1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10 */
11
12 #define pr_fmt(fmt) "LSM: " fmt
13
14 #include <linux/bpf.h>
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <linux/backing-dev.h>
27 #include <linux/string.h>
28 #include <linux/xattr.h>
29 #include <linux/msg.h>
30 #include <linux/overflow.h>
31 #include <linux/perf_event.h>
32 #include <linux/fs.h>
33 #include <net/flow.h>
34 #include <net/sock.h>
35
36 #define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
37
38 /*
39 * Identifier for the LSM static calls.
40 * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
41 * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
42 */
43 #define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
44
45 /*
46 * Call the macro M for each LSM hook MAX_LSM_COUNT times.
47 */
48 #define LSM_LOOP_UNROLL(M, ...) \
49 do { \
50 UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__) \
51 } while (0)
52
53 #define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
54
55 /*
56 * These are descriptions of the reasons that can be passed to the
57 * security_locked_down() LSM hook. Placing this array here allows
58 * all security modules to use the same descriptions for auditing
59 * purposes.
60 */
61 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
62 [LOCKDOWN_NONE] = "none",
63 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
64 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
65 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
66 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
67 [LOCKDOWN_HIBERNATION] = "hibernation",
68 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
69 [LOCKDOWN_IOPORT] = "raw io port access",
70 [LOCKDOWN_MSR] = "raw MSR access",
71 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
72 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
73 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
74 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
75 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
76 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
77 [LOCKDOWN_DEBUGFS] = "debugfs access",
78 [LOCKDOWN_XMON_WR] = "xmon write access",
79 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
80 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
81 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
82 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
83 [LOCKDOWN_KCORE] = "/proc/kcore access",
84 [LOCKDOWN_KPROBES] = "use of kprobes",
85 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
86 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
87 [LOCKDOWN_PERF] = "unsafe use of perf",
88 [LOCKDOWN_TRACEFS] = "use of tracefs",
89 [LOCKDOWN_XMON_RW] = "xmon read and write access",
90 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
91 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
92 };
93
94 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
95
96 static struct kmem_cache *lsm_file_cache;
97 static struct kmem_cache *lsm_inode_cache;
98
99 char *lsm_names;
100 static struct lsm_blob_sizes blob_sizes __ro_after_init;
101
102 /* Boot-time LSM user choice */
103 static __initdata const char *chosen_lsm_order;
104 static __initdata const char *chosen_major_lsm;
105
106 static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
107
108 /* Ordered list of LSMs to initialize. */
109 static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1];
110 static __initdata struct lsm_info *exclusive;
111
112 #ifdef CONFIG_HAVE_STATIC_CALL
113 #define LSM_HOOK_TRAMP(NAME, NUM) \
114 &STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
115 #else
116 #define LSM_HOOK_TRAMP(NAME, NUM) NULL
117 #endif
118
119 /*
120 * Define static calls and static keys for each LSM hook.
121 */
122 #define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...) \
123 DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM), \
124 *((RET(*)(__VA_ARGS__))NULL)); \
125 DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
126
127 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
128 LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
129 #include <linux/lsm_hook_defs.h>
130 #undef LSM_HOOK
131 #undef DEFINE_LSM_STATIC_CALL
132
133 /*
134 * Initialise a table of static calls for each LSM hook.
135 * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
136 * and a trampoline (STATIC_CALL_TRAMP) which are used to call
137 * __static_call_update when updating the static call.
138 *
139 * The static calls table is used by early LSMs, some architectures can fault on
140 * unaligned accesses and the fault handling code may not be ready by then.
141 * Thus, the static calls table should be aligned to avoid any unhandled faults
142 * in early init.
143 */
144 struct lsm_static_calls_table
145 static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
146 #define INIT_LSM_STATIC_CALL(NUM, NAME) \
147 (struct lsm_static_call) { \
148 .key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)), \
149 .trampoline = LSM_HOOK_TRAMP(NAME, NUM), \
150 .active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM), \
151 },
152 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
153 .NAME = { \
154 LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME) \
155 },
156 #include <linux/lsm_hook_defs.h>
157 #undef LSM_HOOK
158 #undef INIT_LSM_STATIC_CALL
159 };
160
161 static __initdata bool debug;
162 #define init_debug(...) \
163 do { \
164 if (debug) \
165 pr_info(__VA_ARGS__); \
166 } while (0)
167
is_enabled(struct lsm_info * lsm)168 static bool __init is_enabled(struct lsm_info *lsm)
169 {
170 if (!lsm->enabled)
171 return false;
172
173 return *lsm->enabled;
174 }
175
176 /* Mark an LSM's enabled flag. */
177 static int lsm_enabled_true __initdata = 1;
178 static int lsm_enabled_false __initdata = 0;
set_enabled(struct lsm_info * lsm,bool enabled)179 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
180 {
181 /*
182 * When an LSM hasn't configured an enable variable, we can use
183 * a hard-coded location for storing the default enabled state.
184 */
185 if (!lsm->enabled) {
186 if (enabled)
187 lsm->enabled = &lsm_enabled_true;
188 else
189 lsm->enabled = &lsm_enabled_false;
190 } else if (lsm->enabled == &lsm_enabled_true) {
191 if (!enabled)
192 lsm->enabled = &lsm_enabled_false;
193 } else if (lsm->enabled == &lsm_enabled_false) {
194 if (enabled)
195 lsm->enabled = &lsm_enabled_true;
196 } else {
197 *lsm->enabled = enabled;
198 }
199 }
200
201 /* Is an LSM already listed in the ordered LSMs list? */
exists_ordered_lsm(struct lsm_info * lsm)202 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
203 {
204 struct lsm_info **check;
205
206 for (check = ordered_lsms; *check; check++)
207 if (*check == lsm)
208 return true;
209
210 return false;
211 }
212
213 /* Append an LSM to the list of ordered LSMs to initialize. */
214 static int last_lsm __initdata;
append_ordered_lsm(struct lsm_info * lsm,const char * from)215 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
216 {
217 /* Ignore duplicate selections. */
218 if (exists_ordered_lsm(lsm))
219 return;
220
221 if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from))
222 return;
223
224 /* Enable this LSM, if it is not already set. */
225 if (!lsm->enabled)
226 lsm->enabled = &lsm_enabled_true;
227 ordered_lsms[last_lsm++] = lsm;
228
229 init_debug("%s ordered: %s (%s)\n", from, lsm->name,
230 is_enabled(lsm) ? "enabled" : "disabled");
231 }
232
233 /* Is an LSM allowed to be initialized? */
lsm_allowed(struct lsm_info * lsm)234 static bool __init lsm_allowed(struct lsm_info *lsm)
235 {
236 /* Skip if the LSM is disabled. */
237 if (!is_enabled(lsm))
238 return false;
239
240 /* Not allowed if another exclusive LSM already initialized. */
241 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
242 init_debug("exclusive disabled: %s\n", lsm->name);
243 return false;
244 }
245
246 return true;
247 }
248
lsm_set_blob_size(int * need,int * lbs)249 static void __init lsm_set_blob_size(int *need, int *lbs)
250 {
251 int offset;
252
253 if (*need <= 0)
254 return;
255
256 offset = ALIGN(*lbs, sizeof(void *));
257 *lbs = offset + *need;
258 *need = offset;
259 }
260
lsm_set_blob_sizes(struct lsm_blob_sizes * needed)261 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
262 {
263 if (!needed)
264 return;
265
266 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
267 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
268 lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
269 /*
270 * The inode blob gets an rcu_head in addition to
271 * what the modules might need.
272 */
273 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
274 blob_sizes.lbs_inode = sizeof(struct rcu_head);
275 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
276 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
277 lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
278 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
279 lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
280 lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
281 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
282 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
283 lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
284 lsm_set_blob_size(&needed->lbs_xattr_count,
285 &blob_sizes.lbs_xattr_count);
286 lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
287 }
288
289 /* Prepare LSM for initialization. */
prepare_lsm(struct lsm_info * lsm)290 static void __init prepare_lsm(struct lsm_info *lsm)
291 {
292 int enabled = lsm_allowed(lsm);
293
294 /* Record enablement (to handle any following exclusive LSMs). */
295 set_enabled(lsm, enabled);
296
297 /* If enabled, do pre-initialization work. */
298 if (enabled) {
299 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
300 exclusive = lsm;
301 init_debug("exclusive chosen: %s\n", lsm->name);
302 }
303
304 lsm_set_blob_sizes(lsm->blobs);
305 }
306 }
307
308 /* Initialize a given LSM, if it is enabled. */
initialize_lsm(struct lsm_info * lsm)309 static void __init initialize_lsm(struct lsm_info *lsm)
310 {
311 if (is_enabled(lsm)) {
312 int ret;
313
314 init_debug("initializing %s\n", lsm->name);
315 ret = lsm->init();
316 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
317 }
318 }
319
320 /*
321 * Current index to use while initializing the lsm id list.
322 */
323 u32 lsm_active_cnt __ro_after_init;
324 const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
325
326 /* Populate ordered LSMs list from comma-separated LSM name list. */
ordered_lsm_parse(const char * order,const char * origin)327 static void __init ordered_lsm_parse(const char *order, const char *origin)
328 {
329 struct lsm_info *lsm;
330 char *sep, *name, *next;
331
332 /* LSM_ORDER_FIRST is always first. */
333 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
334 if (lsm->order == LSM_ORDER_FIRST)
335 append_ordered_lsm(lsm, " first");
336 }
337
338 /* Process "security=", if given. */
339 if (chosen_major_lsm) {
340 struct lsm_info *major;
341
342 /*
343 * To match the original "security=" behavior, this
344 * explicitly does NOT fallback to another Legacy Major
345 * if the selected one was separately disabled: disable
346 * all non-matching Legacy Major LSMs.
347 */
348 for (major = __start_lsm_info; major < __end_lsm_info;
349 major++) {
350 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
351 strcmp(major->name, chosen_major_lsm) != 0) {
352 set_enabled(major, false);
353 init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
354 chosen_major_lsm, major->name);
355 }
356 }
357 }
358
359 sep = kstrdup(order, GFP_KERNEL);
360 next = sep;
361 /* Walk the list, looking for matching LSMs. */
362 while ((name = strsep(&next, ",")) != NULL) {
363 bool found = false;
364
365 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
366 if (strcmp(lsm->name, name) == 0) {
367 if (lsm->order == LSM_ORDER_MUTABLE)
368 append_ordered_lsm(lsm, origin);
369 found = true;
370 }
371 }
372
373 if (!found)
374 init_debug("%s ignored: %s (not built into kernel)\n",
375 origin, name);
376 }
377
378 /* Process "security=", if given. */
379 if (chosen_major_lsm) {
380 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
381 if (exists_ordered_lsm(lsm))
382 continue;
383 if (strcmp(lsm->name, chosen_major_lsm) == 0)
384 append_ordered_lsm(lsm, "security=");
385 }
386 }
387
388 /* LSM_ORDER_LAST is always last. */
389 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
390 if (lsm->order == LSM_ORDER_LAST)
391 append_ordered_lsm(lsm, " last");
392 }
393
394 /* Disable all LSMs not in the ordered list. */
395 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
396 if (exists_ordered_lsm(lsm))
397 continue;
398 set_enabled(lsm, false);
399 init_debug("%s skipped: %s (not in requested order)\n",
400 origin, lsm->name);
401 }
402
403 kfree(sep);
404 }
405
lsm_static_call_init(struct security_hook_list * hl)406 static void __init lsm_static_call_init(struct security_hook_list *hl)
407 {
408 struct lsm_static_call *scall = hl->scalls;
409 int i;
410
411 for (i = 0; i < MAX_LSM_COUNT; i++) {
412 /* Update the first static call that is not used yet */
413 if (!scall->hl) {
414 __static_call_update(scall->key, scall->trampoline,
415 hl->hook.lsm_func_addr);
416 scall->hl = hl;
417 static_branch_enable(scall->active);
418 return;
419 }
420 scall++;
421 }
422 panic("%s - Ran out of static slots.\n", __func__);
423 }
424
425 static void __init lsm_early_cred(struct cred *cred);
426 static void __init lsm_early_task(struct task_struct *task);
427
428 static int lsm_append(const char *new, char **result);
429
report_lsm_order(void)430 static void __init report_lsm_order(void)
431 {
432 struct lsm_info **lsm, *early;
433 int first = 0;
434
435 pr_info("initializing lsm=");
436
437 /* Report each enabled LSM name, comma separated. */
438 for (early = __start_early_lsm_info;
439 early < __end_early_lsm_info; early++)
440 if (is_enabled(early))
441 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
442 for (lsm = ordered_lsms; *lsm; lsm++)
443 if (is_enabled(*lsm))
444 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
445
446 pr_cont("\n");
447 }
448
ordered_lsm_init(void)449 static void __init ordered_lsm_init(void)
450 {
451 struct lsm_info **lsm;
452
453 if (chosen_lsm_order) {
454 if (chosen_major_lsm) {
455 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
456 chosen_major_lsm, chosen_lsm_order);
457 chosen_major_lsm = NULL;
458 }
459 ordered_lsm_parse(chosen_lsm_order, "cmdline");
460 } else
461 ordered_lsm_parse(builtin_lsm_order, "builtin");
462
463 for (lsm = ordered_lsms; *lsm; lsm++)
464 prepare_lsm(*lsm);
465
466 report_lsm_order();
467
468 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
469 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
470 init_debug("ib blob size = %d\n", blob_sizes.lbs_ib);
471 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
472 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
473 #ifdef CONFIG_KEYS
474 init_debug("key blob size = %d\n", blob_sizes.lbs_key);
475 #endif /* CONFIG_KEYS */
476 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
477 init_debug("sock blob size = %d\n", blob_sizes.lbs_sock);
478 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
479 init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
480 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
481 init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
482 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count);
483 init_debug("bdev blob size = %d\n", blob_sizes.lbs_bdev);
484
485 /*
486 * Create any kmem_caches needed for blobs
487 */
488 if (blob_sizes.lbs_file)
489 lsm_file_cache = kmem_cache_create("lsm_file_cache",
490 blob_sizes.lbs_file, 0,
491 SLAB_PANIC, NULL);
492 if (blob_sizes.lbs_inode)
493 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
494 blob_sizes.lbs_inode, 0,
495 SLAB_PANIC, NULL);
496
497 lsm_early_cred((struct cred *) current->cred);
498 lsm_early_task(current);
499 for (lsm = ordered_lsms; *lsm; lsm++)
500 initialize_lsm(*lsm);
501 }
502
early_security_init(void)503 int __init early_security_init(void)
504 {
505 struct lsm_info *lsm;
506
507 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
508 if (!lsm->enabled)
509 lsm->enabled = &lsm_enabled_true;
510 prepare_lsm(lsm);
511 initialize_lsm(lsm);
512 }
513
514 return 0;
515 }
516
517 /**
518 * security_init - initializes the security framework
519 *
520 * This should be called early in the kernel initialization sequence.
521 */
security_init(void)522 int __init security_init(void)
523 {
524 struct lsm_info *lsm;
525
526 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
527 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order);
528 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
529
530 /*
531 * Append the names of the early LSM modules now that kmalloc() is
532 * available
533 */
534 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
535 init_debug(" early started: %s (%s)\n", lsm->name,
536 is_enabled(lsm) ? "enabled" : "disabled");
537 if (lsm->enabled)
538 lsm_append(lsm->name, &lsm_names);
539 }
540
541 /* Load LSMs in specified order. */
542 ordered_lsm_init();
543
544 return 0;
545 }
546
547 /* Save user chosen LSM */
choose_major_lsm(char * str)548 static int __init choose_major_lsm(char *str)
549 {
550 chosen_major_lsm = str;
551 return 1;
552 }
553 __setup("security=", choose_major_lsm);
554
555 /* Explicitly choose LSM initialization order. */
choose_lsm_order(char * str)556 static int __init choose_lsm_order(char *str)
557 {
558 chosen_lsm_order = str;
559 return 1;
560 }
561 __setup("lsm=", choose_lsm_order);
562
563 /* Enable LSM order debugging. */
enable_debug(char * str)564 static int __init enable_debug(char *str)
565 {
566 debug = true;
567 return 1;
568 }
569 __setup("lsm.debug", enable_debug);
570
match_last_lsm(const char * list,const char * lsm)571 static bool match_last_lsm(const char *list, const char *lsm)
572 {
573 const char *last;
574
575 if (WARN_ON(!list || !lsm))
576 return false;
577 last = strrchr(list, ',');
578 if (last)
579 /* Pass the comma, strcmp() will check for '\0' */
580 last++;
581 else
582 last = list;
583 return !strcmp(last, lsm);
584 }
585
lsm_append(const char * new,char ** result)586 static int lsm_append(const char *new, char **result)
587 {
588 char *cp;
589
590 if (*result == NULL) {
591 *result = kstrdup(new, GFP_KERNEL);
592 if (*result == NULL)
593 return -ENOMEM;
594 } else {
595 /* Check if it is the last registered name */
596 if (match_last_lsm(*result, new))
597 return 0;
598 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
599 if (cp == NULL)
600 return -ENOMEM;
601 kfree(*result);
602 *result = cp;
603 }
604 return 0;
605 }
606
607 /**
608 * security_add_hooks - Add a modules hooks to the hook lists.
