1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <obz@Kodak.COM>
8  *		Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 #include <trace/hooks/net.h>
113 
114 #ifdef CONFIG_NET_RX_BUSY_POLL
115 unsigned int sysctl_net_busy_read __read_mostly;
116 unsigned int sysctl_net_busy_poll __read_mostly;
117 #endif
118 
119 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
120 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122 
123 static int sock_close(struct inode *inode, struct file *file);
124 static __poll_t sock_poll(struct file *file,
125 			      struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129 			      unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 				struct pipe_inode_info *pipe, size_t len,
134 				unsigned int flags);
135 static void sock_splice_eof(struct file *file);
136 
137 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)138 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
139 {
140 	struct socket *sock = f->private_data;
141 	const struct proto_ops *ops = READ_ONCE(sock->ops);
142 
143 	if (ops->show_fdinfo)
144 		ops->show_fdinfo(m, sock);
145 }
146 #else
147 #define sock_show_fdinfo NULL
148 #endif
149 
150 /*
151  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
152  *	in the operation structures but are done directly via the socketcall() multiplexor.
153  */
154 
155 static const struct file_operations socket_file_ops = {
156 	.owner =	THIS_MODULE,
157 	.read_iter =	sock_read_iter,
158 	.write_iter =	sock_write_iter,
159 	.poll =		sock_poll,
160 	.unlocked_ioctl = sock_ioctl,
161 #ifdef CONFIG_COMPAT
162 	.compat_ioctl = compat_sock_ioctl,
163 #endif
164 	.uring_cmd =    io_uring_cmd_sock,
165 	.mmap =		sock_mmap,
166 	.release =	sock_close,
167 	.fasync =	sock_fasync,
168 	.splice_write = splice_to_socket,
169 	.splice_read =	sock_splice_read,
170 	.splice_eof =	sock_splice_eof,
171 	.show_fdinfo =	sock_show_fdinfo,
172 };
173 
174 static const char * const pf_family_names[] = {
175 	[PF_UNSPEC]	= "PF_UNSPEC",
176 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
177 	[PF_INET]	= "PF_INET",
178 	[PF_AX25]	= "PF_AX25",
179 	[PF_IPX]	= "PF_IPX",
180 	[PF_APPLETALK]	= "PF_APPLETALK",
181 	[PF_NETROM]	= "PF_NETROM",
182 	[PF_BRIDGE]	= "PF_BRIDGE",
183 	[PF_ATMPVC]	= "PF_ATMPVC",
184 	[PF_X25]	= "PF_X25",
185 	[PF_INET6]	= "PF_INET6",
186 	[PF_ROSE]	= "PF_ROSE",
187 	[PF_DECnet]	= "PF_DECnet",
188 	[PF_NETBEUI]	= "PF_NETBEUI",
189 	[PF_SECURITY]	= "PF_SECURITY",
190 	[PF_KEY]	= "PF_KEY",
191 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
192 	[PF_PACKET]	= "PF_PACKET",
193 	[PF_ASH]	= "PF_ASH",
194 	[PF_ECONET]	= "PF_ECONET",
195 	[PF_ATMSVC]	= "PF_ATMSVC",
196 	[PF_RDS]	= "PF_RDS",
197 	[PF_SNA]	= "PF_SNA",
198 	[PF_IRDA]	= "PF_IRDA",
199 	[PF_PPPOX]	= "PF_PPPOX",
200 	[PF_WANPIPE]	= "PF_WANPIPE",
201 	[PF_LLC]	= "PF_LLC",
202 	[PF_IB]		= "PF_IB",
203 	[PF_MPLS]	= "PF_MPLS",
204 	[PF_CAN]	= "PF_CAN",
205 	[PF_TIPC]	= "PF_TIPC",
206 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
207 	[PF_IUCV]	= "PF_IUCV",
208 	[PF_RXRPC]	= "PF_RXRPC",
209 	[PF_ISDN]	= "PF_ISDN",
210 	[PF_PHONET]	= "PF_PHONET",
211 	[PF_IEEE802154]	= "PF_IEEE802154",
212 	[PF_CAIF]	= "PF_CAIF",
213 	[PF_ALG]	= "PF_ALG",
214 	[PF_NFC]	= "PF_NFC",
215 	[PF_VSOCK]	= "PF_VSOCK",
216 	[PF_KCM]	= "PF_KCM",
217 	[PF_QIPCRTR]	= "PF_QIPCRTR",
218 	[PF_SMC]	= "PF_SMC",
219 	[PF_XDP]	= "PF_XDP",
220 	[PF_MCTP]	= "PF_MCTP",
221 };
222 
223 /*
224  *	The protocol list. Each protocol is registered in here.
225  */
226 
227 static DEFINE_SPINLOCK(net_family_lock);
228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
229 
230 /*
231  * Support routines.
232  * Move socket addresses back and forth across the kernel/user
233  * divide and look after the messy bits.
234  */
235 
236 /**
237  *	move_addr_to_kernel	-	copy a socket address into kernel space
238  *	@uaddr: Address in user space
239  *	@kaddr: Address in kernel space
240  *	@ulen: Length in user space
241  *
242  *	The address is copied into kernel space. If the provided address is
243  *	too long an error code of -EINVAL is returned. If the copy gives
244  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
245  */
246 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
248 {
249 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
250 		return -EINVAL;
251 	if (ulen == 0)
252 		return 0;
253 	if (copy_from_user(kaddr, uaddr, ulen))
254 		return -EFAULT;
255 	return audit_sockaddr(ulen, kaddr);
256 }
257 
258 /**
259  *	move_addr_to_user	-	copy an address to user space
260  *	@kaddr: kernel space address
261  *	@klen: length of address in kernel
262  *	@uaddr: user space address
263  *	@ulen: pointer to user length field
264  *
265  *	The value pointed to by ulen on entry is the buffer length available.
266  *	This is overwritten with the buffer space used. -EINVAL is returned
267  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
268  *	is returned if either the buffer or the length field are not
269  *	accessible.
270  *	After copying the data up to the limit the user specifies, the true
271  *	length of the data is written over the length limit the user
272  *	specified. Zero is returned for a success.
273  */
274 
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
276 			     void __user *uaddr, int __user *ulen)
277 {
278 	int err;
279 	int len;
280 
281 	BUG_ON(klen > sizeof(struct sockaddr_storage));
282 	err = get_user(len, ulen);
283 	if (err)
284 		return err;
285 	if (len > klen)
286 		len = klen;
287 	if (len < 0)
288 		return -EINVAL;
289 	if (len) {
290 		if (audit_sockaddr(klen, kaddr))
291 			return -ENOMEM;
292 		if (copy_to_user(uaddr, kaddr, len))
293 			return -EFAULT;
294 	}
295 	/*
296 	 *      "fromlen shall refer to the value before truncation.."
297 	 *                      1003.1g
298 	 */
299 	return __put_user(klen, ulen);
300 }
301 
302 static struct kmem_cache *sock_inode_cachep __ro_after_init;
303 
sock_alloc_inode(struct super_block * sb)304 static struct inode *sock_alloc_inode(struct super_block *sb)
305 {
306 	struct socket_alloc *ei;
307 
308 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
309 	if (!ei)
310 		return NULL;
311 	init_waitqueue_head(&ei->socket.wq.wait);
312 	ei->socket.wq.fasync_list = NULL;
313 	ei->socket.wq.flags = 0;
314 
315 	ei->socket.state = SS_UNCONNECTED;
316 	ei->socket.flags = 0;
317 	ei->socket.ops = NULL;
318 	ei->socket.sk = NULL;
319 	ei->socket.file = NULL;
320 
321 	return &ei->vfs_inode;
322 }
323 
sock_free_inode(struct inode * inode)324 static void sock_free_inode(struct inode *inode)
325 {
326 	struct socket_alloc *ei;
327 
328 	ei = container_of(inode, struct socket_alloc, vfs_inode);
329 	kmem_cache_free(sock_inode_cachep, ei);
330 }
331 
init_once(void * foo)332 static void init_once(void *foo)
333 {
334 	struct socket_alloc *ei = (struct socket_alloc *)foo;
335 
336 	inode_init_once(&ei->vfs_inode);
337 }
338 
init_inodecache(void)339 static void init_inodecache(void)
340 {
341 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
342 					      sizeof(struct socket_alloc),
343 					      0,
344 					      (SLAB_HWCACHE_ALIGN |
345 					       SLAB_RECLAIM_ACCOUNT |
346 					       SLAB_ACCOUNT),
347 					      init_once);
348 	BUG_ON(sock_inode_cachep == NULL);
349 }
350 
351 static const struct super_operations sockfs_ops = {
352 	.alloc_inode	= sock_alloc_inode,
353 	.free_inode	= sock_free_inode,
354 	.statfs		= simple_statfs,
355 };
356 
357 /*
358  * sockfs_dname() is called from d_path().
359  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
361 {
362 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
363 				d_inode(dentry)->i_ino);
364 }
365 
366 static const struct dentry_operations sockfs_dentry_operations = {
367 	.d_dname  = sockfs_dname,
368 };
369 
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)370 static int sockfs_xattr_get(const struct xattr_handler *handler,
371 			    struct dentry *dentry, struct inode *inode,
372 			    const char *suffix, void *value, size_t size)
373 {
374 	if (value) {
375 		if (dentry->d_name.len + 1 > size)
376 			return -ERANGE;
377 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
378 	}
379 	return dentry->d_name.len + 1;
380 }
381 
382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
385 
386 static const struct xattr_handler sockfs_xattr_handler = {
387 	.name = XATTR_NAME_SOCKPROTONAME,
388 	.get = sockfs_xattr_get,
389 };
390 
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)391 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
392 				     struct mnt_idmap *idmap,
393 				     struct dentry *dentry, struct inode *inode,
394 				     const char *suffix, const void *value,
395 				     size_t size, int flags)
396 {
397 	/* Handled by LSM. */
398 	return -EAGAIN;
399 }
400 
401 static const struct xattr_handler sockfs_security_xattr_handler = {
402 	.prefix = XATTR_SECURITY_PREFIX,
403 	.set = sockfs_security_xattr_set,
404 };
405 
406 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
407 	&sockfs_xattr_handler,
408 	&sockfs_security_xattr_handler,
409 	NULL
410 };
411 
sockfs_init_fs_context(struct fs_context * fc)412 static int sockfs_init_fs_context(struct fs_context *fc)
413 {
414 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
415 	if (!ctx)
416 		return -ENOMEM;
417 	ctx->ops = &sockfs_ops;
418 	ctx->dops = &sockfs_dentry_operations;
419 	ctx->xattr = sockfs_xattr_handlers;
420 	return 0;
421 }
422 
423 static struct vfsmount *sock_mnt __read_mostly;
424 
425 static struct file_system_type sock_fs_type = {
426 	.name =		"sockfs",
427 	.init_fs_context = sockfs_init_fs_context,
428 	.kill_sb =	kill_anon_super,
429 };
430 
431 /*
432  *	Obtains the first available file descriptor and sets it up for use.
433  *
434  *	These functions create file structures and maps them to fd space
435  *	of the current process. On success it returns file descriptor
436  *	and file struct implicitly stored in sock->file.
437  *	Note that another thread may close file descriptor before we return
438  *	from this function. We use the fact that now we do not refer
439  *	to socket after mapping. If one day we will need it, this
440  *	function will increment ref. count on file by 1.
441  *
442  *	In any case returned fd MAY BE not valid!
443  *	This race condition is unavoidable
444  *	with shared fd spaces, we cannot solve it inside kernel,
445  *	but we take care of internal coherence yet.
446  */
447 
448 /**
449  *	sock_alloc_file - Bind a &socket to a &file
450  *	@sock: socket
451  *	@flags: file status flags
452  *	@dname: protocol name
453  *
454  *	Returns the &file bound with @sock, implicitly storing it
455  *	in sock->file. If dname is %NULL, sets to "".
456  *
457  *	On failure @sock is released, and an ERR pointer is returned.
458  *
459  *	This function uses GFP_KERNEL internally.
460  */
461 
sock_alloc_file(struct socket * sock,int flags,const char * dname)462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
463 {
464 	struct file *file;
465 
466 	if (!dname)
467 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
468 
469 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
470 				O_RDWR | (flags & O_NONBLOCK),
471 				&socket_file_ops);
472 	if (IS_ERR(file)) {
473 		sock_release(sock);
474 		return file;
475 	}
476 
477 	file->f_mode |= FMODE_NOWAIT;
478 	sock->file = file;
479 	file->private_data = sock;
480 	stream_open(SOCK_INODE(sock), file);
481 	return file;
482 }
483 EXPORT_SYMBOL(sock_alloc_file);
484 
sock_map_fd(struct socket * sock,int flags)485 static int sock_map_fd(struct socket *sock, int flags)
486 {
487 	struct file *newfile;
488 	int fd = get_unused_fd_flags(flags);
489 	if (unlikely(fd < 0)) {
490 		sock_release(sock);
491 		return fd;
492 	}
493 
494 	newfile = sock_alloc_file(sock, flags, NULL);
495 	if (!IS_ERR(newfile)) {
496 		fd_install(fd, newfile);
497 		return fd;
498 	}
499 
500 	put_unused_fd(fd);
501 	return PTR_ERR(newfile);
502 }
503 
504 /**
505  *	sock_from_file - Return the &socket bounded to @file.
506  *	@file: file
507  *
508  *	On failure returns %NULL.
