1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 #include <trace/hooks/net.h>
113
114 #ifdef CONFIG_NET_RX_BUSY_POLL
115 unsigned int sysctl_net_busy_read __read_mostly;
116 unsigned int sysctl_net_busy_poll __read_mostly;
117 #endif
118
119 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
120 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122
123 static int sock_close(struct inode *inode, struct file *file);
124 static __poll_t sock_poll(struct file *file,
125 struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129 unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
134 unsigned int flags);
135 static void sock_splice_eof(struct file *file);
136
137 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)138 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
139 {
140 struct socket *sock = f->private_data;
141 const struct proto_ops *ops = READ_ONCE(sock->ops);
142
143 if (ops->show_fdinfo)
144 ops->show_fdinfo(m, sock);
145 }
146 #else
147 #define sock_show_fdinfo NULL
148 #endif
149
150 /*
151 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
152 * in the operation structures but are done directly via the socketcall() multiplexor.
153 */
154
155 static const struct file_operations socket_file_ops = {
156 .owner = THIS_MODULE,
157 .read_iter = sock_read_iter,
158 .write_iter = sock_write_iter,
159 .poll = sock_poll,
160 .unlocked_ioctl = sock_ioctl,
161 #ifdef CONFIG_COMPAT
162 .compat_ioctl = compat_sock_ioctl,
163 #endif
164 .uring_cmd = io_uring_cmd_sock,
165 .mmap = sock_mmap,
166 .release = sock_close,
167 .fasync = sock_fasync,
168 .splice_write = splice_to_socket,
169 .splice_read = sock_splice_read,
170 .splice_eof = sock_splice_eof,
171 .show_fdinfo = sock_show_fdinfo,
172 };
173
174 static const char * const pf_family_names[] = {
175 [PF_UNSPEC] = "PF_UNSPEC",
176 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
177 [PF_INET] = "PF_INET",
178 [PF_AX25] = "PF_AX25",
179 [PF_IPX] = "PF_IPX",
180 [PF_APPLETALK] = "PF_APPLETALK",
181 [PF_NETROM] = "PF_NETROM",
182 [PF_BRIDGE] = "PF_BRIDGE",
183 [PF_ATMPVC] = "PF_ATMPVC",
184 [PF_X25] = "PF_X25",
185 [PF_INET6] = "PF_INET6",
186 [PF_ROSE] = "PF_ROSE",
187 [PF_DECnet] = "PF_DECnet",
188 [PF_NETBEUI] = "PF_NETBEUI",
189 [PF_SECURITY] = "PF_SECURITY",
190 [PF_KEY] = "PF_KEY",
191 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
192 [PF_PACKET] = "PF_PACKET",
193 [PF_ASH] = "PF_ASH",
194 [PF_ECONET] = "PF_ECONET",
195 [PF_ATMSVC] = "PF_ATMSVC",
196 [PF_RDS] = "PF_RDS",
197 [PF_SNA] = "PF_SNA",
198 [PF_IRDA] = "PF_IRDA",
199 [PF_PPPOX] = "PF_PPPOX",
200 [PF_WANPIPE] = "PF_WANPIPE",
201 [PF_LLC] = "PF_LLC",
202 [PF_IB] = "PF_IB",
203 [PF_MPLS] = "PF_MPLS",
204 [PF_CAN] = "PF_CAN",
205 [PF_TIPC] = "PF_TIPC",
206 [PF_BLUETOOTH] = "PF_BLUETOOTH",
207 [PF_IUCV] = "PF_IUCV",
208 [PF_RXRPC] = "PF_RXRPC",
209 [PF_ISDN] = "PF_ISDN",
210 [PF_PHONET] = "PF_PHONET",
211 [PF_IEEE802154] = "PF_IEEE802154",
212 [PF_CAIF] = "PF_CAIF",
213 [PF_ALG] = "PF_ALG",
214 [PF_NFC] = "PF_NFC",
215 [PF_VSOCK] = "PF_VSOCK",
216 [PF_KCM] = "PF_KCM",
217 [PF_QIPCRTR] = "PF_QIPCRTR",
218 [PF_SMC] = "PF_SMC",
219 [PF_XDP] = "PF_XDP",
220 [PF_MCTP] = "PF_MCTP",
221 };
222
223 /*
224 * The protocol list. Each protocol is registered in here.
225 */
226
227 static DEFINE_SPINLOCK(net_family_lock);
228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
229
230 /*
231 * Support routines.
232 * Move socket addresses back and forth across the kernel/user
233 * divide and look after the messy bits.
234 */
235
236 /**
237 * move_addr_to_kernel - copy a socket address into kernel space
238 * @uaddr: Address in user space
239 * @kaddr: Address in kernel space
240 * @ulen: Length in user space
241 *
242 * The address is copied into kernel space. If the provided address is
243 * too long an error code of -EINVAL is returned. If the copy gives
244 * invalid addresses -EFAULT is returned. On a success 0 is returned.
245 */
246
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
248 {
249 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
250 return -EINVAL;
251 if (ulen == 0)
252 return 0;
253 if (copy_from_user(kaddr, uaddr, ulen))
254 return -EFAULT;
255 return audit_sockaddr(ulen, kaddr);
256 }
257
258 /**
259 * move_addr_to_user - copy an address to user space
260 * @kaddr: kernel space address
261 * @klen: length of address in kernel
262 * @uaddr: user space address
263 * @ulen: pointer to user length field
264 *
265 * The value pointed to by ulen on entry is the buffer length available.
266 * This is overwritten with the buffer space used. -EINVAL is returned
267 * if an overlong buffer is specified or a negative buffer size. -EFAULT
268 * is returned if either the buffer or the length field are not
269 * accessible.
270 * After copying the data up to the limit the user specifies, the true
271 * length of the data is written over the length limit the user
272 * specified. Zero is returned for a success.
273 */
274
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
276 void __user *uaddr, int __user *ulen)
277 {
278 int err;
279 int len;
280
281 BUG_ON(klen > sizeof(struct sockaddr_storage));
282 err = get_user(len, ulen);
283 if (err)
284 return err;
285 if (len > klen)
286 len = klen;
287 if (len < 0)
288 return -EINVAL;
289 if (len) {
290 if (audit_sockaddr(klen, kaddr))
291 return -ENOMEM;
292 if (copy_to_user(uaddr, kaddr, len))
293 return -EFAULT;
294 }
295 /*
296 * "fromlen shall refer to the value before truncation.."
297 * 1003.1g
298 */
299 return __put_user(klen, ulen);
300 }
301
302 static struct kmem_cache *sock_inode_cachep __ro_after_init;
303
sock_alloc_inode(struct super_block * sb)304 static struct inode *sock_alloc_inode(struct super_block *sb)
305 {
306 struct socket_alloc *ei;
307
308 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
309 if (!ei)
310 return NULL;
311 init_waitqueue_head(&ei->socket.wq.wait);
312 ei->socket.wq.fasync_list = NULL;
313 ei->socket.wq.flags = 0;
314
315 ei->socket.state = SS_UNCONNECTED;
316 ei->socket.flags = 0;
317 ei->socket.ops = NULL;
318 ei->socket.sk = NULL;
319 ei->socket.file = NULL;
320
321 return &ei->vfs_inode;
322 }
323
sock_free_inode(struct inode * inode)324 static void sock_free_inode(struct inode *inode)
325 {
326 struct socket_alloc *ei;
327
328 ei = container_of(inode, struct socket_alloc, vfs_inode);
329 kmem_cache_free(sock_inode_cachep, ei);
330 }
331
init_once(void * foo)332 static void init_once(void *foo)
333 {
334 struct socket_alloc *ei = (struct socket_alloc *)foo;
335
336 inode_init_once(&ei->vfs_inode);
337 }
338
init_inodecache(void)339 static void init_inodecache(void)
340 {
341 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
342 sizeof(struct socket_alloc),
343 0,
344 (SLAB_HWCACHE_ALIGN |
345 SLAB_RECLAIM_ACCOUNT |
346 SLAB_ACCOUNT),
347 init_once);
348 BUG_ON(sock_inode_cachep == NULL);
349 }
350
351 static const struct super_operations sockfs_ops = {
352 .alloc_inode = sock_alloc_inode,
353 .free_inode = sock_free_inode,
354 .statfs = simple_statfs,
355 };
356
357 /*
358 * sockfs_dname() is called from d_path().
359 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
361 {
362 return dynamic_dname(buffer, buflen, "socket:[%lu]",
363 d_inode(dentry)->i_ino);
364 }
365
366 static const struct dentry_operations sockfs_dentry_operations = {
367 .d_dname = sockfs_dname,
368 };
369
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)370 static int sockfs_xattr_get(const struct xattr_handler *handler,
371 struct dentry *dentry, struct inode *inode,
372 const char *suffix, void *value, size_t size)
373 {
374 if (value) {
375 if (dentry->d_name.len + 1 > size)
376 return -ERANGE;
377 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
378 }
379 return dentry->d_name.len + 1;
380 }
381
382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
385
386 static const struct xattr_handler sockfs_xattr_handler = {
387 .name = XATTR_NAME_SOCKPROTONAME,
388 .get = sockfs_xattr_get,
389 };
390
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)391 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
392 struct mnt_idmap *idmap,
393 struct dentry *dentry, struct inode *inode,
394 const char *suffix, const void *value,
395 size_t size, int flags)
396 {
397 /* Handled by LSM. */
398 return -EAGAIN;
399 }
400
401 static const struct xattr_handler sockfs_security_xattr_handler = {
402 .prefix = XATTR_SECURITY_PREFIX,
403 .set = sockfs_security_xattr_set,
404 };
405
406 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
407 &sockfs_xattr_handler,
408 &sockfs_security_xattr_handler,
409 NULL
410 };
411
sockfs_init_fs_context(struct fs_context * fc)412 static int sockfs_init_fs_context(struct fs_context *fc)
413 {
414 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
415 if (!ctx)
416 return -ENOMEM;
417 ctx->ops = &sockfs_ops;
418 ctx->dops = &sockfs_dentry_operations;
419 ctx->xattr = sockfs_xattr_handlers;
420 return 0;
421 }
422
423 static struct vfsmount *sock_mnt __read_mostly;
424
425 static struct file_system_type sock_fs_type = {
426 .name = "sockfs",
427 .init_fs_context = sockfs_init_fs_context,
428 .kill_sb = kill_anon_super,
429 };
430
431 /*
432 * Obtains the first available file descriptor and sets it up for use.
433 *
434 * These functions create file structures and maps them to fd space
435 * of the current process. On success it returns file descriptor
436 * and file struct implicitly stored in sock->file.
437 * Note that another thread may close file descriptor before we return
438 * from this function. We use the fact that now we do not refer
439 * to socket after mapping. If one day we will need it, this
440 * function will increment ref. count on file by 1.
441 *
442 * In any case returned fd MAY BE not valid!
443 * This race condition is unavoidable
444 * with shared fd spaces, we cannot solve it inside kernel,
445 * but we take care of internal coherence yet.
446 */
447
448 /**
449 * sock_alloc_file - Bind a &socket to a &file
450 * @sock: socket
451 * @flags: file status flags
452 * @dname: protocol name
453 *
454 * Returns the &file bound with @sock, implicitly storing it
455 * in sock->file. If dname is %NULL, sets to "".
456 *
457 * On failure @sock is released, and an ERR pointer is returned.
458 *
459 * This function uses GFP_KERNEL internally.
460 */
461
sock_alloc_file(struct socket * sock,int flags,const char * dname)462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
463 {
464 struct file *file;
465
466 if (!dname)
467 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
468
469 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
470 O_RDWR | (flags & O_NONBLOCK),
471 &socket_file_ops);
472 if (IS_ERR(file)) {
473 sock_release(sock);
474 return file;
475 }
476
477 file->f_mode |= FMODE_NOWAIT;
478 sock->file = file;
479 file->private_data = sock;
480 stream_open(SOCK_INODE(sock), file);
481 return file;
482 }
483 EXPORT_SYMBOL(sock_alloc_file);
484
sock_map_fd(struct socket * sock,int flags)485 static int sock_map_fd(struct socket *sock, int flags)
486 {
487 struct file *newfile;
488 int fd = get_unused_fd_flags(flags);
489 if (unlikely(fd < 0)) {
490 sock_release(sock);
491 return fd;
492 }
493
494 newfile = sock_alloc_file(sock, flags, NULL);
495 if (!IS_ERR(newfile)) {
496 fd_install(fd, newfile);
497 return fd;
498 }
499
500 put_unused_fd(fd);
501 return PTR_ERR(newfile);
502 }
503
504 /**
505 * sock_from_file - Return the &socket bounded to @file.
506 * @file: file
507 *
508 * On failure returns %NULL.
