1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Implementation of [`Box`]. 4 5 #[allow(unused_imports)] // Used in doc comments. 6 use super::allocator::{KVmalloc, Kmalloc, Vmalloc}; 7 use super::{AllocError, Allocator, Flags}; 8 use core::alloc::Layout; 9 use core::fmt; 10 use core::marker::PhantomData; 11 use core::mem::ManuallyDrop; 12 use core::mem::MaybeUninit; 13 use core::ops::{Deref, DerefMut}; 14 use core::pin::Pin; 15 use core::ptr::NonNull; 16 use core::result::Result; 17 18 use crate::init::{InPlaceInit, InPlaceWrite, Init, PinInit}; 19 use crate::types::ForeignOwnable; 20 21 /// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`. 22 /// 23 /// This is the kernel's version of the Rust stdlib's `Box`. There are several differences, 24 /// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not 25 /// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`] 26 /// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions 27 /// that may allocate memory are fallible. 28 /// 29 /// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]. 30 /// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]). 31 /// 32 /// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed. 33 /// 34 /// # Examples 35 /// 36 /// ``` 37 /// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?; 38 /// 39 /// assert_eq!(*b, 24_u64); 40 /// # Ok::<(), Error>(()) 41 /// ``` 42 /// 43 /// ``` 44 /// # use kernel::bindings; 45 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; 46 /// struct Huge([u8; SIZE]); 47 /// 48 /// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err()); 49 /// ``` 50 /// 51 /// ``` 52 /// # use kernel::bindings; 53 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1; 54 /// struct Huge([u8; SIZE]); 55 /// 56 /// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok()); 57 /// ``` 58 /// 59 /// [`Box`]es can also be used to store trait objects by coercing their type: 60 /// 61 /// ``` 62 /// trait FooTrait {} 63 /// 64 /// struct FooStruct; 65 /// impl FooTrait for FooStruct {} 66 /// 67 /// let _ = KBox::new(FooStruct, GFP_KERNEL)? as KBox<dyn FooTrait>; 68 /// # Ok::<(), Error>(()) 69 /// ``` 70 /// 71 /// # Invariants 72 /// 73 /// `self.0` is always properly aligned and either points to memory allocated with `A` or, for 74 /// zero-sized types, is a dangling, well aligned pointer. 75 #[repr(transparent)] 76 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))] 77 pub struct Box<#[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, pointee)] T: ?Sized, A: Allocator>( 78 NonNull<T>, 79 PhantomData<A>, 80 ); 81 82 // This is to allow coercion from `Box<T, A>` to `Box<U, A>` if `T` can be converted to the 83 // dynamically-sized type (DST) `U`. 84 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 85 impl<T, U, A> core::ops::CoerceUnsized<Box<U, A>> for Box<T, A> 86 where 87 T: ?Sized + core::marker::Unsize<U>, 88 U: ?Sized, 89 A: Allocator, 90 { 91 } 92 93 // This is to allow `Box<U, A>` to be dispatched on when `Box<T, A>` can be coerced into `Box<U, 94 // A>`. 95 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))] 96 impl<T, U, A> core::ops::DispatchFromDyn<Box<U, A>> for Box<T, A> 97 where 98 T: ?Sized + core::marker::Unsize<U>, 99 U: ?Sized, 100 A: Allocator, 101 { 102 } 103 104 /// Type alias for [`Box`] with a [`Kmalloc`] allocator. 105 /// 106 /// # Examples 107 /// 108 /// ``` 109 /// let b = KBox::new(24_u64, GFP_KERNEL)?; 110 /// 111 /// assert_eq!(*b, 24_u64); 112 /// # Ok::<(), Error>(()) 113 /// ``` 114 pub type KBox<T> = Box<T, super::allocator::Kmalloc>; 115 116 /// Type alias for [`Box`] with a [`Vmalloc`] allocator. 117 /// 118 /// # Examples 119 /// 120 /// ``` 121 /// let b = VBox::new(24_u64, GFP_KERNEL)?; 122 /// 123 /// assert_eq!(*b, 24_u64); 124 /// # Ok::<(), Error>(()) 125 /// ``` 126 pub type VBox<T> = Box<T, super::allocator::Vmalloc>; 127 128 /// Type alias for [`Box`] with a [`KVmalloc`] allocator. 