509  */
510 
sock_from_file(struct file * file)511 struct socket *sock_from_file(struct file *file)
512 {
513 	if (file->f_op == &socket_file_ops)
514 		return file->private_data;	/* set in sock_alloc_file */
515 
516 	return NULL;
517 }
518 EXPORT_SYMBOL(sock_from_file);
519 
520 /**
521  *	sockfd_lookup - Go from a file number to its socket slot
522  *	@fd: file handle
523  *	@err: pointer to an error code return
524  *
525  *	The file handle passed in is locked and the socket it is bound
526  *	to is returned. If an error occurs the err pointer is overwritten
527  *	with a negative errno code and NULL is returned. The function checks
528  *	for both invalid handles and passing a handle which is not a socket.
529  *
530  *	On a success the socket object pointer is returned.
531  */
532 
sockfd_lookup(int fd,int * err)533 struct socket *sockfd_lookup(int fd, int *err)
534 {
535 	struct file *file;
536 	struct socket *sock;
537 
538 	file = fget(fd);
539 	if (!file) {
540 		*err = -EBADF;
541 		return NULL;
542 	}
543 
544 	sock = sock_from_file(file);
545 	if (!sock) {
546 		*err = -ENOTSOCK;
547 		fput(file);
548 	}
549 	return sock;
550 }
551 EXPORT_SYMBOL(sockfd_lookup);
552 
sockfd_lookup_light(int fd,int * err,int * fput_needed)553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
554 {
555 	struct fd f = fdget(fd);
556 	struct socket *sock;
557 
558 	*err = -EBADF;
559 	if (fd_file(f)) {
560 		sock = sock_from_file(fd_file(f));
561 		if (likely(sock)) {
562 			*fput_needed = f.word & FDPUT_FPUT;
563 			return sock;
564 		}
565 		*err = -ENOTSOCK;
566 		fdput(f);
567 	}
568 	return NULL;
569 }
570 
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
572 				size_t size)
573 {
574 	ssize_t len;
575 	ssize_t used = 0;
576 
577 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
578 	if (len < 0)
579 		return len;
580 	used += len;
581 	if (buffer) {
582 		if (size < used)
583 			return -ERANGE;
584 		buffer += len;
585 	}
586 
587 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
588 	used += len;
589 	if (buffer) {
590 		if (size < used)
591 			return -ERANGE;
592 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
593 		buffer += len;
594 	}
595 
596 	return used;
597 }
598 
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)599 static int sockfs_setattr(struct mnt_idmap *idmap,
600 			  struct dentry *dentry, struct iattr *iattr)
601 {
602 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
603 
604 	if (!err && (iattr->ia_valid & ATTR_UID)) {
605 		struct socket *sock = SOCKET_I(d_inode(dentry));
606 
607 		if (sock->sk)
608 			sock->sk->sk_uid = iattr->ia_uid;
609 		else
610 			err = -ENOENT;
611 	}
612 
613 	return err;
614 }
615 
616 static const struct inode_operations sockfs_inode_ops = {
617 	.listxattr = sockfs_listxattr,
618 	.setattr = sockfs_setattr,
619 };
620 
621 /**
622  *	sock_alloc - allocate a socket
623  *
624  *	Allocate a new inode and socket object. The two are bound together
625  *	and initialised. The socket is then returned. If we are out of inodes
626  *	NULL is returned. This functions uses GFP_KERNEL internally.
627  */
628 
sock_alloc(void)629 struct socket *sock_alloc(void)
630 {
631 	struct inode *inode;
632 	struct socket *sock;
633 
634 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
635 	if (!inode)
636 		return NULL;
637 
638 	sock = SOCKET_I(inode);
639 
640 	inode->i_ino = get_next_ino();
641 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
642 	inode->i_uid = current_fsuid();
643 	inode->i_gid = current_fsgid();
644 	inode->i_op = &sockfs_inode_ops;
645 
646 	return sock;
647 }
648 EXPORT_SYMBOL(sock_alloc);
649 
__sock_release(struct socket * sock,struct inode * inode)650 static void __sock_release(struct socket *sock, struct inode *inode)
651 {
652 	const struct proto_ops *ops = READ_ONCE(sock->ops);
653 
654 	if (ops) {
655 		struct module *owner = ops->owner;
656 
657 		if (inode)
658 			inode_lock(inode);
659 		ops->release(sock);
660 		sock->sk = NULL;
661 		if (inode)
662 			inode_unlock(inode);
663 		sock->ops = NULL;
664 		module_put(owner);
665 	}
666 
667 	if (sock->wq.fasync_list)
668 		pr_err("%s: fasync list not empty!\n", __func__);
669 
670 	if (!sock->file) {
671 		iput(SOCK_INODE(sock));
672 		return;
673 	}
674 	sock->file = NULL;
675 }
676 
677 /**
678  *	sock_release - close a socket
679  *	@sock: socket to close
680  *
681  *	The socket is released from the protocol stack if it has a release
682  *	callback, and the inode is then released if the socket is bound to
683  *	an inode not a file.
684  */
sock_release(struct socket * sock)685 void sock_release(struct socket *sock)
686 {
687 	__sock_release(sock, NULL);
688 }
689 EXPORT_SYMBOL(sock_release);
690 
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
692 {
693 	u8 flags = *tx_flags;
694 
695 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
696 		flags |= SKBTX_HW_TSTAMP;
697 
698 		/* PTP hardware clocks can provide a free running cycle counter
699 		 * as a time base for virtual clocks. Tell driver to use the
700 		 * free running cycle counter for timestamp if socket is bound
701 		 * to virtual clock.
702 		 */
703 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
704 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
705 	}
706 
707 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
708 		flags |= SKBTX_SW_TSTAMP;
709 
710 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
711 		flags |= SKBTX_SCHED_TSTAMP;
712 
713 	*tx_flags = flags;
714 }
715 EXPORT_SYMBOL(__sock_tx_timestamp);
716 
717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
718 					   size_t));
719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
720 					    size_t));
721 
call_trace_sock_send_length(struct sock * sk,int ret,int flags)722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
723 						 int flags)
724 {
725 	trace_sock_send_length(sk, ret, 0);
726 }
727 
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
729 {
730 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
731 				     inet_sendmsg, sock, msg,
732 				     msg_data_left(msg));
733 	BUG_ON(ret == -EIOCBQUEUED);
734 
735 	if (trace_sock_send_length_enabled())
736 		call_trace_sock_send_length(sock->sk, ret, 0);
737 	return ret;
738 }
739 
__sock_sendmsg(struct socket * sock,struct msghdr * msg)740 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
741 {
742 	int err = security_socket_sendmsg(sock, msg,
743 					  msg_data_left(msg));
744 
745 	return err ?: sock_sendmsg_nosec(sock, msg);
746 }
747 
748 /**
749  *	sock_sendmsg - send a message through @sock
750  *	@sock: socket
751  *	@msg: message to send
752  *
753  *	Sends @msg through @sock, passing through LSM.
754  *	Returns the number of bytes sent, or an error code.
755  */
sock_sendmsg(struct socket * sock,struct msghdr * msg)756 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
757 {
758 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
759 	struct sockaddr_storage address;
760 	int save_len = msg->msg_namelen;
761 	int ret;
762 
763 	if (msg->msg_name) {
764 		memcpy(&address, msg->msg_name, msg->msg_namelen);
765 		msg->msg_name = &address;
766 	}
767 
768 	ret = __sock_sendmsg(sock, msg);
769 	msg->msg_name = save_addr;
770 	msg->msg_namelen = save_len;
771 
772 	return ret;
773 }
774 EXPORT_SYMBOL(sock_sendmsg);
775 
776 /**
777  *	kernel_sendmsg - send a message through @sock (kernel-space)
778  *	@sock: socket
779  *	@msg: message header
780  *	@vec: kernel vec
781  *	@num: vec array length
782  *	@size: total message data size
783  *
784  *	Builds the message data with @vec and sends it through @sock.
785  *	Returns the number of bytes sent, or an error code.
786  */
787 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)788 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
789 		   struct kvec *vec, size_t num, size_t size)
790 {
791 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
792 	return sock_sendmsg(sock, msg);
793 }
794 EXPORT_SYMBOL(kernel_sendmsg);
795 
796 /**
797  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
798  *	@sk: sock
799  *	@msg: message header
800  *	@vec: output s/g array
801  *	@num: output s/g array length
802  *	@size: total message data size
803  *
804  *	Builds the message data with @vec and sends it through @sock.
805  *	Returns the number of bytes sent, or an error code.
806  *	Caller must hold @sk.
807  */
808 
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)809 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
810 			  struct kvec *vec, size_t num, size_t size)
811 {
812 	struct socket *sock = sk->sk_socket;
813 	const struct proto_ops *ops = READ_ONCE(sock->ops);
814 
815 	if (!ops->sendmsg_locked)
816 		return sock_no_sendmsg_locked(sk, msg, size);
817 
818 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
819 
820 	return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
821 }
822 EXPORT_SYMBOL(kernel_sendmsg_locked);
823 
skb_is_err_queue(const struct sk_buff * skb)824 static bool skb_is_err_queue(const struct sk_buff *skb)
825 {
826 	/* pkt_type of skbs enqueued on the error queue are set to
827 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
828 	 * in recvmsg, since skbs received on a local socket will never
829 	 * have a pkt_type of PACKET_OUTGOING.
830 	 */
831 	return skb->pkt_type == PACKET_OUTGOING;
832 }
833 
834 /* On transmit, software and hardware timestamps are returned independently.
835  * As the two skb clones share the hardware timestamp, which may be updated
836  * before the software timestamp is received, a hardware TX timestamp may be
837  * returned only if there is no software TX timestamp. Ignore false software
838  * timestamps, which may be made in the __sock_recv_timestamp() call when the
839  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
840  * hardware timestamp.
841  */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)842 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
843 {
844 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
845 }
846 
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)847 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
848 {
849 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
850 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
851 	struct net_device *orig_dev;
852 	ktime_t hwtstamp;
853 
854 	rcu_read_lock();
855 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
856 	if (orig_dev) {
857 		*if_index = orig_dev->ifindex;
858 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
859 	} else {
860 		hwtstamp = shhwtstamps->hwtstamp;
861 	}
862 	rcu_read_unlock();
863 
864 	return hwtstamp;
865 }
866 
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)867 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
868 			   int if_index)
869 {
870 	struct scm_ts_pktinfo ts_pktinfo;
871 	struct net_device *orig_dev;
872 
873 	if (!skb_mac_header_was_set(skb))
874 		return;
875 
876 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
877 
878 	if (!if_index) {
879 		rcu_read_lock();
880 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
881 		if (orig_dev)
882 			if_index = orig_dev->ifindex;
883 		rcu_read_unlock();
884 	}
885 	ts_pktinfo.if_index = if_index;
886 
887 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
888 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
889 		 sizeof(ts_pktinfo), &ts_pktinfo);
890 }
891 
892 /*
893  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
894  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)895 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
896 	struct sk_buff *skb)
897 {
898 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
899 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
900 	struct scm_timestamping_internal tss;
901 	int empty = 1, false_tstamp = 0;
902 	struct skb_shared_hwtstamps *shhwtstamps =
903 		skb_hwtstamps(skb);
904 	int if_index;
905 	ktime_t hwtstamp;
906 	u32 tsflags;
907 
908 	/* Race occurred between timestamp enabling and packet
909 	   receiving.  Fill in the current time for now. */
910 	if (need_software_tstamp && skb->tstamp == 0) {
911 		__net_timestamp(skb);
912 		false_tstamp = 1;
913 	}
914 
915 	if (need_software_tstamp) {
916 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
917 			if (new_tstamp) {
918 				struct __kernel_sock_timeval tv;
919 
920 				skb_get_new_timestamp(skb, &tv);
921 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
922 					 sizeof(tv), &tv);
923 			} else {
924 				struct __kernel_old_timeval tv;
925 
926 				skb_get_timestamp(skb, &tv);
927 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
928 					 sizeof(tv), &tv);
929 			}
930 		} else {
931 			if (new_tstamp) {
932 				struct __kernel_timespec ts;
933 
934 				skb_get_new_timestampns(skb, &ts);
935 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
936 					 sizeof(ts), &ts);
937 			} else {
938 				struct __kernel_old_timespec ts;
939 
940 				skb_get_timestampns(skb, &ts);
941 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
942 					 sizeof(ts), &ts);
943 			}
944 		}
945 	}
946 
947 	memset(&tss, 0, sizeof(tss));
948 	tsflags = READ_ONCE(sk->sk_tsflags);
949 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
950 	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
951 	      skb_is_err_queue(skb) ||
952 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
953 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
954 		empty = 0;
955 	if (shhwtstamps &&
956 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
957 	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
958 	      skb_is_err_queue(skb) ||
959 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
960 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
961 		if_index = 0;
962 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
963 			hwtstamp = get_timestamp(sk, skb, &if_index);
964 		else
965 			hwtstamp = shhwtstamps->hwtstamp;
966 
967 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
968 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
969 							 READ_ONCE(sk->sk_bind_phc));
970 
971 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
972 			empty = 0;
973 
974 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
975 			    !skb_is_err_queue(skb))
976 				put_ts_pktinfo(msg, skb, if_index);
977 		}
978 	}
979 	if (!empty) {
980 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
981 			put_cmsg_scm_timestamping64(msg, &tss);
982 		else
983 			put_cmsg_scm_timestamping(msg, &tss);
984 
985 		if (skb_is_err_queue(skb) && skb->len &&
986 		    SKB_EXT_ERR(skb)->opt_stats)
987 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
988 				 skb->len, skb->data);
989 	}
990 }
991 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
992 
993 #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)994 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
995 	struct sk_buff *skb)
996 {
997 	int ack;
998 
999 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
1000 		return;
1001 	if (!skb->wifi_acked_valid)
1002 		return;
1003 
1004 	ack = skb->wifi_acked;
1005 
1006 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1007 }
1008 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1009 #endif
1010 
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1011 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1012 				   struct sk_buff *skb)
1013 {
1014 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1015 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1016 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1017 }
1018 
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1019 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1020 			   struct sk_buff *skb)
1021 {
1022 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1023 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1024 		__u32 mark = skb->mark;
1025 
1026 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1027 	}
1028 }
1029 
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1030 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1031 		       struct sk_buff *skb)
1032 {
1033 	sock_recv_timestamp(msg, sk, skb);
1034 	sock_recv_drops(msg, sk, skb);
1035 	sock_recv_mark(msg, sk, skb);
1036 }
1037 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1038 
1039 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1040 					   size_t, int));
1041 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1042 					    size_t, int));
1043 
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1044 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1045 {
1046 	trace_sock_recv_length(sk, ret, flags);
1047 }
1048 
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1049 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1050 				     int flags)
1051 {
1052 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1053 				     inet6_recvmsg,
1054 				     inet_recvmsg, sock, msg,
1055 				     msg_data_left(msg), flags);
1056 	if (trace_sock_recv_length_enabled())
1057 		call_trace_sock_recv_length(sock->sk, ret, flags);
1058 	return ret;
1059 }
1060 
1061 /**
1062  *	sock_recvmsg - receive a message from @sock
1063  *	@sock: socket
1064  *	@msg: message to receive
1065  *	@flags: message flags
1066  *
1067  *	Receives @msg from @sock, passing through LSM. Returns the total number
1068  *	of bytes received, or an error.