509 */
510
sock_from_file(struct file * file)511 struct socket *sock_from_file(struct file *file)
512 {
513 if (file->f_op == &socket_file_ops)
514 return file->private_data; /* set in sock_alloc_file */
515
516 return NULL;
517 }
518 EXPORT_SYMBOL(sock_from_file);
519
520 /**
521 * sockfd_lookup - Go from a file number to its socket slot
522 * @fd: file handle
523 * @err: pointer to an error code return
524 *
525 * The file handle passed in is locked and the socket it is bound
526 * to is returned. If an error occurs the err pointer is overwritten
527 * with a negative errno code and NULL is returned. The function checks
528 * for both invalid handles and passing a handle which is not a socket.
529 *
530 * On a success the socket object pointer is returned.
531 */
532
sockfd_lookup(int fd,int * err)533 struct socket *sockfd_lookup(int fd, int *err)
534 {
535 struct file *file;
536 struct socket *sock;
537
538 file = fget(fd);
539 if (!file) {
540 *err = -EBADF;
541 return NULL;
542 }
543
544 sock = sock_from_file(file);
545 if (!sock) {
546 *err = -ENOTSOCK;
547 fput(file);
548 }
549 return sock;
550 }
551 EXPORT_SYMBOL(sockfd_lookup);
552
sockfd_lookup_light(int fd,int * err,int * fput_needed)553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
554 {
555 struct fd f = fdget(fd);
556 struct socket *sock;
557
558 *err = -EBADF;
559 if (fd_file(f)) {
560 sock = sock_from_file(fd_file(f));
561 if (likely(sock)) {
562 *fput_needed = f.word & FDPUT_FPUT;
563 return sock;
564 }
565 *err = -ENOTSOCK;
566 fdput(f);
567 }
568 return NULL;
569 }
570
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
572 size_t size)
573 {
574 ssize_t len;
575 ssize_t used = 0;
576
577 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
578 if (len < 0)
579 return len;
580 used += len;
581 if (buffer) {
582 if (size < used)
583 return -ERANGE;
584 buffer += len;
585 }
586
587 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
588 used += len;
589 if (buffer) {
590 if (size < used)
591 return -ERANGE;
592 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
593 buffer += len;
594 }
595
596 return used;
597 }
598
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)599 static int sockfs_setattr(struct mnt_idmap *idmap,
600 struct dentry *dentry, struct iattr *iattr)
601 {
602 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
603
604 if (!err && (iattr->ia_valid & ATTR_UID)) {
605 struct socket *sock = SOCKET_I(d_inode(dentry));
606
607 if (sock->sk)
608 sock->sk->sk_uid = iattr->ia_uid;
609 else
610 err = -ENOENT;
611 }
612
613 return err;
614 }
615
616 static const struct inode_operations sockfs_inode_ops = {
617 .listxattr = sockfs_listxattr,
618 .setattr = sockfs_setattr,
619 };
620
621 /**
622 * sock_alloc - allocate a socket
623 *
624 * Allocate a new inode and socket object. The two are bound together
625 * and initialised. The socket is then returned. If we are out of inodes
626 * NULL is returned. This functions uses GFP_KERNEL internally.
627 */
628
sock_alloc(void)629 struct socket *sock_alloc(void)
630 {
631 struct inode *inode;
632 struct socket *sock;
633
634 inode = new_inode_pseudo(sock_mnt->mnt_sb);
635 if (!inode)
636 return NULL;
637
638 sock = SOCKET_I(inode);
639
640 inode->i_ino = get_next_ino();
641 inode->i_mode = S_IFSOCK | S_IRWXUGO;
642 inode->i_uid = current_fsuid();
643 inode->i_gid = current_fsgid();
644 inode->i_op = &sockfs_inode_ops;
645
646 return sock;
647 }
648 EXPORT_SYMBOL(sock_alloc);
649
__sock_release(struct socket * sock,struct inode * inode)650 static void __sock_release(struct socket *sock, struct inode *inode)
651 {
652 const struct proto_ops *ops = READ_ONCE(sock->ops);
653
654 if (ops) {
655 struct module *owner = ops->owner;
656
657 if (inode)
658 inode_lock(inode);
659 ops->release(sock);
660 sock->sk = NULL;
661 if (inode)
662 inode_unlock(inode);
663 sock->ops = NULL;
664 module_put(owner);
665 }
666
667 if (sock->wq.fasync_list)
668 pr_err("%s: fasync list not empty!\n", __func__);
669
670 if (!sock->file) {
671 iput(SOCK_INODE(sock));
672 return;
673 }
674 sock->file = NULL;
675 }
676
677 /**
678 * sock_release - close a socket
679 * @sock: socket to close
680 *
681 * The socket is released from the protocol stack if it has a release
682 * callback, and the inode is then released if the socket is bound to
683 * an inode not a file.
684 */
sock_release(struct socket * sock)685 void sock_release(struct socket *sock)
686 {
687 __sock_release(sock, NULL);
688 }
689 EXPORT_SYMBOL(sock_release);
690
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
692 {
693 u8 flags = *tx_flags;
694
695 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
696 flags |= SKBTX_HW_TSTAMP;
697
698 /* PTP hardware clocks can provide a free running cycle counter
699 * as a time base for virtual clocks. Tell driver to use the
700 * free running cycle counter for timestamp if socket is bound
701 * to virtual clock.
702 */
703 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
704 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
705 }
706
707 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
708 flags |= SKBTX_SW_TSTAMP;
709
710 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
711 flags |= SKBTX_SCHED_TSTAMP;
712
713 *tx_flags = flags;
714 }
715 EXPORT_SYMBOL(__sock_tx_timestamp);
716
717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
718 size_t));
719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
720 size_t));
721
call_trace_sock_send_length(struct sock * sk,int ret,int flags)722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
723 int flags)
724 {
725 trace_sock_send_length(sk, ret, 0);
726 }
727
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
729 {
730 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
731 inet_sendmsg, sock, msg,
732 msg_data_left(msg));
733 BUG_ON(ret == -EIOCBQUEUED);
734
735 if (trace_sock_send_length_enabled())
736 call_trace_sock_send_length(sock->sk, ret, 0);
737 return ret;
738 }
739
__sock_sendmsg(struct socket * sock,struct msghdr * msg)740 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
741 {
742 int err = security_socket_sendmsg(sock, msg,
743 msg_data_left(msg));
744
745 return err ?: sock_sendmsg_nosec(sock, msg);
746 }
747
748 /**
749 * sock_sendmsg - send a message through @sock
750 * @sock: socket
751 * @msg: message to send
752 *
753 * Sends @msg through @sock, passing through LSM.
754 * Returns the number of bytes sent, or an error code.
755 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)756 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
757 {
758 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
759 struct sockaddr_storage address;
760 int save_len = msg->msg_namelen;
761 int ret;
762
763 if (msg->msg_name) {
764 memcpy(&address, msg->msg_name, msg->msg_namelen);
765 msg->msg_name = &address;
766 }
767
768 ret = __sock_sendmsg(sock, msg);
769 msg->msg_name = save_addr;
770 msg->msg_namelen = save_len;
771
772 return ret;
773 }
774 EXPORT_SYMBOL(sock_sendmsg);
775
776 /**
777 * kernel_sendmsg - send a message through @sock (kernel-space)
778 * @sock: socket
779 * @msg: message header
780 * @vec: kernel vec
781 * @num: vec array length
782 * @size: total message data size
783 *
784 * Builds the message data with @vec and sends it through @sock.
785 * Returns the number of bytes sent, or an error code.
786 */
787
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)788 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
789 struct kvec *vec, size_t num, size_t size)
790 {
791 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
792 return sock_sendmsg(sock, msg);
793 }
794 EXPORT_SYMBOL(kernel_sendmsg);
795
796 /**
797 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
798 * @sk: sock
799 * @msg: message header
800 * @vec: output s/g array
801 * @num: output s/g array length
802 * @size: total message data size
803 *
804 * Builds the message data with @vec and sends it through @sock.
805 * Returns the number of bytes sent, or an error code.
806 * Caller must hold @sk.
807 */
808
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)809 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
810 struct kvec *vec, size_t num, size_t size)
811 {
812 struct socket *sock = sk->sk_socket;
813 const struct proto_ops *ops = READ_ONCE(sock->ops);
814
815 if (!ops->sendmsg_locked)
816 return sock_no_sendmsg_locked(sk, msg, size);
817
818 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
819
820 return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
821 }
822 EXPORT_SYMBOL(kernel_sendmsg_locked);
823
skb_is_err_queue(const struct sk_buff * skb)824 static bool skb_is_err_queue(const struct sk_buff *skb)
825 {
826 /* pkt_type of skbs enqueued on the error queue are set to
827 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
828 * in recvmsg, since skbs received on a local socket will never
829 * have a pkt_type of PACKET_OUTGOING.
830 */
831 return skb->pkt_type == PACKET_OUTGOING;
832 }
833
834 /* On transmit, software and hardware timestamps are returned independently.
835 * As the two skb clones share the hardware timestamp, which may be updated
836 * before the software timestamp is received, a hardware TX timestamp may be
837 * returned only if there is no software TX timestamp. Ignore false software
838 * timestamps, which may be made in the __sock_recv_timestamp() call when the
839 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
840 * hardware timestamp.
841 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)842 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
843 {
844 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
845 }
846
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)847 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
848 {
849 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
850 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
851 struct net_device *orig_dev;
852 ktime_t hwtstamp;
853
854 rcu_read_lock();
855 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
856 if (orig_dev) {
857 *if_index = orig_dev->ifindex;
858 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
859 } else {
860 hwtstamp = shhwtstamps->hwtstamp;
861 }
862 rcu_read_unlock();
863
864 return hwtstamp;
865 }
866
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)867 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
868 int if_index)
869 {
870 struct scm_ts_pktinfo ts_pktinfo;
871 struct net_device *orig_dev;
872
873 if (!skb_mac_header_was_set(skb))
874 return;
875
876 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
877
878 if (!if_index) {
879 rcu_read_lock();
880 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
881 if (orig_dev)
882 if_index = orig_dev->ifindex;
883 rcu_read_unlock();
884 }
885 ts_pktinfo.if_index = if_index;
886
887 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
888 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
889 sizeof(ts_pktinfo), &ts_pktinfo);
890 }
891
892 /*
893 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
894 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)895 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
896 struct sk_buff *skb)
897 {
898 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
899 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
900 struct scm_timestamping_internal tss;
901 int empty = 1, false_tstamp = 0;
902 struct skb_shared_hwtstamps *shhwtstamps =
903 skb_hwtstamps(skb);
904 int if_index;
905 ktime_t hwtstamp;
906 u32 tsflags;
907
908 /* Race occurred between timestamp enabling and packet
909 receiving. Fill in the current time for now. */
910 if (need_software_tstamp && skb->tstamp == 0) {
911 __net_timestamp(skb);
912 false_tstamp = 1;
913 }
914
915 if (need_software_tstamp) {
916 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
917 if (new_tstamp) {
918 struct __kernel_sock_timeval tv;
919
920 skb_get_new_timestamp(skb, &tv);
921 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
922 sizeof(tv), &tv);
923 } else {
924 struct __kernel_old_timeval tv;
925
926 skb_get_timestamp(skb, &tv);
927 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
928 sizeof(tv), &tv);
929 }
930 } else {
931 if (new_tstamp) {
932 struct __kernel_timespec ts;
933
934 skb_get_new_timestampns(skb, &ts);
935 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
936 sizeof(ts), &ts);
937 } else {
938 struct __kernel_old_timespec ts;
939
940 skb_get_timestampns(skb, &ts);
941 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
942 sizeof(ts), &ts);
943 }
944 }
945 }
946
947 memset(&tss, 0, sizeof(tss));
948 tsflags = READ_ONCE(sk->sk_tsflags);
949 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
950 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
951 skb_is_err_queue(skb) ||
952 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
953 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
954 empty = 0;
955 if (shhwtstamps &&
956 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
957 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
958 skb_is_err_queue(skb) ||
959 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
960 !skb_is_swtx_tstamp(skb, false_tstamp)) {
961 if_index = 0;
962 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
963 hwtstamp = get_timestamp(sk, skb, &if_index);
964 else
965 hwtstamp = shhwtstamps->hwtstamp;
966
967 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
968 hwtstamp = ptp_convert_timestamp(&hwtstamp,
969 READ_ONCE(sk->sk_bind_phc));
970
971 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
972 empty = 0;
973
974 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
975 !skb_is_err_queue(skb))
976 put_ts_pktinfo(msg, skb, if_index);
977 }
978 }
979 if (!empty) {
980 if (sock_flag(sk, SOCK_TSTAMP_NEW))
981 put_cmsg_scm_timestamping64(msg, &tss);
982 else
983 put_cmsg_scm_timestamping(msg, &tss);
984
985 if (skb_is_err_queue(skb) && skb->len &&
986 SKB_EXT_ERR(skb)->opt_stats)
987 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
988 skb->len, skb->data);
989 }
990 }
991 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
992
993 #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)994 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
995 struct sk_buff *skb)
996 {
997 int ack;
998
999 if (!sock_flag(sk, SOCK_WIFI_STATUS))
1000 return;
1001 if (!skb->wifi_acked_valid)
1002 return;
1003
1004 ack = skb->wifi_acked;
1005
1006 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1007 }
1008 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1009 #endif
1010
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1011 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1012 struct sk_buff *skb)
1013 {
1014 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1015 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1016 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1017 }
1018
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1019 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1020 struct sk_buff *skb)
1021 {
1022 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1023 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1024 __u32 mark = skb->mark;
1025
1026 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1027 }
1028 }
1029
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1030 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1031 struct sk_buff *skb)
1032 {
1033 sock_recv_timestamp(msg, sk, skb);
1034 sock_recv_drops(msg, sk, skb);
1035 sock_recv_mark(msg, sk, skb);
1036 }
1037 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1038
1039 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1040 size_t, int));
1041 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1042 size_t, int));
1043
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1044 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1045 {
1046 trace_sock_recv_length(sk, ret, flags);
1047 }
1048
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1049 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1050 int flags)
1051 {
1052 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1053 inet6_recvmsg,
1054 inet_recvmsg, sock, msg,
1055 msg_data_left(msg), flags);
1056 if (trace_sock_recv_length_enabled())
1057 call_trace_sock_recv_length(sock->sk, ret, flags);
1058 return ret;
1059 }
1060
1061 /**
1062 * sock_recvmsg - receive a message from @sock
1063 * @sock: socket
1064 * @msg: message to receive
1065 * @flags: message flags
1066 *
1067 * Receives @msg from @sock, passing through LSM. Returns the total number
1068 * of bytes received, or an error.
