int __init udp4_proc_init(void)
3467 {
3468 	return register_pernet_subsys(&udp4_net_ops);
3469 }
3470 
udp4_proc_exit(void)3471 void udp4_proc_exit(void)
3472 {
3473 	unregister_pernet_subsys(&udp4_net_ops);
3474 }
3475 #endif /* CONFIG_PROC_FS */
3476 
3477 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3478 static int __init set_uhash_entries(char *str)
3479 {
3480 	ssize_t ret;
3481 
3482 	if (!str)
3483 		return 0;
3484 
3485 	ret = kstrtoul(str, 0, &uhash_entries);
3486 	if (ret)
3487 		return 0;
3488 
3489 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3490 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3491 	return 1;
3492 }
3493 __setup("uhash_entries=", set_uhash_entries);
3494 
udp_table_init(struct udp_table * table,const char * name)3495 void __init udp_table_init(struct udp_table *table, const char *name)
3496 {
3497 	unsigned int i;
3498 
3499 	table->hash = alloc_large_system_hash(name,
3500 					      2 * sizeof(struct udp_hslot),
3501 					      uhash_entries,
3502 					      21, /* one slot per 2 MB */
3503 					      0,
3504 					      &table->log,
3505 					      &table->mask,
3506 					      UDP_HTABLE_SIZE_MIN,
3507 					      UDP_HTABLE_SIZE_MAX);
3508 
3509 	table->hash2 = table->hash + (table->mask + 1);
3510 	for (i = 0; i <= table->mask; i++) {
3511 		INIT_HLIST_HEAD(&table->hash[i].head);
3512 		table->hash[i].count = 0;
3513 		spin_lock_init(&table->hash[i].lock);
3514 	}
3515 	for (i = 0; i <= table->mask; i++) {
3516 		INIT_HLIST_HEAD(&table->hash2[i].head);
3517 		table->hash2[i].count = 0;
3518 		spin_lock_init(&table->hash2[i].lock);
3519 	}
3520 }
3521 
udp_flow_hashrnd(void)3522 u32 udp_flow_hashrnd(void)
3523 {
3524 	static u32 hashrnd __read_mostly;
3525 
3526 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3527 
3528 	return hashrnd;
3529 }
3530 EXPORT_SYMBOL(udp_flow_hashrnd);
3531 
udp_sysctl_init(struct net * net)3532 static void __net_init udp_sysctl_init(struct net *net)
3533 {
3534 	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3535 	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3536 
3537 #ifdef CONFIG_NET_L3_MASTER_DEV
3538 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3539 #endif
3540 }
3541 
udp_pernet_table_alloc(unsigned int hash_entries)3542 static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3543 {
3544 	struct udp_table *udptable;
3545 	int i;
3546 
3547 	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3548 	if (!udptable)
3549 		goto out;
3550 
3551 	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3552 				      GFP_KERNEL_ACCOUNT);
3553 	if (!udptable->hash)
3554 		goto free_table;
3555 
3556 	udptable->hash2 = udptable->hash + hash_entries;
3557 	udptable->mask = hash_entries - 1;
3558 	udptable->log = ilog2(hash_entries);
3559 
3560 	for (i = 0; i < hash_entries; i++) {
3561 		INIT_HLIST_HEAD(&udptable->hash[i].head);
3562 		udptable->hash[i].count = 0;
3563 		spin_lock_init(&udptable->hash[i].lock);
3564 
3565 		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3566 		udptable->hash2[i].count = 0;
3567 		spin_lock_init(&udptable->hash2[i].lock);
3568 	}
3569 
3570 	return udptable;
3571 
3572 free_table:
3573 	kfree(udptable);
3574 out:
3575 	return NULL;
3576 }
3577 
udp_pernet_table_free(struct net * net)3578 static void __net_exit udp_pernet_table_free(struct net *net)
3579 {
3580 	struct udp_table *udptable = net->ipv4.udp_table;
3581 
3582 	if (udptable == &udp_table)
3583 		return;
3584 
3585 	kvfree(udptable->hash);
3586 	kfree(udptable);
3587 }
3588 
udp_set_table(struct net * net)3589 static void __net_init udp_set_table(struct net *net)
3590 {
3591 	struct udp_table *udptable;
3592 	unsigned int hash_entries;
3593 	struct net *old_net;
3594 
3595 	if (net_eq(net, &init_net))
3596 		goto fallback;
3597 
3598 	old_net = current->nsproxy->net_ns;
3599 	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3600 	if (!hash_entries)
3601 		goto fallback;
3602 
3603 	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3604 	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3605 		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3606 	else