1069  */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1070 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1071 {
1072 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1073 
1074 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1075 }
1076 EXPORT_SYMBOL(sock_recvmsg);
1077 
1078 /**
1079  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1080  *	@sock: The socket to receive the message from
1081  *	@msg: Received message
1082  *	@vec: Input s/g array for message data
1083  *	@num: Size of input s/g array
1084  *	@size: Number of bytes to read
1085  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1086  *
1087  *	On return the msg structure contains the scatter/gather array passed in the
1088  *	vec argument. The array is modified so that it consists of the unfilled
1089  *	portion of the original array.
1090  *
1091  *	The returned value is the total number of bytes received, or an error.
1092  */
1093 
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1094 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1095 		   struct kvec *vec, size_t num, size_t size, int flags)
1096 {
1097 	msg->msg_control_is_user = false;
1098 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1099 	return sock_recvmsg(sock, msg, flags);
1100 }
1101 EXPORT_SYMBOL(kernel_recvmsg);
1102 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1103 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1104 				struct pipe_inode_info *pipe, size_t len,
1105 				unsigned int flags)
1106 {
1107 	struct socket *sock = file->private_data;
1108 	const struct proto_ops *ops;
1109 
1110 	ops = READ_ONCE(sock->ops);
1111 	if (unlikely(!ops->splice_read))
1112 		return copy_splice_read(file, ppos, pipe, len, flags);
1113 
1114 	return ops->splice_read(sock, ppos, pipe, len, flags);
1115 }
1116 
sock_splice_eof(struct file * file)1117 static void sock_splice_eof(struct file *file)
1118 {
1119 	struct socket *sock = file->private_data;
1120 	const struct proto_ops *ops;
1121 
1122 	ops = READ_ONCE(sock->ops);
1123 	if (ops->splice_eof)
1124 		ops->splice_eof(sock);
1125 }
1126 
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1127 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1128 {
1129 	struct file *file = iocb->ki_filp;
1130 	struct socket *sock = file->private_data;
1131 	struct msghdr msg = {.msg_iter = *to,
1132 			     .msg_iocb = iocb};
1133 	ssize_t res;
1134 
1135 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1136 		msg.msg_flags = MSG_DONTWAIT;
1137 
1138 	if (iocb->ki_pos != 0)
1139 		return -ESPIPE;
1140 
1141 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1142 		return 0;
1143 
1144 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1145 	*to = msg.msg_iter;
1146 	return res;
1147 }
1148 
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1149 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1150 {
1151 	struct file *file = iocb->ki_filp;
1152 	struct socket *sock = file->private_data;
1153 	struct msghdr msg = {.msg_iter = *from,
1154 			     .msg_iocb = iocb};
1155 	ssize_t res;
1156 
1157 	if (iocb->ki_pos != 0)
1158 		return -ESPIPE;
1159 
1160 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1161 		msg.msg_flags = MSG_DONTWAIT;
1162 
1163 	if (sock->type == SOCK_SEQPACKET)
1164 		msg.msg_flags |= MSG_EOR;
1165 
1166 	res = __sock_sendmsg(sock, &msg);
1167 	*from = msg.msg_iter;
1168 	return res;
1169 }
1170 
1171 /*
1172  * Atomic setting of ioctl hooks to avoid race
1173  * with module unload.
1174  */
1175 
1176 static DEFINE_MUTEX(br_ioctl_mutex);
1177 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1178 			    unsigned int cmd, struct ifreq *ifr,
1179 			    void __user *uarg);
1180 
brioctl_set(int (* hook)(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg))1181 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1182 			     unsigned int cmd, struct ifreq *ifr,
1183 			     void __user *uarg))
1184 {
1185 	mutex_lock(&br_ioctl_mutex);
1186 	br_ioctl_hook = hook;
1187 	mutex_unlock(&br_ioctl_mutex);
1188 }
1189 EXPORT_SYMBOL(brioctl_set);
1190 
br_ioctl_call(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg)1191 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1192 		  struct ifreq *ifr, void __user *uarg)
1193 {
1194 	int err = -ENOPKG;
1195 
1196 	if (!br_ioctl_hook)
1197 		request_module("bridge");
1198 
1199 	mutex_lock(&br_ioctl_mutex);
1200 	if (br_ioctl_hook)
1201 		err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1202 	mutex_unlock(&br_ioctl_mutex);
1203 
1204 	return err;
1205 }
1206 
1207 static DEFINE_MUTEX(vlan_ioctl_mutex);
1208 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1209 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1210 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1211 {
1212 	mutex_lock(&vlan_ioctl_mutex);
1213 	vlan_ioctl_hook = hook;
1214 	mutex_unlock(&vlan_ioctl_mutex);
1215 }
1216 EXPORT_SYMBOL(vlan_ioctl_set);
1217 
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1218 static long sock_do_ioctl(struct net *net, struct socket *sock,
1219 			  unsigned int cmd, unsigned long arg)
1220 {
1221 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1222 	struct ifreq ifr;
1223 	bool need_copyout;
1224 	int err;
1225 	void __user *argp = (void __user *)arg;
1226 	void __user *data;
1227 
1228 	err = ops->ioctl(sock, cmd, arg);
1229 
1230 	/*
1231 	 * If this ioctl is unknown try to hand it down
1232 	 * to the NIC driver.
1233 	 */
1234 	if (err != -ENOIOCTLCMD)
1235 		return err;
1236 
1237 	if (!is_socket_ioctl_cmd(cmd))
1238 		return -ENOTTY;
1239 
1240 	if (get_user_ifreq(&ifr, &data, argp))
1241 		return -EFAULT;
1242 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1243 	if (!err && need_copyout)
1244 		if (put_user_ifreq(&ifr, argp))
1245 			return -EFAULT;
1246 
1247 	return err;
1248 }
1249 
1250 /*
1251  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1252  *	what to do with it - that's up to the protocol still.
1253  */
1254 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1255 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1256 {
1257 	const struct proto_ops  *ops;
1258 	struct socket *sock;
1259 	struct sock *sk;
1260 	void __user *argp = (void __user *)arg;
1261 	int pid, err;
1262 	struct net *net;
1263 
1264 	sock = file->private_data;
1265 	ops = READ_ONCE(sock->ops);
1266 	sk = sock->sk;
1267 	net = sock_net(sk);
1268 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1269 		struct ifreq ifr;
1270 		void __user *data;
1271 		bool need_copyout;
1272 		if (get_user_ifreq(&ifr, &data, argp))
1273 			return -EFAULT;
1274 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1275 		if (!err && need_copyout)
1276 			if (put_user_ifreq(&ifr, argp))
1277 				return -EFAULT;
1278 	} else
1279 #ifdef CONFIG_WEXT_CORE
1280 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1281 		err = wext_handle_ioctl(net, cmd, argp);
1282 	} else
1283 #endif
1284 		switch (cmd) {
1285 		case FIOSETOWN:
1286 		case SIOCSPGRP:
1287 			err = -EFAULT;
1288 			if (get_user(pid, (int __user *)argp))
1289 				break;
1290 			err = f_setown(sock->file, pid, 1);
1291 			break;
1292 		case FIOGETOWN:
1293 		case SIOCGPGRP:
1294 			err = put_user(f_getown(sock->file),
1295 				       (int __user *)argp);
1296 			break;
1297 		case SIOCGIFBR:
1298 		case SIOCSIFBR:
1299 		case SIOCBRADDBR:
1300 		case SIOCBRDELBR:
1301 			err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1302 			break;
1303 		case SIOCGIFVLAN:
1304 		case SIOCSIFVLAN:
1305 			err = -ENOPKG;
1306 			if (!vlan_ioctl_hook)
1307 				request_module("8021q");
1308 
1309 			mutex_lock(&vlan_ioctl_mutex);
1310 			if (vlan_ioctl_hook)
1311 				err = vlan_ioctl_hook(net, argp);
1312 			mutex_unlock(&vlan_ioctl_mutex);
1313 			break;
1314 		case SIOCGSKNS:
1315 			err = -EPERM;
1316 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1317 				break;
1318 
1319 			err = open_related_ns(&net->ns, get_net_ns);
1320 			break;
1321 		case SIOCGSTAMP_OLD:
1322 		case SIOCGSTAMPNS_OLD:
1323 			if (!ops->gettstamp) {
1324 				err = -ENOIOCTLCMD;
1325 				break;
1326 			}
1327 			err = ops->gettstamp(sock, argp,
1328 					     cmd == SIOCGSTAMP_OLD,
1329 					     !IS_ENABLED(CONFIG_64BIT));
1330 			break;
1331 		case SIOCGSTAMP_NEW:
1332 		case SIOCGSTAMPNS_NEW:
1333 			if (!ops->gettstamp) {
1334 				err = -ENOIOCTLCMD;
1335 				break;
1336 			}
1337 			err = ops->gettstamp(sock, argp,
1338 					     cmd == SIOCGSTAMP_NEW,
1339 					     false);
1340 			break;
1341 
1342 		case SIOCGIFCONF:
1343 			err = dev_ifconf(net, argp);
1344 			break;
1345 
1346 		default:
1347 			err = sock_do_ioctl(net, sock, cmd, arg);
1348 			break;
1349 		}
1350 	return err;
1351 }
1352 
1353 /**
1354  *	sock_create_lite - creates a socket
1355  *	@family: protocol family (AF_INET, ...)
1356  *	@type: communication type (SOCK_STREAM, ...)
1357  *	@protocol: protocol (0, ...)
1358  *	@res: new socket
1359  *
1360  *	Creates a new socket and assigns it to @res, passing through LSM.
1361  *	The new socket initialization is not complete, see kernel_accept().
1362  *	Returns 0 or an error. On failure @res is set to %NULL.
1363  *	This function internally uses GFP_KERNEL.
1364  */
1365 
sock_create_lite(int family,int type,int protocol,struct socket ** res)1366 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1367 {
1368 	int err;
1369 	struct socket *sock = NULL;
1370 
1371 	err = security_socket_create(family, type, protocol, 1);
1372 	if (err)
1373 		goto out;
1374 
1375 	sock = sock_alloc();
1376 	if (!sock) {
1377 		err = -ENOMEM;
1378 		goto out;
1379 	}
1380 
1381 	sock->type = type;
1382 	err = security_socket_post_create(sock, family, type, protocol, 1);
1383 	if (err)
1384 		goto out_release;
1385 
1386 out:
1387 	*res = sock;
1388 	return err;
1389 out_release:
1390 	sock_release(sock);
1391 	sock = NULL;
1392 	goto out;
1393 }
1394 EXPORT_SYMBOL(sock_create_lite);
1395 
1396 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1397 static __poll_t sock_poll(struct file *file, poll_table *wait)
1398 {
1399 	struct socket *sock = file->private_data;
1400 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1401 	__poll_t events = poll_requested_events(wait), flag = 0;
1402 
1403 	if (!ops->poll)
1404 		return 0;
1405 
1406 	if (sk_can_busy_loop(sock->sk)) {
1407 		/* poll once if requested by the syscall */
1408 		if (events & POLL_BUSY_LOOP)
1409 			sk_busy_loop(sock->sk, 1);
1410 
1411 		/* if this socket can poll_ll, tell the system call */
1412 		flag = POLL_BUSY_LOOP;
1413 	}
1414 
1415 	return ops->poll(file, sock, wait) | flag;
1416 }
1417 
sock_mmap(struct file * file,struct vm_area_struct * vma)1418 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1419 {
1420 	struct socket *sock = file->private_data;
1421 
1422 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1423 }
1424 
sock_close(struct inode * inode,struct file * filp)1425 static int sock_close(struct inode *inode, struct file *filp)
1426 {
1427 	__sock_release(SOCKET_I(inode), inode);
1428 	return 0;
1429 }
1430 
1431 /*
1432  *	Update the socket async list
1433  *
1434  *	Fasync_list locking strategy.
1435  *
1436  *	1. fasync_list is modified only under process context socket lock
1437  *	   i.e. under semaphore.