609 * @hooks: the hooks to add
610 * @count: the number of hooks to add
611 * @lsmid: the identification information for the security module
612 *
613 * Each LSM has to register its hooks with the infrastructure.
614 */
security_add_hooks(struct security_hook_list * hooks,int count,const struct lsm_id * lsmid)615 void __init security_add_hooks(struct security_hook_list *hooks, int count,
616 const struct lsm_id *lsmid)
617 {
618 int i;
619
620 /*
621 * A security module may call security_add_hooks() more
622 * than once during initialization, and LSM initialization
623 * is serialized. Landlock is one such case.
624 * Look at the previous entry, if there is one, for duplication.
625 */
626 if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
627 if (lsm_active_cnt >= MAX_LSM_COUNT)
628 panic("%s Too many LSMs registered.\n", __func__);
629 lsm_idlist[lsm_active_cnt++] = lsmid;
630 }
631
632 for (i = 0; i < count; i++) {
633 hooks[i].lsmid = lsmid;
634 lsm_static_call_init(&hooks[i]);
635 }
636
637 /*
638 * Don't try to append during early_security_init(), we'll come back
639 * and fix this up afterwards.
640 */
641 if (slab_is_available()) {
642 if (lsm_append(lsmid->name, &lsm_names) < 0)
643 panic("%s - Cannot get early memory.\n", __func__);
644 }
645 }
646
call_blocking_lsm_notifier(enum lsm_event event,void * data)647 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
648 {
649 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
650 event, data);
651 }
652 EXPORT_SYMBOL(call_blocking_lsm_notifier);
653
register_blocking_lsm_notifier(struct notifier_block * nb)654 int register_blocking_lsm_notifier(struct notifier_block *nb)
655 {
656 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
657 nb);
658 }
659 EXPORT_SYMBOL(register_blocking_lsm_notifier);
660
unregister_blocking_lsm_notifier(struct notifier_block * nb)661 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
662 {
663 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
664 nb);
665 }
666 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
667
668 /**
669 * lsm_blob_alloc - allocate a composite blob
670 * @dest: the destination for the blob
671 * @size: the size of the blob
672 * @gfp: allocation type
673 *
674 * Allocate a blob for all the modules
675 *
676 * Returns 0, or -ENOMEM if memory can't be allocated.
677 */
lsm_blob_alloc(void ** dest,size_t size,gfp_t gfp)678 static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
679 {
680 if (size == 0) {
681 *dest = NULL;
682 return 0;
683 }
684
685 *dest = kzalloc(size, gfp);
686 if (*dest == NULL)
687 return -ENOMEM;
688 return 0;
689 }
690
691 /**
692 * lsm_cred_alloc - allocate a composite cred blob
693 * @cred: the cred that needs a blob
694 * @gfp: allocation type
695 *
696 * Allocate the cred blob for all the modules
697 *
698 * Returns 0, or -ENOMEM if memory can't be allocated.
699 */
lsm_cred_alloc(struct cred * cred,gfp_t gfp)700 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
701 {
702 return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
703 }
704
705 /**
706 * lsm_early_cred - during initialization allocate a composite cred blob
707 * @cred: the cred that needs a blob
708 *
709 * Allocate the cred blob for all the modules
710 */
lsm_early_cred(struct cred * cred)711 static void __init lsm_early_cred(struct cred *cred)
712 {
713 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
714
715 if (rc)
716 panic("%s: Early cred alloc failed.\n", __func__);
717 }
718
719 /**
720 * lsm_file_alloc - allocate a composite file blob
721 * @file: the file that needs a blob
722 *
723 * Allocate the file blob for all the modules
724 *
725 * Returns 0, or -ENOMEM if memory can't be allocated.
726 */
lsm_file_alloc(struct file * file)727 static int lsm_file_alloc(struct file *file)
728 {
729 if (!lsm_file_cache) {
730 file->f_security = NULL;
731 return 0;
732 }
733
734 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
735 if (file->f_security == NULL)
736 return -ENOMEM;
737 return 0;
738 }
739
740 /**
741 * lsm_inode_alloc - allocate a composite inode blob
742 * @inode: the inode that needs a blob
743 * @gfp: allocation flags
744 *
745 * Allocate the inode blob for all the modules
746 *
747 * Returns 0, or -ENOMEM if memory can't be allocated.
748 */
lsm_inode_alloc(struct inode * inode,gfp_t gfp)749 static int lsm_inode_alloc(struct inode *inode, gfp_t gfp)
750 {
751 if (!lsm_inode_cache) {
752 inode->i_security = NULL;
753 return 0;
754 }
755
756 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp);
757 if (inode->i_security == NULL)
758 return -ENOMEM;
759 return 0;
760 }
761
762 /**
763 * lsm_task_alloc - allocate a composite task blob
764 * @task: the task that needs a blob
765 *
766 * Allocate the task blob for all the modules
767 *
768 * Returns 0, or -ENOMEM if memory can't be allocated.
769 */
lsm_task_alloc(struct task_struct * task)770 static int lsm_task_alloc(struct task_struct *task)
771 {
772 return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
773 }
774
775 /**
776 * lsm_ipc_alloc - allocate a composite ipc blob
777 * @kip: the ipc that needs a blob
778 *
779 * Allocate the ipc blob for all the modules
780 *
781 * Returns 0, or -ENOMEM if memory can't be allocated.
782 */
lsm_ipc_alloc(struct kern_ipc_perm * kip)783 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
784 {
785 return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
786 }
787
788 #ifdef CONFIG_KEYS
789 /**
790 * lsm_key_alloc - allocate a composite key blob
791 * @key: the key that needs a blob
792 *
793 * Allocate the key blob for all the modules
794 *
795 * Returns 0, or -ENOMEM if memory can't be allocated.
796 */
lsm_key_alloc(struct key * key)797 static int lsm_key_alloc(struct key *key)
798 {
799 return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
800 }
801 #endif /* CONFIG_KEYS */
802
803 /**
804 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
805 * @mp: the msg_msg that needs a blob
806 *
807 * Allocate the ipc blob for all the modules
808 *
809 * Returns 0, or -ENOMEM if memory can't be allocated.
810 */
lsm_msg_msg_alloc(struct msg_msg * mp)811 static int lsm_msg_msg_alloc(struct msg_msg *mp)
812 {
813 return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
814 GFP_KERNEL);
815 }
816
817 /**
818 * lsm_bdev_alloc - allocate a composite block_device blob
819 * @bdev: the block_device that needs a blob
820 *
821 * Allocate the block_device blob for all the modules
822 *
823 * Returns 0, or -ENOMEM if memory can't be allocated.
824 */
lsm_bdev_alloc(struct block_device * bdev)825 static int lsm_bdev_alloc(struct block_device *bdev)
826 {
827 if (blob_sizes.lbs_bdev == 0) {
828 bdev->bd_security = NULL;
829 return 0;
830 }
831
832 bdev->bd_security = kzalloc(blob_sizes.lbs_bdev, GFP_KERNEL);
833 if (!bdev->bd_security)
834 return -ENOMEM;
835
836 return 0;
837 }
838
839 /**
840 * lsm_early_task - during initialization allocate a composite task blob
841 * @task: the task that needs a blob
842 *
843 * Allocate the task blob for all the modules
844 */
lsm_early_task(struct task_struct * task)845 static void __init lsm_early_task(struct task_struct *task)
846 {
847 int rc = lsm_task_alloc(task);
848
849 if (rc)
850 panic("%s: Early task alloc failed.\n", __func__);
851 }
852
853 /**
854 * lsm_superblock_alloc - allocate a composite superblock blob
855 * @sb: the superblock that needs a blob
856 *
857 * Allocate the superblock blob for all the modules
858 *
859 * Returns 0, or -ENOMEM if memory can't be allocated.
860 */
lsm_superblock_alloc(struct super_block * sb)861 static int lsm_superblock_alloc(struct super_block *sb)
862 {
863 return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
864 GFP_KERNEL);
865 }
866
867 /**
868 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
869 * @uctx: a userspace LSM context to be filled
870 * @uctx_len: available uctx size (input), used uctx size (output)
871 * @val: the new LSM context value
872 * @val_len: the size of the new LSM context value
873 * @id: LSM id
874 * @flags: LSM defined flags
875 *
876 * Fill all of the fields in a userspace lsm_ctx structure. If @uctx is NULL
877 * simply calculate the required size to output via @utc_len and return
878 * success.
879 *
880 * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
881 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
882 */
lsm_fill_user_ctx(struct lsm_ctx __user * uctx,u32 * uctx_len,void * val,size_t val_len,u64 id,u64 flags)883 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
884 void *val, size_t val_len,
885 u64 id, u64 flags)
886 {
887 struct lsm_ctx *nctx = NULL;
888 size_t nctx_len;
889 int rc = 0;
890
891 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
892 if (nctx_len > *uctx_len) {
893 rc = -E2BIG;
894 goto out;
895 }
896
897 /* no buffer - return success/0 and set @uctx_len to the req size */
898 if (!uctx)
899 goto out;
900
901 nctx = kzalloc(nctx_len, GFP_KERNEL);
902 if (nctx == NULL) {
903 rc = -ENOMEM;
904 goto out;
905 }
906 nctx->id = id;
907 nctx->flags = flags;
908 nctx->len = nctx_len;
909 nctx->ctx_len = val_len;
910 memcpy(nctx->ctx, val, val_len);
911
912 if (copy_to_user(uctx, nctx, nctx_len))
913 rc = -EFAULT;
914
915 out:
916 kfree(nctx);
917 *uctx_len = nctx_len;
918 return rc;
919 }
920
921 /*
922 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
923 * can be accessed with:
924 *
925 * LSM_RET_DEFAULT(<hook_name>)
926 *
927 * The macros below define static constants for the default value of each
928 * LSM hook.
929 */
930 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
931 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
932 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
933 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
934 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
935 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
936
937 #include <linux/lsm_hook_defs.h>
938 #undef LSM_HOOK
939
940 /*
941 * Hook list operation macros.
942 *
943 * call_void_hook:
944 * This is a hook that does not return a value.
945 *
946 * call_int_hook:
947 * This is a hook that returns a value.
948 */
949 #define __CALL_STATIC_VOID(NUM, HOOK, ...) \
950 do { \
951 if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \
952 static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \
953 } \
954 } while (0);
955
956 #define call_void_hook(HOOK, ...) \
957 do { \
958 LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
959 } while (0)
960
961
962 #define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...) \
963 do { \
964 if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \
965 R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \
966 if (R != LSM_RET_DEFAULT(HOOK)) \
967 goto LABEL; \
968 } \
969 } while (0);
970
971 #define call_int_hook(HOOK, ...) \
972 ({ \
973 __label__ OUT; \
974 int RC = LSM_RET_DEFAULT(HOOK); \
975 \
976 LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__); \
977 OUT: \
978 RC; \
979 })
980
981 #define lsm_for_each_hook(scall, NAME) \
982 for (scall = static_calls_table.NAME; \
983 scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++) \
984 if (static_key_enabled(&scall->active->key))
985
986 /* Security operations */
987
988 /**
989 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
990 * @mgr: task credentials of current binder process
991 *
992 * Check whether @mgr is allowed to be the binder context manager.
993 *
994 * Return: Return 0 if permission is granted.
995 */
security_binder_set_context_mgr(const struct cred * mgr)996 int security_binder_set_context_mgr(const struct cred *mgr)
997 {
998 return call_int_hook(binder_set_context_mgr, mgr);
999 }
1000 EXPORT_SYMBOL_GPL(security_binder_set_context_mgr);
1001
1002 /**
1003 * security_binder_transaction() - Check if a binder transaction is allowed
1004 * @from: sending process
1005 * @to: receiving process
1006 *
1007 * Check whether @from is allowed to invoke a binder transaction call to @to.
1008 *
1009 * Return: Returns 0 if permission is granted.
1010 */
security_binder_transaction(const struct cred * from,const struct cred * to)1011 int security_binder_transaction(const struct cred *from,
1012 const struct cred *to)
1013 {
1014 return call_int_hook(binder_transaction, from, to);
1015 }
1016 EXPORT_SYMBOL_GPL(security_binder_transaction);
1017
1018 /**
1019 * security_binder_transfer_binder() - Check if a binder transfer is allowed
1020 * @from: sending process
1021 * @to: receiving process
1022 *
1023 * Check whether @from is allowed to transfer a binder reference to @to.
1024 *
1025 * Return: Returns 0 if permission is granted.
1026 */
security_binder_transfer_binder(const struct cred * from,const struct cred * to)1027 int security_binder_transfer_binder(const struct cred *from,
1028 const struct cred *to)
1029 {
1030 return call_int_hook(binder_transfer_binder, from, to);
1031 }
1032 EXPORT_SYMBOL_GPL(security_binder_transfer_binder);
1033
1034 /**
1035 * security_binder_transfer_file() - Check if a binder file xfer is allowed
1036 * @from: sending process
1037 * @to: receiving process
1038 * @file: file being transferred
1039 *
1040 * Check whether @from is allowed to transfer @file to @to.
1041 *
1042 * Return: Returns 0 if permission is granted.
1043 */
security_binder_transfer_file(const struct cred * from,const struct cred * to,const struct file * file)1044 int security_binder_transfer_file(const struct cred *from,
1045 const struct cred *to, const struct file *file)
1046 {
1047 return call_int_hook(binder_transfer_file, from, to, file);
1048 }
1049 EXPORT_SYMBOL_GPL(security_binder_transfer_file);
1050
1051 /**
1052 * security_ptrace_access_check() - Check if tracing is allowed
1053 * @child: target process
1054 * @mode: PTRACE_MODE flags
1055 *
1056 * Check permission before allowing the current process to trace the @child
1057 * process. Security modules may also want to perform a process tracing check
1058 * during an execve in the set_security or apply_creds hooks of tracing check
1059 * during an execve in the bprm_set_creds hook of binprm_security_ops if the
1060 * process is being traced and its security attributes would be changed by the
1061 * execve.
1062 *
1063 * Return: Returns 0 if permission is granted.
1064 */
security_ptrace_access_check(struct task_struct * child,unsigned int mode)1065 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
1066 {
1067 return call_int_hook(ptrace_access_check, child, mode);
1068 }
1069
1070 /**
1071 * security_ptrace_traceme() - Check if tracing is allowed
1072 * @parent: tracing process
1073 *
1074 * Check that the @parent process has sufficient permission to trace the
1075 * current process before allowing the current process to present itself to the
1076 * @parent process for tracing.
1077 *
1078 * Return: Returns 0 if permission is granted.
1079 */
security_ptrace_traceme(struct task_struct * parent)1080 int security_ptrace_traceme(struct task_struct *parent)
1081 {
1082 return call_int_hook(ptrace_traceme, parent);
1083 }
1084
1085 /**
1086 * security_capget() - Get the capability sets for a process
1087 * @target: target process
1088 * @effective: effective capability set
1089 * @inheritable: inheritable capability set
1090 * @permitted: permitted capability set
1091 *
1092 * Get the @effective, @inheritable, and @permitted capability sets for the
1093 * @target process. The hook may also perform permission checking to determine
1094 * if the current process is allowed to see the capability sets of the @target
1095 * process.
1096 *
1097 * Return: Returns 0 if the capability sets were successfully obtained.
1098 */
security_capget(const struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)1099 int security_capget(const struct task_struct *target,
1100 kernel_cap_t *effective,
1101 kernel_cap_t *inheritable,
1102 kernel_cap_t *permitted)
1103 {
1104 return call_int_hook(capget, target, effective, inheritable, permitted);
1105 }
1106
1107 /**
1108 * security_capset() - Set the capability sets for a process
1109 * @new: new credentials for the target process
1110 * @old: current credentials of the target process
1111 * @effective: effective capability set
1112 * @inheritable: inheritable capability set
1113 * @permitted: permitted capability set
1114 *
1115 * Set the @effective, @inheritable, and @permitted capability sets for the
1116 * current process.
1117 *
1118 * Return: Returns 0 and update @new if permission is granted.