1069 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1070 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1071 {
1072 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1073
1074 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1075 }
1076 EXPORT_SYMBOL(sock_recvmsg);
1077
1078 /**
1079 * kernel_recvmsg - Receive a message from a socket (kernel space)
1080 * @sock: The socket to receive the message from
1081 * @msg: Received message
1082 * @vec: Input s/g array for message data
1083 * @num: Size of input s/g array
1084 * @size: Number of bytes to read
1085 * @flags: Message flags (MSG_DONTWAIT, etc...)
1086 *
1087 * On return the msg structure contains the scatter/gather array passed in the
1088 * vec argument. The array is modified so that it consists of the unfilled
1089 * portion of the original array.
1090 *
1091 * The returned value is the total number of bytes received, or an error.
1092 */
1093
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1094 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1095 struct kvec *vec, size_t num, size_t size, int flags)
1096 {
1097 msg->msg_control_is_user = false;
1098 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1099 return sock_recvmsg(sock, msg, flags);
1100 }
1101 EXPORT_SYMBOL(kernel_recvmsg);
1102
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1103 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1104 struct pipe_inode_info *pipe, size_t len,
1105 unsigned int flags)
1106 {
1107 struct socket *sock = file->private_data;
1108 const struct proto_ops *ops;
1109
1110 ops = READ_ONCE(sock->ops);
1111 if (unlikely(!ops->splice_read))
1112 return copy_splice_read(file, ppos, pipe, len, flags);
1113
1114 return ops->splice_read(sock, ppos, pipe, len, flags);
1115 }
1116
sock_splice_eof(struct file * file)1117 static void sock_splice_eof(struct file *file)
1118 {
1119 struct socket *sock = file->private_data;
1120 const struct proto_ops *ops;
1121
1122 ops = READ_ONCE(sock->ops);
1123 if (ops->splice_eof)
1124 ops->splice_eof(sock);
1125 }
1126
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1127 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1128 {
1129 struct file *file = iocb->ki_filp;
1130 struct socket *sock = file->private_data;
1131 struct msghdr msg = {.msg_iter = *to,
1132 .msg_iocb = iocb};
1133 ssize_t res;
1134
1135 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1136 msg.msg_flags = MSG_DONTWAIT;
1137
1138 if (iocb->ki_pos != 0)
1139 return -ESPIPE;
1140
1141 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1142 return 0;
1143
1144 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1145 *to = msg.msg_iter;
1146 return res;
1147 }
1148
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1149 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1150 {
1151 struct file *file = iocb->ki_filp;
1152 struct socket *sock = file->private_data;
1153 struct msghdr msg = {.msg_iter = *from,
1154 .msg_iocb = iocb};
1155 ssize_t res;
1156
1157 if (iocb->ki_pos != 0)
1158 return -ESPIPE;
1159
1160 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1161 msg.msg_flags = MSG_DONTWAIT;
1162
1163 if (sock->type == SOCK_SEQPACKET)
1164 msg.msg_flags |= MSG_EOR;
1165
1166 res = __sock_sendmsg(sock, &msg);
1167 *from = msg.msg_iter;
1168 return res;
1169 }
1170
1171 /*
1172 * Atomic setting of ioctl hooks to avoid race
1173 * with module unload.
1174 */
1175
1176 static DEFINE_MUTEX(br_ioctl_mutex);
1177 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1178 unsigned int cmd, struct ifreq *ifr,
1179 void __user *uarg);
1180
brioctl_set(int (* hook)(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg))1181 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1182 unsigned int cmd, struct ifreq *ifr,
1183 void __user *uarg))
1184 {
1185 mutex_lock(&br_ioctl_mutex);
1186 br_ioctl_hook = hook;
1187 mutex_unlock(&br_ioctl_mutex);
1188 }
1189 EXPORT_SYMBOL(brioctl_set);
1190
br_ioctl_call(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg)1191 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1192 struct ifreq *ifr, void __user *uarg)
1193 {
1194 int err = -ENOPKG;
1195
1196 if (!br_ioctl_hook)
1197 request_module("bridge");
1198
1199 mutex_lock(&br_ioctl_mutex);
1200 if (br_ioctl_hook)
1201 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1202 mutex_unlock(&br_ioctl_mutex);
1203
1204 return err;
1205 }
1206
1207 static DEFINE_MUTEX(vlan_ioctl_mutex);
1208 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1209
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1210 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1211 {
1212 mutex_lock(&vlan_ioctl_mutex);
1213 vlan_ioctl_hook = hook;
1214 mutex_unlock(&vlan_ioctl_mutex);
1215 }
1216 EXPORT_SYMBOL(vlan_ioctl_set);
1217
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1218 static long sock_do_ioctl(struct net *net, struct socket *sock,
1219 unsigned int cmd, unsigned long arg)
1220 {
1221 const struct proto_ops *ops = READ_ONCE(sock->ops);
1222 struct ifreq ifr;
1223 bool need_copyout;
1224 int err;
1225 void __user *argp = (void __user *)arg;
1226 void __user *data;
1227
1228 err = ops->ioctl(sock, cmd, arg);
1229
1230 /*
1231 * If this ioctl is unknown try to hand it down
1232 * to the NIC driver.
1233 */
1234 if (err != -ENOIOCTLCMD)
1235 return err;
1236
1237 if (!is_socket_ioctl_cmd(cmd))
1238 return -ENOTTY;
1239
1240 if (get_user_ifreq(&ifr, &data, argp))
1241 return -EFAULT;
1242 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1243 if (!err && need_copyout)
1244 if (put_user_ifreq(&ifr, argp))
1245 return -EFAULT;
1246
1247 return err;
1248 }
1249
1250 /*
1251 * With an ioctl, arg may well be a user mode pointer, but we don't know
1252 * what to do with it - that's up to the protocol still.
1253 */
1254
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1255 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1256 {
1257 const struct proto_ops *ops;
1258 struct socket *sock;
1259 struct sock *sk;
1260 void __user *argp = (void __user *)arg;
1261 int pid, err;
1262 struct net *net;
1263
1264 sock = file->private_data;
1265 ops = READ_ONCE(sock->ops);
1266 sk = sock->sk;
1267 net = sock_net(sk);
1268 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1269 struct ifreq ifr;
1270 void __user *data;
1271 bool need_copyout;
1272 if (get_user_ifreq(&ifr, &data, argp))
1273 return -EFAULT;
1274 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1275 if (!err && need_copyout)
1276 if (put_user_ifreq(&ifr, argp))
1277 return -EFAULT;
1278 } else
1279 #ifdef CONFIG_WEXT_CORE
1280 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1281 err = wext_handle_ioctl(net, cmd, argp);
1282 } else
1283 #endif
1284 switch (cmd) {
1285 case FIOSETOWN:
1286 case SIOCSPGRP:
1287 err = -EFAULT;
1288 if (get_user(pid, (int __user *)argp))
1289 break;
1290 err = f_setown(sock->file, pid, 1);
1291 break;
1292 case FIOGETOWN:
1293 case SIOCGPGRP:
1294 err = put_user(f_getown(sock->file),
1295 (int __user *)argp);
1296 break;
1297 case SIOCGIFBR:
1298 case SIOCSIFBR:
1299 case SIOCBRADDBR:
1300 case SIOCBRDELBR:
1301 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1302 break;
1303 case SIOCGIFVLAN:
1304 case SIOCSIFVLAN:
1305 err = -ENOPKG;
1306 if (!vlan_ioctl_hook)
1307 request_module("8021q");
1308
1309 mutex_lock(&vlan_ioctl_mutex);
1310 if (vlan_ioctl_hook)
1311 err = vlan_ioctl_hook(net, argp);
1312 mutex_unlock(&vlan_ioctl_mutex);
1313 break;
1314 case SIOCGSKNS:
1315 err = -EPERM;
1316 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1317 break;
1318
1319 err = open_related_ns(&net->ns, get_net_ns);
1320 break;
1321 case SIOCGSTAMP_OLD:
1322 case SIOCGSTAMPNS_OLD:
1323 if (!ops->gettstamp) {
1324 err = -ENOIOCTLCMD;
1325 break;
1326 }
1327 err = ops->gettstamp(sock, argp,
1328 cmd == SIOCGSTAMP_OLD,
1329 !IS_ENABLED(CONFIG_64BIT));
1330 break;
1331 case SIOCGSTAMP_NEW:
1332 case SIOCGSTAMPNS_NEW:
1333 if (!ops->gettstamp) {
1334 err = -ENOIOCTLCMD;
1335 break;
1336 }
1337 err = ops->gettstamp(sock, argp,
1338 cmd == SIOCGSTAMP_NEW,
1339 false);
1340 break;
1341
1342 case SIOCGIFCONF:
1343 err = dev_ifconf(net, argp);
1344 break;
1345
1346 default:
1347 err = sock_do_ioctl(net, sock, cmd, arg);
1348 break;
1349 }
1350 return err;
1351 }
1352
1353 /**
1354 * sock_create_lite - creates a socket
1355 * @family: protocol family (AF_INET, ...)
1356 * @type: communication type (SOCK_STREAM, ...)
1357 * @protocol: protocol (0, ...)
1358 * @res: new socket
1359 *
1360 * Creates a new socket and assigns it to @res, passing through LSM.
1361 * The new socket initialization is not complete, see kernel_accept().
1362 * Returns 0 or an error. On failure @res is set to %NULL.
1363 * This function internally uses GFP_KERNEL.
1364 */
1365
sock_create_lite(int family,int type,int protocol,struct socket ** res)1366 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1367 {
1368 int err;
1369 struct socket *sock = NULL;
1370
1371 err = security_socket_create(family, type, protocol, 1);
1372 if (err)
1373 goto out;
1374
1375 sock = sock_alloc();
1376 if (!sock) {
1377 err = -ENOMEM;
1378 goto out;
1379 }
1380
1381 sock->type = type;
1382 err = security_socket_post_create(sock, family, type, protocol, 1);
1383 if (err)
1384 goto out_release;
1385
1386 out:
1387 *res = sock;
1388 return err;
1389 out_release:
1390 sock_release(sock);
1391 sock = NULL;
1392 goto out;
1393 }
1394 EXPORT_SYMBOL(sock_create_lite);
1395
1396 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1397 static __poll_t sock_poll(struct file *file, poll_table *wait)
1398 {
1399 struct socket *sock = file->private_data;
1400 const struct proto_ops *ops = READ_ONCE(sock->ops);
1401 __poll_t events = poll_requested_events(wait), flag = 0;
1402
1403 if (!ops->poll)
1404 return 0;
1405
1406 if (sk_can_busy_loop(sock->sk)) {
1407 /* poll once if requested by the syscall */
1408 if (events & POLL_BUSY_LOOP)
1409 sk_busy_loop(sock->sk, 1);
1410
1411 /* if this socket can poll_ll, tell the system call */
1412 flag = POLL_BUSY_LOOP;
1413 }
1414
1415 return ops->poll(file, sock, wait) | flag;
1416 }
1417
sock_mmap(struct file * file,struct vm_area_struct * vma)1418 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1419 {
1420 struct socket *sock = file->private_data;
1421
1422 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1423 }
1424
sock_close(struct inode * inode,struct file * filp)1425 static int sock_close(struct inode *inode, struct file *filp)
1426 {
1427 __sock_release(SOCKET_I(inode), inode);
1428 return 0;
1429 }
1430
1431 /*
1432 * Update the socket async list
1433 *
1434 * Fasync_list locking strategy.
1435 *
1436 * 1. fasync_list is modified only under process context socket lock
1437 * i.e. under semaphore.