1438  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1439  *	   or under socket lock
1440  */
1441 
sock_fasync(int fd,struct file * filp,int on)1442 static int sock_fasync(int fd, struct file *filp, int on)
1443 {
1444 	struct socket *sock = filp->private_data;
1445 	struct sock *sk = sock->sk;
1446 	struct socket_wq *wq = &sock->wq;
1447 
1448 	if (sk == NULL)
1449 		return -EINVAL;
1450 
1451 	lock_sock(sk);
1452 	fasync_helper(fd, filp, on, &wq->fasync_list);
1453 
1454 	if (!wq->fasync_list)
1455 		sock_reset_flag(sk, SOCK_FASYNC);
1456 	else
1457 		sock_set_flag(sk, SOCK_FASYNC);
1458 
1459 	release_sock(sk);
1460 	return 0;
1461 }
1462 
1463 /* This function may be called only under rcu_lock */
1464 
sock_wake_async(struct socket_wq * wq,int how,int band)1465 int sock_wake_async(struct socket_wq *wq, int how, int band)
1466 {
1467 	if (!wq || !wq->fasync_list)
1468 		return -1;
1469 
1470 	switch (how) {
1471 	case SOCK_WAKE_WAITD:
1472 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1473 			break;
1474 		goto call_kill;
1475 	case SOCK_WAKE_SPACE:
1476 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1477 			break;
1478 		fallthrough;
1479 	case SOCK_WAKE_IO:
1480 call_kill:
1481 		kill_fasync(&wq->fasync_list, SIGIO, band);
1482 		break;
1483 	case SOCK_WAKE_URG:
1484 		kill_fasync(&wq->fasync_list, SIGURG, band);
1485 	}
1486 
1487 	return 0;
1488 }
1489 EXPORT_SYMBOL(sock_wake_async);
1490 
1491 /**
1492  *	__sock_create - creates a socket
1493  *	@net: net namespace
1494  *	@family: protocol family (AF_INET, ...)
1495  *	@type: communication type (SOCK_STREAM, ...)
1496  *	@protocol: protocol (0, ...)
1497  *	@res: new socket
1498  *	@kern: boolean for kernel space sockets
1499  *
1500  *	Creates a new socket and assigns it to @res, passing through LSM.
1501  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1502  *	be set to true if the socket resides in kernel space.
1503  *	This function internally uses GFP_KERNEL.
1504  */
1505 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1506 int __sock_create(struct net *net, int family, int type, int protocol,
1507 			 struct socket **res, int kern)
1508 {
1509 	int err;
1510 	struct socket *sock;
1511 	const struct net_proto_family *pf;
1512 
1513 	/*
1514 	 *      Check protocol is in range
1515 	 */
1516 	if (family < 0 || family >= NPROTO)
1517 		return -EAFNOSUPPORT;
1518 	if (type < 0 || type >= SOCK_MAX)
1519 		return -EINVAL;
1520 
1521 	/* Compatibility.
1522 
1523 	   This uglymoron is moved from INET layer to here to avoid
1524 	   deadlock in module load.
1525 	 */
1526 	if (family == PF_INET && type == SOCK_PACKET) {
1527 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1528 			     current->comm);
1529 		family = PF_PACKET;
1530 	}
1531 
1532 	err = security_socket_create(family, type, protocol, kern);
1533 	if (err)
1534 		return err;
1535 
1536 	/*
1537 	 *	Allocate the socket and allow the family to set things up. if
1538 	 *	the protocol is 0, the family is instructed to select an appropriate
1539 	 *	default.
1540 	 */
1541 	sock = sock_alloc();
1542 	if (!sock) {
1543 		net_warn_ratelimited("socket: no more sockets\n");
1544 		return -ENFILE;	/* Not exactly a match, but its the
1545 				   closest posix thing */
1546 	}
1547 
1548 	sock->type = type;
1549 
1550 #ifdef CONFIG_MODULES
1551 	/* Attempt to load a protocol module if the find failed.
1552 	 *
1553 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1554 	 * requested real, full-featured networking support upon configuration.
1555 	 * Otherwise module support will break!
1556 	 */
1557 	if (rcu_access_pointer(net_families[family]) == NULL)
1558 		request_module("net-pf-%d", family);
1559 #endif
1560 
1561 	rcu_read_lock();
1562 	pf = rcu_dereference(net_families[family]);
1563 	err = -EAFNOSUPPORT;
1564 	if (!pf)
1565 		goto out_release;
1566 
1567 	/*
1568 	 * We will call the ->create function, that possibly is in a loadable
1569 	 * module, so we have to bump that loadable module refcnt first.
1570 	 */
1571 	if (!try_module_get(pf->owner))
1572 		goto out_release;
1573 
1574 	/* Now protected by module ref count */
1575 	rcu_read_unlock();
1576 
1577 	err = pf->create(net, sock, protocol, kern);
1578 	if (err < 0) {
1579 		/* ->create should release the allocated sock->sk object on error
1580 		 * but it may leave the dangling pointer
1581 		 */
1582 		sock->sk = NULL;
1583 		goto out_module_put;
1584 	}
1585 
1586 	/*
1587 	 * Now to bump the refcnt of the [loadable] module that owns this
1588 	 * socket at sock_release time we decrement its refcnt.
1589 	 */
1590 	if (!try_module_get(sock->ops->owner))
1591 		goto out_module_busy;
1592 
1593 	/*
1594 	 * Now that we're done with the ->create function, the [loadable]
1595 	 * module can have its refcnt decremented
1596 	 */
1597 	module_put(pf->owner);
1598 	err = security_socket_post_create(sock, family, type, protocol, kern);
1599 	if (err)
1600 		goto out_sock_release;
1601 	*res = sock;
1602 
1603 	trace_android_vh_sock_create(sock->sk);
1604 
1605 	return 0;
1606 
1607 out_module_busy:
1608 	err = -EAFNOSUPPORT;
1609 out_module_put:
1610 	sock->ops = NULL;
1611 	module_put(pf->owner);
1612 out_sock_release:
1613 	sock_release(sock);
1614 	return err;
1615 
1616 out_release:
1617 	rcu_read_unlock();
1618 	goto out_sock_release;
1619 }
1620 EXPORT_SYMBOL(__sock_create);
1621 
1622 /**
1623  *	sock_create - creates a socket
1624  *	@family: protocol family (AF_INET, ...)
1625  *	@type: communication type (SOCK_STREAM, ...)
1626  *	@protocol: protocol (0, ...)
1627  *	@res: new socket
1628  *
1629  *	A wrapper around __sock_create().
1630  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1631  */
1632 
sock_create(int family,int type,int protocol,struct socket ** res)1633 int sock_create(int family, int type, int protocol, struct socket **res)
1634 {
1635 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1636 }
1637 EXPORT_SYMBOL(sock_create);
1638 
1639 /**
1640  *	sock_create_kern - creates a socket (kernel space)
1641  *	@net: net namespace
1642  *	@family: protocol family (AF_INET, ...)
1643  *	@type: communication type (SOCK_STREAM, ...)
1644  *	@protocol: protocol (0, ...)
1645  *	@res: new socket
1646  *
1647  *	A wrapper around __sock_create().
1648  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1649  */
1650 
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1651 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1652 {
1653 	return __sock_create(net, family, type, protocol, res, 1);
1654 }
1655 EXPORT_SYMBOL(sock_create_kern);
1656 
__sys_socket_create(int family,int type,int protocol)1657 static struct socket *__sys_socket_create(int family, int type, int protocol)
1658 {
1659 	struct socket *sock;
1660 	int retval;
1661 
1662 	/* Check the SOCK_* constants for consistency.  */
1663 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1664 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1665 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1666 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1667 
1668 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1669 		return ERR_PTR(-EINVAL);
1670 	type &= SOCK_TYPE_MASK;
1671 
1672 	retval = sock_create(family, type, protocol, &sock);
1673 	if (retval < 0)
1674 		return ERR_PTR(retval);
1675 
1676 	return sock;
1677 }
1678 
__sys_socket_file(int family,int type,int protocol)1679 struct file *__sys_socket_file(int family, int type, int protocol)
1680 {
1681 	struct socket *sock;
1682 	int flags;
1683 
1684 	sock = __sys_socket_create(family, type, protocol);
1685 	if (IS_ERR(sock))
1686 		return ERR_CAST(sock);
1687 
1688 	flags = type & ~SOCK_TYPE_MASK;
1689 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1690 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1691 
1692 	return sock_alloc_file(sock, flags, NULL);
1693 }
1694 
1695 /*	A hook for bpf progs to attach to and update socket protocol.
1696  *
1697  *	A static noinline declaration here could cause the compiler to
1698  *	optimize away the function. A global noinline declaration will
1699  *	keep the definition, but may optimize away the callsite.
1700  *	Therefore, __weak is needed to ensure that the call is still
1701  *	emitted, by telling the compiler that we don't know what the
1702  *	function might eventually be.
1703  */
1704 
1705 __bpf_hook_start();
1706 
update_socket_protocol(int family,int type,int protocol)1707 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1708 {
1709 	return protocol;
1710 }
1711 
1712 __bpf_hook_end();
1713 
__sys_socket(int family,int type,int protocol)1714 int __sys_socket(int family, int type, int protocol)
1715 {
1716 	struct socket *sock;
1717 	int flags;
1718 
1719 	sock = __sys_socket_create(family, type,
1720 				   update_socket_protocol(family, type, protocol));
1721 	if (IS_ERR(sock))
1722 		return PTR_ERR(sock);
1723 
1724 	flags = type & ~SOCK_TYPE_MASK;
1725 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1726 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1727 
1728 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1729 }
1730 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1731 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1732 {
1733 	return __sys_socket(family, type, protocol);
1734 }
1735 
1736 /*
1737  *	Create a pair of connected sockets.
1738  */
1739 
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1740 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1741 {
1742 	struct socket *sock1, *sock2;
1743 	int fd1, fd2, err;
1744 	struct file *newfile1, *newfile2;
1745 	int flags;
1746 
1747 	flags = type & ~SOCK_TYPE_MASK;
1748 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1749 		return -EINVAL;
1750 	type &= SOCK_TYPE_MASK;
1751 
1752 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1753 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1754 
1755 	/*
1756 	 * reserve descriptors and make sure we won't fail
1757 	 * to return them to userland.
1758 	 */
1759 	fd1 = get_unused_fd_flags(flags);
1760 	if (unlikely(fd1 < 0))
1761 		return fd1;
1762 
1763 	fd2 = get_unused_fd_flags(flags);
1764 	if (unlikely(fd2 < 0)) {
1765 		put_unused_fd(fd1);
1766 		return fd2;
1767 	}
1768 
1769 	err = put_user(fd1, &usockvec[0]);
1770 	if (err)
1771 		goto out;
1772 
1773 	err = put_user(fd2, &usockvec[1]);
1774 	if (err)
1775 		goto out;
1776 
1777 	/*
1778 	 * Obtain the first socket and check if the underlying protocol
1779 	 * supports the socketpair call.
1780 	 */
1781 
1782 	err = sock_create(family, type, protocol, &sock1);
1783 	if (unlikely(err < 0))
1784 		goto out;
1785 
1786 	err = sock_create(family, type, protocol, &sock2);
1787 	if (unlikely(err < 0)) {
1788 		sock_release(sock1);
1789 		goto out;
1790 	}
1791 
1792 	err = security_socket_socketpair(sock1, sock2);
1793 	if (unlikely(err)) {
1794 		sock_release(sock2);
1795 		sock_release(sock1);
1796 		goto out;
1797 	}
1798 
1799 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1800 	if (unlikely(err < 0)) {
1801 		sock_release(sock2);
1802 		sock_release(sock1);
1803 		goto out;
1804 	}
1805 
1806 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1807 	if (IS_ERR(newfile1)) {
1808 		err = PTR_ERR(newfile1);
1809 		sock_release(sock2);
1810 		goto out;
1811 	}
1812 
1813 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1814 	if (IS_ERR(newfile2)) {
1815 		err = PTR_ERR(newfile2);
1816 		fput(newfile1);
1817 		goto out;
1818 	}
1819 
1820 	audit_fd_pair(fd1, fd2);
1821 
1822 	fd_install(fd1, newfile1);
1823 	fd_install(fd2, newfile2);
1824 	return 0;
1825 
1826 out:
1827 	put_unused_fd(fd2);
1828 	put_unused_fd(fd1);
1829 	return err;
1830 }
1831 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1832 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1833 		int __user *, usockvec)
1834 {
1835 	return __sys_socketpair(family, type, protocol, usockvec);
1836 }
1837 
__sys_bind_socket(struct socket * sock,struct sockaddr_storage * address,int addrlen)1838 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1839 		      int addrlen)
1840 {
1841 	int err;
1842 
1843 	err = security_socket_bind(sock, (struct sockaddr *)address,
1844 				   addrlen);
1845 	if (!err)
1846 		err = READ_ONCE(sock->ops)->bind(sock,
1847 						 (struct sockaddr *)address,
1848 						 addrlen);
1849 	return err;
1850 }
1851 
1852 /*
1853  *	Bind a name to a socket. Nothing much to do here since it's
1854  *	the protocol's responsibility to handle the local address.
1855  *
1856  *	We move the socket address to kernel space before we call
1857  *	the protocol layer (having also checked the address is ok).
1858  */
1859 
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1860 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1861 {
1862 	struct socket *sock;
1863 	struct sockaddr_storage address;
1864 	int err, fput_needed;
1865 
1866 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1867 	if (sock) {
1868 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1869 		if (!err)
1870 			err = __sys_bind_socket(sock, &address, addrlen);
1871 		fput_light(sock->file, fput_needed);
1872 	}
1873 	return err;
1874 }
1875 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1876 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1877 {
1878 	return __sys_bind(fd, umyaddr, addrlen);
1879 }
1880 
1881 /*
1882  *	Perform a listen. Basically, we allow the protocol to do anything
1883  *	necessary for a listen, and if that works, we mark the socket as
1884  *	ready for listening.