1119 */
security_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)1120 int security_capset(struct cred *new, const struct cred *old,
1121 const kernel_cap_t *effective,
1122 const kernel_cap_t *inheritable,
1123 const kernel_cap_t *permitted)
1124 {
1125 return call_int_hook(capset, new, old, effective, inheritable,
1126 permitted);
1127 }
1128
1129 /**
1130 * security_capable() - Check if a process has the necessary capability
1131 * @cred: credentials to examine
1132 * @ns: user namespace
1133 * @cap: capability requested
1134 * @opts: capability check options
1135 *
1136 * Check whether the @tsk process has the @cap capability in the indicated
1137 * credentials. @cap contains the capability <include/linux/capability.h>.
1138 * @opts contains options for the capable check <include/linux/security.h>.
1139 *
1140 * Return: Returns 0 if the capability is granted.
1141 */
security_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)1142 int security_capable(const struct cred *cred,
1143 struct user_namespace *ns,
1144 int cap,
1145 unsigned int opts)
1146 {
1147 return call_int_hook(capable, cred, ns, cap, opts);
1148 }
1149
1150 /**
1151 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1152 * @cmds: commands
1153 * @type: type
1154 * @id: id
1155 * @sb: filesystem
1156 *
1157 * Check whether the quotactl syscall is allowed for this @sb.
1158 *
1159 * Return: Returns 0 if permission is granted.
1160 */
security_quotactl(int cmds,int type,int id,const struct super_block * sb)1161 int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1162 {
1163 return call_int_hook(quotactl, cmds, type, id, sb);
1164 }
1165
1166 /**
1167 * security_quota_on() - Check if QUOTAON is allowed for a dentry
1168 * @dentry: dentry
1169 *
1170 * Check whether QUOTAON is allowed for @dentry.
1171 *
1172 * Return: Returns 0 if permission is granted.
1173 */
security_quota_on(struct dentry * dentry)1174 int security_quota_on(struct dentry *dentry)
1175 {
1176 return call_int_hook(quota_on, dentry);
1177 }
1178
1179 /**
1180 * security_syslog() - Check if accessing the kernel message ring is allowed
1181 * @type: SYSLOG_ACTION_* type
1182 *
1183 * Check permission before accessing the kernel message ring or changing
1184 * logging to the console. See the syslog(2) manual page for an explanation of
1185 * the @type values.
1186 *
1187 * Return: Return 0 if permission is granted.
1188 */
security_syslog(int type)1189 int security_syslog(int type)
1190 {
1191 return call_int_hook(syslog, type);
1192 }
1193
1194 /**
1195 * security_settime64() - Check if changing the system time is allowed
1196 * @ts: new time
1197 * @tz: timezone
1198 *
1199 * Check permission to change the system time, struct timespec64 is defined in
1200 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1201 *
1202 * Return: Returns 0 if permission is granted.
1203 */
security_settime64(const struct timespec64 * ts,const struct timezone * tz)1204 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1205 {
1206 return call_int_hook(settime, ts, tz);
1207 }
1208
1209 /**
1210 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1211 * @mm: mm struct
1212 * @pages: number of pages
1213 *
1214 * Check permissions for allocating a new virtual mapping. If all LSMs return
1215 * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1216 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1217 * called with cap_sys_admin cleared.
1218 *
1219 * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1220 * caller.
1221 */
security_vm_enough_memory_mm(struct mm_struct * mm,long pages)1222 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1223 {
1224 struct lsm_static_call *scall;
1225 int cap_sys_admin = 1;
1226 int rc;
1227
1228 /*
1229 * The module will respond with 0 if it thinks the __vm_enough_memory()
1230 * call should be made with the cap_sys_admin set. If all of the modules
1231 * agree that it should be set it will. If any module thinks it should
1232 * not be set it won't.
1233 */
1234 lsm_for_each_hook(scall, vm_enough_memory) {
1235 rc = scall->hl->hook.vm_enough_memory(mm, pages);
1236 if (rc < 0) {
1237 cap_sys_admin = 0;
1238 break;
1239 }
1240 }
1241 return __vm_enough_memory(mm, pages, cap_sys_admin);
1242 }
1243
1244 /**
1245 * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1246 * @bprm: binary program information
1247 *
1248 * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1249 * properly for executing @bprm->file, update the LSM's portion of
1250 * @bprm->cred->security to be what commit_creds needs to install for the new
1251 * program. This hook may also optionally check permissions (e.g. for
1252 * transitions between security domains). The hook must set @bprm->secureexec
1253 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm
1254 * contains the linux_binprm structure.
1255 *
1256 * Return: Returns 0 if the hook is successful and permission is granted.
1257 */
security_bprm_creds_for_exec(struct linux_binprm * bprm)1258 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1259 {
1260 return call_int_hook(bprm_creds_for_exec, bprm);
1261 }
1262
1263 /**
1264 * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1265 * @bprm: binary program information
1266 * @file: associated file
1267 *
1268 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1269 * exec, update @bprm->cred to reflect that change. This is called after
1270 * finding the binary that will be executed without an interpreter. This
1271 * ensures that the credentials will not be derived from a script that the
1272 * binary will need to reopen, which when reopend may end up being a completely
1273 * different file. This hook may also optionally check permissions (e.g. for
1274 * transitions between security domains). The hook must set @bprm->secureexec
1275 * to 1 if AT_SECURE should be set to request libc enable secure mode. The
1276 * hook must add to @bprm->per_clear any personality flags that should be
1277 * cleared from current->personality. @bprm contains the linux_binprm
1278 * structure.
1279 *
1280 * Return: Returns 0 if the hook is successful and permission is granted.
1281 */
security_bprm_creds_from_file(struct linux_binprm * bprm,const struct file * file)1282 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1283 {
1284 return call_int_hook(bprm_creds_from_file, bprm, file);
1285 }
1286
1287 /**
1288 * security_bprm_check() - Mediate binary handler search
1289 * @bprm: binary program information
1290 *
1291 * This hook mediates the point when a search for a binary handler will begin.
1292 * It allows a check against the @bprm->cred->security value which was set in
1293 * the preceding creds_for_exec call. The argv list and envp list are reliably
1294 * available in @bprm. This hook may be called multiple times during a single
1295 * execve. @bprm contains the linux_binprm structure.
1296 *
1297 * Return: Returns 0 if the hook is successful and permission is granted.
1298 */
security_bprm_check(struct linux_binprm * bprm)1299 int security_bprm_check(struct linux_binprm *bprm)
1300 {
1301 return call_int_hook(bprm_check_security, bprm);
1302 }
1303
1304 /**
1305 * security_bprm_committing_creds() - Install creds for a process during exec()
1306 * @bprm: binary program information
1307 *
1308 * Prepare to install the new security attributes of a process being
1309 * transformed by an execve operation, based on the old credentials pointed to
1310 * by @current->cred and the information set in @bprm->cred by the
1311 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This
1312 * hook is a good place to perform state changes on the process such as closing
1313 * open file descriptors to which access will no longer be granted when the
1314 * attributes are changed. This is called immediately before commit_creds().
1315 */
security_bprm_committing_creds(const struct linux_binprm * bprm)1316 void security_bprm_committing_creds(const struct linux_binprm *bprm)
1317 {
1318 call_void_hook(bprm_committing_creds, bprm);
1319 }
1320
1321 /**
1322 * security_bprm_committed_creds() - Tidy up after cred install during exec()
1323 * @bprm: binary program information
1324 *
1325 * Tidy up after the installation of the new security attributes of a process
1326 * being transformed by an execve operation. The new credentials have, by this
1327 * point, been set to @current->cred. @bprm points to the linux_binprm
1328 * structure. This hook is a good place to perform state changes on the
1329 * process such as clearing out non-inheritable signal state. This is called
1330 * immediately after commit_creds().
1331 */
security_bprm_committed_creds(const struct linux_binprm * bprm)1332 void security_bprm_committed_creds(const struct linux_binprm *bprm)
1333 {
1334 call_void_hook(bprm_committed_creds, bprm);
1335 }
1336
1337 /**
1338 * security_fs_context_submount() - Initialise fc->security
1339 * @fc: new filesystem context
1340 * @reference: dentry reference for submount/remount
1341 *
1342 * Fill out the ->security field for a new fs_context.
1343 *
1344 * Return: Returns 0 on success or negative error code on failure.
1345 */
security_fs_context_submount(struct fs_context * fc,struct super_block * reference)1346 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1347 {
1348 return call_int_hook(fs_context_submount, fc, reference);
1349 }
1350
1351 /**
1352 * security_fs_context_dup() - Duplicate a fs_context LSM blob
1353 * @fc: destination filesystem context
1354 * @src_fc: source filesystem context
1355 *
1356 * Allocate and attach a security structure to sc->security. This pointer is
1357 * initialised to NULL by the caller. @fc indicates the new filesystem context.
1358 * @src_fc indicates the original filesystem context.
1359 *
1360 * Return: Returns 0 on success or a negative error code on failure.
1361 */
security_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)1362 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1363 {
1364 return call_int_hook(fs_context_dup, fc, src_fc);
1365 }
1366
1367 /**
1368 * security_fs_context_parse_param() - Configure a filesystem context
1369 * @fc: filesystem context
1370 * @param: filesystem parameter
1371 *
1372 * Userspace provided a parameter to configure a superblock. The LSM can
1373 * consume the parameter or return it to the caller for use elsewhere.
1374 *
1375 * Return: If the parameter is used by the LSM it should return 0, if it is
1376 * returned to the caller -ENOPARAM is returned, otherwise a negative
1377 * error code is returned.
1378 */
security_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)1379 int security_fs_context_parse_param(struct fs_context *fc,
1380 struct fs_parameter *param)
1381 {
1382 struct lsm_static_call *scall;
1383 int trc;
1384 int rc = -ENOPARAM;
1385
1386 lsm_for_each_hook(scall, fs_context_parse_param) {
1387 trc = scall->hl->hook.fs_context_parse_param(fc, param);
1388 if (trc == 0)
1389 rc = 0;
1390 else if (trc != -ENOPARAM)
1391 return trc;
1392 }
1393 return rc;
1394 }
1395
1396 /**
1397 * security_sb_alloc() - Allocate a super_block LSM blob
1398 * @sb: filesystem superblock
1399 *
1400 * Allocate and attach a security structure to the sb->s_security field. The
1401 * s_security field is initialized to NULL when the structure is allocated.
1402 * @sb contains the super_block structure to be modified.
1403 *
1404 * Return: Returns 0 if operation was successful.
1405 */
security_sb_alloc(struct super_block * sb)1406 int security_sb_alloc(struct super_block *sb)
1407 {
1408 int rc = lsm_superblock_alloc(sb);
1409
1410 if (unlikely(rc))
1411 return rc;
1412 rc = call_int_hook(sb_alloc_security, sb);
1413 if (unlikely(rc))
1414 security_sb_free(sb);
1415 return rc;
1416 }
1417
1418 /**
1419 * security_sb_delete() - Release super_block LSM associated objects
1420 * @sb: filesystem superblock
1421 *
1422 * Release objects tied to a superblock (e.g. inodes). @sb contains the
1423 * super_block structure being released.
1424 */
security_sb_delete(struct super_block * sb)1425 void security_sb_delete(struct super_block *sb)
1426 {
1427 call_void_hook(sb_delete, sb);
1428 }
1429
1430 /**
1431 * security_sb_free() - Free a super_block LSM blob
1432 * @sb: filesystem superblock
1433 *
1434 * Deallocate and clear the sb->s_security field. @sb contains the super_block
1435 * structure to be modified.
1436 */
security_sb_free(struct super_block * sb)1437 void security_sb_free(struct super_block *sb)
1438 {
1439 call_void_hook(sb_free_security, sb);
1440 kfree(sb->s_security);
1441 sb->s_security = NULL;
1442 }
1443
1444 /**
1445 * security_free_mnt_opts() - Free memory associated with mount options
1446 * @mnt_opts: LSM processed mount options
1447 *
1448 * Free memory associated with @mnt_ops.
1449 */
security_free_mnt_opts(void ** mnt_opts)1450 void security_free_mnt_opts(void **mnt_opts)
1451 {
1452 if (!*mnt_opts)
1453 return;
1454 call_void_hook(sb_free_mnt_opts, *mnt_opts);
1455 *mnt_opts = NULL;
1456 }
1457 EXPORT_SYMBOL(security_free_mnt_opts);
1458
1459 /**
1460 * security_sb_eat_lsm_opts() - Consume LSM mount options
1461 * @options: mount options
1462 * @mnt_opts: LSM processed mount options
1463 *
1464 * Eat (scan @options) and save them in @mnt_opts.
1465 *
1466 * Return: Returns 0 on success, negative values on failure.
1467 */
security_sb_eat_lsm_opts(char * options,void ** mnt_opts)1468 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1469 {
1470 return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1471 }
1472 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1473
1474 /**
1475 * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1476 * @sb: filesystem superblock
1477 * @mnt_opts: new mount options
1478 *
1479 * Determine if the new mount options in @mnt_opts are allowed given the
1480 * existing mounted filesystem at @sb. @sb superblock being compared.
1481 *
1482 * Return: Returns 0 if options are compatible.
1483 */
security_sb_mnt_opts_compat(struct super_block * sb,void * mnt_opts)1484 int security_sb_mnt_opts_compat(struct super_block *sb,
1485 void *mnt_opts)
1486 {
1487 return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1488 }
1489 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1490
1491 /**
1492 * security_sb_remount() - Verify no incompatible mount changes during remount
1493 * @sb: filesystem superblock
1494 * @mnt_opts: (re)mount options
1495 *
1496 * Extracts security system specific mount options and verifies no changes are
1497 * being made to those options.
1498 *
1499 * Return: Returns 0 if permission is granted.
1500 */
security_sb_remount(struct super_block * sb,void * mnt_opts)1501 int security_sb_remount(struct super_block *sb,
1502 void *mnt_opts)
1503 {
1504 return call_int_hook(sb_remount, sb, mnt_opts);
1505 }
1506 EXPORT_SYMBOL(security_sb_remount);
1507
1508 /**
1509 * security_sb_kern_mount() - Check if a kernel mount is allowed
1510 * @sb: filesystem superblock
1511 *
1512 * Mount this @sb if allowed by permissions.
1513 *
1514 * Return: Returns 0 if permission is granted.
1515 */
security_sb_kern_mount(const struct super_block * sb)1516 int security_sb_kern_mount(const struct super_block *sb)
1517 {
1518 return call_int_hook(sb_kern_mount, sb);
1519 }
1520
1521 /**
1522 * security_sb_show_options() - Output the mount options for a superblock
1523 * @m: output file
1524 * @sb: filesystem superblock
1525 *
1526 * Show (print on @m) mount options for this @sb.
1527 *
1528 * Return: Returns 0 on success, negative values on failure.
1529 */
security_sb_show_options(struct seq_file * m,struct super_block * sb)1530 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1531 {
1532 return call_int_hook(sb_show_options, m, sb);
1533 }
1534
1535 /**
1536 * security_sb_statfs() - Check if accessing fs stats is allowed
1537 * @dentry: superblock handle
1538 *
1539 * Check permission before obtaining filesystem statistics for the @mnt
1540 * mountpoint. @dentry is a handle on the superblock for the filesystem.
1541 *
1542 * Return: Returns 0 if permission is granted.
1543 */
security_sb_statfs(struct dentry * dentry)1544 int security_sb_statfs(struct dentry *dentry)
1545 {
1546 return call_int_hook(sb_statfs, dentry);
1547 }
1548
1549 /**
1550 * security_sb_mount() - Check permission for mounting a filesystem
1551 * @dev_name: filesystem backing device
1552 * @path: mount point
1553 * @type: filesystem type
1554 * @flags: mount flags
1555 * @data: filesystem specific data
1556 *
1557 * Check permission before an object specified by @dev_name is mounted on the
1558 * mount point named by @nd. For an ordinary mount, @dev_name identifies a
1559 * device if the file system type requires a device. For a remount
1560 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount
1561 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being
1562 * mounted.
1563 *
1564 * Return: Returns 0 if permission is granted.
1565 */
security_sb_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)1566 int security_sb_mount(const char *dev_name, const struct path *path,
1567 const char *type, unsigned long flags, void *data)
1568 {
1569 return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1570 }
1571
1572 /**
1573 * security_sb_umount() - Check permission for unmounting a filesystem
1574 * @mnt: mounted filesystem
1575 * @flags: unmount flags
1576 *
1577 * Check permission before the @mnt file system is unmounted.
1578 *
1579 * Return: Returns 0 if permission is granted.
1580 */
security_sb_umount(struct vfsmount * mnt,int flags)1581 int security_sb_umount(struct vfsmount *mnt, int flags)
1582 {
1583 return call_int_hook(sb_umount, mnt, flags);
1584 }
1585
1586 /**
1587 * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1588 * @old_path: new location for current rootfs
1589 * @new_path: location of the new rootfs
1590 *
1591 * Check permission before pivoting the root filesystem.
1592 *
1593 * Return: Returns 0 if permission is granted.