1438 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1439 * or under socket lock
1440 */
1441
sock_fasync(int fd,struct file * filp,int on)1442 static int sock_fasync(int fd, struct file *filp, int on)
1443 {
1444 struct socket *sock = filp->private_data;
1445 struct sock *sk = sock->sk;
1446 struct socket_wq *wq = &sock->wq;
1447
1448 if (sk == NULL)
1449 return -EINVAL;
1450
1451 lock_sock(sk);
1452 fasync_helper(fd, filp, on, &wq->fasync_list);
1453
1454 if (!wq->fasync_list)
1455 sock_reset_flag(sk, SOCK_FASYNC);
1456 else
1457 sock_set_flag(sk, SOCK_FASYNC);
1458
1459 release_sock(sk);
1460 return 0;
1461 }
1462
1463 /* This function may be called only under rcu_lock */
1464
sock_wake_async(struct socket_wq * wq,int how,int band)1465 int sock_wake_async(struct socket_wq *wq, int how, int band)
1466 {
1467 if (!wq || !wq->fasync_list)
1468 return -1;
1469
1470 switch (how) {
1471 case SOCK_WAKE_WAITD:
1472 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1473 break;
1474 goto call_kill;
1475 case SOCK_WAKE_SPACE:
1476 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1477 break;
1478 fallthrough;
1479 case SOCK_WAKE_IO:
1480 call_kill:
1481 kill_fasync(&wq->fasync_list, SIGIO, band);
1482 break;
1483 case SOCK_WAKE_URG:
1484 kill_fasync(&wq->fasync_list, SIGURG, band);
1485 }
1486
1487 return 0;
1488 }
1489 EXPORT_SYMBOL(sock_wake_async);
1490
1491 /**
1492 * __sock_create - creates a socket
1493 * @net: net namespace
1494 * @family: protocol family (AF_INET, ...)
1495 * @type: communication type (SOCK_STREAM, ...)
1496 * @protocol: protocol (0, ...)
1497 * @res: new socket
1498 * @kern: boolean for kernel space sockets
1499 *
1500 * Creates a new socket and assigns it to @res, passing through LSM.
1501 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1502 * be set to true if the socket resides in kernel space.
1503 * This function internally uses GFP_KERNEL.
1504 */
1505
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1506 int __sock_create(struct net *net, int family, int type, int protocol,
1507 struct socket **res, int kern)
1508 {
1509 int err;
1510 struct socket *sock;
1511 const struct net_proto_family *pf;
1512
1513 /*
1514 * Check protocol is in range
1515 */
1516 if (family < 0 || family >= NPROTO)
1517 return -EAFNOSUPPORT;
1518 if (type < 0 || type >= SOCK_MAX)
1519 return -EINVAL;
1520
1521 /* Compatibility.
1522
1523 This uglymoron is moved from INET layer to here to avoid
1524 deadlock in module load.
1525 */
1526 if (family == PF_INET && type == SOCK_PACKET) {
1527 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1528 current->comm);
1529 family = PF_PACKET;
1530 }
1531
1532 err = security_socket_create(family, type, protocol, kern);
1533 if (err)
1534 return err;
1535
1536 /*
1537 * Allocate the socket and allow the family to set things up. if
1538 * the protocol is 0, the family is instructed to select an appropriate
1539 * default.
1540 */
1541 sock = sock_alloc();
1542 if (!sock) {
1543 net_warn_ratelimited("socket: no more sockets\n");
1544 return -ENFILE; /* Not exactly a match, but its the
1545 closest posix thing */
1546 }
1547
1548 sock->type = type;
1549
1550 #ifdef CONFIG_MODULES
1551 /* Attempt to load a protocol module if the find failed.
1552 *
1553 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1554 * requested real, full-featured networking support upon configuration.
1555 * Otherwise module support will break!
1556 */
1557 if (rcu_access_pointer(net_families[family]) == NULL)
1558 request_module("net-pf-%d", family);
1559 #endif
1560
1561 rcu_read_lock();
1562 pf = rcu_dereference(net_families[family]);
1563 err = -EAFNOSUPPORT;
1564 if (!pf)
1565 goto out_release;
1566
1567 /*
1568 * We will call the ->create function, that possibly is in a loadable
1569 * module, so we have to bump that loadable module refcnt first.
1570 */
1571 if (!try_module_get(pf->owner))
1572 goto out_release;
1573
1574 /* Now protected by module ref count */
1575 rcu_read_unlock();
1576
1577 err = pf->create(net, sock, protocol, kern);
1578 if (err < 0) {
1579 /* ->create should release the allocated sock->sk object on error
1580 * but it may leave the dangling pointer
1581 */
1582 sock->sk = NULL;
1583 goto out_module_put;
1584 }
1585
1586 /*
1587 * Now to bump the refcnt of the [loadable] module that owns this
1588 * socket at sock_release time we decrement its refcnt.
1589 */
1590 if (!try_module_get(sock->ops->owner))
1591 goto out_module_busy;
1592
1593 /*
1594 * Now that we're done with the ->create function, the [loadable]
1595 * module can have its refcnt decremented
1596 */
1597 module_put(pf->owner);
1598 err = security_socket_post_create(sock, family, type, protocol, kern);
1599 if (err)
1600 goto out_sock_release;
1601 *res = sock;
1602
1603 trace_android_vh_sock_create(sock->sk);
1604
1605 return 0;
1606
1607 out_module_busy:
1608 err = -EAFNOSUPPORT;
1609 out_module_put:
1610 sock->ops = NULL;
1611 module_put(pf->owner);
1612 out_sock_release:
1613 sock_release(sock);
1614 return err;
1615
1616 out_release:
1617 rcu_read_unlock();
1618 goto out_sock_release;
1619 }
1620 EXPORT_SYMBOL(__sock_create);
1621
1622 /**
1623 * sock_create - creates a socket
1624 * @family: protocol family (AF_INET, ...)
1625 * @type: communication type (SOCK_STREAM, ...)
1626 * @protocol: protocol (0, ...)
1627 * @res: new socket
1628 *
1629 * A wrapper around __sock_create().
1630 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1631 */
1632
sock_create(int family,int type,int protocol,struct socket ** res)1633 int sock_create(int family, int type, int protocol, struct socket **res)
1634 {
1635 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1636 }
1637 EXPORT_SYMBOL(sock_create);
1638
1639 /**
1640 * sock_create_kern - creates a socket (kernel space)
1641 * @net: net namespace
1642 * @family: protocol family (AF_INET, ...)
1643 * @type: communication type (SOCK_STREAM, ...)
1644 * @protocol: protocol (0, ...)
1645 * @res: new socket
1646 *
1647 * A wrapper around __sock_create().
1648 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1649 */
1650
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1651 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1652 {
1653 return __sock_create(net, family, type, protocol, res, 1);
1654 }
1655 EXPORT_SYMBOL(sock_create_kern);
1656
__sys_socket_create(int family,int type,int protocol)1657 static struct socket *__sys_socket_create(int family, int type, int protocol)
1658 {
1659 struct socket *sock;
1660 int retval;
1661
1662 /* Check the SOCK_* constants for consistency. */
1663 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1664 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1665 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1666 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1667
1668 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1669 return ERR_PTR(-EINVAL);
1670 type &= SOCK_TYPE_MASK;
1671
1672 retval = sock_create(family, type, protocol, &sock);
1673 if (retval < 0)
1674 return ERR_PTR(retval);
1675
1676 return sock;
1677 }
1678
__sys_socket_file(int family,int type,int protocol)1679 struct file *__sys_socket_file(int family, int type, int protocol)
1680 {
1681 struct socket *sock;
1682 int flags;
1683
1684 sock = __sys_socket_create(family, type, protocol);
1685 if (IS_ERR(sock))
1686 return ERR_CAST(sock);
1687
1688 flags = type & ~SOCK_TYPE_MASK;
1689 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1690 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1691
1692 return sock_alloc_file(sock, flags, NULL);
1693 }
1694
1695 /* A hook for bpf progs to attach to and update socket protocol.
1696 *
1697 * A static noinline declaration here could cause the compiler to
1698 * optimize away the function. A global noinline declaration will
1699 * keep the definition, but may optimize away the callsite.
1700 * Therefore, __weak is needed to ensure that the call is still
1701 * emitted, by telling the compiler that we don't know what the
1702 * function might eventually be.
1703 */
1704
1705 __bpf_hook_start();
1706
update_socket_protocol(int family,int type,int protocol)1707 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1708 {
1709 return protocol;
1710 }
1711
1712 __bpf_hook_end();
1713
__sys_socket(int family,int type,int protocol)1714 int __sys_socket(int family, int type, int protocol)
1715 {
1716 struct socket *sock;
1717 int flags;
1718
1719 sock = __sys_socket_create(family, type,
1720 update_socket_protocol(family, type, protocol));
1721 if (IS_ERR(sock))
1722 return PTR_ERR(sock);
1723
1724 flags = type & ~SOCK_TYPE_MASK;
1725 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1726 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1727
1728 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1729 }
1730
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1731 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1732 {
1733 return __sys_socket(family, type, protocol);
1734 }
1735
1736 /*
1737 * Create a pair of connected sockets.
1738 */
1739
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1740 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1741 {
1742 struct socket *sock1, *sock2;
1743 int fd1, fd2, err;
1744 struct file *newfile1, *newfile2;
1745 int flags;
1746
1747 flags = type & ~SOCK_TYPE_MASK;
1748 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1749 return -EINVAL;
1750 type &= SOCK_TYPE_MASK;
1751
1752 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1753 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1754
1755 /*
1756 * reserve descriptors and make sure we won't fail
1757 * to return them to userland.
1758 */
1759 fd1 = get_unused_fd_flags(flags);
1760 if (unlikely(fd1 < 0))
1761 return fd1;
1762
1763 fd2 = get_unused_fd_flags(flags);
1764 if (unlikely(fd2 < 0)) {
1765 put_unused_fd(fd1);
1766 return fd2;
1767 }
1768
1769 err = put_user(fd1, &usockvec[0]);
1770 if (err)
1771 goto out;
1772
1773 err = put_user(fd2, &usockvec[1]);
1774 if (err)
1775 goto out;
1776
1777 /*
1778 * Obtain the first socket and check if the underlying protocol
1779 * supports the socketpair call.
1780 */
1781
1782 err = sock_create(family, type, protocol, &sock1);
1783 if (unlikely(err < 0))
1784 goto out;
1785
1786 err = sock_create(family, type, protocol, &sock2);
1787 if (unlikely(err < 0)) {
1788 sock_release(sock1);
1789 goto out;
1790 }
1791
1792 err = security_socket_socketpair(sock1, sock2);
1793 if (unlikely(err)) {
1794 sock_release(sock2);
1795 sock_release(sock1);
1796 goto out;
1797 }
1798
1799 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1800 if (unlikely(err < 0)) {
1801 sock_release(sock2);
1802 sock_release(sock1);
1803 goto out;
1804 }
1805
1806 newfile1 = sock_alloc_file(sock1, flags, NULL);
1807 if (IS_ERR(newfile1)) {
1808 err = PTR_ERR(newfile1);
1809 sock_release(sock2);
1810 goto out;
1811 }
1812
1813 newfile2 = sock_alloc_file(sock2, flags, NULL);
1814 if (IS_ERR(newfile2)) {
1815 err = PTR_ERR(newfile2);
1816 fput(newfile1);
1817 goto out;
1818 }
1819
1820 audit_fd_pair(fd1, fd2);
1821
1822 fd_install(fd1, newfile1);
1823 fd_install(fd2, newfile2);
1824 return 0;
1825
1826 out:
1827 put_unused_fd(fd2);
1828 put_unused_fd(fd1);
1829 return err;
1830 }
1831
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1832 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1833 int __user *, usockvec)
1834 {
1835 return __sys_socketpair(family, type, protocol, usockvec);
1836 }
1837
__sys_bind_socket(struct socket * sock,struct sockaddr_storage * address,int addrlen)1838 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1839 int addrlen)
1840 {
1841 int err;
1842
1843 err = security_socket_bind(sock, (struct sockaddr *)address,
1844 addrlen);
1845 if (!err)
1846 err = READ_ONCE(sock->ops)->bind(sock,
1847 (struct sockaddr *)address,
1848 addrlen);
1849 return err;
1850 }
1851
1852 /*
1853 * Bind a name to a socket. Nothing much to do here since it's
1854 * the protocol's responsibility to handle the local address.
1855 *
1856 * We move the socket address to kernel space before we call
1857 * the protocol layer (having also checked the address is ok).
1858 */
1859
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1860 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1861 {
1862 struct socket *sock;
1863 struct sockaddr_storage address;
1864 int err, fput_needed;
1865
1866 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1867 if (sock) {
1868 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1869 if (!err)
1870 err = __sys_bind_socket(sock, &address, addrlen);
1871 fput_light(sock->file, fput_needed);
1872 }
1873 return err;
1874 }
1875
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1876 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1877 {
1878 return __sys_bind(fd, umyaddr, addrlen);
1879 }
1880
1881 /*
1882 * Perform a listen. Basically, we allow the protocol to do anything
1883 * necessary for a listen, and if that works, we mark the socket as
1884 * ready for listening.