1885  */
__sys_listen_socket(struct socket * sock,int backlog)1886 int __sys_listen_socket(struct socket *sock, int backlog)
1887 {
1888 	int somaxconn, err;
1889 
1890 	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1891 	if ((unsigned int)backlog > somaxconn)
1892 		backlog = somaxconn;
1893 
1894 	err = security_socket_listen(sock, backlog);
1895 	if (!err)
1896 		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1897 	return err;
1898 }
1899 
__sys_listen(int fd,int backlog)1900 int __sys_listen(int fd, int backlog)
1901 {
1902 	struct socket *sock;
1903 	int err, fput_needed;
1904 
1905 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1906 	if (sock) {
1907 		err = __sys_listen_socket(sock, backlog);
1908 		fput_light(sock->file, fput_needed);
1909 	}
1910 	return err;
1911 }
1912 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1913 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1914 {
1915 	return __sys_listen(fd, backlog);
1916 }
1917 
do_accept(struct file * file,struct proto_accept_arg * arg,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1918 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1919 		       struct sockaddr __user *upeer_sockaddr,
1920 		       int __user *upeer_addrlen, int flags)
1921 {
1922 	struct socket *sock, *newsock;
1923 	struct file *newfile;
1924 	int err, len;
1925 	struct sockaddr_storage address;
1926 	const struct proto_ops *ops;
1927 
1928 	sock = sock_from_file(file);
1929 	if (!sock)
1930 		return ERR_PTR(-ENOTSOCK);
1931 
1932 	newsock = sock_alloc();
1933 	if (!newsock)
1934 		return ERR_PTR(-ENFILE);
1935 	ops = READ_ONCE(sock->ops);
1936 
1937 	newsock->type = sock->type;
1938 	newsock->ops = ops;
1939 
1940 	/*
1941 	 * We don't need try_module_get here, as the listening socket (sock)
1942 	 * has the protocol module (sock->ops->owner) held.
1943 	 */
1944 	__module_get(ops->owner);
1945 
1946 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1947 	if (IS_ERR(newfile))
1948 		return newfile;
1949 
1950 	err = security_socket_accept(sock, newsock);
1951 	if (err)
1952 		goto out_fd;
1953 
1954 	arg->flags |= sock->file->f_flags;
1955 	err = ops->accept(sock, newsock, arg);
1956 	if (err < 0)
1957 		goto out_fd;
1958 
1959 	if (upeer_sockaddr) {
1960 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1961 		if (len < 0) {
1962 			err = -ECONNABORTED;
1963 			goto out_fd;
1964 		}
1965 		err = move_addr_to_user(&address,
1966 					len, upeer_sockaddr, upeer_addrlen);
1967 		if (err < 0)
1968 			goto out_fd;
1969 	}
1970 
1971 	/* File flags are not inherited via accept() unlike another OSes. */
1972 	return newfile;
1973 out_fd:
1974 	fput(newfile);
1975 	return ERR_PTR(err);
1976 }
1977 
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1978 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1979 			      int __user *upeer_addrlen, int flags)
1980 {
1981 	struct proto_accept_arg arg = { };
1982 	struct file *newfile;
1983 	int newfd;
1984 
1985 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1986 		return -EINVAL;
1987 
1988 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1989 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1990 
1991 	newfd = get_unused_fd_flags(flags);
1992 	if (unlikely(newfd < 0))
1993 		return newfd;
1994 
1995 	newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1996 			    flags);
1997 	if (IS_ERR(newfile)) {
1998 		put_unused_fd(newfd);
1999 		return PTR_ERR(newfile);
2000 	}
2001 	fd_install(newfd, newfile);
2002 	return newfd;
2003 }
2004 
2005 /*
2006  *	For accept, we attempt to create a new socket, set up the link
2007  *	with the client, wake up the client, then return the new
2008  *	connected fd. We collect the address of the connector in kernel
2009  *	space and move it to user at the very end. This is unclean because
2010  *	we open the socket then return an error.
2011  *
2012  *	1003.1g adds the ability to recvmsg() to query connection pending
2013  *	status to recvmsg. We need to add that support in a way thats
2014  *	clean when we restructure accept also.
2015  */
2016 
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)2017 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2018 		  int __user *upeer_addrlen, int flags)
2019 {
2020 	int ret = -EBADF;
2021 	struct fd f;
2022 
2023 	f = fdget(fd);
2024 	if (fd_file(f)) {
2025 		ret = __sys_accept4_file(fd_file(f), upeer_sockaddr,
2026 					 upeer_addrlen, flags);
2027 		fdput(f);
2028 	}
2029 
2030 	return ret;
2031 }
2032 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)2033 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2034 		int __user *, upeer_addrlen, int, flags)
2035 {
2036 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2037 }
2038 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2039 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2040 		int __user *, upeer_addrlen)
2041 {
2042 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2043 }
2044 
2045 /*
2046  *	Attempt to connect to a socket with the server address.  The address
2047  *	is in user space so we verify it is OK and move it to kernel space.
2048  *
2049  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2050  *	break bindings
2051  *
2052  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2053  *	other SEQPACKET protocols that take time to connect() as it doesn't
2054  *	include the -EINPROGRESS status for such sockets.
2055  */
2056 
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2057 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2058 		       int addrlen, int file_flags)
2059 {
2060 	struct socket *sock;
2061 	int err;
2062 
2063 	sock = sock_from_file(file);
2064 	if (!sock) {
2065 		err = -ENOTSOCK;
2066 		goto out;
2067 	}
2068 
2069 	err =
2070 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2071 	if (err)
2072 		goto out;
2073 
2074 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2075 				addrlen, sock->file->f_flags | file_flags);
2076 out:
2077 	return err;
2078 }
2079 
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2080 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2081 {
2082 	int ret = -EBADF;
2083 	struct fd f;
2084 
2085 	f = fdget(fd);
2086 	if (fd_file(f)) {
2087 		struct sockaddr_storage address;
2088 
2089 		ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2090 		if (!ret)
2091 			ret = __sys_connect_file(fd_file(f), &address, addrlen, 0);
2092 		fdput(f);
2093 	}
2094 
2095 	return ret;
2096 }
2097 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2098 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2099 		int, addrlen)
2100 {
2101 	return __sys_connect(fd, uservaddr, addrlen);
2102 }
2103 
2104 /*
2105  *	Get the local address ('name') of a socket object. Move the obtained
2106  *	name to user space.
2107  */
2108 
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2109 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2110 		      int __user *usockaddr_len)
2111 {
2112 	struct socket *sock;
2113 	struct sockaddr_storage address;
2114 	int err, fput_needed;
2115 
2116 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2117 	if (!sock)
2118 		goto out;
2119 
2120 	err = security_socket_getsockname(sock);
2121 	if (err)
2122 		goto out_put;
2123 
2124 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2125 	if (err < 0)
2126 		goto out_put;
2127 	/* "err" is actually length in this case */
2128 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2129 
2130 out_put:
2131 	fput_light(sock->file, fput_needed);
2132 out:
2133 	return err;
2134 }
2135 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2136 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2137 		int __user *, usockaddr_len)
2138 {
2139 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2140 }
2141 
2142 /*
2143  *	Get the remote address ('name') of a socket object. Move the obtained
2144  *	name to user space.
2145  */
2146 
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2147 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2148 		      int __user *usockaddr_len)
2149 {
2150 	struct socket *sock;
2151 	struct sockaddr_storage address;
2152 	int err, fput_needed;
2153 
2154 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2155 	if (sock != NULL) {
2156 		const struct proto_ops *ops = READ_ONCE(sock->ops);
2157 
2158 		err = security_socket_getpeername(sock);
2159 		if (err) {
2160 			fput_light(sock->file, fput_needed);
2161 			return err;
2162 		}
2163 
2164 		err = ops->getname(sock, (struct sockaddr *)&address, 1);
2165 		if (err >= 0)
2166 			/* "err" is actually length in this case */
2167 			err = move_addr_to_user(&address, err, usockaddr,
2168 						usockaddr_len);
2169 		fput_light(sock->file, fput_needed);
2170 	}
2171 	return err;
2172 }
2173 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2174 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2175 		int __user *, usockaddr_len)
2176 {
2177 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2178 }
2179 
2180 /*
2181  *	Send a datagram to a given address. We move the address into kernel
2182  *	space and check the user space data area is readable before invoking
2183  *	the protocol.
2184  */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2185 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2186 		 struct sockaddr __user *addr,  int addr_len)
2187 {
2188 	struct socket *sock;
2189 	struct sockaddr_storage address;
2190 	int err;
2191 	struct msghdr msg;
2192 	int fput_needed;
2193 
2194 	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2195 	if (unlikely(err))
2196 		return err;
2197 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2198 	if (!sock)
2199 		goto out;
2200 
2201 	msg.msg_name = NULL;
2202 	msg.msg_control = NULL;
2203 	msg.msg_controllen = 0;
2204 	msg.msg_namelen = 0;
2205 	msg.msg_ubuf = NULL;
2206 	if (addr) {
2207 		err = move_addr_to_kernel(addr, addr_len, &address);
2208 		if (err < 0)
2209 			goto out_put;
2210 		msg.msg_name = (struct sockaddr *)&address;
2211 		msg.msg_namelen = addr_len;
2212 	}
2213 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2214 	if (sock->file->f_flags & O_NONBLOCK)
2215 		flags |= MSG_DONTWAIT;
2216 	msg.msg_flags = flags;
2217 	err = __sock_sendmsg(sock, &msg);
2218 
2219 out_put:
2220 	fput_light(sock->file, fput_needed);
2221 out:
2222 	return err;
2223 }
2224 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2225 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2226 		unsigned int, flags, struct sockaddr __user *, addr,
2227 		int, addr_len)
2228 {
2229 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2230 }
2231 
2232 /*
2233  *	Send a datagram down a socket.
2234  */
2235 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2236 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2237 		unsigned int, flags)
2238 {
2239 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2240 }
2241 
2242 /*
2243  *	Receive a frame from the socket and optionally record the address of the
2244  *	sender. We verify the buffers are writable and if needed move the
2245  *	sender address from kernel to user space.
2246  */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2247 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2248 		   struct sockaddr __user *addr, int __user *addr_len)
2249 {
2250 	struct sockaddr_storage address;
2251 	struct msghdr msg = {
2252 		/* Save some cycles and don't copy the address if not needed */
2253 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2254 	};
2255 	struct socket *sock;
2256 	int err, err2;
2257 	int fput_needed;
2258 
2259 	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2260 	if (unlikely(err))
2261 		return err;
2262 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2263 	if (!sock)
2264 		goto out;
2265 
2266 	if (sock->file->f_flags & O_NONBLOCK)
2267 		flags |= MSG_DONTWAIT;
2268 	err = sock_recvmsg(sock, &msg, flags);
2269 
2270 	if (err >= 0 && addr != NULL) {
2271 		err2 = move_addr_to_user(&address,
2272 					 msg.msg_namelen, addr, addr_len);
2273 		if (err2 < 0)
2274 			err = err2;
2275 	}
2276 
2277 	fput_light(sock->file, fput_needed);
2278 out:
2279 	return err;
2280 }
2281 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2282 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2283 		unsigned int, flags, struct sockaddr __user *, addr,
2284 		int __user *, addr_len)
2285 {
2286 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2287 }
2288 
2289 /*
2290  *	Receive a datagram from a socket.
2291  */
2292 
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2293 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2294 		unsigned int, flags)
2295 {
2296 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2297 }
2298 
sock_use_custom_sol_socket(const struct socket * sock)2299 static bool sock_use_custom_sol_socket(const struct socket *sock)
2300 {
2301 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2302 }
2303 
do_sock_setsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,int optlen)2304 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2305 		       int optname, sockptr_t optval, int optlen)
2306 {
2307 	const struct proto_ops *ops;
2308 	char *kernel_optval = NULL;
2309 	int err;
2310 
2311 	if (optlen < 0)
2312 		return -EINVAL;
2313 
2314 	err = security_socket_setsockopt(sock, level, optname);
2315 	if (err)
2316 		goto out_put;
2317 
2318 	if (!compat)
2319 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2320 						     optval, &optlen,
2321 						     &kernel_optval);
2322 	if (err < 0)
2323 		goto out_put;
2324 	if (err > 0) {
2325 		err = 0;
2326 		goto out_put;
2327 	}
2328 
2329 	if (kernel_optval)
2330 		optval = KERNEL_SOCKPTR(kernel_optval);
2331 	ops = READ_ONCE(sock->ops);
2332 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2333 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2334 	else if (unlikely(!ops->setsockopt))
2335 		err = -EOPNOTSUPP;
2336 	else
2337 		err = ops->setsockopt(sock, level, optname, optval,
2338 					    optlen);
2339 	kfree(kernel_optval);
2340 out_put:
2341 	return err;
2342 }
2343 EXPORT_SYMBOL(do_sock_setsockopt);
2344 
2345 /* Set a socket option. Because we don't know the option lengths we have
2346  * to pass the user mode parameter for the protocols to sort out.