1594 */
security_sb_pivotroot(const struct path * old_path,const struct path * new_path)1595 int security_sb_pivotroot(const struct path *old_path,
1596 const struct path *new_path)
1597 {
1598 return call_int_hook(sb_pivotroot, old_path, new_path);
1599 }
1600
1601 /**
1602 * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1603 * @sb: filesystem superblock
1604 * @mnt_opts: binary mount options
1605 * @kern_flags: kernel flags (in)
1606 * @set_kern_flags: kernel flags (out)
1607 *
1608 * Set the security relevant mount options used for a superblock.
1609 *
1610 * Return: Returns 0 on success, error on failure.
1611 */
security_sb_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)1612 int security_sb_set_mnt_opts(struct super_block *sb,
1613 void *mnt_opts,
1614 unsigned long kern_flags,
1615 unsigned long *set_kern_flags)
1616 {
1617 struct lsm_static_call *scall;
1618 int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1619
1620 lsm_for_each_hook(scall, sb_set_mnt_opts) {
1621 rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1622 set_kern_flags);
1623 if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1624 break;
1625 }
1626 return rc;
1627 }
1628 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1629
1630 /**
1631 * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1632 * @oldsb: source superblock
1633 * @newsb: destination superblock
1634 * @kern_flags: kernel flags (in)
1635 * @set_kern_flags: kernel flags (out)
1636 *
1637 * Copy all security options from a given superblock to another.
1638 *
1639 * Return: Returns 0 on success, error on failure.
1640 */
security_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)1641 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1642 struct super_block *newsb,
1643 unsigned long kern_flags,
1644 unsigned long *set_kern_flags)
1645 {
1646 return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1647 kern_flags, set_kern_flags);
1648 }
1649 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1650
1651 /**
1652 * security_move_mount() - Check permissions for moving a mount
1653 * @from_path: source mount point
1654 * @to_path: destination mount point
1655 *
1656 * Check permission before a mount is moved.
1657 *
1658 * Return: Returns 0 if permission is granted.
1659 */
security_move_mount(const struct path * from_path,const struct path * to_path)1660 int security_move_mount(const struct path *from_path,
1661 const struct path *to_path)
1662 {
1663 return call_int_hook(move_mount, from_path, to_path);
1664 }
1665
1666 /**
1667 * security_path_notify() - Check if setting a watch is allowed
1668 * @path: file path
1669 * @mask: event mask
1670 * @obj_type: file path type
1671 *
1672 * Check permissions before setting a watch on events as defined by @mask, on
1673 * an object at @path, whose type is defined by @obj_type.
1674 *
1675 * Return: Returns 0 if permission is granted.
1676 */
security_path_notify(const struct path * path,u64 mask,unsigned int obj_type)1677 int security_path_notify(const struct path *path, u64 mask,
1678 unsigned int obj_type)
1679 {
1680 return call_int_hook(path_notify, path, mask, obj_type);
1681 }
1682
1683 /**
1684 * security_inode_alloc() - Allocate an inode LSM blob
1685 * @inode: the inode
1686 * @gfp: allocation flags
1687 *
1688 * Allocate and attach a security structure to @inode->i_security. The
1689 * i_security field is initialized to NULL when the inode structure is
1690 * allocated.
1691 *
1692 * Return: Return 0 if operation was successful.
1693 */
security_inode_alloc(struct inode * inode,gfp_t gfp)1694 int security_inode_alloc(struct inode *inode, gfp_t gfp)
1695 {
1696 int rc = lsm_inode_alloc(inode, gfp);
1697
1698 if (unlikely(rc))
1699 return rc;
1700 rc = call_int_hook(inode_alloc_security, inode);
1701 if (unlikely(rc))
1702 security_inode_free(inode);
1703 return rc;
1704 }
1705
inode_free_by_rcu(struct rcu_head * head)1706 static void inode_free_by_rcu(struct rcu_head *head)
1707 {
1708 /* The rcu head is at the start of the inode blob */
1709 call_void_hook(inode_free_security_rcu, head);
1710 kmem_cache_free(lsm_inode_cache, head);
1711 }
1712
1713 /**
1714 * security_inode_free() - Free an inode's LSM blob
1715 * @inode: the inode
1716 *
1717 * Release any LSM resources associated with @inode, although due to the
1718 * inode's RCU protections it is possible that the resources will not be
1719 * fully released until after the current RCU grace period has elapsed.
1720 *
1721 * It is important for LSMs to note that despite being present in a call to
1722 * security_inode_free(), @inode may still be referenced in a VFS path walk
1723 * and calls to security_inode_permission() may be made during, or after,
1724 * a call to security_inode_free(). For this reason the inode->i_security
1725 * field is released via a call_rcu() callback and any LSMs which need to
1726 * retain inode state for use in security_inode_permission() should only
1727 * release that state in the inode_free_security_rcu() LSM hook callback.
1728 */
security_inode_free(struct inode * inode)1729 void security_inode_free(struct inode *inode)
1730 {
1731 call_void_hook(inode_free_security, inode);
1732 if (!inode->i_security)
1733 return;
1734 call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1735 }
1736
1737 /**
1738 * security_dentry_init_security() - Perform dentry initialization
1739 * @dentry: the dentry to initialize
1740 * @mode: mode used to determine resource type
1741 * @name: name of the last path component
1742 * @xattr_name: name of the security/LSM xattr
1743 * @ctx: pointer to the resulting LSM context
1744 * @ctxlen: length of @ctx
1745 *
1746 * Compute a context for a dentry as the inode is not yet available since NFSv4
1747 * has no label backed by an EA anyway. It is important to note that
1748 * @xattr_name does not need to be free'd by the caller, it is a static string.
1749 *
1750 * Return: Returns 0 on success, negative values on failure.
1751 */
security_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,const char ** xattr_name,void ** ctx,u32 * ctxlen)1752 int security_dentry_init_security(struct dentry *dentry, int mode,
1753 const struct qstr *name,
1754 const char **xattr_name, void **ctx,
1755 u32 *ctxlen)
1756 {
1757 return call_int_hook(dentry_init_security, dentry, mode, name,
1758 xattr_name, ctx, ctxlen);
1759 }
1760 EXPORT_SYMBOL(security_dentry_init_security);
1761
1762 /**
1763 * security_dentry_create_files_as() - Perform dentry initialization
1764 * @dentry: the dentry to initialize
1765 * @mode: mode used to determine resource type
1766 * @name: name of the last path component
1767 * @old: creds to use for LSM context calculations
1768 * @new: creds to modify
1769 *
1770 * Compute a context for a dentry as the inode is not yet available and set
1771 * that context in passed in creds so that new files are created using that
1772 * context. Context is calculated using the passed in creds and not the creds
1773 * of the caller.
1774 *
1775 * Return: Returns 0 on success, error on failure.
1776 */
security_dentry_create_files_as(struct dentry * dentry,int mode,struct qstr * name,const struct cred * old,struct cred * new)1777 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1778 struct qstr *name,
1779 const struct cred *old, struct cred *new)
1780 {
1781 return call_int_hook(dentry_create_files_as, dentry, mode,
1782 name, old, new);
1783 }
1784 EXPORT_SYMBOL(security_dentry_create_files_as);
1785
1786 /**
1787 * security_inode_init_security() - Initialize an inode's LSM context
1788 * @inode: the inode
1789 * @dir: parent directory
1790 * @qstr: last component of the pathname
1791 * @initxattrs: callback function to write xattrs
1792 * @fs_data: filesystem specific data
1793 *
1794 * Obtain the security attribute name suffix and value to set on a newly
1795 * created inode and set up the incore security field for the new inode. This
1796 * hook is called by the fs code as part of the inode creation transaction and
1797 * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1798 * hooks called by the VFS.
1799 *
1800 * The hook function is expected to populate the xattrs array, by calling
1801 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1802 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each
1803 * slot, the hook function should set ->name to the attribute name suffix
1804 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1805 * to the attribute value, to set ->value_len to the length of the value. If
1806 * the security module does not use security attributes or does not wish to put
1807 * a security attribute on this particular inode, then it should return
1808 * -EOPNOTSUPP to skip this processing.
1809 *
1810 * Return: Returns 0 if the LSM successfully initialized all of the inode
1811 * security attributes that are required, negative values otherwise.
1812 */
security_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const initxattrs initxattrs,void * fs_data)1813 int security_inode_init_security(struct inode *inode, struct inode *dir,
1814 const struct qstr *qstr,
1815 const initxattrs initxattrs, void *fs_data)
1816 {
1817 struct lsm_static_call *scall;
1818 struct xattr *new_xattrs = NULL;
1819 int ret = -EOPNOTSUPP, xattr_count = 0;
1820
1821 if (unlikely(IS_PRIVATE(inode)))
1822 return 0;
1823
1824 if (!blob_sizes.lbs_xattr_count)
1825 return 0;
1826
1827 if (initxattrs) {
1828 /* Allocate +1 as terminator. */
1829 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1830 sizeof(*new_xattrs), GFP_NOFS);
1831 if (!new_xattrs)
1832 return -ENOMEM;
1833 }
1834
1835 lsm_for_each_hook(scall, inode_init_security) {
1836 ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1837 &xattr_count);
1838 if (ret && ret != -EOPNOTSUPP)
1839 goto out;
1840 /*
1841 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1842 * means that the LSM is not willing to provide an xattr, not
1843 * that it wants to signal an error. Thus, continue to invoke
1844 * the remaining LSMs.
1845 */
1846 }
1847
1848 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1849 if (!xattr_count)
1850 goto out;
1851
1852 ret = initxattrs(inode, new_xattrs, fs_data);
1853 out:
1854 for (; xattr_count > 0; xattr_count--)
1855 kfree(new_xattrs[xattr_count - 1].value);
1856 kfree(new_xattrs);
1857 return (ret == -EOPNOTSUPP) ? 0 : ret;
1858 }
1859 EXPORT_SYMBOL(security_inode_init_security);
1860
1861 /**
1862 * security_inode_init_security_anon() - Initialize an anonymous inode
1863 * @inode: the inode
1864 * @name: the anonymous inode class
1865 * @context_inode: an optional related inode
1866 *
1867 * Set up the incore security field for the new anonymous inode and return
1868 * whether the inode creation is permitted by the security module or not.
1869 *
1870 * Return: Returns 0 on success, -EACCES if the security module denies the
1871 * creation of this inode, or another -errno upon other errors.
1872 */
security_inode_init_security_anon(struct inode * inode,const struct qstr * name,const struct inode * context_inode)1873 int security_inode_init_security_anon(struct inode *inode,
1874 const struct qstr *name,
1875 const struct inode *context_inode)
1876 {
1877 return call_int_hook(inode_init_security_anon, inode, name,
1878 context_inode);
1879 }
1880
1881 #ifdef CONFIG_SECURITY_PATH
1882 /**
1883 * security_path_mknod() - Check if creating a special file is allowed
1884 * @dir: parent directory
1885 * @dentry: new file
1886 * @mode: new file mode
1887 * @dev: device number
1888 *
1889 * Check permissions when creating a file. Note that this hook is called even
1890 * if mknod operation is being done for a regular file.
1891 *
1892 * Return: Returns 0 if permission is granted.
1893 */
security_path_mknod(const struct path * dir,struct dentry * dentry,umode_t mode,unsigned int dev)1894 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1895 umode_t mode, unsigned int dev)
1896 {
1897 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1898 return 0;
1899 return call_int_hook(path_mknod, dir, dentry, mode, dev);
1900 }
1901 EXPORT_SYMBOL(security_path_mknod);
1902
1903 /**
1904 * security_path_post_mknod() - Update inode security after reg file creation
1905 * @idmap: idmap of the mount
1906 * @dentry: new file
1907 *
1908 * Update inode security field after a regular file has been created.
1909 */
security_path_post_mknod(struct mnt_idmap * idmap,struct dentry * dentry)1910 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1911 {
1912 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1913 return;
1914 call_void_hook(path_post_mknod, idmap, dentry);
1915 }
1916
1917 /**
1918 * security_path_mkdir() - Check if creating a new directory is allowed
1919 * @dir: parent directory
1920 * @dentry: new directory
1921 * @mode: new directory mode
1922 *
1923 * Check permissions to create a new directory in the existing directory.
1924 *
1925 * Return: Returns 0 if permission is granted.
1926 */
security_path_mkdir(const struct path * dir,struct dentry * dentry,umode_t mode)1927 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1928 umode_t mode)
1929 {
1930 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1931 return 0;
1932 return call_int_hook(path_mkdir, dir, dentry, mode);
1933 }
1934 EXPORT_SYMBOL(security_path_mkdir);
1935
1936 /**
1937 * security_path_rmdir() - Check if removing a directory is allowed
1938 * @dir: parent directory
1939 * @dentry: directory to remove
1940 *
1941 * Check the permission to remove a directory.
1942 *
1943 * Return: Returns 0 if permission is granted.
1944 */
security_path_rmdir(const struct path * dir,struct dentry * dentry)1945 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1946 {
1947 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1948 return 0;
1949 return call_int_hook(path_rmdir, dir, dentry);
1950 }
1951
1952 /**
1953 * security_path_unlink() - Check if removing a hard link is allowed
1954 * @dir: parent directory
1955 * @dentry: file
1956 *
1957 * Check the permission to remove a hard link to a file.
1958 *
1959 * Return: Returns 0 if permission is granted.
1960 */
security_path_unlink(const struct path * dir,struct dentry * dentry)1961 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1962 {
1963 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1964 return 0;
1965 return call_int_hook(path_unlink, dir, dentry);
1966 }
1967 EXPORT_SYMBOL(security_path_unlink);
1968
1969 /**
1970 * security_path_symlink() - Check if creating a symbolic link is allowed
1971 * @dir: parent directory
1972 * @dentry: symbolic link
1973 * @old_name: file pathname
1974 *
1975 * Check the permission to create a symbolic link to a file.
1976 *
1977 * Return: Returns 0 if permission is granted.
1978 */
security_path_symlink(const struct path * dir,struct dentry * dentry,const char * old_name)1979 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1980 const char *old_name)
1981 {
1982 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1983 return 0;
1984 return call_int_hook(path_symlink, dir, dentry, old_name);
1985 }
1986
1987 /**
1988 * security_path_link - Check if creating a hard link is allowed
1989 * @old_dentry: existing file
1990 * @new_dir: new parent directory
1991 * @new_dentry: new link
1992 *
1993 * Check permission before creating a new hard link to a file.
1994 *
1995 * Return: Returns 0 if permission is granted.
1996 */
security_path_link(struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry)1997 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1998 struct dentry *new_dentry)
1999 {
2000 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2001 return 0;
2002 return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
2003 }
2004
2005 /**
2006 * security_path_rename() - Check if renaming a file is allowed
2007 * @old_dir: parent directory of the old file
2008 * @old_dentry: the old file
2009 * @new_dir: parent directory of the new file
2010 * @new_dentry: the new file
2011 * @flags: flags
2012 *
2013 * Check for permission to rename a file or directory.
2014 *
2015 * Return: Returns 0 if permission is granted.
2016 */
security_path_rename(const struct path * old_dir,struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry,unsigned int flags)2017 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
2018 const struct path *new_dir, struct dentry *new_dentry,
2019 unsigned int flags)
2020 {
2021 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2022 (d_is_positive(new_dentry) &&
2023 IS_PRIVATE(d_backing_inode(new_dentry)))))
2024 return 0;
2025
2026 return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
2027 new_dentry, flags);
2028 }
2029 EXPORT_SYMBOL(security_path_rename);
2030
2031 /**
2032 * security_path_truncate() - Check if truncating a file is allowed
2033 * @path: file
2034 *
2035 * Check permission before truncating the file indicated by path. Note that
2036 * truncation permissions may also be checked based on already opened files,
2037 * using the security_file_truncate() hook.
2038 *
2039 * Return: Returns 0 if permission is granted.
2040 */
security_path_truncate(const struct path * path)2041 int security_path_truncate(const struct path *path)
2042 {
2043 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2044 return 0;
2045 return call_int_hook(path_truncate, path);
2046 }
2047
2048 /**
2049 * security_path_chmod() - Check if changing the file's mode is allowed
2050 * @path: file
2051 * @mode: new mode
2052 *
2053 * Check for permission to change a mode of the file @path. The new mode is
2054 * specified in @mode which is a bitmask of constants from
2055 * <include/uapi/linux/stat.h>.
2056 *
2057 * Return: Returns 0 if permission is granted.
2058 */
security_path_chmod(const struct path * path,umode_t mode)2059 int security_path_chmod(const struct path *path, umode_t mode)
2060 {
2061 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2062 return 0;
2063 return call_int_hook(path_chmod, path, mode);
2064 }
2065
2066 /**
2067 * security_path_chown() - Check if changing the file's owner/group is allowed
2068 * @path: file
2069 * @uid: file owner
2070 * @gid: file group
2071 *
2072 * Check for permission to change owner/group of a file or directory.