1885 */
__sys_listen_socket(struct socket * sock,int backlog)1886 int __sys_listen_socket(struct socket *sock, int backlog)
1887 {
1888 int somaxconn, err;
1889
1890 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1891 if ((unsigned int)backlog > somaxconn)
1892 backlog = somaxconn;
1893
1894 err = security_socket_listen(sock, backlog);
1895 if (!err)
1896 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1897 return err;
1898 }
1899
__sys_listen(int fd,int backlog)1900 int __sys_listen(int fd, int backlog)
1901 {
1902 struct socket *sock;
1903 int err, fput_needed;
1904
1905 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1906 if (sock) {
1907 err = __sys_listen_socket(sock, backlog);
1908 fput_light(sock->file, fput_needed);
1909 }
1910 return err;
1911 }
1912
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1913 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1914 {
1915 return __sys_listen(fd, backlog);
1916 }
1917
do_accept(struct file * file,struct proto_accept_arg * arg,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1918 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1919 struct sockaddr __user *upeer_sockaddr,
1920 int __user *upeer_addrlen, int flags)
1921 {
1922 struct socket *sock, *newsock;
1923 struct file *newfile;
1924 int err, len;
1925 struct sockaddr_storage address;
1926 const struct proto_ops *ops;
1927
1928 sock = sock_from_file(file);
1929 if (!sock)
1930 return ERR_PTR(-ENOTSOCK);
1931
1932 newsock = sock_alloc();
1933 if (!newsock)
1934 return ERR_PTR(-ENFILE);
1935 ops = READ_ONCE(sock->ops);
1936
1937 newsock->type = sock->type;
1938 newsock->ops = ops;
1939
1940 /*
1941 * We don't need try_module_get here, as the listening socket (sock)
1942 * has the protocol module (sock->ops->owner) held.
1943 */
1944 __module_get(ops->owner);
1945
1946 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1947 if (IS_ERR(newfile))
1948 return newfile;
1949
1950 err = security_socket_accept(sock, newsock);
1951 if (err)
1952 goto out_fd;
1953
1954 arg->flags |= sock->file->f_flags;
1955 err = ops->accept(sock, newsock, arg);
1956 if (err < 0)
1957 goto out_fd;
1958
1959 if (upeer_sockaddr) {
1960 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1961 if (len < 0) {
1962 err = -ECONNABORTED;
1963 goto out_fd;
1964 }
1965 err = move_addr_to_user(&address,
1966 len, upeer_sockaddr, upeer_addrlen);
1967 if (err < 0)
1968 goto out_fd;
1969 }
1970
1971 /* File flags are not inherited via accept() unlike another OSes. */
1972 return newfile;
1973 out_fd:
1974 fput(newfile);
1975 return ERR_PTR(err);
1976 }
1977
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1978 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1979 int __user *upeer_addrlen, int flags)
1980 {
1981 struct proto_accept_arg arg = { };
1982 struct file *newfile;
1983 int newfd;
1984
1985 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1986 return -EINVAL;
1987
1988 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1989 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1990
1991 newfd = get_unused_fd_flags(flags);
1992 if (unlikely(newfd < 0))
1993 return newfd;
1994
1995 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1996 flags);
1997 if (IS_ERR(newfile)) {
1998 put_unused_fd(newfd);
1999 return PTR_ERR(newfile);
2000 }
2001 fd_install(newfd, newfile);
2002 return newfd;
2003 }
2004
2005 /*
2006 * For accept, we attempt to create a new socket, set up the link
2007 * with the client, wake up the client, then return the new
2008 * connected fd. We collect the address of the connector in kernel
2009 * space and move it to user at the very end. This is unclean because
2010 * we open the socket then return an error.
2011 *
2012 * 1003.1g adds the ability to recvmsg() to query connection pending
2013 * status to recvmsg. We need to add that support in a way thats
2014 * clean when we restructure accept also.
2015 */
2016
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)2017 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2018 int __user *upeer_addrlen, int flags)
2019 {
2020 int ret = -EBADF;
2021 struct fd f;
2022
2023 f = fdget(fd);
2024 if (fd_file(f)) {
2025 ret = __sys_accept4_file(fd_file(f), upeer_sockaddr,
2026 upeer_addrlen, flags);
2027 fdput(f);
2028 }
2029
2030 return ret;
2031 }
2032
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)2033 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2034 int __user *, upeer_addrlen, int, flags)
2035 {
2036 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2037 }
2038
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2039 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2040 int __user *, upeer_addrlen)
2041 {
2042 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2043 }
2044
2045 /*
2046 * Attempt to connect to a socket with the server address. The address
2047 * is in user space so we verify it is OK and move it to kernel space.
2048 *
2049 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2050 * break bindings
2051 *
2052 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2053 * other SEQPACKET protocols that take time to connect() as it doesn't
2054 * include the -EINPROGRESS status for such sockets.
2055 */
2056
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2057 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2058 int addrlen, int file_flags)
2059 {
2060 struct socket *sock;
2061 int err;
2062
2063 sock = sock_from_file(file);
2064 if (!sock) {
2065 err = -ENOTSOCK;
2066 goto out;
2067 }
2068
2069 err =
2070 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2071 if (err)
2072 goto out;
2073
2074 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2075 addrlen, sock->file->f_flags | file_flags);
2076 out:
2077 return err;
2078 }
2079
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2080 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2081 {
2082 int ret = -EBADF;
2083 struct fd f;
2084
2085 f = fdget(fd);
2086 if (fd_file(f)) {
2087 struct sockaddr_storage address;
2088
2089 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2090 if (!ret)
2091 ret = __sys_connect_file(fd_file(f), &address, addrlen, 0);
2092 fdput(f);
2093 }
2094
2095 return ret;
2096 }
2097
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2098 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2099 int, addrlen)
2100 {
2101 return __sys_connect(fd, uservaddr, addrlen);
2102 }
2103
2104 /*
2105 * Get the local address ('name') of a socket object. Move the obtained
2106 * name to user space.
2107 */
2108
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2109 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2110 int __user *usockaddr_len)
2111 {
2112 struct socket *sock;
2113 struct sockaddr_storage address;
2114 int err, fput_needed;
2115
2116 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2117 if (!sock)
2118 goto out;
2119
2120 err = security_socket_getsockname(sock);
2121 if (err)
2122 goto out_put;
2123
2124 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2125 if (err < 0)
2126 goto out_put;
2127 /* "err" is actually length in this case */
2128 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2129
2130 out_put:
2131 fput_light(sock->file, fput_needed);
2132 out:
2133 return err;
2134 }
2135
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2136 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2137 int __user *, usockaddr_len)
2138 {
2139 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2140 }
2141
2142 /*
2143 * Get the remote address ('name') of a socket object. Move the obtained
2144 * name to user space.
2145 */
2146
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2147 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2148 int __user *usockaddr_len)
2149 {
2150 struct socket *sock;
2151 struct sockaddr_storage address;
2152 int err, fput_needed;
2153
2154 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2155 if (sock != NULL) {
2156 const struct proto_ops *ops = READ_ONCE(sock->ops);
2157
2158 err = security_socket_getpeername(sock);
2159 if (err) {
2160 fput_light(sock->file, fput_needed);
2161 return err;
2162 }
2163
2164 err = ops->getname(sock, (struct sockaddr *)&address, 1);
2165 if (err >= 0)
2166 /* "err" is actually length in this case */
2167 err = move_addr_to_user(&address, err, usockaddr,
2168 usockaddr_len);
2169 fput_light(sock->file, fput_needed);
2170 }
2171 return err;
2172 }
2173
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2174 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2175 int __user *, usockaddr_len)
2176 {
2177 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2178 }
2179
2180 /*
2181 * Send a datagram to a given address. We move the address into kernel
2182 * space and check the user space data area is readable before invoking
2183 * the protocol.
2184 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2185 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2186 struct sockaddr __user *addr, int addr_len)
2187 {
2188 struct socket *sock;
2189 struct sockaddr_storage address;
2190 int err;
2191 struct msghdr msg;
2192 int fput_needed;
2193
2194 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2195 if (unlikely(err))
2196 return err;
2197 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2198 if (!sock)
2199 goto out;
2200
2201 msg.msg_name = NULL;
2202 msg.msg_control = NULL;
2203 msg.msg_controllen = 0;
2204 msg.msg_namelen = 0;
2205 msg.msg_ubuf = NULL;
2206 if (addr) {
2207 err = move_addr_to_kernel(addr, addr_len, &address);
2208 if (err < 0)
2209 goto out_put;
2210 msg.msg_name = (struct sockaddr *)&address;
2211 msg.msg_namelen = addr_len;
2212 }
2213 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2214 if (sock->file->f_flags & O_NONBLOCK)
2215 flags |= MSG_DONTWAIT;
2216 msg.msg_flags = flags;
2217 err = __sock_sendmsg(sock, &msg);
2218
2219 out_put:
2220 fput_light(sock->file, fput_needed);
2221 out:
2222 return err;
2223 }
2224
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2225 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2226 unsigned int, flags, struct sockaddr __user *, addr,
2227 int, addr_len)
2228 {
2229 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2230 }
2231
2232 /*
2233 * Send a datagram down a socket.
2234 */
2235
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2236 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2237 unsigned int, flags)
2238 {
2239 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2240 }
2241
2242 /*
2243 * Receive a frame from the socket and optionally record the address of the
2244 * sender. We verify the buffers are writable and if needed move the
2245 * sender address from kernel to user space.
2246 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2247 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2248 struct sockaddr __user *addr, int __user *addr_len)
2249 {
2250 struct sockaddr_storage address;
2251 struct msghdr msg = {
2252 /* Save some cycles and don't copy the address if not needed */
2253 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2254 };
2255 struct socket *sock;
2256 int err, err2;
2257 int fput_needed;
2258
2259 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2260 if (unlikely(err))
2261 return err;
2262 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2263 if (!sock)
2264 goto out;
2265
2266 if (sock->file->f_flags & O_NONBLOCK)
2267 flags |= MSG_DONTWAIT;
2268 err = sock_recvmsg(sock, &msg, flags);
2269
2270 if (err >= 0 && addr != NULL) {
2271 err2 = move_addr_to_user(&address,
2272 msg.msg_namelen, addr, addr_len);
2273 if (err2 < 0)
2274 err = err2;
2275 }
2276
2277 fput_light(sock->file, fput_needed);
2278 out:
2279 return err;
2280 }
2281
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2282 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2283 unsigned int, flags, struct sockaddr __user *, addr,
2284 int __user *, addr_len)
2285 {
2286 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2287 }
2288
2289 /*
2290 * Receive a datagram from a socket.
2291 */
2292
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2293 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2294 unsigned int, flags)
2295 {
2296 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2297 }
2298
sock_use_custom_sol_socket(const struct socket * sock)2299 static bool sock_use_custom_sol_socket(const struct socket *sock)
2300 {
2301 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2302 }
2303
do_sock_setsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,int optlen)2304 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2305 int optname, sockptr_t optval, int optlen)
2306 {
2307 const struct proto_ops *ops;
2308 char *kernel_optval = NULL;
2309 int err;
2310
2311 if (optlen < 0)
2312 return -EINVAL;
2313
2314 err = security_socket_setsockopt(sock, level, optname);
2315 if (err)
2316 goto out_put;
2317
2318 if (!compat)
2319 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2320 optval, &optlen,
2321 &kernel_optval);
2322 if (err < 0)
2323 goto out_put;
2324 if (err > 0) {
2325 err = 0;
2326 goto out_put;
2327 }
2328
2329 if (kernel_optval)
2330 optval = KERNEL_SOCKPTR(kernel_optval);
2331 ops = READ_ONCE(sock->ops);
2332 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2333 err = sock_setsockopt(sock, level, optname, optval, optlen);
2334 else if (unlikely(!ops->setsockopt))
2335 err = -EOPNOTSUPP;
2336 else
2337 err = ops->setsockopt(sock, level, optname, optval,
2338 optlen);
2339 kfree(kernel_optval);
2340 out_put:
2341 return err;
2342 }
2343 EXPORT_SYMBOL(do_sock_setsockopt);
2344
2345 /* Set a socket option. Because we don't know the option lengths we have
2346 * to pass the user mode parameter for the protocols to sort out.