2347  */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2348 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2349 		     int optlen)
2350 {
2351 	sockptr_t optval = USER_SOCKPTR(user_optval);
2352 	bool compat = in_compat_syscall();
2353 	int err, fput_needed;
2354 	struct socket *sock;
2355 
2356 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2357 	if (!sock)
2358 		return err;
2359 
2360 	err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2361 
2362 	fput_light(sock->file, fput_needed);
2363 	return err;
2364 }
2365 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2366 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2367 		char __user *, optval, int, optlen)
2368 {
2369 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2370 }
2371 
2372 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2373 							 int optname));
2374 
do_sock_getsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,sockptr_t optlen)2375 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2376 		       int optname, sockptr_t optval, sockptr_t optlen)
2377 {
2378 	int max_optlen __maybe_unused = 0;
2379 	const struct proto_ops *ops;
2380 	int err;
2381 
2382 	err = security_socket_getsockopt(sock, level, optname);
2383 	if (err)
2384 		return err;
2385 
2386 	if (!compat)
2387 		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2388 
2389 	ops = READ_ONCE(sock->ops);
2390 	if (level == SOL_SOCKET) {
2391 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2392 	} else if (unlikely(!ops->getsockopt)) {
2393 		err = -EOPNOTSUPP;
2394 	} else {
2395 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2396 			      "Invalid argument type"))
2397 			return -EOPNOTSUPP;
2398 
2399 		err = ops->getsockopt(sock, level, optname, optval.user,
2400 				      optlen.user);
2401 	}
2402 
2403 	if (!compat)
2404 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2405 						     optval, optlen, max_optlen,
2406 						     err);
2407 
2408 	return err;
2409 }
2410 EXPORT_SYMBOL(do_sock_getsockopt);
2411 
2412 /*
2413  *	Get a socket option. Because we don't know the option lengths we have
2414  *	to pass a user mode parameter for the protocols to sort out.
2415  */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2416 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2417 		int __user *optlen)
2418 {
2419 	int err, fput_needed;
2420 	struct socket *sock;
2421 	bool compat;
2422 
2423 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2424 	if (!sock)
2425 		return err;
2426 
2427 	compat = in_compat_syscall();
2428 	err = do_sock_getsockopt(sock, compat, level, optname,
2429 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2430 
2431 	fput_light(sock->file, fput_needed);
2432 	return err;
2433 }
2434 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2435 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2436 		char __user *, optval, int __user *, optlen)
2437 {
2438 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2439 }
2440 
2441 /*
2442  *	Shutdown a socket.
2443  */
2444 
__sys_shutdown_sock(struct socket * sock,int how)2445 int __sys_shutdown_sock(struct socket *sock, int how)
2446 {
2447 	int err;
2448 
2449 	err = security_socket_shutdown(sock, how);
2450 	if (!err)
2451 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2452 
2453 	return err;
2454 }
2455 
__sys_shutdown(int fd,int how)2456 int __sys_shutdown(int fd, int how)
2457 {
2458 	int err, fput_needed;
2459 	struct socket *sock;
2460 
2461 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2462 	if (sock != NULL) {
2463 		err = __sys_shutdown_sock(sock, how);
2464 		fput_light(sock->file, fput_needed);
2465 	}
2466 	return err;
2467 }
2468 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2469 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2470 {
2471 	return __sys_shutdown(fd, how);
2472 }
2473 
2474 /* A couple of helpful macros for getting the address of the 32/64 bit
2475  * fields which are the same type (int / unsigned) on our platforms.
2476  */
2477 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2478 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2479 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2480 
2481 struct used_address {
2482 	struct sockaddr_storage name;
2483 	unsigned int name_len;
2484 };
2485 
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2486 int __copy_msghdr(struct msghdr *kmsg,
2487 		  struct user_msghdr *msg,
2488 		  struct sockaddr __user **save_addr)
2489 {
2490 	ssize_t err;
2491 
2492 	kmsg->msg_control_is_user = true;
2493 	kmsg->msg_get_inq = 0;
2494 	kmsg->msg_control_user = msg->msg_control;
2495 	kmsg->msg_controllen = msg->msg_controllen;
2496 	kmsg->msg_flags = msg->msg_flags;
2497 
2498 	kmsg->msg_namelen = msg->msg_namelen;
2499 	if (!msg->msg_name)
2500 		kmsg->msg_namelen = 0;
2501 
2502 	if (kmsg->msg_namelen < 0)
2503 		return -EINVAL;
2504 
2505 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2506 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2507 
2508 	if (save_addr)
2509 		*save_addr = msg->msg_name;
2510 
2511 	if (msg->msg_name && kmsg->msg_namelen) {
2512 		if (!save_addr) {
2513 			err = move_addr_to_kernel(msg->msg_name,
2514 						  kmsg->msg_namelen,
2515 						  kmsg->msg_name);
2516 			if (err < 0)
2517 				return err;
2518 		}
2519 	} else {
2520 		kmsg->msg_name = NULL;
2521 		kmsg->msg_namelen = 0;
2522 	}
2523 
2524 	if (msg->msg_iovlen > UIO_MAXIOV)
2525 		return -EMSGSIZE;
2526 
2527 	kmsg->msg_iocb = NULL;
2528 	kmsg->msg_ubuf = NULL;
2529 	return 0;
2530 }
2531 
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2532 static int copy_msghdr_from_user(struct msghdr *kmsg,
2533 				 struct user_msghdr __user *umsg,
2534 				 struct sockaddr __user **save_addr,
2535 				 struct iovec **iov)
2536 {
2537 	struct user_msghdr msg;
2538 	ssize_t err;
2539 
2540 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2541 		return -EFAULT;
2542 
2543 	err = __copy_msghdr(kmsg, &msg, save_addr);
2544 	if (err)
2545 		return err;
2546 
2547 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2548 			    msg.msg_iov, msg.msg_iovlen,
2549 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2550 	return err < 0 ? err : 0;
2551 }
2552 
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2553 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2554 			   unsigned int flags, struct used_address *used_address,
2555 			   unsigned int allowed_msghdr_flags)
2556 {
2557 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2558 				__aligned(sizeof(__kernel_size_t));
2559 	/* 20 is size of ipv6_pktinfo */
2560 	unsigned char *ctl_buf = ctl;
2561 	int ctl_len;
2562 	ssize_t err;
2563 
2564 	err = -ENOBUFS;
2565 
2566 	if (msg_sys->msg_controllen > INT_MAX)
2567 		goto out;
2568 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2569 	ctl_len = msg_sys->msg_controllen;
2570 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2571 		err =
2572 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2573 						     sizeof(ctl));
2574 		if (err)
2575 			goto out;
2576 		ctl_buf = msg_sys->msg_control;
2577 		ctl_len = msg_sys->msg_controllen;
2578 	} else if (ctl_len) {
2579 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2580 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2581 		if (ctl_len > sizeof(ctl)) {
2582 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2583 			if (ctl_buf == NULL)
2584 				goto out;
2585 		}
2586 		err = -EFAULT;
2587 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2588 			goto out_freectl;
2589 		msg_sys->msg_control = ctl_buf;
2590 		msg_sys->msg_control_is_user = false;
2591 	}
2592 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2593 	msg_sys->msg_flags = flags;
2594 
2595 	if (sock->file->f_flags & O_NONBLOCK)
2596 		msg_sys->msg_flags |= MSG_DONTWAIT;
2597 	/*
2598 	 * If this is sendmmsg() and current destination address is same as
2599 	 * previously succeeded address, omit asking LSM's decision.
2600 	 * used_address->name_len is initialized to UINT_MAX so that the first
2601 	 * destination address never matches.
2602 	 */
2603 	if (used_address && msg_sys->msg_name &&
2604 	    used_address->name_len == msg_sys->msg_namelen &&
2605 	    !memcmp(&used_address->name, msg_sys->msg_name,
2606 		    used_address->name_len)) {
2607 		err = sock_sendmsg_nosec(sock, msg_sys);
2608 		goto out_freectl;
2609 	}
2610 	err = __sock_sendmsg(sock, msg_sys);
2611 	/*
2612 	 * If this is sendmmsg() and sending to current destination address was
2613 	 * successful, remember it.
2614 	 */
2615 	if (used_address && err >= 0) {
2616 		used_address->name_len = msg_sys->msg_namelen;
2617 		if (msg_sys->msg_name)
2618 			memcpy(&used_address->name, msg_sys->msg_name,
2619 			       used_address->name_len);
2620 	}
2621 
2622 out_freectl:
2623 	if (ctl_buf != ctl)
2624 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2625 out:
2626 	return err;
2627 }
2628 
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2629 static int sendmsg_copy_msghdr(struct msghdr *msg,
2630 			       struct user_msghdr __user *umsg, unsigned flags,
2631 			       struct iovec **iov)
2632 {
2633 	int err;
2634 
2635 	if (flags & MSG_CMSG_COMPAT) {
2636 		struct compat_msghdr __user *msg_compat;
2637 
2638 		msg_compat = (struct compat_msghdr __user *) umsg;
2639 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2640 	} else {
2641 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2642 	}
2643 	if (err < 0)
2644 		return err;
2645 
2646 	return 0;
2647 }
2648 
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2649 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2650 			 struct msghdr *msg_sys, unsigned int flags,
2651 			 struct used_address *used_address,
2652 			 unsigned int allowed_msghdr_flags)
2653 {
2654 	struct sockaddr_storage address;
2655 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2656 	ssize_t err;
2657 
2658 	msg_sys->msg_name = &address;
2659 
2660 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2661 	if (err < 0)
2662 		return err;
2663 
2664 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2665 				allowed_msghdr_flags);
2666 	kfree(iov);
2667 	return err;
2668 }
2669 
2670 /*
2671  *	BSD sendmsg interface
2672  */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2673 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2674 			unsigned int flags)
2675 {
2676 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2677 }
2678 
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2679 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2680 		   bool forbid_cmsg_compat)
2681 {
2682 	int fput_needed, err;
2683 	struct msghdr msg_sys;
2684 	struct socket *sock;
2685 
2686 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2687 		return -EINVAL;
2688 
2689 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2690 	if (!sock)
2691 		goto out;
2692 
2693 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2694 
2695 	fput_light(sock->file, fput_needed);
2696 out:
2697 	return err;
2698 }
2699 
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2700 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2701 {
2702 	return __sys_sendmsg(fd, msg, flags, true);
2703 }
2704 
2705 /*
2706  *	Linux sendmmsg interface
2707  */
2708 
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2709 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2710 		   unsigned int flags, bool forbid_cmsg_compat)
2711 {
2712 	int fput_needed, err, datagrams;
2713 	struct socket *sock;
2714 	struct mmsghdr __user *entry;
2715 	struct compat_mmsghdr __user *compat_entry;
2716 	struct msghdr msg_sys;
2717 	struct used_address used_address;
2718 	unsigned int oflags = flags;
2719 
2720 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2721 		return -EINVAL;
2722 
2723 	if (vlen > UIO_MAXIOV)
2724 		vlen = UIO_MAXIOV;
2725 
2726 	datagrams = 0;
2727 
2728 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2729 	if (!sock)
2730 		return err;
2731 
2732 	used_address.name_len = UINT_MAX;
2733 	entry = mmsg;
2734 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2735 	err = 0;
2736 	flags |= MSG_BATCH;
2737 
2738 	while (datagrams < vlen) {
2739 		if (datagrams == vlen - 1)
2740 			flags = oflags;
2741 
2742 		if (MSG_CMSG_COMPAT & flags) {
2743 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2744 					     &msg_sys, flags, &used_address, MSG_EOR);
2745 			if (err < 0)
2746 				break;
2747 			err = __put_user(err, &compat_entry->msg_len);
2748 			++compat_entry;
2749 		} else {
2750 			err = ___sys_sendmsg(sock,
2751 					     (struct user_msghdr __user *)entry,
2752 					     &msg_sys, flags, &used_address, MSG_EOR);
2753 			if (err < 0)
2754 				break;
2755 			err = put_user(err, &entry->msg_len);
2756 			++entry;
2757 		}
2758 
2759 		if (err)
2760 			break;
2761 		++datagrams;
2762 		if (msg_data_left(&msg_sys))
2763 			break;
2764 		cond_resched();
2765 	}
2766 
2767 	fput_light(sock->file, fput_needed);
2768 
2769 	/* We only return an error if no datagrams were able to be sent */
2770 	if (datagrams != 0)
2771 		return datagrams;
2772 
2773 	return err;
2774 }
2775 
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2776 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2777 		unsigned int, vlen, unsigned int, flags)
2778 {
2779 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2780 }
2781 
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2782 static int recvmsg_copy_msghdr(struct msghdr *msg,
2783 			       struct user_msghdr __user *umsg, unsigned flags,
2784 			       struct sockaddr __user **uaddr,
2785 			       struct iovec **iov)
2786 {
2787 	ssize_t err;
2788 
2789 	if (MSG_CMSG_COMPAT & flags) {
2790 		struct compat_msghdr __user *msg_compat;
2791 
2792 		msg_compat = (struct compat_msghdr __user *) umsg;
2793 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2794 	} else {
2795 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2796 	}
2797 	if (err < 0)
2798 		return err;
2799 
2800 	return 0;
2801 }
2802 
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2803 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2804 			   struct user_msghdr __user *msg,
2805 			   struct sockaddr __user *uaddr,
2806 			   unsigned int flags, int nosec)
2807 {
2808 	struct compat_msghdr __user *msg_compat =
2809 					(struct compat_msghdr __user *) msg;
2810 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2811 	struct sockaddr_storage addr;
2812 	unsigned long cmsg_ptr;
2813 	int len;
2814 	ssize_t err;
2815 
2816 	msg_sys->msg_name = &addr;
2817 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2818 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2819 
2820 	/* We assume all kernel code knows the size of sockaddr_storage */
2821 	msg_sys->msg_namelen = 0;
2822 
2823 	if (sock->file->f_flags & O_NONBLOCK)
2824 		flags |= MSG_DONTWAIT;
2825 
2826 	if (unlikely(nosec))
2827 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2828 	else
2829 		err = sock_recvmsg(sock, msg_sys, flags);
2830 
2831 	if (err < 0)
2832 		goto out;
2833 	len = err;
2834 
2835 	if (uaddr != NULL) {
2836 		err = move_addr_to_user(&addr,
2837 					msg_sys->msg_namelen, uaddr,
2838 					uaddr_len);
2839 		if (err < 0)
2840 			goto out;
2841 	}
2842 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2843 			 COMPAT_FLAGS(msg));
2844 	if (err)
2845 		goto out;
2846 	if (MSG_CMSG_COMPAT & flags)
2847 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2848 				 &msg_compat->msg_controllen);
2849 	else
2850 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2851 				 &msg->msg_controllen);
2852 	if (err)
2853 		goto out;
2854 	err = len;
2855 out:
2856 	return err;
2857 }
2858 
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2859 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2860 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2861 {
2862 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2863 	/* user mode address pointers */
2864 	struct sockaddr __user *uaddr;
2865 	ssize_t err;
2866 
2867 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2868 	if (err < 0)
2869 		return err;
2870 
2871 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2872 	kfree(iov);
2873 	return err;
2874 }
2875 
2876 /*
2877  *	BSD recvmsg interface
2878  */
2879 
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2880 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2881 			struct user_msghdr __user *umsg,
2882 			struct sockaddr __user *uaddr, unsigned int flags)
2883 {
2884 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2885 }
2886 
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2887 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2888 		   bool forbid_cmsg_compat)
2889 {
2890 	int fput_needed, err;
2891 	struct msghdr msg_sys;
2892 	struct socket *sock;
2893 
2894 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2895 		return -EINVAL;
2896 
2897 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2898 	if (!sock)
2899 		goto out;
2900 
2901 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2902 
2903 	fput_light(sock->file, fput_needed);
2904 out:
2905 	return err;
2906 }
2907 
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2908 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2909 		unsigned int, flags)
2910 {
2911 	return __sys_recvmsg(fd, msg, flags, true);
2912 }
2913 
2914 /*
2915  *     Linux recvmmsg interface
2916  */
2917 
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2918 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2919 			  unsigned int vlen, unsigned int flags,
2920 			  struct timespec64 *timeout)
2921 {
2922 	int fput_needed, err, datagrams;
2923 	struct socket *sock;
2924 	struct mmsghdr __user *entry;
2925 	struct compat_mmsghdr __user *compat_entry;
2926 	struct msghdr msg_sys;
2927 	struct timespec64 end_time;
2928 	struct timespec64 timeout64;
2929 
2930 	if (timeout &&
2931 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2932 				    timeout->tv_nsec))
2933 		return -EINVAL;
2934 
2935 	datagrams = 0;
2936 
2937 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2938 	if (!sock)
2939 		return err;
2940 
2941 	if (likely(!(flags & MSG_ERRQUEUE))) {
2942 		err = sock_error(sock->sk);
2943 		if (err) {
2944 			datagrams = err;
2945 			goto out_put;
2946 		}
2947 	}
2948 
2949 	entry = mmsg;
2950 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2951 
2952 	while (datagrams < vlen) {
2953 		/*
2954 		 * No need to ask LSM for more than the first datagram.