129 /// 130 /// # Examples 131 /// 132 /// ``` 133 /// let b = KVBox::new(24_u64, GFP_KERNEL)?; 134 /// 135 /// assert_eq!(*b, 24_u64); 136 /// # Ok::<(), Error>(()) 137 /// ``` 138 pub type KVBox<T> = Box<T, super::allocator::KVmalloc>; 139 140 // SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`. 141 unsafe impl<T, A> Send for Box<T, A> 142 where 143 T: Send + ?Sized, 144 A: Allocator, 145 { 146 } 147 148 // SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`. 149 unsafe impl<T, A> Sync for Box<T, A> 150 where 151 T: Sync + ?Sized, 152 A: Allocator, 153 { 154 } 155 156 impl<T, A> Box<T, A> 157 where 158 T: ?Sized, 159 A: Allocator, 160 { 161 /// Creates a new `Box<T, A>` from a raw pointer. 162 /// 163 /// # Safety 164 /// 165 /// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently 166 /// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the 167 /// `Box`. 168 /// 169 /// For ZSTs, `raw` must be a dangling, well aligned pointer. 170 #[inline] from_raw(raw: *mut T) -> Self171 pub const unsafe fn from_raw(raw: *mut T) -> Self { 172 // INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function. 173 // SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer. 174 Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData) 175 } 176 177 /// Consumes the `Box<T, A>` and returns a raw pointer. 178 /// 179 /// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive 180 /// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the 181 /// allocation, if any. 182 /// 183 /// # Examples 184 /// 185 /// ``` 186 /// let x = KBox::new(24, GFP_KERNEL)?; 187 /// let ptr = KBox::into_raw(x); 188 /// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`. 189 /// let x = unsafe { KBox::from_raw(ptr) }; 190 /// 191 /// assert_eq!(*x, 24); 192 /// # Ok::<(), Error>(()) 193 /// ``` 194 #[inline] into_raw(b: Self) -> *mut T195 pub fn into_raw(b: Self) -> *mut T { 196 ManuallyDrop::new(b).0.as_ptr() 197 } 198 199 /// Consumes and leaks the `Box<T, A>` and returns a mutable reference. 200 /// 201 /// See [`Box::into_raw`] for more details. 202 #[inline] leak<'a>(b: Self) -> &'a mut T203 pub fn leak<'a>(b: Self) -> &'a mut T { 204 // SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer 205 // which points to an initialized instance of `T`. 206 unsafe { &mut *Box::into_raw(b) } 207 } 208 } 209 210 impl<T, A> Box<MaybeUninit<T>, A> 211 where 212 A: Allocator, 213 { 214 /// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`. 215 /// 216 /// It is undefined behavior to call this function while the value inside of `b` is not yet 217 /// fully initialized. 218 /// 219 /// # Safety 220 /// 221 /// Callers must ensure that the value inside of `b` is in an initialized state. assume_init(self) -> Box<T, A>222 pub unsafe fn assume_init(self) -> Box<T, A> { 223 let raw = Self::into_raw(self); 224 225 // SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements 226 // of this function, the value inside the `Box` is in an initialized state. Hence, it is 227 // safe to reconstruct the `Box` as `Box<T, A>`. 228 unsafe { Box::from_raw(raw.cast()) } 229 } 230 231 /// Writes the value and converts to `Box<T, A>`. write(mut self, value: T) -> Box<T, A>232 pub fn write(mut self, value: T) -> Box<T, A> { 233 (*self).write(value); 234 235 // SAFETY: We've just initialized `b`'s value. 236 unsafe { self.assume_init() } 237 } 238 } 239 240 impl<T, A> Box<T, A> 241 where 242 A: Allocator, 243 { 244 /// Creates a new `Box<T, A>` and initializes its contents with `x`. 245 /// 246 /// New memory is allocated with `A`. The allocation may fail, in which case an error is 247 /// returned. For ZSTs no memory is allocated. new(x: T, flags: Flags) -> Result<Self, AllocError>248 pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> { 249 let b = Self::new_uninit(flags)?; 250 Ok(Box::write(b, x)) 251 } 252 253 /// Creates a new `Box<T, A>` with uninitialized contents. 254 /// 255 /// New memory is allocated with `A`. The allocation may fail, in which case an error is 256 /// returned. For ZSTs no memory is allocated. 