2073 *
2074 * Return: Returns 0 if permission is granted.
2075 */
security_path_chown(const struct path * path,kuid_t uid,kgid_t gid)2076 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
2077 {
2078 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2079 return 0;
2080 return call_int_hook(path_chown, path, uid, gid);
2081 }
2082
2083 /**
2084 * security_path_chroot() - Check if changing the root directory is allowed
2085 * @path: directory
2086 *
2087 * Check for permission to change root directory.
2088 *
2089 * Return: Returns 0 if permission is granted.
2090 */
security_path_chroot(const struct path * path)2091 int security_path_chroot(const struct path *path)
2092 {
2093 return call_int_hook(path_chroot, path);
2094 }
2095 #endif /* CONFIG_SECURITY_PATH */
2096
2097 /**
2098 * security_inode_create() - Check if creating a file is allowed
2099 * @dir: the parent directory
2100 * @dentry: the file being created
2101 * @mode: requested file mode
2102 *
2103 * Check permission to create a regular file.
2104 *
2105 * Return: Returns 0 if permission is granted.
2106 */
security_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)2107 int security_inode_create(struct inode *dir, struct dentry *dentry,
2108 umode_t mode)
2109 {
2110 if (unlikely(IS_PRIVATE(dir)))
2111 return 0;
2112 return call_int_hook(inode_create, dir, dentry, mode);
2113 }
2114 EXPORT_SYMBOL_GPL(security_inode_create);
2115
2116 /**
2117 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2118 * @idmap: idmap of the mount
2119 * @inode: inode of the new tmpfile
2120 *
2121 * Update inode security data after a tmpfile has been created.
2122 */
security_inode_post_create_tmpfile(struct mnt_idmap * idmap,struct inode * inode)2123 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2124 struct inode *inode)
2125 {
2126 if (unlikely(IS_PRIVATE(inode)))
2127 return;
2128 call_void_hook(inode_post_create_tmpfile, idmap, inode);
2129 }
2130
2131 /**
2132 * security_inode_link() - Check if creating a hard link is allowed
2133 * @old_dentry: existing file
2134 * @dir: new parent directory
2135 * @new_dentry: new link
2136 *
2137 * Check permission before creating a new hard link to a file.
2138 *
2139 * Return: Returns 0 if permission is granted.
2140 */
security_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)2141 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2142 struct dentry *new_dentry)
2143 {
2144 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2145 return 0;
2146 return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2147 }
2148
2149 /**
2150 * security_inode_unlink() - Check if removing a hard link is allowed
2151 * @dir: parent directory
2152 * @dentry: file
2153 *
2154 * Check the permission to remove a hard link to a file.
2155 *
2156 * Return: Returns 0 if permission is granted.
2157 */
security_inode_unlink(struct inode * dir,struct dentry * dentry)2158 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2159 {
2160 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2161 return 0;
2162 return call_int_hook(inode_unlink, dir, dentry);
2163 }
2164
2165 /**
2166 * security_inode_symlink() - Check if creating a symbolic link is allowed
2167 * @dir: parent directory
2168 * @dentry: symbolic link
2169 * @old_name: existing filename
2170 *
2171 * Check the permission to create a symbolic link to a file.
2172 *
2173 * Return: Returns 0 if permission is granted.
2174 */
security_inode_symlink(struct inode * dir,struct dentry * dentry,const char * old_name)2175 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2176 const char *old_name)
2177 {
2178 if (unlikely(IS_PRIVATE(dir)))
2179 return 0;
2180 return call_int_hook(inode_symlink, dir, dentry, old_name);
2181 }
2182
2183 /**
2184 * security_inode_mkdir() - Check if creation a new director is allowed
2185 * @dir: parent directory
2186 * @dentry: new directory
2187 * @mode: new directory mode
2188 *
2189 * Check permissions to create a new directory in the existing directory
2190 * associated with inode structure @dir.
2191 *
2192 * Return: Returns 0 if permission is granted.
2193 */
security_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2194 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2195 {
2196 if (unlikely(IS_PRIVATE(dir)))
2197 return 0;
2198 return call_int_hook(inode_mkdir, dir, dentry, mode);
2199 }
2200 EXPORT_SYMBOL_GPL(security_inode_mkdir);
2201
2202 /**
2203 * security_inode_rmdir() - Check if removing a directory is allowed
2204 * @dir: parent directory
2205 * @dentry: directory to be removed
2206 *
2207 * Check the permission to remove a directory.
2208 *
2209 * Return: Returns 0 if permission is granted.
2210 */
security_inode_rmdir(struct inode * dir,struct dentry * dentry)2211 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2212 {
2213 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2214 return 0;
2215 return call_int_hook(inode_rmdir, dir, dentry);
2216 }
2217
2218 /**
2219 * security_inode_mknod() - Check if creating a special file is allowed
2220 * @dir: parent directory
2221 * @dentry: new file
2222 * @mode: new file mode
2223 * @dev: device number
2224 *
2225 * Check permissions when creating a special file (or a socket or a fifo file
2226 * created via the mknod system call). Note that if mknod operation is being
2227 * done for a regular file, then the create hook will be called and not this
2228 * hook.
2229 *
2230 * Return: Returns 0 if permission is granted.
2231 */
security_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2232 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2233 umode_t mode, dev_t dev)
2234 {
2235 if (unlikely(IS_PRIVATE(dir)))
2236 return 0;
2237 return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2238 }
2239
2240 /**
2241 * security_inode_rename() - Check if renaming a file is allowed
2242 * @old_dir: parent directory of the old file
2243 * @old_dentry: the old file
2244 * @new_dir: parent directory of the new file
2245 * @new_dentry: the new file
2246 * @flags: flags
2247 *
2248 * Check for permission to rename a file or directory.
2249 *
2250 * Return: Returns 0 if permission is granted.
2251 */
security_inode_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2252 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2253 struct inode *new_dir, struct dentry *new_dentry,
2254 unsigned int flags)
2255 {
2256 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2257 (d_is_positive(new_dentry) &&
2258 IS_PRIVATE(d_backing_inode(new_dentry)))))
2259 return 0;
2260
2261 if (flags & RENAME_EXCHANGE) {
2262 int err = call_int_hook(inode_rename, new_dir, new_dentry,
2263 old_dir, old_dentry);
2264 if (err)
2265 return err;
2266 }
2267
2268 return call_int_hook(inode_rename, old_dir, old_dentry,
2269 new_dir, new_dentry);
2270 }
2271
2272 /**
2273 * security_inode_readlink() - Check if reading a symbolic link is allowed
2274 * @dentry: link
2275 *
2276 * Check the permission to read the symbolic link.
2277 *
2278 * Return: Returns 0 if permission is granted.
2279 */
security_inode_readlink(struct dentry * dentry)2280 int security_inode_readlink(struct dentry *dentry)
2281 {
2282 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2283 return 0;
2284 return call_int_hook(inode_readlink, dentry);
2285 }
2286
2287 /**
2288 * security_inode_follow_link() - Check if following a symbolic link is allowed
2289 * @dentry: link dentry
2290 * @inode: link inode
2291 * @rcu: true if in RCU-walk mode
2292 *
2293 * Check permission to follow a symbolic link when looking up a pathname. If
2294 * @rcu is true, @inode is not stable.
2295 *
2296 * Return: Returns 0 if permission is granted.
2297 */
security_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)2298 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2299 bool rcu)
2300 {
2301 if (unlikely(IS_PRIVATE(inode)))
2302 return 0;
2303 return call_int_hook(inode_follow_link, dentry, inode, rcu);
2304 }
2305
2306 /**
2307 * security_inode_permission() - Check if accessing an inode is allowed
2308 * @inode: inode
2309 * @mask: access mask
2310 *
2311 * Check permission before accessing an inode. This hook is called by the
2312 * existing Linux permission function, so a security module can use it to
2313 * provide additional checking for existing Linux permission checks. Notice
2314 * that this hook is called when a file is opened (as well as many other
2315 * operations), whereas the file_security_ops permission hook is called when
2316 * the actual read/write operations are performed.
2317 *
2318 * Return: Returns 0 if permission is granted.
2319 */
security_inode_permission(struct inode * inode,int mask)2320 int security_inode_permission(struct inode *inode, int mask)
2321 {
2322 if (unlikely(IS_PRIVATE(inode)))
2323 return 0;
2324 return call_int_hook(inode_permission, inode, mask);
2325 }
2326
2327 /**
2328 * security_inode_setattr() - Check if setting file attributes is allowed
2329 * @idmap: idmap of the mount
2330 * @dentry: file
2331 * @attr: new attributes
2332 *
2333 * Check permission before setting file attributes. Note that the kernel call
2334 * to notify_change is performed from several locations, whenever file
2335 * attributes change (such as when a file is truncated, chown/chmod operations,
2336 * transferring disk quotas, etc).
2337 *
2338 * Return: Returns 0 if permission is granted.
2339 */
security_inode_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)2340 int security_inode_setattr(struct mnt_idmap *idmap,
2341 struct dentry *dentry, struct iattr *attr)
2342 {
2343 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2344 return 0;
2345 return call_int_hook(inode_setattr, idmap, dentry, attr);
2346 }
2347 EXPORT_SYMBOL_GPL(security_inode_setattr);
2348
2349 /**
2350 * security_inode_post_setattr() - Update the inode after a setattr operation
2351 * @idmap: idmap of the mount
2352 * @dentry: file
2353 * @ia_valid: file attributes set
2354 *
2355 * Update inode security field after successful setting file attributes.
2356 */
security_inode_post_setattr(struct mnt_idmap * idmap,struct dentry * dentry,int ia_valid)2357 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2358 int ia_valid)
2359 {
2360 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2361 return;
2362 call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2363 }
2364
2365 /**
2366 * security_inode_getattr() - Check if getting file attributes is allowed
2367 * @path: file
2368 *
2369 * Check permission before obtaining file attributes.
2370 *
2371 * Return: Returns 0 if permission is granted.
2372 */
security_inode_getattr(const struct path * path)2373 int security_inode_getattr(const struct path *path)
2374 {
2375 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2376 return 0;
2377 return call_int_hook(inode_getattr, path);
2378 }
2379
2380 /**
2381 * security_inode_setxattr() - Check if setting file xattrs is allowed
2382 * @idmap: idmap of the mount
2383 * @dentry: file
2384 * @name: xattr name
2385 * @value: xattr value
2386 * @size: size of xattr value
2387 * @flags: flags
2388 *
2389 * This hook performs the desired permission checks before setting the extended
2390 * attributes (xattrs) on @dentry. It is important to note that we have some
2391 * additional logic before the main LSM implementation calls to detect if we
2392 * need to perform an additional capability check at the LSM layer.
2393 *
2394 * Normally we enforce a capability check prior to executing the various LSM
2395 * hook implementations, but if a LSM wants to avoid this capability check,
2396 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2397 * xattrs that it wants to avoid the capability check, leaving the LSM fully
2398 * responsible for enforcing the access control for the specific xattr. If all
2399 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2400 * or return a 0 (the default return value), the capability check is still
2401 * performed. If no 'inode_xattr_skipcap' hooks are registered the capability
2402 * check is performed.
2403 *
2404 * Return: Returns 0 if permission is granted.
2405 */
security_inode_setxattr(struct mnt_idmap * idmap,struct dentry * dentry,const char * name,const void * value,size_t size,int flags)2406 int security_inode_setxattr(struct mnt_idmap *idmap,
2407 struct dentry *dentry, const char *name,
2408 const void *value, size_t size, int flags)
2409 {
2410 int rc;
2411
2412 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2413 return 0;
2414
2415 /* enforce the capability checks at the lsm layer, if needed */
2416 if (!call_int_hook(inode_xattr_skipcap, name)) {
2417 rc = cap_inode_setxattr(dentry, name, value, size, flags);
2418 if (rc)
2419 return rc;
2420 }
2421
2422 return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2423 flags);
2424 }
2425
2426 /**
2427 * security_inode_set_acl() - Check if setting posix acls is allowed
2428 * @idmap: idmap of the mount
2429 * @dentry: file
2430 * @acl_name: acl name
2431 * @kacl: acl struct
2432 *
2433 * Check permission before setting posix acls, the posix acls in @kacl are
2434 * identified by @acl_name.
2435 *
2436 * Return: Returns 0 if permission is granted.
2437 */
security_inode_set_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name,struct posix_acl * kacl)2438 int security_inode_set_acl(struct mnt_idmap *idmap,
2439 struct dentry *dentry, const char *acl_name,
2440 struct posix_acl *kacl)
2441 {
2442 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2443 return 0;
2444 return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2445 }
2446
2447 /**
2448 * security_inode_post_set_acl() - Update inode security from posix acls set
2449 * @dentry: file
2450 * @acl_name: acl name
2451 * @kacl: acl struct
2452 *
2453 * Update inode security data after successfully setting posix acls on @dentry.
2454 * The posix acls in @kacl are identified by @acl_name.
2455 */
security_inode_post_set_acl(struct dentry * dentry,const char * acl_name,struct posix_acl * kacl)2456 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2457 struct posix_acl *kacl)
2458 {
2459 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2460 return;
2461 call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2462 }
2463
2464 /**
2465 * security_inode_get_acl() - Check if reading posix acls is allowed
2466 * @idmap: idmap of the mount
2467 * @dentry: file
2468 * @acl_name: acl name
2469 *
2470 * Check permission before getting osix acls, the posix acls are identified by
2471 * @acl_name.
2472 *
2473 * Return: Returns 0 if permission is granted.
2474 */
security_inode_get_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)2475 int security_inode_get_acl(struct mnt_idmap *idmap,
2476 struct dentry *dentry, const char *acl_name)
2477 {
2478 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2479 return 0;
2480 return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2481 }
2482
2483 /**
2484 * security_inode_remove_acl() - Check if removing a posix acl is allowed
2485 * @idmap: idmap of the mount
2486 * @dentry: file
2487 * @acl_name: acl name
2488 *
2489 * Check permission before removing posix acls, the posix acls are identified
2490 * by @acl_name.
2491 *
2492 * Return: Returns 0 if permission is granted.
2493 */
security_inode_remove_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)2494 int security_inode_remove_acl(struct mnt_idmap *idmap,
2495 struct dentry *dentry, const char *acl_name)
2496 {
2497 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2498 return 0;
2499 return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2500 }
2501
2502 /**
2503 * security_inode_post_remove_acl() - Update inode security after rm posix acls
2504 * @idmap: idmap of the mount
2505 * @dentry: file
2506 * @acl_name: acl name
2507 *
2508 * Update inode security data after successfully removing posix acls on
2509 * @dentry in @idmap. The posix acls are identified by @acl_name.
2510 */
security_inode_post_remove_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)2511 void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2512 struct dentry *dentry, const char *acl_name)
2513 {
2514 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2515 return;
2516 call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2517 }
2518
2519 /**
2520 * security_inode_post_setxattr() - Update the inode after a setxattr operation
2521 * @dentry: file
2522 * @name: xattr name
2523 * @value: xattr value
2524 * @size: xattr value size
2525 * @flags: flags
2526 *
2527 * Update inode security field after successful setxattr operation.
2528 */
security_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)2529 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2530 const void *value, size_t size, int flags)
2531 {
2532 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2533 return;
2534 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2535 }
2536
2537 /**
2538 * security_inode_getxattr() - Check if xattr access is allowed
2539 * @dentry: file
2540 * @name: xattr name
2541 *
2542 * Check permission before obtaining the extended attributes identified by
2543 * @name for @dentry.
2544 *
2545 * Return: Returns 0 if permission is granted.
2546 */
security_inode_getxattr(struct dentry * dentry,const char * name)2547 int security_inode_getxattr(struct dentry *dentry, const char *name)
2548 {
2549 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2550 return 0;
2551 return call_int_hook(inode_getxattr, dentry, name);
2552 }
2553
2554 /**
2555 * security_inode_listxattr() - Check if listing xattrs is allowed
2556 * @dentry: file
2557 *
2558 * Check permission before obtaining the list of extended attribute names for
2559 * @dentry.
2560 *
2561 * Return: Returns 0 if permission is granted.
2562 */
security_inode_listxattr(struct dentry * dentry)2563 int security_inode_listxattr(struct dentry *dentry)
2564 {
2565 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2566 return 0;
2567 return call_int_hook(inode_listxattr, dentry);
2568 }
2569
2570 /**
2571 * security_inode_removexattr() - Check if removing an xattr is allowed
2572 * @idmap: idmap of the mount
2573 * @dentry: file
2574 * @name: xattr name
2575 *
2576 * This hook performs the desired permission checks before setting the extended
2577 * attributes (xattrs) on @dentry. It is important to note that we have some
2578 * additional logic before the main LSM implementation calls to detect if we
2579 * need to perform an additional capability check at the LSM layer.