3607 		hash_entries = roundup_pow_of_two(hash_entries);
3608 
3609 	udptable = udp_pernet_table_alloc(hash_entries);
3610 	if (udptable) {
3611 		net->ipv4.udp_table = udptable;
3612 	} else {
3613 		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3614 			"for a netns, fallback to the global one\n",
3615 			hash_entries);
3616 fallback:
3617 		net->ipv4.udp_table = &udp_table;
3618 	}
3619 }
3620 
udp_pernet_init(struct net * net)3621 static int __net_init udp_pernet_init(struct net *net)
3622 {
3623 	udp_sysctl_init(net);
3624 	udp_set_table(net);
3625 
3626 	return 0;
3627 }
3628 
udp_pernet_exit(struct net * net)3629 static void __net_exit udp_pernet_exit(struct net *net)
3630 {
3631 	udp_pernet_table_free(net);
3632 }
3633 
3634 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3635 	.init	= udp_pernet_init,
3636 	.exit	= udp_pernet_exit,
3637 };
3638 
3639 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3640 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3641 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3642 
3643 static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3644 				      unsigned int new_batch_sz)
3645 {
3646 	struct sock **new_batch;
3647 
3648 	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3649 				   GFP_USER | __GFP_NOWARN);
3650 	if (!new_batch)
3651 		return -ENOMEM;
3652 
3653 	bpf_iter_udp_put_batch(iter);
3654 	kvfree(iter->batch);
3655 	iter->batch = new_batch;
3656 	iter->max_sk = new_batch_sz;
3657 
3658 	return 0;
3659 }
3660 
3661 #define INIT_BATCH_SZ 16
3662 
bpf_iter_init_udp(void * priv_data,struct bpf_iter_aux_info * aux)3663 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3664 {
3665 	struct bpf_udp_iter_state *iter = priv_data;
3666 	int ret;
3667 
3668 	ret = bpf_iter_init_seq_net(priv_data, aux);
3669 	if (ret)
3670 		return ret;
3671 
3672 	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3673 	if (ret)
3674 		bpf_iter_fini_seq_net(priv_data);
3675 
3676 	return ret;
3677 }
3678 
bpf_iter_fini_udp(void * priv_data)3679 static void bpf_iter_fini_udp(void *priv_data)
3680 {
3681 	struct bpf_udp_iter_state *iter = priv_data;
3682 
3683 	bpf_iter_fini_seq_net(priv_data);
3684 	kvfree(iter->batch);
3685 }
3686 
3687 static const struct bpf_iter_seq_info udp_seq_info = {
3688 	.seq_ops		= &bpf_iter_udp_seq_ops,
3689 	.init_seq_private	= bpf_iter_init_udp,
3690 	.fini_seq_private	= bpf_iter_fini_udp,
3691 	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3692 };
3693 
3694 static struct bpf_iter_reg udp_reg_info = {
3695 	.target			= "udp",
3696 	.ctx_arg_info_size	= 1,
3697 	.ctx_arg_info		= {
3698 		{ offsetof(struct bpf_iter__udp, udp_sk),
3699 		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3700 	},
3701 	.seq_info		= &udp_seq_info,
3702 };
3703 
bpf_iter_register(void)3704 static void __init bpf_iter_register(void)
3705 {
3706 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3707 	if (bpf_iter_reg_target(&udp_reg_info))
3708 		pr_warn("Warning: could not register bpf iterator udp\n");
3709 }
3710 #endif
3711 
udp_init(void)3712 void __init udp_init(void)
3713 {
3714 	unsigned long limit;
3715 	unsigned int i;
3716 
3717 	udp_table_init(&udp_table, "UDP");
3718 	limit = nr_free_buffer_pages() / 8;
3719 	limit = max(limit, 128UL);
3720 	sysctl_udp_mem[0] = limit / 4 * 3;
3721 	sysctl_udp_mem[1] = limit;
3722 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3723 
3724 	/* 16 spinlocks per cpu */
3725 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3726 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3727 				GFP_KERNEL);
3728 	if (!udp_busylocks)
3729 		panic("UDP: failed to alloc udp_busylocks\n");
3730 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3731 		spin_lock_init(udp_busylocks + i);
3732 
3733 	if (register_pernet_subsys(&udp_sysctl_ops))
3734 		panic("UDP: failed to init sysctl parameters.\n");
3735 
3736 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3737 	bpf_iter_register();
3738 #endif
3739 }
3740