2955 		 */
2956 		if (MSG_CMSG_COMPAT & flags) {
2957 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2958 					     &msg_sys, flags & ~MSG_WAITFORONE,
2959 					     datagrams);
2960 			if (err < 0)
2961 				break;
2962 			err = __put_user(err, &compat_entry->msg_len);
2963 			++compat_entry;
2964 		} else {
2965 			err = ___sys_recvmsg(sock,
2966 					     (struct user_msghdr __user *)entry,
2967 					     &msg_sys, flags & ~MSG_WAITFORONE,
2968 					     datagrams);
2969 			if (err < 0)
2970 				break;
2971 			err = put_user(err, &entry->msg_len);
2972 			++entry;
2973 		}
2974 
2975 		if (err)
2976 			break;
2977 		++datagrams;
2978 
2979 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2980 		if (flags & MSG_WAITFORONE)
2981 			flags |= MSG_DONTWAIT;
2982 
2983 		if (timeout) {
2984 			ktime_get_ts64(&timeout64);
2985 			*timeout = timespec64_sub(end_time, timeout64);
2986 			if (timeout->tv_sec < 0) {
2987 				timeout->tv_sec = timeout->tv_nsec = 0;
2988 				break;
2989 			}
2990 
2991 			/* Timeout, return less than vlen datagrams */
2992 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2993 				break;
2994 		}
2995 
2996 		/* Out of band data, return right away */
2997 		if (msg_sys.msg_flags & MSG_OOB)
2998 			break;
2999 		cond_resched();
3000 	}
3001 
3002 	if (err == 0)
3003 		goto out_put;
3004 
3005 	if (datagrams == 0) {
3006 		datagrams = err;
3007 		goto out_put;
3008 	}
3009 
3010 	/*
3011 	 * We may return less entries than requested (vlen) if the
3012 	 * sock is non block and there aren't enough datagrams...
3013 	 */
3014 	if (err != -EAGAIN) {
3015 		/*
3016 		 * ... or  if recvmsg returns an error after we
3017 		 * received some datagrams, where we record the
3018 		 * error to return on the next call or if the
3019 		 * app asks about it using getsockopt(SO_ERROR).
3020 		 */
3021 		WRITE_ONCE(sock->sk->sk_err, -err);
3022 	}
3023 out_put:
3024 	fput_light(sock->file, fput_needed);
3025 
3026 	return datagrams;
3027 }
3028 
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)3029 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3030 		   unsigned int vlen, unsigned int flags,
3031 		   struct __kernel_timespec __user *timeout,
3032 		   struct old_timespec32 __user *timeout32)
3033 {
3034 	int datagrams;
3035 	struct timespec64 timeout_sys;
3036 
3037 	if (timeout && get_timespec64(&timeout_sys, timeout))
3038 		return -EFAULT;
3039 
3040 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3041 		return -EFAULT;
3042 
3043 	if (!timeout && !timeout32)
3044 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3045 
3046 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3047 
3048 	if (datagrams <= 0)
3049 		return datagrams;
3050 
3051 	if (timeout && put_timespec64(&timeout_sys, timeout))
3052 		datagrams = -EFAULT;
3053 
3054 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3055 		datagrams = -EFAULT;
3056 
3057 	return datagrams;
3058 }
3059 
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3060 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3061 		unsigned int, vlen, unsigned int, flags,
3062 		struct __kernel_timespec __user *, timeout)
3063 {
3064 	if (flags & MSG_CMSG_COMPAT)
3065 		return -EINVAL;
3066 
3067 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3068 }
3069 
3070 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3071 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3072 		unsigned int, vlen, unsigned int, flags,
3073 		struct old_timespec32 __user *, timeout)
3074 {
3075 	if (flags & MSG_CMSG_COMPAT)
3076 		return -EINVAL;
3077 
3078 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3079 }
3080 #endif
3081 
3082 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3083 /* Argument list sizes for sys_socketcall */
3084 #define AL(x) ((x) * sizeof(unsigned long))
3085 static const unsigned char nargs[21] = {
3086 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3087 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3088 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3089 	AL(4), AL(5), AL(4)
3090 };
3091 
3092 #undef AL
3093 
3094 /*
3095  *	System call vectors.
3096  *
3097  *	Argument checking cleaned up. Saved 20% in size.
3098  *  This function doesn't need to set the kernel lock because
3099  *  it is set by the callees.
3100  */
3101 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3102 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3103 {
3104 	unsigned long a[AUDITSC_ARGS];
3105 	unsigned long a0, a1;
3106 	int err;
3107 	unsigned int len;
3108 
3109 	if (call < 1 || call > SYS_SENDMMSG)
3110 		return -EINVAL;
3111 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3112 
3113 	len = nargs[call];
3114 	if (len > sizeof(a))
3115 		return -EINVAL;
3116 
3117 	/* copy_from_user should be SMP safe. */
3118 	if (copy_from_user(a, args, len))
3119 		return -EFAULT;
3120 
3121 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3122 	if (err)
3123 		return err;
3124 
3125 	a0 = a[0];
3126 	a1 = a[1];
3127 
3128 	switch (call) {
3129 	case SYS_SOCKET:
3130 		err = __sys_socket(a0, a1, a[2]);
3131 		break;
3132 	case SYS_BIND:
3133 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3134 		break;
3135 	case SYS_CONNECT:
3136 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3137 		break;
3138 	case SYS_LISTEN:
3139 		err = __sys_listen(a0, a1);
3140 		break;
3141 	case SYS_ACCEPT:
3142 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3143 				    (int __user *)a[2], 0);
3144 		break;
3145 	case SYS_GETSOCKNAME:
3146 		err =
3147 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3148 				      (int __user *)a[2]);
3149 		break;
3150 	case SYS_GETPEERNAME:
3151 		err =
3152 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3153 				      (int __user *)a[2]);
3154 		break;
3155 	case SYS_SOCKETPAIR:
3156 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3157 		break;
3158 	case SYS_SEND:
3159 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3160 				   NULL, 0);
3161 		break;
3162 	case SYS_SENDTO:
3163 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3164 				   (struct sockaddr __user *)a[4], a[5]);
3165 		break;
3166 	case SYS_RECV:
3167 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3168 				     NULL, NULL);
3169 		break;
3170 	case SYS_RECVFROM:
3171 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3172 				     (struct sockaddr __user *)a[4],
3173 				     (int __user *)a[5]);
3174 		break;
3175 	case SYS_SHUTDOWN:
3176 		err = __sys_shutdown(a0, a1);
3177 		break;
3178 	case SYS_SETSOCKOPT:
3179 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3180 				       a[4]);
3181 		break;
3182 	case SYS_GETSOCKOPT:
3183 		err =
3184 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3185 				     (int __user *)a[4]);
3186 		break;
3187 	case SYS_SENDMSG:
3188 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3189 				    a[2], true);
3190 		break;
3191 	case SYS_SENDMMSG:
3192 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3193 				     a[3], true);
3194 		break;
3195 	case SYS_RECVMSG:
3196 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3197 				    a[2], true);
3198 		break;
3199 	case SYS_RECVMMSG:
3200 		if (IS_ENABLED(CONFIG_64BIT))
3201 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3202 					     a[2], a[3],
3203 					     (struct __kernel_timespec __user *)a[4],
3204 					     NULL);
3205 		else
3206 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3207 					     a[2], a[3], NULL,
3208 					     (struct old_timespec32 __user *)a[4]);
3209 		break;
3210 	case SYS_ACCEPT4:
3211 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3212 				    (int __user *)a[2], a[3]);
3213 		break;
3214 	default:
3215 		err = -EINVAL;
3216 		break;
3217 	}
3218 	return err;
3219 }
3220 
3221 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3222 
3223 /**
3224  *	sock_register - add a socket protocol handler
3225  *	@ops: description of protocol
3226  *
3227  *	This function is called by a protocol handler that wants to
3228  *	advertise its address family, and have it linked into the
3229  *	socket interface. The value ops->family corresponds to the
3230  *	socket system call protocol family.
3231  */
sock_register(const struct net_proto_family * ops)3232 int sock_register(const struct net_proto_family *ops)
3233 {
3234 	int err;
3235 
3236 	if (ops->family >= NPROTO) {
3237 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3238 		return -ENOBUFS;
3239 	}
3240 
3241 	spin_lock(&net_family_lock);
3242 	if (rcu_dereference_protected(net_families[ops->family],
3243 				      lockdep_is_held(&net_family_lock)))
3244 		err = -EEXIST;
3245 	else {
3246 		rcu_assign_pointer(net_families[ops->family], ops);
3247 		err = 0;
3248 	}
3249 	spin_unlock(&net_family_lock);
3250 
3251 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3252 	return err;
3253 }
3254 EXPORT_SYMBOL(sock_register);
3255 
3256 /**
3257  *	sock_unregister - remove a protocol handler
3258  *	@family: protocol family to remove
3259  *
3260  *	This function is called by a protocol handler that wants to
3261  *	remove its address family, and have it unlinked from the
3262  *	new socket creation.
3263  *
3264  *	If protocol handler is a module, then it can use module reference
3265  *	counts to protect against new references. If protocol handler is not
3266  *	a module then it needs to provide its own protection in
3267  *	the ops->create routine.
3268  */
sock_unregister(int family)3269 void sock_unregister(int family)
3270 {
3271 	BUG_ON(family < 0 || family >= NPROTO);
3272 
3273 	spin_lock(&net_family_lock);
3274 	RCU_INIT_POINTER(net_families[family], NULL);
3275 	spin_unlock(&net_family_lock);
3276 
3277 	synchronize_rcu();
3278 
3279 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3280 }
3281 EXPORT_SYMBOL(sock_unregister);
3282 
sock_is_registered(int family)3283 bool sock_is_registered(int family)
3284 {
3285 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3286 }
3287 
sock_init(void)3288 static int __init sock_init(void)
3289 {
3290 	int err;
3291 	/*
3292 	 *      Initialize the network sysctl infrastructure.
3293 	 */
3294 	err = net_sysctl_init();
3295 	if (err)
3296 		goto out;
3297 
3298 	/*
3299 	 *      Initialize skbuff SLAB cache
3300 	 */
3301 	skb_init();
3302 
3303 	/*
3304 	 *      Initialize the protocols module.
3305 	 */
3306 
3307 	init_inodecache();
3308 
3309 	err = register_filesystem(&sock_fs_type);
3310 	if (err)
3311 		goto out;
3312 	sock_mnt = kern_mount(&sock_fs_type);
3313 	if (IS_ERR(sock_mnt)) {
3314 		err = PTR_ERR(sock_mnt);
3315 		goto out_mount;
3316 	}
3317 
3318 	/* The real protocol initialization is performed in later initcalls.