2580 *
2581 * Normally we enforce a capability check prior to executing the various LSM
2582 * hook implementations, but if a LSM wants to avoid this capability check,
2583 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2584 * xattrs that it wants to avoid the capability check, leaving the LSM fully
2585 * responsible for enforcing the access control for the specific xattr. If all
2586 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2587 * or return a 0 (the default return value), the capability check is still
2588 * performed. If no 'inode_xattr_skipcap' hooks are registered the capability
2589 * check is performed.
2590 *
2591 * Return: Returns 0 if permission is granted.
2592 */
security_inode_removexattr(struct mnt_idmap * idmap,struct dentry * dentry,const char * name)2593 int security_inode_removexattr(struct mnt_idmap *idmap,
2594 struct dentry *dentry, const char *name)
2595 {
2596 int rc;
2597
2598 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2599 return 0;
2600
2601 /* enforce the capability checks at the lsm layer, if needed */
2602 if (!call_int_hook(inode_xattr_skipcap, name)) {
2603 rc = cap_inode_removexattr(idmap, dentry, name);
2604 if (rc)
2605 return rc;
2606 }
2607
2608 return call_int_hook(inode_removexattr, idmap, dentry, name);
2609 }
2610
2611 /**
2612 * security_inode_post_removexattr() - Update the inode after a removexattr op
2613 * @dentry: file
2614 * @name: xattr name
2615 *
2616 * Update the inode after a successful removexattr operation.
2617 */
security_inode_post_removexattr(struct dentry * dentry,const char * name)2618 void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2619 {
2620 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2621 return;
2622 call_void_hook(inode_post_removexattr, dentry, name);
2623 }
2624
2625 /**
2626 * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2627 * @dentry: associated dentry
2628 *
2629 * Called when an inode has been changed to determine if
2630 * security_inode_killpriv() should be called.
2631 *
2632 * Return: Return <0 on error to abort the inode change operation, return 0 if
2633 * security_inode_killpriv() does not need to be called, return >0 if
2634 * security_inode_killpriv() does need to be called.
2635 */
security_inode_need_killpriv(struct dentry * dentry)2636 int security_inode_need_killpriv(struct dentry *dentry)
2637 {
2638 return call_int_hook(inode_need_killpriv, dentry);
2639 }
2640
2641 /**
2642 * security_inode_killpriv() - The setuid bit is removed, update LSM state
2643 * @idmap: idmap of the mount
2644 * @dentry: associated dentry
2645 *
2646 * The @dentry's setuid bit is being removed. Remove similar security labels.
2647 * Called with the dentry->d_inode->i_mutex held.
2648 *
2649 * Return: Return 0 on success. If error is returned, then the operation
2650 * causing setuid bit removal is failed.
2651 */
security_inode_killpriv(struct mnt_idmap * idmap,struct dentry * dentry)2652 int security_inode_killpriv(struct mnt_idmap *idmap,
2653 struct dentry *dentry)
2654 {
2655 return call_int_hook(inode_killpriv, idmap, dentry);
2656 }
2657
2658 /**
2659 * security_inode_getsecurity() - Get the xattr security label of an inode
2660 * @idmap: idmap of the mount
2661 * @inode: inode
2662 * @name: xattr name
2663 * @buffer: security label buffer
2664 * @alloc: allocation flag
2665 *
2666 * Retrieve a copy of the extended attribute representation of the security
2667 * label associated with @name for @inode via @buffer. Note that @name is the
2668 * remainder of the attribute name after the security prefix has been removed.
2669 * @alloc is used to specify if the call should return a value via the buffer
2670 * or just the value length.
2671 *
2672 * Return: Returns size of buffer on success.
2673 */
security_inode_getsecurity(struct mnt_idmap * idmap,struct inode * inode,const char * name,void ** buffer,bool alloc)2674 int security_inode_getsecurity(struct mnt_idmap *idmap,
2675 struct inode *inode, const char *name,
2676 void **buffer, bool alloc)
2677 {
2678 if (unlikely(IS_PRIVATE(inode)))
2679 return LSM_RET_DEFAULT(inode_getsecurity);
2680
2681 return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2682 alloc);
2683 }
2684
2685 /**
2686 * security_inode_setsecurity() - Set the xattr security label of an inode
2687 * @inode: inode
2688 * @name: xattr name
2689 * @value: security label
2690 * @size: length of security label
2691 * @flags: flags
2692 *
2693 * Set the security label associated with @name for @inode from the extended
2694 * attribute value @value. @size indicates the size of the @value in bytes.
2695 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2696 * remainder of the attribute name after the security. prefix has been removed.
2697 *
2698 * Return: Returns 0 on success.
2699 */
security_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)2700 int security_inode_setsecurity(struct inode *inode, const char *name,
2701 const void *value, size_t size, int flags)
2702 {
2703 if (unlikely(IS_PRIVATE(inode)))
2704 return LSM_RET_DEFAULT(inode_setsecurity);
2705
2706 return call_int_hook(inode_setsecurity, inode, name, value, size,
2707 flags);
2708 }
2709
2710 /**
2711 * security_inode_listsecurity() - List the xattr security label names
2712 * @inode: inode
2713 * @buffer: buffer
2714 * @buffer_size: size of buffer
2715 *
2716 * Copy the extended attribute names for the security labels associated with
2717 * @inode into @buffer. The maximum size of @buffer is specified by
2718 * @buffer_size. @buffer may be NULL to request the size of the buffer
2719 * required.
2720 *
2721 * Return: Returns number of bytes used/required on success.
2722 */
security_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)2723 int security_inode_listsecurity(struct inode *inode,
2724 char *buffer, size_t buffer_size)
2725 {
2726 if (unlikely(IS_PRIVATE(inode)))
2727 return 0;
2728 return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2729 }
2730 EXPORT_SYMBOL(security_inode_listsecurity);
2731
2732 /**
2733 * security_inode_getsecid() - Get an inode's secid
2734 * @inode: inode
2735 * @secid: secid to return
2736 *
2737 * Get the secid associated with the node. In case of failure, @secid will be
2738 * set to zero.
2739 */
security_inode_getsecid(struct inode * inode,u32 * secid)2740 void security_inode_getsecid(struct inode *inode, u32 *secid)
2741 {
2742 call_void_hook(inode_getsecid, inode, secid);
2743 }
2744
2745 /**
2746 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2747 * @src: union dentry of copy-up file
2748 * @new: newly created creds
2749 *
2750 * A file is about to be copied up from lower layer to upper layer of overlay
2751 * filesystem. Security module can prepare a set of new creds and modify as
2752 * need be and return new creds. Caller will switch to new creds temporarily to
2753 * create new file and release newly allocated creds.
2754 *
2755 * Return: Returns 0 on success or a negative error code on error.
2756 */
security_inode_copy_up(struct dentry * src,struct cred ** new)2757 int security_inode_copy_up(struct dentry *src, struct cred **new)
2758 {
2759 return call_int_hook(inode_copy_up, src, new);
2760 }
2761 EXPORT_SYMBOL(security_inode_copy_up);
2762
2763 /**
2764 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2765 * @src: union dentry of copy-up file
2766 * @name: xattr name
2767 *
2768 * Filter the xattrs being copied up when a unioned file is copied up from a
2769 * lower layer to the union/overlay layer. The caller is responsible for
2770 * reading and writing the xattrs, this hook is merely a filter.
2771 *
2772 * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2773 * -EOPNOTSUPP if the security module does not know about attribute,
2774 * or a negative error code to abort the copy up.
2775 */
security_inode_copy_up_xattr(struct dentry * src,const char * name)2776 int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2777 {
2778 int rc;
2779
2780 rc = call_int_hook(inode_copy_up_xattr, src, name);
2781 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2782 return rc;
2783
2784 return LSM_RET_DEFAULT(inode_copy_up_xattr);
2785 }
2786 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2787
2788 /**
2789 * security_inode_setintegrity() - Set the inode's integrity data
2790 * @inode: inode
2791 * @type: type of integrity, e.g. hash digest, signature, etc
2792 * @value: the integrity value
2793 * @size: size of the integrity value
2794 *
2795 * Register a verified integrity measurement of a inode with LSMs.
2796 * LSMs should free the previously saved data if @value is NULL.
2797 *
2798 * Return: Returns 0 on success, negative values on failure.
2799 */
security_inode_setintegrity(const struct inode * inode,enum lsm_integrity_type type,const void * value,size_t size)2800 int security_inode_setintegrity(const struct inode *inode,
2801 enum lsm_integrity_type type, const void *value,
2802 size_t size)
2803 {
2804 return call_int_hook(inode_setintegrity, inode, type, value, size);
2805 }
2806 EXPORT_SYMBOL(security_inode_setintegrity);
2807
2808 /**
2809 * security_kernfs_init_security() - Init LSM context for a kernfs node
2810 * @kn_dir: parent kernfs node
2811 * @kn: the kernfs node to initialize
2812 *
2813 * Initialize the security context of a newly created kernfs node based on its
2814 * own and its parent's attributes.
2815 *
2816 * Return: Returns 0 if permission is granted.
2817 */
security_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)2818 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2819 struct kernfs_node *kn)
2820 {
2821 return call_int_hook(kernfs_init_security, kn_dir, kn);
2822 }
2823
2824 /**
2825 * security_file_permission() - Check file permissions
2826 * @file: file
2827 * @mask: requested permissions
2828 *
2829 * Check file permissions before accessing an open file. This hook is called
2830 * by various operations that read or write files. A security module can use
2831 * this hook to perform additional checking on these operations, e.g. to
2832 * revalidate permissions on use to support privilege bracketing or policy
2833 * changes. Notice that this hook is used when the actual read/write
2834 * operations are performed, whereas the inode_security_ops hook is called when
2835 * a file is opened (as well as many other operations). Although this hook can
2836 * be used to revalidate permissions for various system call operations that
2837 * read or write files, it does not address the revalidation of permissions for
2838 * memory-mapped files. Security modules must handle this separately if they
2839 * need such revalidation.
2840 *
2841 * Return: Returns 0 if permission is granted.
2842 */
security_file_permission(struct file * file,int mask)2843 int security_file_permission(struct file *file, int mask)
2844 {
2845 return call_int_hook(file_permission, file, mask);
2846 }
2847
2848 /**
2849 * security_file_alloc() - Allocate and init a file's LSM blob
2850 * @file: the file
2851 *
2852 * Allocate and attach a security structure to the file->f_security field. The
2853 * security field is initialized to NULL when the structure is first created.
2854 *
2855 * Return: Return 0 if the hook is successful and permission is granted.
2856 */
security_file_alloc(struct file * file)2857 int security_file_alloc(struct file *file)
2858 {
2859 int rc = lsm_file_alloc(file);
2860
2861 if (rc)
2862 return rc;
2863 rc = call_int_hook(file_alloc_security, file);
2864 if (unlikely(rc))
2865 security_file_free(file);
2866 return rc;
2867 }
2868
2869 /**
2870 * security_file_release() - Perform actions before releasing the file ref
2871 * @file: the file
2872 *
2873 * Perform actions before releasing the last reference to a file.
2874 */
security_file_release(struct file * file)2875 void security_file_release(struct file *file)
2876 {
2877 call_void_hook(file_release, file);
2878 }
2879
2880 /**
2881 * security_file_free() - Free a file's LSM blob
2882 * @file: the file
2883 *
2884 * Deallocate and free any security structures stored in file->f_security.
2885 */
security_file_free(struct file * file)2886 void security_file_free(struct file *file)
2887 {
2888 void *blob;
2889
2890 call_void_hook(file_free_security, file);
2891
2892 blob = file->f_security;
2893 if (blob) {
2894 file->f_security = NULL;
2895 kmem_cache_free(lsm_file_cache, blob);
2896 }
2897 }
2898
2899 /**
2900 * security_file_ioctl() - Check if an ioctl is allowed
2901 * @file: associated file
2902 * @cmd: ioctl cmd
2903 * @arg: ioctl arguments
2904 *
2905 * Check permission for an ioctl operation on @file. Note that @arg sometimes
2906 * represents a user space pointer; in other cases, it may be a simple integer
2907 * value. When @arg represents a user space pointer, it should never be used
2908 * by the security module.
2909 *
2910 * Return: Returns 0 if permission is granted.
2911 */
security_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2912 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2913 {
2914 return call_int_hook(file_ioctl, file, cmd, arg);
2915 }
2916 EXPORT_SYMBOL_GPL(security_file_ioctl);
2917
2918 /**
2919 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2920 * @file: associated file
2921 * @cmd: ioctl cmd
2922 * @arg: ioctl arguments
2923 *
2924 * Compat version of security_file_ioctl() that correctly handles 32-bit
2925 * processes running on 64-bit kernels.
2926 *
2927 * Return: Returns 0 if permission is granted.
2928 */
security_file_ioctl_compat(struct file * file,unsigned int cmd,unsigned long arg)2929 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2930 unsigned long arg)
2931 {
2932 return call_int_hook(file_ioctl_compat, file, cmd, arg);
2933 }
2934 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2935
mmap_prot(struct file * file,unsigned long prot)2936 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2937 {
2938 /*
2939 * Does we have PROT_READ and does the application expect
2940 * it to imply PROT_EXEC? If not, nothing to talk about...
2941 */
2942 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2943 return prot;
2944 if (!(current->personality & READ_IMPLIES_EXEC))
2945 return prot;
2946 /*
2947 * if that's an anonymous mapping, let it.
2948 */
2949 if (!file)
2950 return prot | PROT_EXEC;
2951 /*
2952 * ditto if it's not on noexec mount, except that on !MMU we need
2953 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2954 */
2955 if (!path_noexec(&file->f_path)) {
2956 #ifndef CONFIG_MMU
2957 if (file->f_op->mmap_capabilities) {
2958 unsigned caps = file->f_op->mmap_capabilities(file);
2959 if (!(caps & NOMMU_MAP_EXEC))
2960 return prot;
2961 }
2962 #endif
2963 return prot | PROT_EXEC;
2964 }
2965 /* anything on noexec mount won't get PROT_EXEC */
2966 return prot;
2967 }
2968
2969 /**
2970 * security_mmap_file() - Check if mmap'ing a file is allowed
2971 * @file: file
2972 * @prot: protection applied by the kernel
2973 * @flags: flags
2974 *
2975 * Check permissions for a mmap operation. The @file may be NULL, e.g. if
2976 * mapping anonymous memory.
2977 *
2978 * Return: Returns 0 if permission is granted.
2979 */
security_mmap_file(struct file * file,unsigned long prot,unsigned long flags)2980 int security_mmap_file(struct file *file, unsigned long prot,
2981 unsigned long flags)
2982 {
2983 return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2984 flags);
2985 }
2986
2987 /**
2988 * security_mmap_addr() - Check if mmap'ing an address is allowed
2989 * @addr: address
2990 *
2991 * Check permissions for a mmap operation at @addr.
2992 *
2993 * Return: Returns 0 if permission is granted.
2994 */
security_mmap_addr(unsigned long addr)2995 int security_mmap_addr(unsigned long addr)
2996 {
2997 return call_int_hook(mmap_addr, addr);
2998 }
2999
3000 /**
3001 * security_file_mprotect() - Check if changing memory protections is allowed
3002 * @vma: memory region
3003 * @reqprot: application requested protection
3004 * @prot: protection applied by the kernel
3005 *
3006 * Check permissions before changing memory access permissions.
3007 *
3008 * Return: Returns 0 if permission is granted.
3009 */
security_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)3010 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
3011 unsigned long prot)
3012 {
3013 return call_int_hook(file_mprotect, vma, reqprot, prot);
3014 }
3015
3016 /**
3017 * security_file_lock() - Check if a file lock is allowed
3018 * @file: file
3019 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
3020 *
3021 * Check permission before performing file locking operations. Note the hook
3022 * mediates both flock and fcntl style locks.
3023 *
3024 * Return: Returns 0 if permission is granted.
3025 */
security_file_lock(struct file * file,unsigned int cmd)3026 int security_file_lock(struct file *file, unsigned int cmd)
3027 {
3028 return call_int_hook(file_lock, file, cmd);
3029 }
3030
3031 /**
3032 * security_file_fcntl() - Check if fcntl() op is allowed
3033 * @file: file
3034 * @cmd: fcntl command
3035 * @arg: command argument
3036 *
3037 * Check permission before allowing the file operation specified by @cmd from
3038 * being performed on the file @file. Note that @arg sometimes represents a
3039 * user space pointer; in other cases, it may be a simple integer value. When
3040 * @arg represents a user space pointer, it should never be used by the
3041 * security module.
3042 *
3043 * Return: Returns 0 if permission is granted.