2347 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2348 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2349 int optlen)
2350 {
2351 sockptr_t optval = USER_SOCKPTR(user_optval);
2352 bool compat = in_compat_syscall();
2353 int err, fput_needed;
2354 struct socket *sock;
2355
2356 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2357 if (!sock)
2358 return err;
2359
2360 err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2361
2362 fput_light(sock->file, fput_needed);
2363 return err;
2364 }
2365
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2366 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2367 char __user *, optval, int, optlen)
2368 {
2369 return __sys_setsockopt(fd, level, optname, optval, optlen);
2370 }
2371
2372 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2373 int optname));
2374
do_sock_getsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,sockptr_t optlen)2375 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2376 int optname, sockptr_t optval, sockptr_t optlen)
2377 {
2378 int max_optlen __maybe_unused = 0;
2379 const struct proto_ops *ops;
2380 int err;
2381
2382 err = security_socket_getsockopt(sock, level, optname);
2383 if (err)
2384 return err;
2385
2386 if (!compat)
2387 copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2388
2389 ops = READ_ONCE(sock->ops);
2390 if (level == SOL_SOCKET) {
2391 err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2392 } else if (unlikely(!ops->getsockopt)) {
2393 err = -EOPNOTSUPP;
2394 } else {
2395 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2396 "Invalid argument type"))
2397 return -EOPNOTSUPP;
2398
2399 err = ops->getsockopt(sock, level, optname, optval.user,
2400 optlen.user);
2401 }
2402
2403 if (!compat)
2404 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2405 optval, optlen, max_optlen,
2406 err);
2407
2408 return err;
2409 }
2410 EXPORT_SYMBOL(do_sock_getsockopt);
2411
2412 /*
2413 * Get a socket option. Because we don't know the option lengths we have
2414 * to pass a user mode parameter for the protocols to sort out.
2415 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2416 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2417 int __user *optlen)
2418 {
2419 int err, fput_needed;
2420 struct socket *sock;
2421 bool compat;
2422
2423 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2424 if (!sock)
2425 return err;
2426
2427 compat = in_compat_syscall();
2428 err = do_sock_getsockopt(sock, compat, level, optname,
2429 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2430
2431 fput_light(sock->file, fput_needed);
2432 return err;
2433 }
2434
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2435 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2436 char __user *, optval, int __user *, optlen)
2437 {
2438 return __sys_getsockopt(fd, level, optname, optval, optlen);
2439 }
2440
2441 /*
2442 * Shutdown a socket.
2443 */
2444
__sys_shutdown_sock(struct socket * sock,int how)2445 int __sys_shutdown_sock(struct socket *sock, int how)
2446 {
2447 int err;
2448
2449 err = security_socket_shutdown(sock, how);
2450 if (!err)
2451 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2452
2453 return err;
2454 }
2455
__sys_shutdown(int fd,int how)2456 int __sys_shutdown(int fd, int how)
2457 {
2458 int err, fput_needed;
2459 struct socket *sock;
2460
2461 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2462 if (sock != NULL) {
2463 err = __sys_shutdown_sock(sock, how);
2464 fput_light(sock->file, fput_needed);
2465 }
2466 return err;
2467 }
2468
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2469 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2470 {
2471 return __sys_shutdown(fd, how);
2472 }
2473
2474 /* A couple of helpful macros for getting the address of the 32/64 bit
2475 * fields which are the same type (int / unsigned) on our platforms.
2476 */
2477 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2478 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2479 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2480
2481 struct used_address {
2482 struct sockaddr_storage name;
2483 unsigned int name_len;
2484 };
2485
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2486 int __copy_msghdr(struct msghdr *kmsg,
2487 struct user_msghdr *msg,
2488 struct sockaddr __user **save_addr)
2489 {
2490 ssize_t err;
2491
2492 kmsg->msg_control_is_user = true;
2493 kmsg->msg_get_inq = 0;
2494 kmsg->msg_control_user = msg->msg_control;
2495 kmsg->msg_controllen = msg->msg_controllen;
2496 kmsg->msg_flags = msg->msg_flags;
2497
2498 kmsg->msg_namelen = msg->msg_namelen;
2499 if (!msg->msg_name)
2500 kmsg->msg_namelen = 0;
2501
2502 if (kmsg->msg_namelen < 0)
2503 return -EINVAL;
2504
2505 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2506 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2507
2508 if (save_addr)
2509 *save_addr = msg->msg_name;
2510
2511 if (msg->msg_name && kmsg->msg_namelen) {
2512 if (!save_addr) {
2513 err = move_addr_to_kernel(msg->msg_name,
2514 kmsg->msg_namelen,
2515 kmsg->msg_name);
2516 if (err < 0)
2517 return err;
2518 }
2519 } else {
2520 kmsg->msg_name = NULL;
2521 kmsg->msg_namelen = 0;
2522 }
2523
2524 if (msg->msg_iovlen > UIO_MAXIOV)
2525 return -EMSGSIZE;
2526
2527 kmsg->msg_iocb = NULL;
2528 kmsg->msg_ubuf = NULL;
2529 return 0;
2530 }
2531
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2532 static int copy_msghdr_from_user(struct msghdr *kmsg,
2533 struct user_msghdr __user *umsg,
2534 struct sockaddr __user **save_addr,
2535 struct iovec **iov)
2536 {
2537 struct user_msghdr msg;
2538 ssize_t err;
2539
2540 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2541 return -EFAULT;
2542
2543 err = __copy_msghdr(kmsg, &msg, save_addr);
2544 if (err)
2545 return err;
2546
2547 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2548 msg.msg_iov, msg.msg_iovlen,
2549 UIO_FASTIOV, iov, &kmsg->msg_iter);
2550 return err < 0 ? err : 0;
2551 }
2552
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2553 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2554 unsigned int flags, struct used_address *used_address,
2555 unsigned int allowed_msghdr_flags)
2556 {
2557 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2558 __aligned(sizeof(__kernel_size_t));
2559 /* 20 is size of ipv6_pktinfo */
2560 unsigned char *ctl_buf = ctl;
2561 int ctl_len;
2562 ssize_t err;
2563
2564 err = -ENOBUFS;
2565
2566 if (msg_sys->msg_controllen > INT_MAX)
2567 goto out;
2568 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2569 ctl_len = msg_sys->msg_controllen;
2570 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2571 err =
2572 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2573 sizeof(ctl));
2574 if (err)
2575 goto out;
2576 ctl_buf = msg_sys->msg_control;
2577 ctl_len = msg_sys->msg_controllen;
2578 } else if (ctl_len) {
2579 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2580 CMSG_ALIGN(sizeof(struct cmsghdr)));
2581 if (ctl_len > sizeof(ctl)) {
2582 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2583 if (ctl_buf == NULL)
2584 goto out;
2585 }
2586 err = -EFAULT;
2587 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2588 goto out_freectl;
2589 msg_sys->msg_control = ctl_buf;
2590 msg_sys->msg_control_is_user = false;
2591 }
2592 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2593 msg_sys->msg_flags = flags;
2594
2595 if (sock->file->f_flags & O_NONBLOCK)
2596 msg_sys->msg_flags |= MSG_DONTWAIT;
2597 /*
2598 * If this is sendmmsg() and current destination address is same as
2599 * previously succeeded address, omit asking LSM's decision.
2600 * used_address->name_len is initialized to UINT_MAX so that the first
2601 * destination address never matches.
2602 */
2603 if (used_address && msg_sys->msg_name &&
2604 used_address->name_len == msg_sys->msg_namelen &&
2605 !memcmp(&used_address->name, msg_sys->msg_name,
2606 used_address->name_len)) {
2607 err = sock_sendmsg_nosec(sock, msg_sys);
2608 goto out_freectl;
2609 }
2610 err = __sock_sendmsg(sock, msg_sys);
2611 /*
2612 * If this is sendmmsg() and sending to current destination address was
2613 * successful, remember it.
2614 */
2615 if (used_address && err >= 0) {
2616 used_address->name_len = msg_sys->msg_namelen;
2617 if (msg_sys->msg_name)
2618 memcpy(&used_address->name, msg_sys->msg_name,
2619 used_address->name_len);
2620 }
2621
2622 out_freectl:
2623 if (ctl_buf != ctl)
2624 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2625 out:
2626 return err;
2627 }
2628
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2629 static int sendmsg_copy_msghdr(struct msghdr *msg,
2630 struct user_msghdr __user *umsg, unsigned flags,
2631 struct iovec **iov)
2632 {
2633 int err;
2634
2635 if (flags & MSG_CMSG_COMPAT) {
2636 struct compat_msghdr __user *msg_compat;
2637
2638 msg_compat = (struct compat_msghdr __user *) umsg;
2639 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2640 } else {
2641 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2642 }
2643 if (err < 0)
2644 return err;
2645
2646 return 0;
2647 }
2648
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2649 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2650 struct msghdr *msg_sys, unsigned int flags,
2651 struct used_address *used_address,
2652 unsigned int allowed_msghdr_flags)
2653 {
2654 struct sockaddr_storage address;
2655 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2656 ssize_t err;
2657
2658 msg_sys->msg_name = &address;
2659
2660 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2661 if (err < 0)
2662 return err;
2663
2664 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2665 allowed_msghdr_flags);
2666 kfree(iov);
2667 return err;
2668 }
2669
2670 /*
2671 * BSD sendmsg interface
2672 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2673 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2674 unsigned int flags)
2675 {
2676 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2677 }
2678
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2679 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2680 bool forbid_cmsg_compat)
2681 {
2682 int fput_needed, err;
2683 struct msghdr msg_sys;
2684 struct socket *sock;
2685
2686 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2687 return -EINVAL;
2688
2689 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2690 if (!sock)
2691 goto out;
2692
2693 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2694
2695 fput_light(sock->file, fput_needed);
2696 out:
2697 return err;
2698 }
2699
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2700 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2701 {
2702 return __sys_sendmsg(fd, msg, flags, true);
2703 }
2704
2705 /*
2706 * Linux sendmmsg interface
2707 */
2708
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2709 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2710 unsigned int flags, bool forbid_cmsg_compat)
2711 {
2712 int fput_needed, err, datagrams;
2713 struct socket *sock;
2714 struct mmsghdr __user *entry;
2715 struct compat_mmsghdr __user *compat_entry;
2716 struct msghdr msg_sys;
2717 struct used_address used_address;
2718 unsigned int oflags = flags;
2719
2720 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2721 return -EINVAL;
2722
2723 if (vlen > UIO_MAXIOV)
2724 vlen = UIO_MAXIOV;
2725
2726 datagrams = 0;
2727
2728 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2729 if (!sock)
2730 return err;
2731
2732 used_address.name_len = UINT_MAX;
2733 entry = mmsg;
2734 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2735 err = 0;
2736 flags |= MSG_BATCH;
2737
2738 while (datagrams < vlen) {
2739 if (datagrams == vlen - 1)
2740 flags = oflags;
2741
2742 if (MSG_CMSG_COMPAT & flags) {
2743 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2744 &msg_sys, flags, &used_address, MSG_EOR);
2745 if (err < 0)
2746 break;
2747 err = __put_user(err, &compat_entry->msg_len);
2748 ++compat_entry;
2749 } else {
2750 err = ___sys_sendmsg(sock,
2751 (struct user_msghdr __user *)entry,
2752 &msg_sys, flags, &used_address, MSG_EOR);
2753 if (err < 0)
2754 break;
2755 err = put_user(err, &entry->msg_len);
2756 ++entry;
2757 }
2758
2759 if (err)
2760 break;
2761 ++datagrams;
2762 if (msg_data_left(&msg_sys))
2763 break;
2764 cond_resched();
2765 }
2766
2767 fput_light(sock->file, fput_needed);
2768
2769 /* We only return an error if no datagrams were able to be sent */
2770 if (datagrams != 0)
2771 return datagrams;
2772
2773 return err;
2774 }
2775
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2776 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2777 unsigned int, vlen, unsigned int, flags)
2778 {
2779 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2780 }
2781
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2782 static int recvmsg_copy_msghdr(struct msghdr *msg,
2783 struct user_msghdr __user *umsg, unsigned flags,
2784 struct sockaddr __user **uaddr,
2785 struct iovec **iov)
2786 {
2787 ssize_t err;
2788
2789 if (MSG_CMSG_COMPAT & flags) {
2790 struct compat_msghdr __user *msg_compat;
2791
2792 msg_compat = (struct compat_msghdr __user *) umsg;
2793 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2794 } else {
2795 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2796 }
2797 if (err < 0)
2798 return err;
2799
2800 return 0;
2801 }
2802
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2803 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2804 struct user_msghdr __user *msg,
2805 struct sockaddr __user *uaddr,
2806 unsigned int flags, int nosec)
2807 {
2808 struct compat_msghdr __user *msg_compat =
2809 (struct compat_msghdr __user *) msg;
2810 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2811 struct sockaddr_storage addr;
2812 unsigned long cmsg_ptr;
2813 int len;
2814 ssize_t err;
2815
2816 msg_sys->msg_name = &addr;
2817 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2818 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2819
2820 /* We assume all kernel code knows the size of sockaddr_storage */
2821 msg_sys->msg_namelen = 0;
2822
2823 if (sock->file->f_flags & O_NONBLOCK)
2824 flags |= MSG_DONTWAIT;
2825
2826 if (unlikely(nosec))
2827 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2828 else
2829 err = sock_recvmsg(sock, msg_sys, flags);
2830
2831 if (err < 0)
2832 goto out;
2833 len = err;
2834
2835 if (uaddr != NULL) {
2836 err = move_addr_to_user(&addr,
2837 msg_sys->msg_namelen, uaddr,
2838 uaddr_len);
2839 if (err < 0)
2840 goto out;
2841 }
2842 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2843 COMPAT_FLAGS(msg));
2844 if (err)
2845 goto out;
2846 if (MSG_CMSG_COMPAT & flags)
2847 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2848 &msg_compat->msg_controllen);
2849 else
2850 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2851 &msg->msg_controllen);
2852 if (err)
2853 goto out;
2854 err = len;
2855 out:
2856 return err;
2857 }
2858
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2859 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2860 struct msghdr *msg_sys, unsigned int flags, int nosec)
2861 {
2862 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2863 /* user mode address pointers */
2864 struct sockaddr __user *uaddr;
2865 ssize_t err;
2866
2867 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2868 if (err < 0)
2869 return err;
2870
2871 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2872 kfree(iov);
2873 return err;
2874 }
2875
2876 /*
2877 * BSD recvmsg interface
2878 */
2879
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2880 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2881 struct user_msghdr __user *umsg,
2882 struct sockaddr __user *uaddr, unsigned int flags)
2883 {
2884 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2885 }
2886
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2887 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2888 bool forbid_cmsg_compat)
2889 {
2890 int fput_needed, err;
2891 struct msghdr msg_sys;
2892 struct socket *sock;
2893
2894 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2895 return -EINVAL;
2896
2897 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2898 if (!sock)
2899 goto out;
2900
2901 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2902
2903 fput_light(sock->file, fput_needed);
2904 out:
2905 return err;
2906 }
2907
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2908 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2909 unsigned int, flags)
2910 {
2911 return __sys_recvmsg(fd, msg, flags, true);
2912 }
2913
2914 /*
2915 * Linux recvmmsg interface
2916 */
2917
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2918 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2919 unsigned int vlen, unsigned int flags,
2920 struct timespec64 *timeout)
2921 {
2922 int fput_needed, err, datagrams;
2923 struct socket *sock;
2924 struct mmsghdr __user *entry;
2925 struct compat_mmsghdr __user *compat_entry;
2926 struct msghdr msg_sys;
2927 struct timespec64 end_time;
2928 struct timespec64 timeout64;
2929
2930 if (timeout &&
2931 poll_select_set_timeout(&end_time, timeout->tv_sec,
2932 timeout->tv_nsec))
2933 return -EINVAL;
2934
2935 datagrams = 0;
2936
2937 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2938 if (!sock)
2939 return err;
2940
2941 if (likely(!(flags & MSG_ERRQUEUE))) {
2942 err = sock_error(sock->sk);
2943 if (err) {
2944 datagrams = err;
2945 goto out_put;
2946 }
2947 }
2948
2949 entry = mmsg;
2950 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2951
2952 while (datagrams < vlen) {
2953 /*
2954 * No need to ask LSM for more than the first datagram.