257 /// 258 /// # Examples 259 /// 260 /// ``` 261 /// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?; 262 /// let b = KBox::write(b, 24); 263 /// 264 /// assert_eq!(*b, 24_u64); 265 /// # Ok::<(), Error>(()) 266 /// ``` new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError>267 pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> { 268 let layout = Layout::new::<MaybeUninit<T>>(); 269 let ptr = A::alloc(layout, flags)?; 270 271 // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`, 272 // which is sufficient in size and alignment for storing a `T`. 273 Ok(Box(ptr.cast(), PhantomData)) 274 } 275 276 /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be 277 /// pinned in memory and can't be moved. 278 #[inline] pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError> where A: 'static,279 pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError> 280 where 281 A: 'static, 282 { 283 Ok(Self::new(x, flags)?.into()) 284 } 285 286 /// Forgets the contents (does not run the destructor), but keeps the allocation. forget_contents(this: Self) -> Box<MaybeUninit<T>, A>287 fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> { 288 let ptr = Self::into_raw(this); 289 290 // SAFETY: `ptr` is valid, because it came from `Box::into_raw`. 291 unsafe { Box::from_raw(ptr.cast()) } 292 } 293 294 /// Drops the contents, but keeps the allocation. 295 /// 296 /// # Examples 297 /// 298 /// ``` 299 /// let value = KBox::new([0; 32], GFP_KERNEL)?; 300 /// assert_eq!(*value, [0; 32]); 301 /// let value = KBox::drop_contents(value); 302 /// // Now we can re-use `value`: 303 /// let value = KBox::write(value, [1; 32]); 304 /// assert_eq!(*value, [1; 32]); 305 /// # Ok::<(), Error>(()) 306 /// ``` drop_contents(this: Self) -> Box<MaybeUninit<T>, A>307 pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> { 308 let ptr = this.0.as_ptr(); 309 310 // SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the 311 // value stored in `this` again. 312 unsafe { core::ptr::drop_in_place(ptr) }; 313 314 Self::forget_contents(this) 315 } 316 317 /// Moves the `Box`'s value out of the `Box` and consumes the `Box`. into_inner(b: Self) -> T318 pub fn into_inner(b: Self) -> T { 319 // SAFETY: By the type invariant `&*b` is valid for `read`. 320 let value = unsafe { core::ptr::read(&*b) }; 321 let _ = Self::forget_contents(b); 322 value 323 } 324 } 325 326 impl<T, A> From<Box<T, A>> for Pin<Box<T, A>> 327 where 328 T: ?Sized, 329 A: Allocator, 330 { 331 /// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then 332 /// `*b` will be pinned in memory and can't be moved. 333 /// 334 /// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory. from(b: Box<T, A>) -> Self335 fn from(b: Box<T, A>) -> Self { 336 // SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long 337 // as `T` does not implement `Unpin`. 338 unsafe { Pin::new_unchecked(b) } 339 } 340 } 341 342 impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A> 343 where 344 A: Allocator + 'static, 345 { 346 type Initialized = Box<T, A>; 347 write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E>348 fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> { 349 let slot = self.as_mut_ptr(); 350 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 351 // slot is valid. 352 unsafe { init.__init(slot)? }; 353 // SAFETY: All fields have been initialized. 354 Ok(unsafe { Box::assume_init(self) }) 355 } 356 write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E>357 fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> { 358 let slot = self.as_mut_ptr(); 359 // SAFETY: When init errors/panics, slot will get deallocated but not dropped, 360 // slot is valid and will not be moved, because we pin it later. 361 unsafe { init.__pinned_init(slot)? }; 362 // SAFETY: All fields have been initialized. 