3044 */
security_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)3045 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
3046 {
3047 return call_int_hook(file_fcntl, file, cmd, arg);
3048 }
3049
3050 /**
3051 * security_file_set_fowner() - Set the file owner info in the LSM blob
3052 * @file: the file
3053 *
3054 * Save owner security information (typically from current->security) in
3055 * file->f_security for later use by the send_sigiotask hook.
3056 *
3057 * This hook is called with file->f_owner.lock held.
3058 *
3059 * Return: Returns 0 on success.
3060 */
security_file_set_fowner(struct file * file)3061 void security_file_set_fowner(struct file *file)
3062 {
3063 call_void_hook(file_set_fowner, file);
3064 }
3065
3066 /**
3067 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
3068 * @tsk: target task
3069 * @fown: signal sender
3070 * @sig: signal to be sent, SIGIO is sent if 0
3071 *
3072 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
3073 * process @tsk. Note that this hook is sometimes called from interrupt. Note
3074 * that the fown_struct, @fown, is never outside the context of a struct file,
3075 * so the file structure (and associated security information) can always be
3076 * obtained: container_of(fown, struct file, f_owner).
3077 *
3078 * Return: Returns 0 if permission is granted.
3079 */
security_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int sig)3080 int security_file_send_sigiotask(struct task_struct *tsk,
3081 struct fown_struct *fown, int sig)
3082 {
3083 return call_int_hook(file_send_sigiotask, tsk, fown, sig);
3084 }
3085
3086 /**
3087 * security_file_receive() - Check if receiving a file via IPC is allowed
3088 * @file: file being received
3089 *
3090 * This hook allows security modules to control the ability of a process to
3091 * receive an open file descriptor via socket IPC.
3092 *
3093 * Return: Returns 0 if permission is granted.
3094 */
security_file_receive(struct file * file)3095 int security_file_receive(struct file *file)
3096 {
3097 return call_int_hook(file_receive, file);
3098 }
3099
3100 /**
3101 * security_file_open() - Save open() time state for late use by the LSM
3102 * @file:
3103 *
3104 * Save open-time permission checking state for later use upon file_permission,
3105 * and recheck access if anything has changed since inode_permission.
3106 *
3107 * Return: Returns 0 if permission is granted.
3108 */
security_file_open(struct file * file)3109 int security_file_open(struct file *file)
3110 {
3111 int ret;
3112
3113 ret = call_int_hook(file_open, file);
3114 if (ret)
3115 return ret;
3116
3117 return fsnotify_open_perm(file);
3118 }
3119
3120 /**
3121 * security_file_post_open() - Evaluate a file after it has been opened
3122 * @file: the file
3123 * @mask: access mask
3124 *
3125 * Evaluate an opened file and the access mask requested with open(). The hook
3126 * is useful for LSMs that require the file content to be available in order to
3127 * make decisions.
3128 *
3129 * Return: Returns 0 if permission is granted.
3130 */
security_file_post_open(struct file * file,int mask)3131 int security_file_post_open(struct file *file, int mask)
3132 {
3133 return call_int_hook(file_post_open, file, mask);
3134 }
3135 EXPORT_SYMBOL_GPL(security_file_post_open);
3136
3137 /**
3138 * security_file_truncate() - Check if truncating a file is allowed
3139 * @file: file
3140 *
3141 * Check permission before truncating a file, i.e. using ftruncate. Note that
3142 * truncation permission may also be checked based on the path, using the
3143 * @path_truncate hook.
3144 *
3145 * Return: Returns 0 if permission is granted.
3146 */
security_file_truncate(struct file * file)3147 int security_file_truncate(struct file *file)
3148 {
3149 return call_int_hook(file_truncate, file);
3150 }
3151
3152 /**
3153 * security_task_alloc() - Allocate a task's LSM blob
3154 * @task: the task
3155 * @clone_flags: flags indicating what is being shared
3156 *
3157 * Handle allocation of task-related resources.
3158 *
3159 * Return: Returns a zero on success, negative values on failure.
3160 */
security_task_alloc(struct task_struct * task,unsigned long clone_flags)3161 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3162 {
3163 int rc = lsm_task_alloc(task);
3164
3165 if (rc)
3166 return rc;
3167 rc = call_int_hook(task_alloc, task, clone_flags);
3168 if (unlikely(rc))
3169 security_task_free(task);
3170 return rc;
3171 }
3172
3173 /**
3174 * security_task_free() - Free a task's LSM blob and related resources
3175 * @task: task
3176 *
3177 * Handle release of task-related resources. Note that this can be called from
3178 * interrupt context.
3179 */
security_task_free(struct task_struct * task)3180 void security_task_free(struct task_struct *task)
3181 {
3182 call_void_hook(task_free, task);
3183
3184 kfree(task->security);
3185 task->security = NULL;
3186 }
3187
3188 /**
3189 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3190 * @cred: credentials
3191 * @gfp: gfp flags
3192 *
3193 * Only allocate sufficient memory and attach to @cred such that
3194 * cred_transfer() will not get ENOMEM.
3195 *
3196 * Return: Returns 0 on success, negative values on failure.
3197 */
security_cred_alloc_blank(struct cred * cred,gfp_t gfp)3198 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3199 {
3200 int rc = lsm_cred_alloc(cred, gfp);
3201
3202 if (rc)
3203 return rc;
3204
3205 rc = call_int_hook(cred_alloc_blank, cred, gfp);
3206 if (unlikely(rc))
3207 security_cred_free(cred);
3208 return rc;
3209 }
3210
3211 /**
3212 * security_cred_free() - Free the cred's LSM blob and associated resources
3213 * @cred: credentials
3214 *
3215 * Deallocate and clear the cred->security field in a set of credentials.
3216 */
security_cred_free(struct cred * cred)3217 void security_cred_free(struct cred *cred)
3218 {
3219 /*
3220 * There is a failure case in prepare_creds() that
3221 * may result in a call here with ->security being NULL.
3222 */
3223 if (unlikely(cred->security == NULL))
3224 return;
3225
3226 call_void_hook(cred_free, cred);
3227
3228 kfree(cred->security);
3229 cred->security = NULL;
3230 }
3231
3232 /**
3233 * security_prepare_creds() - Prepare a new set of credentials
3234 * @new: new credentials
3235 * @old: original credentials
3236 * @gfp: gfp flags
3237 *
3238 * Prepare a new set of credentials by copying the data from the old set.
3239 *
3240 * Return: Returns 0 on success, negative values on failure.
3241 */
security_prepare_creds(struct cred * new,const struct cred * old,gfp_t gfp)3242 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3243 {
3244 int rc = lsm_cred_alloc(new, gfp);
3245
3246 if (rc)
3247 return rc;
3248
3249 rc = call_int_hook(cred_prepare, new, old, gfp);
3250 if (unlikely(rc))
3251 security_cred_free(new);
3252 return rc;
3253 }
3254
3255 /**
3256 * security_transfer_creds() - Transfer creds
3257 * @new: target credentials
3258 * @old: original credentials
3259 *
3260 * Transfer data from original creds to new creds.
3261 */
security_transfer_creds(struct cred * new,const struct cred * old)3262 void security_transfer_creds(struct cred *new, const struct cred *old)
3263 {
3264 call_void_hook(cred_transfer, new, old);
3265 }
3266
3267 /**
3268 * security_cred_getsecid() - Get the secid from a set of credentials
3269 * @c: credentials
3270 * @secid: secid value
3271 *
3272 * Retrieve the security identifier of the cred structure @c. In case of
3273 * failure, @secid will be set to zero.
3274 */
security_cred_getsecid(const struct cred * c,u32 * secid)3275 void security_cred_getsecid(const struct cred *c, u32 *secid)
3276 {
3277 *secid = 0;
3278 call_void_hook(cred_getsecid, c, secid);
3279 }
3280 EXPORT_SYMBOL(security_cred_getsecid);
3281
3282 /**
3283 * security_kernel_act_as() - Set the kernel credentials to act as secid
3284 * @new: credentials
3285 * @secid: secid
3286 *
3287 * Set the credentials for a kernel service to act as (subjective context).
3288 * The current task must be the one that nominated @secid.
3289 *
3290 * Return: Returns 0 if successful.
3291 */
security_kernel_act_as(struct cred * new,u32 secid)3292 int security_kernel_act_as(struct cred *new, u32 secid)
3293 {
3294 return call_int_hook(kernel_act_as, new, secid);
3295 }
3296
3297 /**
3298 * security_kernel_create_files_as() - Set file creation context using an inode
3299 * @new: target credentials
3300 * @inode: reference inode
3301 *
3302 * Set the file creation context in a set of credentials to be the same as the
3303 * objective context of the specified inode. The current task must be the one
3304 * that nominated @inode.
3305 *
3306 * Return: Returns 0 if successful.
3307 */
security_kernel_create_files_as(struct cred * new,struct inode * inode)3308 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3309 {
3310 return call_int_hook(kernel_create_files_as, new, inode);
3311 }
3312
3313 /**
3314 * security_kernel_module_request() - Check if loading a module is allowed
3315 * @kmod_name: module name
3316 *
3317 * Ability to trigger the kernel to automatically upcall to userspace for
3318 * userspace to load a kernel module with the given name.
3319 *
3320 * Return: Returns 0 if successful.
3321 */
security_kernel_module_request(char * kmod_name)3322 int security_kernel_module_request(char *kmod_name)
3323 {
3324 return call_int_hook(kernel_module_request, kmod_name);
3325 }
3326
3327 /**
3328 * security_kernel_read_file() - Read a file specified by userspace
3329 * @file: file
3330 * @id: file identifier
3331 * @contents: trust if security_kernel_post_read_file() will be called
3332 *
3333 * Read a file specified by userspace.
3334 *
3335 * Return: Returns 0 if permission is granted.
3336 */
security_kernel_read_file(struct file * file,enum kernel_read_file_id id,bool contents)3337 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3338 bool contents)
3339 {
3340 return call_int_hook(kernel_read_file, file, id, contents);
3341 }
3342 EXPORT_SYMBOL_GPL(security_kernel_read_file);
3343
3344 /**
3345 * security_kernel_post_read_file() - Read a file specified by userspace
3346 * @file: file
3347 * @buf: file contents
3348 * @size: size of file contents
3349 * @id: file identifier
3350 *
3351 * Read a file specified by userspace. This must be paired with a prior call
3352 * to security_kernel_read_file() call that indicated this hook would also be
3353 * called, see security_kernel_read_file() for more information.
3354 *
3355 * Return: Returns 0 if permission is granted.
3356 */
security_kernel_post_read_file(struct file * file,char * buf,loff_t size,enum kernel_read_file_id id)3357 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3358 enum kernel_read_file_id id)
3359 {
3360 return call_int_hook(kernel_post_read_file, file, buf, size, id);
3361 }
3362 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3363
3364 /**
3365 * security_kernel_load_data() - Load data provided by userspace
3366 * @id: data identifier
3367 * @contents: true if security_kernel_post_load_data() will be called
3368 *
3369 * Load data provided by userspace.
3370 *
3371 * Return: Returns 0 if permission is granted.
3372 */
security_kernel_load_data(enum kernel_load_data_id id,bool contents)3373 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3374 {
3375 return call_int_hook(kernel_load_data, id, contents);
3376 }
3377 EXPORT_SYMBOL_GPL(security_kernel_load_data);
3378
3379 /**
3380 * security_kernel_post_load_data() - Load userspace data from a non-file source
3381 * @buf: data
3382 * @size: size of data
3383 * @id: data identifier
3384 * @description: text description of data, specific to the id value
3385 *
3386 * Load data provided by a non-file source (usually userspace buffer). This
3387 * must be paired with a prior security_kernel_load_data() call that indicated
3388 * this hook would also be called, see security_kernel_load_data() for more
3389 * information.
3390 *
3391 * Return: Returns 0 if permission is granted.
3392 */
security_kernel_post_load_data(char * buf,loff_t size,enum kernel_load_data_id id,char * description)3393 int security_kernel_post_load_data(char *buf, loff_t size,
3394 enum kernel_load_data_id id,
3395 char *description)
3396 {
3397 return call_int_hook(kernel_post_load_data, buf, size, id, description);
3398 }
3399 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3400
3401 /**
3402 * security_task_fix_setuid() - Update LSM with new user id attributes
3403 * @new: updated credentials
3404 * @old: credentials being replaced
3405 * @flags: LSM_SETID_* flag values
3406 *
3407 * Update the module's state after setting one or more of the user identity
3408 * attributes of the current process. The @flags parameter indicates which of
3409 * the set*uid system calls invoked this hook. If @new is the set of
3410 * credentials that will be installed. Modifications should be made to this
3411 * rather than to @current->cred.
3412 *
3413 * Return: Returns 0 on success.
3414 */
security_task_fix_setuid(struct cred * new,const struct cred * old,int flags)3415 int security_task_fix_setuid(struct cred *new, const struct cred *old,
3416 int flags)
3417 {
3418 return call_int_hook(task_fix_setuid, new, old, flags);
3419 }
3420
3421 /**
3422 * security_task_fix_setgid() - Update LSM with new group id attributes
3423 * @new: updated credentials
3424 * @old: credentials being replaced
3425 * @flags: LSM_SETID_* flag value
3426 *
3427 * Update the module's state after setting one or more of the group identity
3428 * attributes of the current process. The @flags parameter indicates which of
3429 * the set*gid system calls invoked this hook. @new is the set of credentials
3430 * that will be installed. Modifications should be made to this rather than to
3431 * @current->cred.
3432 *
3433 * Return: Returns 0 on success.
3434 */
security_task_fix_setgid(struct cred * new,const struct cred * old,int flags)3435 int security_task_fix_setgid(struct cred *new, const struct cred *old,
3436 int flags)
3437 {
3438 return call_int_hook(task_fix_setgid, new, old, flags);
3439 }
3440
3441 /**
3442 * security_task_fix_setgroups() - Update LSM with new supplementary groups
3443 * @new: updated credentials
3444 * @old: credentials being replaced
3445 *
3446 * Update the module's state after setting the supplementary group identity
3447 * attributes of the current process. @new is the set of credentials that will
3448 * be installed. Modifications should be made to this rather than to
3449 * @current->cred.
3450 *
3451 * Return: Returns 0 on success.
3452 */
security_task_fix_setgroups(struct cred * new,const struct cred * old)3453 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3454 {
3455 return call_int_hook(task_fix_setgroups, new, old);
3456 }
3457
3458 /**
3459 * security_task_setpgid() - Check if setting the pgid is allowed
3460 * @p: task being modified
3461 * @pgid: new pgid
3462 *
3463 * Check permission before setting the process group identifier of the process
3464 * @p to @pgid.
3465 *
3466 * Return: Returns 0 if permission is granted.
3467 */
security_task_setpgid(struct task_struct * p,pid_t pgid)3468 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3469 {
3470 return call_int_hook(task_setpgid, p, pgid);
3471 }
3472
3473 /**
3474 * security_task_getpgid() - Check if getting the pgid is allowed
3475 * @p: task
3476 *
3477 * Check permission before getting the process group identifier of the process
3478 * @p.
3479 *
3480 * Return: Returns 0 if permission is granted.
3481 */
security_task_getpgid(struct task_struct * p)3482 int security_task_getpgid(struct task_struct *p)
3483 {
3484 return call_int_hook(task_getpgid, p);
3485 }
3486
3487 /**
3488 * security_task_getsid() - Check if getting the session id is allowed
3489 * @p: task
3490 *
3491 * Check permission before getting the session identifier of the process @p.
3492 *
3493 * Return: Returns 0 if permission is granted.
3494 */
security_task_getsid(struct task_struct * p)3495 int security_task_getsid(struct task_struct *p)
3496 {
3497 return call_int_hook(task_getsid, p);
3498 }
3499
3500 /**
3501 * security_current_getsecid_subj() - Get the current task's subjective secid
3502 * @secid: secid value
3503 *
3504 * Retrieve the subjective security identifier of the current task and return
3505 * it in @secid. In case of failure, @secid will be set to zero.
3506 */
security_current_getsecid_subj(u32 * secid)3507 void security_current_getsecid_subj(u32 *secid)
3508 {
3509 *secid = 0;
3510 call_void_hook(current_getsecid_subj, secid);
3511 }
3512 EXPORT_SYMBOL(security_current_getsecid_subj);
3513
3514 /**
3515 * security_task_getsecid_obj() - Get a task's objective secid
3516 * @p: target task
3517 * @secid: secid value
3518 *
3519 * Retrieve the objective security identifier of the task_struct in @p and
3520 * return it in @secid. In case of failure, @secid will be set to zero.
3521 */
security_task_getsecid_obj(struct task_struct * p,u32 * secid)3522 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
3523 {
3524 *secid = 0;
3525 call_void_hook(task_getsecid_obj, p, secid);
3526 }
3527 EXPORT_SYMBOL(security_task_getsecid_obj);
3528
3529 /**
3530 * security_task_setnice() - Check if setting a task's nice value is allowed
3531 * @p: target task
3532 * @nice: nice value
3533 *
3534 * Check permission before setting the nice value of @p to @nice.