2955 */
2956 if (MSG_CMSG_COMPAT & flags) {
2957 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2958 &msg_sys, flags & ~MSG_WAITFORONE,
2959 datagrams);
2960 if (err < 0)
2961 break;
2962 err = __put_user(err, &compat_entry->msg_len);
2963 ++compat_entry;
2964 } else {
2965 err = ___sys_recvmsg(sock,
2966 (struct user_msghdr __user *)entry,
2967 &msg_sys, flags & ~MSG_WAITFORONE,
2968 datagrams);
2969 if (err < 0)
2970 break;
2971 err = put_user(err, &entry->msg_len);
2972 ++entry;
2973 }
2974
2975 if (err)
2976 break;
2977 ++datagrams;
2978
2979 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2980 if (flags & MSG_WAITFORONE)
2981 flags |= MSG_DONTWAIT;
2982
2983 if (timeout) {
2984 ktime_get_ts64(&timeout64);
2985 *timeout = timespec64_sub(end_time, timeout64);
2986 if (timeout->tv_sec < 0) {
2987 timeout->tv_sec = timeout->tv_nsec = 0;
2988 break;
2989 }
2990
2991 /* Timeout, return less than vlen datagrams */
2992 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2993 break;
2994 }
2995
2996 /* Out of band data, return right away */
2997 if (msg_sys.msg_flags & MSG_OOB)
2998 break;
2999 cond_resched();
3000 }
3001
3002 if (err == 0)
3003 goto out_put;
3004
3005 if (datagrams == 0) {
3006 datagrams = err;
3007 goto out_put;
3008 }
3009
3010 /*
3011 * We may return less entries than requested (vlen) if the
3012 * sock is non block and there aren't enough datagrams...
3013 */
3014 if (err != -EAGAIN) {
3015 /*
3016 * ... or if recvmsg returns an error after we
3017 * received some datagrams, where we record the
3018 * error to return on the next call or if the
3019 * app asks about it using getsockopt(SO_ERROR).
3020 */
3021 WRITE_ONCE(sock->sk->sk_err, -err);
3022 }
3023 out_put:
3024 fput_light(sock->file, fput_needed);
3025
3026 return datagrams;
3027 }
3028
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)3029 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3030 unsigned int vlen, unsigned int flags,
3031 struct __kernel_timespec __user *timeout,
3032 struct old_timespec32 __user *timeout32)
3033 {
3034 int datagrams;
3035 struct timespec64 timeout_sys;
3036
3037 if (timeout && get_timespec64(&timeout_sys, timeout))
3038 return -EFAULT;
3039
3040 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3041 return -EFAULT;
3042
3043 if (!timeout && !timeout32)
3044 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3045
3046 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3047
3048 if (datagrams <= 0)
3049 return datagrams;
3050
3051 if (timeout && put_timespec64(&timeout_sys, timeout))
3052 datagrams = -EFAULT;
3053
3054 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3055 datagrams = -EFAULT;
3056
3057 return datagrams;
3058 }
3059
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3060 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3061 unsigned int, vlen, unsigned int, flags,
3062 struct __kernel_timespec __user *, timeout)
3063 {
3064 if (flags & MSG_CMSG_COMPAT)
3065 return -EINVAL;
3066
3067 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3068 }
3069
3070 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3071 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3072 unsigned int, vlen, unsigned int, flags,
3073 struct old_timespec32 __user *, timeout)
3074 {
3075 if (flags & MSG_CMSG_COMPAT)
3076 return -EINVAL;
3077
3078 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3079 }
3080 #endif
3081
3082 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3083 /* Argument list sizes for sys_socketcall */
3084 #define AL(x) ((x) * sizeof(unsigned long))
3085 static const unsigned char nargs[21] = {
3086 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3087 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3088 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3089 AL(4), AL(5), AL(4)
3090 };
3091
3092 #undef AL
3093
3094 /*
3095 * System call vectors.
3096 *
3097 * Argument checking cleaned up. Saved 20% in size.
3098 * This function doesn't need to set the kernel lock because
3099 * it is set by the callees.
3100 */
3101
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3102 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3103 {
3104 unsigned long a[AUDITSC_ARGS];
3105 unsigned long a0, a1;
3106 int err;
3107 unsigned int len;
3108
3109 if (call < 1 || call > SYS_SENDMMSG)
3110 return -EINVAL;
3111 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3112
3113 len = nargs[call];
3114 if (len > sizeof(a))
3115 return -EINVAL;
3116
3117 /* copy_from_user should be SMP safe. */
3118 if (copy_from_user(a, args, len))
3119 return -EFAULT;
3120
3121 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3122 if (err)
3123 return err;
3124
3125 a0 = a[0];
3126 a1 = a[1];
3127
3128 switch (call) {
3129 case SYS_SOCKET:
3130 err = __sys_socket(a0, a1, a[2]);
3131 break;
3132 case SYS_BIND:
3133 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3134 break;
3135 case SYS_CONNECT:
3136 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3137 break;
3138 case SYS_LISTEN:
3139 err = __sys_listen(a0, a1);
3140 break;
3141 case SYS_ACCEPT:
3142 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3143 (int __user *)a[2], 0);
3144 break;
3145 case SYS_GETSOCKNAME:
3146 err =
3147 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3148 (int __user *)a[2]);
3149 break;
3150 case SYS_GETPEERNAME:
3151 err =
3152 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3153 (int __user *)a[2]);
3154 break;
3155 case SYS_SOCKETPAIR:
3156 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3157 break;
3158 case SYS_SEND:
3159 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3160 NULL, 0);
3161 break;
3162 case SYS_SENDTO:
3163 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3164 (struct sockaddr __user *)a[4], a[5]);
3165 break;
3166 case SYS_RECV:
3167 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3168 NULL, NULL);
3169 break;
3170 case SYS_RECVFROM:
3171 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3172 (struct sockaddr __user *)a[4],
3173 (int __user *)a[5]);
3174 break;
3175 case SYS_SHUTDOWN:
3176 err = __sys_shutdown(a0, a1);
3177 break;
3178 case SYS_SETSOCKOPT:
3179 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3180 a[4]);
3181 break;
3182 case SYS_GETSOCKOPT:
3183 err =
3184 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3185 (int __user *)a[4]);
3186 break;
3187 case SYS_SENDMSG:
3188 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3189 a[2], true);
3190 break;
3191 case SYS_SENDMMSG:
3192 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3193 a[3], true);
3194 break;
3195 case SYS_RECVMSG:
3196 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3197 a[2], true);
3198 break;
3199 case SYS_RECVMMSG:
3200 if (IS_ENABLED(CONFIG_64BIT))
3201 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3202 a[2], a[3],
3203 (struct __kernel_timespec __user *)a[4],
3204 NULL);
3205 else
3206 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3207 a[2], a[3], NULL,
3208 (struct old_timespec32 __user *)a[4]);
3209 break;
3210 case SYS_ACCEPT4:
3211 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3212 (int __user *)a[2], a[3]);
3213 break;
3214 default:
3215 err = -EINVAL;
3216 break;
3217 }
3218 return err;
3219 }
3220
3221 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3222
3223 /**
3224 * sock_register - add a socket protocol handler
3225 * @ops: description of protocol
3226 *
3227 * This function is called by a protocol handler that wants to
3228 * advertise its address family, and have it linked into the
3229 * socket interface. The value ops->family corresponds to the
3230 * socket system call protocol family.
3231 */
sock_register(const struct net_proto_family * ops)3232 int sock_register(const struct net_proto_family *ops)
3233 {
3234 int err;
3235
3236 if (ops->family >= NPROTO) {
3237 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3238 return -ENOBUFS;
3239 }
3240
3241 spin_lock(&net_family_lock);
3242 if (rcu_dereference_protected(net_families[ops->family],
3243 lockdep_is_held(&net_family_lock)))
3244 err = -EEXIST;
3245 else {
3246 rcu_assign_pointer(net_families[ops->family], ops);
3247 err = 0;
3248 }
3249 spin_unlock(&net_family_lock);
3250
3251 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3252 return err;
3253 }
3254 EXPORT_SYMBOL(sock_register);
3255
3256 /**
3257 * sock_unregister - remove a protocol handler
3258 * @family: protocol family to remove
3259 *
3260 * This function is called by a protocol handler that wants to
3261 * remove its address family, and have it unlinked from the
3262 * new socket creation.
3263 *
3264 * If protocol handler is a module, then it can use module reference
3265 * counts to protect against new references. If protocol handler is not
3266 * a module then it needs to provide its own protection in
3267 * the ops->create routine.
3268 */
sock_unregister(int family)3269 void sock_unregister(int family)
3270 {
3271 BUG_ON(family < 0 || family >= NPROTO);
3272
3273 spin_lock(&net_family_lock);
3274 RCU_INIT_POINTER(net_families[family], NULL);
3275 spin_unlock(&net_family_lock);
3276
3277 synchronize_rcu();
3278
3279 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3280 }
3281 EXPORT_SYMBOL(sock_unregister);
3282
sock_is_registered(int family)3283 bool sock_is_registered(int family)
3284 {
3285 return family < NPROTO && rcu_access_pointer(net_families[family]);
3286 }
3287
sock_init(void)3288 static int __init sock_init(void)
3289 {
3290 int err;
3291 /*
3292 * Initialize the network sysctl infrastructure.
3293 */
3294 err = net_sysctl_init();
3295 if (err)
3296 goto out;
3297
3298 /*
3299 * Initialize skbuff SLAB cache
3300 */
3301 skb_init();
3302
3303 /*
3304 * Initialize the protocols module.
3305 */
3306
3307 init_inodecache();
3308
3309 err = register_filesystem(&sock_fs_type);
3310 if (err)
3311 goto out;
3312 sock_mnt = kern_mount(&sock_fs_type);
3313 if (IS_ERR(sock_mnt)) {
3314 err = PTR_ERR(sock_mnt);
3315 goto out_mount;
3316 }
3317
3318 /* The real protocol initialization is performed in later initcalls.