363 Ok(unsafe { Box::assume_init(self) }.into()) 364 } 365 } 366 367 impl<T, A> InPlaceInit<T> for Box<T, A> 368 where 369 A: Allocator + 'static, 370 { 371 type PinnedSelf = Pin<Self>; 372 373 #[inline] try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E> where E: From<AllocError>,374 fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E> 375 where 376 E: From<AllocError>, 377 { 378 Box::<_, A>::new_uninit(flags)?.write_pin_init(init) 379 } 380 381 #[inline] try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> where E: From<AllocError>,382 fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E> 383 where 384 E: From<AllocError>, 385 { 386 Box::<_, A>::new_uninit(flags)?.write_init(init) 387 } 388 } 389 390 impl<T: 'static, A> ForeignOwnable for Box<T, A> 391 where 392 A: Allocator, 393 { 394 type Borrowed<'a> = &'a T; 395 into_foreign(self) -> *const crate::ffi::c_void396 fn into_foreign(self) -> *const crate::ffi::c_void { 397 Box::into_raw(self) as _ 398 } 399 from_foreign(ptr: *const crate::ffi::c_void) -> Self400 unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self { 401 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 402 // call to `Self::into_foreign`. 403 unsafe { Box::from_raw(ptr as _) } 404 } 405 borrow<'a>(ptr: *const crate::ffi::c_void) -> &'a T406 unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> &'a T { 407 // SAFETY: The safety requirements of this method ensure that the object remains alive and 408 // immutable for the duration of 'a. 409 unsafe { &*ptr.cast() } 410 } 411 } 412 413 impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>> 414 where 415 A: Allocator, 416 { 417 type Borrowed<'a> = Pin<&'a T>; 418 into_foreign(self) -> *const crate::ffi::c_void419 fn into_foreign(self) -> *const crate::ffi::c_void { 420 // SAFETY: We are still treating the box as pinned. 421 Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }) as _ 422 } 423 from_foreign(ptr: *const crate::ffi::c_void) -> Self424 unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self { 425 // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous 426 // call to `Self::into_foreign`. 427 unsafe { Pin::new_unchecked(Box::from_raw(ptr as _)) } 428 } 429 borrow<'a>(ptr: *const crate::ffi::c_void) -> Pin<&'a T>430 unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> Pin<&'a T> { 431 // SAFETY: The safety requirements for this function ensure that the object is still alive, 432 // so it is safe to dereference the raw pointer. 433 // The safety requirements of `from_foreign` also ensure that the object remains alive for 434 // the lifetime of the returned value. 435 let r = unsafe { &*ptr.cast() }; 436 437 // SAFETY: This pointer originates from a `Pin<Box<T>>`. 438 unsafe { Pin::new_unchecked(r) } 439 } 440 } 441 442 impl<T, A> Deref for Box<T, A> 443 where 444 T: ?Sized, 445 A: Allocator, 446 { 447 type Target = T; 448 deref(&self) -> &T449 fn deref(&self) -> &T { 450 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized 451 // instance of `T`. 452 unsafe { self.0.as_ref() } 453 } 454 } 455 456 impl<T, A> DerefMut for Box<T, A> 457 where 458 T: ?Sized, 459 A: Allocator, 460 { deref_mut(&mut self) -> &mut T461 fn deref_mut(&mut self) -> &mut T { 462 // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized 463 // instance of `T`. 464 unsafe { self.0.as_mut() } 465 } 466 } 467 468 impl<T, A> fmt::Debug for Box<T, A> 469 where 470 T: ?Sized + fmt::Debug, 471 A: Allocator, 472 { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result473 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 474 fmt::Debug::fmt(&**self, f) 475 } 476 } 477 478 impl<T, A> Drop for Box<T, A> 479 where 480 T: ?Sized, 481 A: Allocator, 482 { drop(&mut self)483 fn drop(&mut self) { 484 let layout = Layout::for_value::<T>(self); 485 486 // SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant. 487 unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) }; 488 489 // SAFETY: 490 // - `self.0` was previously allocated with `A`. 491 // - `layout` is equal to the `Layout´ `self.0` was allocated with. 492 unsafe { A::free(self.0.cast(), layout) }; 493 } 494 } 495