3319 	 */
3320 
3321 #ifdef CONFIG_NETFILTER
3322 	err = netfilter_init();
3323 	if (err)
3324 		goto out;
3325 #endif
3326 
3327 	ptp_classifier_init();
3328 
3329 out:
3330 	return err;
3331 
3332 out_mount:
3333 	unregister_filesystem(&sock_fs_type);
3334 	goto out;
3335 }
3336 
3337 core_initcall(sock_init);	/* early initcall */
3338 
3339 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3340 void socket_seq_show(struct seq_file *seq)
3341 {
3342 	seq_printf(seq, "sockets: used %d\n",
3343 		   sock_inuse_get(seq->private));
3344 }
3345 #endif				/* CONFIG_PROC_FS */
3346 
3347 /* Handle the fact that while struct ifreq has the same *layout* on
3348  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3349  * which are handled elsewhere, it still has different *size* due to
3350  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3351  * resulting in struct ifreq being 32 and 40 bytes respectively).
3352  * As a result, if the struct happens to be at the end of a page and
3353  * the next page isn't readable/writable, we get a fault. To prevent
3354  * that, copy back and forth to the full size.
3355  */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3356 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3357 {
3358 	if (in_compat_syscall()) {
3359 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3360 
3361 		memset(ifr, 0, sizeof(*ifr));
3362 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3363 			return -EFAULT;
3364 
3365 		if (ifrdata)
3366 			*ifrdata = compat_ptr(ifr32->ifr_data);
3367 
3368 		return 0;
3369 	}
3370 
3371 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3372 		return -EFAULT;
3373 
3374 	if (ifrdata)
3375 		*ifrdata = ifr->ifr_data;
3376 
3377 	return 0;
3378 }
3379 EXPORT_SYMBOL(get_user_ifreq);
3380 
put_user_ifreq(struct ifreq * ifr,void __user * arg)3381 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3382 {
3383 	size_t size = sizeof(*ifr);
3384 
3385 	if (in_compat_syscall())
3386 		size = sizeof(struct compat_ifreq);
3387 
3388 	if (copy_to_user(arg, ifr, size))
3389 		return -EFAULT;
3390 
3391 	return 0;
3392 }
3393 EXPORT_SYMBOL(put_user_ifreq);
3394 
3395 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3396 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3397 {
3398 	compat_uptr_t uptr32;
3399 	struct ifreq ifr;
3400 	void __user *saved;
3401 	int err;
3402 
3403 	if (get_user_ifreq(&ifr, NULL, uifr32))
3404 		return -EFAULT;
3405 
3406 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3407 		return -EFAULT;
3408 
3409 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3410 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3411 
3412 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3413 	if (!err) {
3414 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3415 		if (put_user_ifreq(&ifr, uifr32))
3416 			err = -EFAULT;
3417 	}
3418 	return err;
3419 }
3420 
3421 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3422 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3423 				 struct compat_ifreq __user *u_ifreq32)
3424 {
3425 	struct ifreq ifreq;
3426 	void __user *data;
3427 
3428 	if (!is_socket_ioctl_cmd(cmd))
3429 		return -ENOTTY;
3430 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3431 		return -EFAULT;
3432 	ifreq.ifr_data = data;
3433 
3434 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3435 }
3436 
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3437 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3438 			 unsigned int cmd, unsigned long arg)
3439 {
3440 	void __user *argp = compat_ptr(arg);
3441 	struct sock *sk = sock->sk;
3442 	struct net *net = sock_net(sk);
3443 	const struct proto_ops *ops;
3444 
3445 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3446 		return sock_ioctl(file, cmd, (unsigned long)argp);
3447 
3448 	switch (cmd) {
3449 	case SIOCWANDEV:
3450 		return compat_siocwandev(net, argp);
3451 	case SIOCGSTAMP_OLD:
3452 	case SIOCGSTAMPNS_OLD:
3453 		ops = READ_ONCE(sock->ops);
3454 		if (!ops->gettstamp)
3455 			return -ENOIOCTLCMD;
3456 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3457 				      !COMPAT_USE_64BIT_TIME);
3458 
3459 	case SIOCETHTOOL:
3460 	case SIOCBONDSLAVEINFOQUERY:
3461 	case SIOCBONDINFOQUERY:
3462 	case SIOCSHWTSTAMP:
3463 	case SIOCGHWTSTAMP:
3464 		return compat_ifr_data_ioctl(net, cmd, argp);
3465 
3466 	case FIOSETOWN:
3467 	case SIOCSPGRP:
3468 	case FIOGETOWN:
3469 	case SIOCGPGRP:
3470 	case SIOCBRADDBR:
3471 	case SIOCBRDELBR:
3472 	case SIOCGIFVLAN:
3473 	case SIOCSIFVLAN:
3474 	case SIOCGSKNS:
3475 	case SIOCGSTAMP_NEW:
3476 	case SIOCGSTAMPNS_NEW:
3477 	case SIOCGIFCONF:
3478 	case SIOCSIFBR:
3479 	case SIOCGIFBR:
3480 		return sock_ioctl(file, cmd, arg);
3481 
3482 	case SIOCGIFFLAGS:
3483 	case SIOCSIFFLAGS:
3484 	case SIOCGIFMAP:
3485 	case SIOCSIFMAP:
3486 	case SIOCGIFMETRIC:
3487 	case SIOCSIFMETRIC:
3488 	case SIOCGIFMTU:
3489 	case SIOCSIFMTU:
3490 	case SIOCGIFMEM:
3491 	case SIOCSIFMEM:
3492 	case SIOCGIFHWADDR:
3493 	case SIOCSIFHWADDR:
3494 	case SIOCADDMULTI:
3495 	case SIOCDELMULTI:
3496 	case SIOCGIFINDEX:
3497 	case SIOCGIFADDR:
3498 	case SIOCSIFADDR:
3499 	case SIOCSIFHWBROADCAST:
3500 	case SIOCDIFADDR:
3501 	case SIOCGIFBRDADDR:
3502 	case SIOCSIFBRDADDR:
3503 	case SIOCGIFDSTADDR:
3504 	case SIOCSIFDSTADDR:
3505 	case SIOCGIFNETMASK:
3506 	case SIOCSIFNETMASK:
3507 	case SIOCSIFPFLAGS:
3508 	case SIOCGIFPFLAGS:
3509 	case SIOCGIFTXQLEN:
3510 	case SIOCSIFTXQLEN:
3511 	case SIOCBRADDIF:
3512 	case SIOCBRDELIF:
3513 	case SIOCGIFNAME:
3514 	case SIOCSIFNAME:
3515 	case SIOCGMIIPHY:
3516 	case SIOCGMIIREG:
3517 	case SIOCSMIIREG:
3518 	case SIOCBONDENSLAVE:
3519 	case SIOCBONDRELEASE:
3520 	case SIOCBONDSETHWADDR:
3521 	case SIOCBONDCHANGEACTIVE:
3522 	case SIOCSARP:
3523 	case SIOCGARP:
3524 	case SIOCDARP:
3525 	case SIOCOUTQ:
3526 	case SIOCOUTQNSD:
3527 	case SIOCATMARK:
3528 		return sock_do_ioctl(net, sock, cmd, arg);
3529 	}
3530 
3531 	return -ENOIOCTLCMD;
3532 }
3533 
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3534 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3535 			      unsigned long arg)
3536 {
3537 	struct socket *sock = file->private_data;
3538 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3539 	int ret = -ENOIOCTLCMD;
3540 	struct sock *sk;
3541 	struct net *net;
3542 
3543 	sk = sock->sk;
3544 	net = sock_net(sk);
3545 
3546 	if (ops->compat_ioctl)
3547 		ret = ops->compat_ioctl(sock, cmd, arg);
3548 
3549 	if (ret == -ENOIOCTLCMD &&
3550 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3551 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3552 
3553 	if (ret == -ENOIOCTLCMD)
3554 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3555 
3556 	return ret;
3557 }
3558 #endif
3559 
3560 /**
3561  *	kernel_bind - bind an address to a socket (kernel space)
3562  *	@sock: socket
3563  *	@addr: address
3564  *	@addrlen: length of address
3565  *
3566  *	Returns 0 or an error.
3567  */
3568 
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3569 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3570 {
3571 	struct sockaddr_storage address;
3572 
3573 	memcpy(&address, addr, addrlen);
3574 
3575 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3576 					  addrlen);
3577 }
3578 EXPORT_SYMBOL(kernel_bind);
3579 
3580 /**
3581  *	kernel_listen - move socket to listening state (kernel space)
3582  *	@sock: socket
3583  *	@backlog: pending connections queue size
3584  *
3585  *	Returns 0 or an error.
3586  */
3587 
kernel_listen(struct socket * sock,int backlog)3588 int kernel_listen(struct socket *sock, int backlog)
3589 {
3590 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3591 }
3592 EXPORT_SYMBOL(kernel_listen);
3593 
3594 /**
3595  *	kernel_accept - accept a connection (kernel space)
3596  *	@sock: listening socket
3597  *	@newsock: new connected socket
3598  *	@flags: flags
3599  *
3600  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3601  *	If it fails, @newsock is guaranteed to be %NULL.
3602  *	Returns 0 or an error.
3603  */
3604 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3605 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3606 {
3607 	struct sock *sk = sock->sk;
3608 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3609 	struct proto_accept_arg arg = {
3610 		.flags = flags,
3611 		.kern = true,
3612 	};
3613 	int err;
3614 
3615 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3616 			       newsock);
3617 	if (err < 0)
3618 		goto done;
3619 
3620 	err = ops->accept(sock, *newsock, &arg);
3621 	if (err < 0) {
3622 		sock_release(*newsock);
3623 		*newsock = NULL;
3624 		goto done;
3625 	}
3626 
3627 	(*newsock)->ops = ops;
3628 	__module_get(ops->owner);
3629 
3630 done:
3631 	return err;
3632 }
3633 EXPORT_SYMBOL(kernel_accept);
3634 
3635 /**
3636  *	kernel_connect - connect a socket (kernel space)
3637  *	@sock: socket
3638  *	@addr: address
3639  *	@addrlen: address length
3640  *	@flags: flags (O_NONBLOCK, ...)
3641  *
3642  *	For datagram sockets, @addr is the address to which datagrams are sent
3643  *	by default, and the only address from which datagrams are received.
3644  *	For stream sockets, attempts to connect to @addr.
3645  *	Returns 0 or an error code.
3646  */
3647 
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3648 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3649 		   int flags)
3650 {
3651 	struct sockaddr_storage address;
3652 
3653 	memcpy(&address, addr, addrlen);
3654 
3655 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3656 					     addrlen, flags);
3657 }
3658 EXPORT_SYMBOL(kernel_connect);
3659 
3660 /**
3661  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3662  *	@sock: socket
3663  *	@addr: address holder
3664  *
3665  * 	Fills the @addr pointer with the address which the socket is bound.
3666  *	Returns the length of the address in bytes or an error code.
3667  */
3668 
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3669 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3670 {
3671 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3672 }
3673 EXPORT_SYMBOL(kernel_getsockname);
3674 
3675 /**
3676  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3677  *	@sock: socket
3678  *	@addr: address holder
3679  *
3680  * 	Fills the @addr pointer with the address which the socket is connected.
3681  *	Returns the length of the address in bytes or an error code.
3682  */
3683 
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3684 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3685 {
3686 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3687 }
3688 EXPORT_SYMBOL(kernel_getpeername);
3689 
3690 /**
3691  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3692  *	@sock: socket
3693  *	@how: connection part
3694  *
3695  *	Returns 0 or an error.
3696  */
3697 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3698 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3699 {
3700 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3701 }
3702 EXPORT_SYMBOL(kernel_sock_shutdown);
3703 
3704 /**
3705  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3706  *	@sk: socket
3707  *
3708  *	This routine returns the IP overhead imposed by a socket i.e.
3709  *	the length of the underlying IP header, depending on whether
3710  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3711  *	on at the socket. Assumes that the caller has a lock on the socket.
3712  */
3713 
kernel_sock_ip_overhead(struct sock * sk)3714 u32 kernel_sock_ip_overhead(struct sock *sk)
3715 {
3716 	struct inet_sock *inet;
3717 	struct ip_options_rcu *opt;
3718 	u32 overhead = 0;
3719 #if IS_ENABLED(CONFIG_IPV6)
3720 	struct ipv6_pinfo *np;
3721 	struct ipv6_txoptions *optv6 = NULL;
3722 #endif /* IS_ENABLED(CONFIG_IPV6) */
3723 
3724 	if (!sk)
3725 		return overhead;
3726 
3727 	switch (sk->sk_family) {
3728 	case AF_INET:
3729 		inet = inet_sk(sk);
3730 		overhead += sizeof(struct iphdr);
3731 		opt = rcu_dereference_protected(inet->inet_opt,
3732 						sock_owned_by_user(sk));
3733 		if (opt)
3734 			overhead += opt->opt.optlen;
3735 		return overhead;
3736 #if IS_ENABLED(CONFIG_IPV6)
3737 	case AF_INET6:
3738 		np = inet6_sk(sk);
3739 		overhead += sizeof(struct ipv6hdr);
3740 		if (np)
3741 			optv6 = rcu_dereference_protected(np->opt,
3742 							  sock_owned_by_user(sk));
3743 		if (optv6)
3744 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3745 		return overhead;
3746 #endif /* IS_ENABLED(CONFIG_IPV6) */
3747 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3748 		return overhead;
3749 	}
3750 }
3751 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3752