3319 */
3320
3321 #ifdef CONFIG_NETFILTER
3322 err = netfilter_init();
3323 if (err)
3324 goto out;
3325 #endif
3326
3327 ptp_classifier_init();
3328
3329 out:
3330 return err;
3331
3332 out_mount:
3333 unregister_filesystem(&sock_fs_type);
3334 goto out;
3335 }
3336
3337 core_initcall(sock_init); /* early initcall */
3338
3339 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3340 void socket_seq_show(struct seq_file *seq)
3341 {
3342 seq_printf(seq, "sockets: used %d\n",
3343 sock_inuse_get(seq->private));
3344 }
3345 #endif /* CONFIG_PROC_FS */
3346
3347 /* Handle the fact that while struct ifreq has the same *layout* on
3348 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3349 * which are handled elsewhere, it still has different *size* due to
3350 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3351 * resulting in struct ifreq being 32 and 40 bytes respectively).
3352 * As a result, if the struct happens to be at the end of a page and
3353 * the next page isn't readable/writable, we get a fault. To prevent
3354 * that, copy back and forth to the full size.
3355 */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3356 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3357 {
3358 if (in_compat_syscall()) {
3359 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3360
3361 memset(ifr, 0, sizeof(*ifr));
3362 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3363 return -EFAULT;
3364
3365 if (ifrdata)
3366 *ifrdata = compat_ptr(ifr32->ifr_data);
3367
3368 return 0;
3369 }
3370
3371 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3372 return -EFAULT;
3373
3374 if (ifrdata)
3375 *ifrdata = ifr->ifr_data;
3376
3377 return 0;
3378 }
3379 EXPORT_SYMBOL(get_user_ifreq);
3380
put_user_ifreq(struct ifreq * ifr,void __user * arg)3381 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3382 {
3383 size_t size = sizeof(*ifr);
3384
3385 if (in_compat_syscall())
3386 size = sizeof(struct compat_ifreq);
3387
3388 if (copy_to_user(arg, ifr, size))
3389 return -EFAULT;
3390
3391 return 0;
3392 }
3393 EXPORT_SYMBOL(put_user_ifreq);
3394
3395 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3396 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3397 {
3398 compat_uptr_t uptr32;
3399 struct ifreq ifr;
3400 void __user *saved;
3401 int err;
3402
3403 if (get_user_ifreq(&ifr, NULL, uifr32))
3404 return -EFAULT;
3405
3406 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3407 return -EFAULT;
3408
3409 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3410 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3411
3412 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3413 if (!err) {
3414 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3415 if (put_user_ifreq(&ifr, uifr32))
3416 err = -EFAULT;
3417 }
3418 return err;
3419 }
3420
3421 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3422 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3423 struct compat_ifreq __user *u_ifreq32)
3424 {
3425 struct ifreq ifreq;
3426 void __user *data;
3427
3428 if (!is_socket_ioctl_cmd(cmd))
3429 return -ENOTTY;
3430 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3431 return -EFAULT;
3432 ifreq.ifr_data = data;
3433
3434 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3435 }
3436
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3437 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3438 unsigned int cmd, unsigned long arg)
3439 {
3440 void __user *argp = compat_ptr(arg);
3441 struct sock *sk = sock->sk;
3442 struct net *net = sock_net(sk);
3443 const struct proto_ops *ops;
3444
3445 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3446 return sock_ioctl(file, cmd, (unsigned long)argp);
3447
3448 switch (cmd) {
3449 case SIOCWANDEV:
3450 return compat_siocwandev(net, argp);
3451 case SIOCGSTAMP_OLD:
3452 case SIOCGSTAMPNS_OLD:
3453 ops = READ_ONCE(sock->ops);
3454 if (!ops->gettstamp)
3455 return -ENOIOCTLCMD;
3456 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3457 !COMPAT_USE_64BIT_TIME);
3458
3459 case SIOCETHTOOL:
3460 case SIOCBONDSLAVEINFOQUERY:
3461 case SIOCBONDINFOQUERY:
3462 case SIOCSHWTSTAMP:
3463 case SIOCGHWTSTAMP:
3464 return compat_ifr_data_ioctl(net, cmd, argp);
3465
3466 case FIOSETOWN:
3467 case SIOCSPGRP:
3468 case FIOGETOWN:
3469 case SIOCGPGRP:
3470 case SIOCBRADDBR:
3471 case SIOCBRDELBR:
3472 case SIOCGIFVLAN:
3473 case SIOCSIFVLAN:
3474 case SIOCGSKNS:
3475 case SIOCGSTAMP_NEW:
3476 case SIOCGSTAMPNS_NEW:
3477 case SIOCGIFCONF:
3478 case SIOCSIFBR:
3479 case SIOCGIFBR:
3480 return sock_ioctl(file, cmd, arg);
3481
3482 case SIOCGIFFLAGS:
3483 case SIOCSIFFLAGS:
3484 case SIOCGIFMAP:
3485 case SIOCSIFMAP:
3486 case SIOCGIFMETRIC:
3487 case SIOCSIFMETRIC:
3488 case SIOCGIFMTU:
3489 case SIOCSIFMTU:
3490 case SIOCGIFMEM:
3491 case SIOCSIFMEM:
3492 case SIOCGIFHWADDR:
3493 case SIOCSIFHWADDR:
3494 case SIOCADDMULTI:
3495 case SIOCDELMULTI:
3496 case SIOCGIFINDEX:
3497 case SIOCGIFADDR:
3498 case SIOCSIFADDR:
3499 case SIOCSIFHWBROADCAST:
3500 case SIOCDIFADDR:
3501 case SIOCGIFBRDADDR:
3502 case SIOCSIFBRDADDR:
3503 case SIOCGIFDSTADDR:
3504 case SIOCSIFDSTADDR:
3505 case SIOCGIFNETMASK:
3506 case SIOCSIFNETMASK:
3507 case SIOCSIFPFLAGS:
3508 case SIOCGIFPFLAGS:
3509 case SIOCGIFTXQLEN:
3510 case SIOCSIFTXQLEN:
3511 case SIOCBRADDIF:
3512 case SIOCBRDELIF:
3513 case SIOCGIFNAME:
3514 case SIOCSIFNAME:
3515 case SIOCGMIIPHY:
3516 case SIOCGMIIREG:
3517 case SIOCSMIIREG:
3518 case SIOCBONDENSLAVE:
3519 case SIOCBONDRELEASE:
3520 case SIOCBONDSETHWADDR:
3521 case SIOCBONDCHANGEACTIVE:
3522 case SIOCSARP:
3523 case SIOCGARP:
3524 case SIOCDARP:
3525 case SIOCOUTQ:
3526 case SIOCOUTQNSD:
3527 case SIOCATMARK:
3528 return sock_do_ioctl(net, sock, cmd, arg);
3529 }
3530
3531 return -ENOIOCTLCMD;
3532 }
3533
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3534 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3535 unsigned long arg)
3536 {
3537 struct socket *sock = file->private_data;
3538 const struct proto_ops *ops = READ_ONCE(sock->ops);
3539 int ret = -ENOIOCTLCMD;
3540 struct sock *sk;
3541 struct net *net;
3542
3543 sk = sock->sk;
3544 net = sock_net(sk);
3545
3546 if (ops->compat_ioctl)
3547 ret = ops->compat_ioctl(sock, cmd, arg);
3548
3549 if (ret == -ENOIOCTLCMD &&
3550 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3551 ret = compat_wext_handle_ioctl(net, cmd, arg);
3552
3553 if (ret == -ENOIOCTLCMD)
3554 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3555
3556 return ret;
3557 }
3558 #endif
3559
3560 /**
3561 * kernel_bind - bind an address to a socket (kernel space)
3562 * @sock: socket
3563 * @addr: address
3564 * @addrlen: length of address
3565 *
3566 * Returns 0 or an error.
3567 */
3568
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3569 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3570 {
3571 struct sockaddr_storage address;
3572
3573 memcpy(&address, addr, addrlen);
3574
3575 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3576 addrlen);
3577 }
3578 EXPORT_SYMBOL(kernel_bind);
3579
3580 /**
3581 * kernel_listen - move socket to listening state (kernel space)
3582 * @sock: socket
3583 * @backlog: pending connections queue size
3584 *
3585 * Returns 0 or an error.
3586 */
3587
kernel_listen(struct socket * sock,int backlog)3588 int kernel_listen(struct socket *sock, int backlog)
3589 {
3590 return READ_ONCE(sock->ops)->listen(sock, backlog);
3591 }
3592 EXPORT_SYMBOL(kernel_listen);
3593
3594 /**
3595 * kernel_accept - accept a connection (kernel space)
3596 * @sock: listening socket
3597 * @newsock: new connected socket
3598 * @flags: flags
3599 *
3600 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3601 * If it fails, @newsock is guaranteed to be %NULL.
3602 * Returns 0 or an error.
3603 */
3604
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3605 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3606 {
3607 struct sock *sk = sock->sk;
3608 const struct proto_ops *ops = READ_ONCE(sock->ops);
3609 struct proto_accept_arg arg = {
3610 .flags = flags,
3611 .kern = true,
3612 };
3613 int err;
3614
3615 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3616 newsock);
3617 if (err < 0)
3618 goto done;
3619
3620 err = ops->accept(sock, *newsock, &arg);
3621 if (err < 0) {
3622 sock_release(*newsock);
3623 *newsock = NULL;
3624 goto done;
3625 }
3626
3627 (*newsock)->ops = ops;
3628 __module_get(ops->owner);
3629
3630 done:
3631 return err;
3632 }
3633 EXPORT_SYMBOL(kernel_accept);
3634
3635 /**
3636 * kernel_connect - connect a socket (kernel space)
3637 * @sock: socket
3638 * @addr: address
3639 * @addrlen: address length
3640 * @flags: flags (O_NONBLOCK, ...)
3641 *
3642 * For datagram sockets, @addr is the address to which datagrams are sent
3643 * by default, and the only address from which datagrams are received.
3644 * For stream sockets, attempts to connect to @addr.
3645 * Returns 0 or an error code.
3646 */
3647
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3648 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3649 int flags)
3650 {
3651 struct sockaddr_storage address;
3652
3653 memcpy(&address, addr, addrlen);
3654
3655 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3656 addrlen, flags);
3657 }
3658 EXPORT_SYMBOL(kernel_connect);
3659
3660 /**
3661 * kernel_getsockname - get the address which the socket is bound (kernel space)
3662 * @sock: socket
3663 * @addr: address holder
3664 *
3665 * Fills the @addr pointer with the address which the socket is bound.
3666 * Returns the length of the address in bytes or an error code.
3667 */
3668
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3669 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3670 {
3671 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3672 }
3673 EXPORT_SYMBOL(kernel_getsockname);
3674
3675 /**
3676 * kernel_getpeername - get the address which the socket is connected (kernel space)
3677 * @sock: socket
3678 * @addr: address holder
3679 *
3680 * Fills the @addr pointer with the address which the socket is connected.
3681 * Returns the length of the address in bytes or an error code.
3682 */
3683
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3684 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3685 {
3686 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3687 }
3688 EXPORT_SYMBOL(kernel_getpeername);
3689
3690 /**
3691 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3692 * @sock: socket
3693 * @how: connection part
3694 *
3695 * Returns 0 or an error.
3696 */
3697
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3698 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3699 {
3700 return READ_ONCE(sock->ops)->shutdown(sock, how);
3701 }
3702 EXPORT_SYMBOL(kernel_sock_shutdown);
3703
3704 /**
3705 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3706 * @sk: socket
3707 *
3708 * This routine returns the IP overhead imposed by a socket i.e.
3709 * the length of the underlying IP header, depending on whether
3710 * this is an IPv4 or IPv6 socket and the length from IP options turned
3711 * on at the socket. Assumes that the caller has a lock on the socket.
3712 */
3713
kernel_sock_ip_overhead(struct sock * sk)3714 u32 kernel_sock_ip_overhead(struct sock *sk)
3715 {
3716 struct inet_sock *inet;
3717 struct ip_options_rcu *opt;
3718 u32 overhead = 0;
3719 #if IS_ENABLED(CONFIG_IPV6)
3720 struct ipv6_pinfo *np;
3721 struct ipv6_txoptions *optv6 = NULL;
3722 #endif /* IS_ENABLED(CONFIG_IPV6) */
3723
3724 if (!sk)
3725 return overhead;
3726
3727 switch (sk->sk_family) {
3728 case AF_INET:
3729 inet = inet_sk(sk);
3730 overhead += sizeof(struct iphdr);
3731 opt = rcu_dereference_protected(inet->inet_opt,
3732 sock_owned_by_user(sk));
3733 if (opt)
3734 overhead += opt->opt.optlen;
3735 return overhead;
3736 #if IS_ENABLED(CONFIG_IPV6)
3737 case AF_INET6:
3738 np = inet6_sk(sk);
3739 overhead += sizeof(struct ipv6hdr);
3740 if (np)
3741 optv6 = rcu_dereference_protected(np->opt,
3742 sock_owned_by_user(sk));
3743 if (optv6)
3744 overhead += (optv6->opt_flen + optv6->opt_nflen);
3745 return overhead;
3746 #endif /* IS_ENABLED(CONFIG_IPV6) */
3747 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3748 return overhead;
3749 }
3750 }
3751 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3752