3535 *
3536 * Return: Returns 0 if permission is granted.
3537 */
security_task_setnice(struct task_struct * p,int nice)3538 int security_task_setnice(struct task_struct *p, int nice)
3539 {
3540 return call_int_hook(task_setnice, p, nice);
3541 }
3542
3543 /**
3544 * security_task_setioprio() - Check if setting a task's ioprio is allowed
3545 * @p: target task
3546 * @ioprio: ioprio value
3547 *
3548 * Check permission before setting the ioprio value of @p to @ioprio.
3549 *
3550 * Return: Returns 0 if permission is granted.
3551 */
security_task_setioprio(struct task_struct * p,int ioprio)3552 int security_task_setioprio(struct task_struct *p, int ioprio)
3553 {
3554 return call_int_hook(task_setioprio, p, ioprio);
3555 }
3556
3557 /**
3558 * security_task_getioprio() - Check if getting a task's ioprio is allowed
3559 * @p: task
3560 *
3561 * Check permission before getting the ioprio value of @p.
3562 *
3563 * Return: Returns 0 if permission is granted.
3564 */
security_task_getioprio(struct task_struct * p)3565 int security_task_getioprio(struct task_struct *p)
3566 {
3567 return call_int_hook(task_getioprio, p);
3568 }
3569
3570 /**
3571 * security_task_prlimit() - Check if get/setting resources limits is allowed
3572 * @cred: current task credentials
3573 * @tcred: target task credentials
3574 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3575 *
3576 * Check permission before getting and/or setting the resource limits of
3577 * another task.
3578 *
3579 * Return: Returns 0 if permission is granted.
3580 */
security_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)3581 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3582 unsigned int flags)
3583 {
3584 return call_int_hook(task_prlimit, cred, tcred, flags);
3585 }
3586
3587 /**
3588 * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3589 * @p: target task's group leader
3590 * @resource: resource whose limit is being set
3591 * @new_rlim: new resource limit
3592 *
3593 * Check permission before setting the resource limits of process @p for
3594 * @resource to @new_rlim. The old resource limit values can be examined by
3595 * dereferencing (p->signal->rlim + resource).
3596 *
3597 * Return: Returns 0 if permission is granted.
3598 */
security_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)3599 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3600 struct rlimit *new_rlim)
3601 {
3602 return call_int_hook(task_setrlimit, p, resource, new_rlim);
3603 }
3604
3605 /**
3606 * security_task_setscheduler() - Check if setting sched policy/param is allowed
3607 * @p: target task
3608 *
3609 * Check permission before setting scheduling policy and/or parameters of
3610 * process @p.
3611 *
3612 * Return: Returns 0 if permission is granted.
3613 */
security_task_setscheduler(struct task_struct * p)3614 int security_task_setscheduler(struct task_struct *p)
3615 {
3616 return call_int_hook(task_setscheduler, p);
3617 }
3618
3619 /**
3620 * security_task_getscheduler() - Check if getting scheduling info is allowed
3621 * @p: target task
3622 *
3623 * Check permission before obtaining scheduling information for process @p.
3624 *
3625 * Return: Returns 0 if permission is granted.
3626 */
security_task_getscheduler(struct task_struct * p)3627 int security_task_getscheduler(struct task_struct *p)
3628 {
3629 return call_int_hook(task_getscheduler, p);
3630 }
3631
3632 /**
3633 * security_task_movememory() - Check if moving memory is allowed
3634 * @p: task
3635 *
3636 * Check permission before moving memory owned by process @p.
3637 *
3638 * Return: Returns 0 if permission is granted.
3639 */
security_task_movememory(struct task_struct * p)3640 int security_task_movememory(struct task_struct *p)
3641 {
3642 return call_int_hook(task_movememory, p);
3643 }
3644
3645 /**
3646 * security_task_kill() - Check if sending a signal is allowed
3647 * @p: target process
3648 * @info: signal information
3649 * @sig: signal value
3650 * @cred: credentials of the signal sender, NULL if @current
3651 *
3652 * Check permission before sending signal @sig to @p. @info can be NULL, the
3653 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or
3654 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3655 * the kernel and should typically be permitted. SIGIO signals are handled
3656 * separately by the send_sigiotask hook in file_security_ops.
3657 *
3658 * Return: Returns 0 if permission is granted.
3659 */
security_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)3660 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3661 int sig, const struct cred *cred)
3662 {
3663 return call_int_hook(task_kill, p, info, sig, cred);
3664 }
3665
3666 /**
3667 * security_task_prctl() - Check if a prctl op is allowed
3668 * @option: operation
3669 * @arg2: argument
3670 * @arg3: argument
3671 * @arg4: argument
3672 * @arg5: argument
3673 *
3674 * Check permission before performing a process control operation on the
3675 * current process.
3676 *
3677 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3678 * to cause prctl() to return immediately with that value.
3679 */
security_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)3680 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3681 unsigned long arg4, unsigned long arg5)
3682 {
3683 int thisrc;
3684 int rc = LSM_RET_DEFAULT(task_prctl);
3685 struct lsm_static_call *scall;
3686
3687 lsm_for_each_hook(scall, task_prctl) {
3688 thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3689 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3690 rc = thisrc;
3691 if (thisrc != 0)
3692 break;
3693 }
3694 }
3695 return rc;
3696 }
3697
3698 /**
3699 * security_task_to_inode() - Set the security attributes of a task's inode
3700 * @p: task
3701 * @inode: inode
3702 *
3703 * Set the security attributes for an inode based on an associated task's
3704 * security attributes, e.g. for /proc/pid inodes.
3705 */
security_task_to_inode(struct task_struct * p,struct inode * inode)3706 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3707 {
3708 call_void_hook(task_to_inode, p, inode);
3709 }
3710
3711 /**
3712 * security_create_user_ns() - Check if creating a new userns is allowed
3713 * @cred: prepared creds
3714 *
3715 * Check permission prior to creating a new user namespace.
3716 *
3717 * Return: Returns 0 if successful, otherwise < 0 error code.
3718 */
security_create_user_ns(const struct cred * cred)3719 int security_create_user_ns(const struct cred *cred)
3720 {
3721 return call_int_hook(userns_create, cred);
3722 }
3723
3724 /**
3725 * security_ipc_permission() - Check if sysv ipc access is allowed
3726 * @ipcp: ipc permission structure
3727 * @flag: requested permissions
3728 *
3729 * Check permissions for access to IPC.
3730 *
3731 * Return: Returns 0 if permission is granted.
3732 */
security_ipc_permission(struct kern_ipc_perm * ipcp,short flag)3733 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3734 {
3735 return call_int_hook(ipc_permission, ipcp, flag);
3736 }
3737
3738 /**
3739 * security_ipc_getsecid() - Get the sysv ipc object's secid
3740 * @ipcp: ipc permission structure
3741 * @secid: secid pointer
3742 *
3743 * Get the secid associated with the ipc object. In case of failure, @secid
3744 * will be set to zero.
3745 */
security_ipc_getsecid(struct kern_ipc_perm * ipcp,u32 * secid)3746 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
3747 {
3748 *secid = 0;
3749 call_void_hook(ipc_getsecid, ipcp, secid);
3750 }
3751
3752 /**
3753 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3754 * @msg: message structure
3755 *
3756 * Allocate and attach a security structure to the msg->security field. The
3757 * security field is initialized to NULL when the structure is first created.
3758 *
3759 * Return: Return 0 if operation was successful and permission is granted.
3760 */
security_msg_msg_alloc(struct msg_msg * msg)3761 int security_msg_msg_alloc(struct msg_msg *msg)
3762 {
3763 int rc = lsm_msg_msg_alloc(msg);
3764
3765 if (unlikely(rc))
3766 return rc;
3767 rc = call_int_hook(msg_msg_alloc_security, msg);
3768 if (unlikely(rc))
3769 security_msg_msg_free(msg);
3770 return rc;
3771 }
3772
3773 /**
3774 * security_msg_msg_free() - Free a sysv ipc message LSM blob
3775 * @msg: message structure
3776 *
3777 * Deallocate the security structure for this message.
3778 */
security_msg_msg_free(struct msg_msg * msg)3779 void security_msg_msg_free(struct msg_msg *msg)
3780 {
3781 call_void_hook(msg_msg_free_security, msg);
3782 kfree(msg->security);
3783 msg->security = NULL;
3784 }
3785
3786 /**
3787 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3788 * @msq: sysv ipc permission structure
3789 *
3790 * Allocate and attach a security structure to @msg. The security field is
3791 * initialized to NULL when the structure is first created.
3792 *
3793 * Return: Returns 0 if operation was successful and permission is granted.
3794 */
security_msg_queue_alloc(struct kern_ipc_perm * msq)3795 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3796 {
3797 int rc = lsm_ipc_alloc(msq);
3798
3799 if (unlikely(rc))
3800 return rc;
3801 rc = call_int_hook(msg_queue_alloc_security, msq);
3802 if (unlikely(rc))
3803 security_msg_queue_free(msq);
3804 return rc;
3805 }
3806
3807 /**
3808 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3809 * @msq: sysv ipc permission structure
3810 *
3811 * Deallocate security field @perm->security for the message queue.
3812 */
security_msg_queue_free(struct kern_ipc_perm * msq)3813 void security_msg_queue_free(struct kern_ipc_perm *msq)
3814 {
3815 call_void_hook(msg_queue_free_security, msq);
3816 kfree(msq->security);
3817 msq->security = NULL;
3818 }
3819
3820 /**
3821 * security_msg_queue_associate() - Check if a msg queue operation is allowed
3822 * @msq: sysv ipc permission structure
3823 * @msqflg: operation flags
3824 *
3825 * Check permission when a message queue is requested through the msgget system
3826 * call. This hook is only called when returning the message queue identifier
3827 * for an existing message queue, not when a new message queue is created.
3828 *
3829 * Return: Return 0 if permission is granted.
3830 */
security_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)3831 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3832 {
3833 return call_int_hook(msg_queue_associate, msq, msqflg);
3834 }
3835
3836 /**
3837 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3838 * @msq: sysv ipc permission structure
3839 * @cmd: operation
3840 *
3841 * Check permission when a message control operation specified by @cmd is to be
3842 * performed on the message queue with permissions.
3843 *
3844 * Return: Returns 0 if permission is granted.
3845 */
security_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)3846 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3847 {
3848 return call_int_hook(msg_queue_msgctl, msq, cmd);
3849 }
3850
3851 /**
3852 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3853 * @msq: sysv ipc permission structure
3854 * @msg: message
3855 * @msqflg: operation flags
3856 *
3857 * Check permission before a message, @msg, is enqueued on the message queue
3858 * with permissions specified in @msq.
3859 *
3860 * Return: Returns 0 if permission is granted.
3861 */
security_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)3862 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3863 struct msg_msg *msg, int msqflg)
3864 {
3865 return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3866 }
3867
3868 /**
3869 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3870 * @msq: sysv ipc permission structure
3871 * @msg: message
3872 * @target: target task
3873 * @type: type of message requested
3874 * @mode: operation flags
3875 *
3876 * Check permission before a message, @msg, is removed from the message queue.
3877 * The @target task structure contains a pointer to the process that will be
3878 * receiving the message (not equal to the current process when inline receives
3879 * are being performed).
3880 *
3881 * Return: Returns 0 if permission is granted.
3882 */
security_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)3883 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3884 struct task_struct *target, long type, int mode)
3885 {
3886 return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3887 }
3888
3889 /**
3890 * security_shm_alloc() - Allocate a sysv shm LSM blob
3891 * @shp: sysv ipc permission structure
3892 *
3893 * Allocate and attach a security structure to the @shp security field. The
3894 * security field is initialized to NULL when the structure is first created.
3895 *
3896 * Return: Returns 0 if operation was successful and permission is granted.
3897 */
security_shm_alloc(struct kern_ipc_perm * shp)3898 int security_shm_alloc(struct kern_ipc_perm *shp)
3899 {
3900 int rc = lsm_ipc_alloc(shp);
3901
3902 if (unlikely(rc))
3903 return rc;
3904 rc = call_int_hook(shm_alloc_security, shp);
3905 if (unlikely(rc))
3906 security_shm_free(shp);
3907 return rc;
3908 }
3909
3910 /**
3911 * security_shm_free() - Free a sysv shm LSM blob
3912 * @shp: sysv ipc permission structure
3913 *
3914 * Deallocate the security structure @perm->security for the memory segment.
3915 */
security_shm_free(struct kern_ipc_perm * shp)3916 void security_shm_free(struct kern_ipc_perm *shp)
3917 {
3918 call_void_hook(shm_free_security, shp);
3919 kfree(shp->security);
3920 shp->security = NULL;
3921 }
3922
3923 /**
3924 * security_shm_associate() - Check if a sysv shm operation is allowed
3925 * @shp: sysv ipc permission structure
3926 * @shmflg: operation flags
3927 *
3928 * Check permission when a shared memory region is requested through the shmget
3929 * system call. This hook is only called when returning the shared memory
3930 * region identifier for an existing region, not when a new shared memory
3931 * region is created.
3932 *
3933 * Return: Returns 0 if permission is granted.
3934 */
security_shm_associate(struct kern_ipc_perm * shp,int shmflg)3935 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3936 {
3937 return call_int_hook(shm_associate, shp, shmflg);
3938 }
3939
3940 /**
3941 * security_shm_shmctl() - Check if a sysv shm operation is allowed
3942 * @shp: sysv ipc permission structure
3943 * @cmd: operation
3944 *
3945 * Check permission when a shared memory control operation specified by @cmd is
3946 * to be performed on the shared memory region with permissions in @shp.
3947 *
3948 * Return: Return 0 if permission is granted.
3949 */
security_shm_shmctl(struct kern_ipc_perm * shp,int cmd)3950 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3951 {
3952 return call_int_hook(shm_shmctl, shp, cmd);
3953 }
3954
3955 /**
3956 * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3957 * @shp: sysv ipc permission structure
3958 * @shmaddr: address of memory region to attach
3959 * @shmflg: operation flags
3960 *
3961 * Check permissions prior to allowing the shmat system call to attach the
3962 * shared memory segment with permissions @shp to the data segment of the
3963 * calling process. The attaching address is specified by @shmaddr.
3964 *
3965 * Return: Returns 0 if permission is granted.
3966 */
security_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)3967 int security_shm_shmat(struct kern_ipc_perm *shp,
3968 char __user *shmaddr, int shmflg)
3969 {
3970 return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3971 }
3972
3973 /**
3974 * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3975 * @sma: sysv ipc permission structure
3976 *
3977 * Allocate and attach a security structure to the @sma security field. The
3978 * security field is initialized to NULL when the structure is first created.
3979 *
3980 * Return: Returns 0 if operation was successful and permission is granted.
3981 */
security_sem_alloc(struct kern_ipc_perm * sma)3982 int security_sem_alloc(struct kern_ipc_perm *sma)
3983 {
3984 int rc = lsm_ipc_alloc(sma);
3985
3986 if (unlikely(rc))
3987 return rc;
3988 rc = call_int_hook(sem_alloc_security, sma);
3989 if (unlikely(rc))
3990 security_sem_free(sma);
3991 return rc;
3992 }
3993
3994 /**
3995 * security_sem_free() - Free a sysv semaphore LSM blob
3996 * @sma: sysv ipc permission structure
3997 *
3998 * Deallocate security structure @sma->security for the semaphore.
3999 */
security_sem_free(struct kern_ipc_perm * sma)4000 void security_sem_free(struct kern_ipc_perm *sma)
4001 {
4002 call_void_hook(sem_free_security, sma);
4003 kfree(sma->security);
4004 sma->security = NULL;
4005 }
4006
4007 /**
4008 * security_sem_associate() - Check if a sysv semaphore operation is allowed
4009 * @sma: sysv ipc permission structure
4010 * @semflg: operation flags
4011 *
4012 * Check permission when a semaphore is requested through the semget system
4013 * call. This hook is only called when returning the semaphore identifier for
4014 * an existing semaphore, not when a new one must be created.
4015 *
4016 * Return: Returns 0 if permission is granted.
4017 */
security_sem_associate(struct kern_ipc_perm * sma,int semflg)4018 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
4019 {
4020 return call_int_hook(sem_associate, sma, semflg);
4021 }
4022
4023 /**
4024 * security_sem_semctl() - Check if a sysv semaphore operation is allowed
4025 * @sma: sysv ipc permission structure
4026 * @cmd: operation
4027 *
4028 * Check permission when a semaphore operation specified by @cmd is to be
4029 * performed on the semaphore.
4030 *
4031 * Return: Returns 0 if permission is granted.
4032 */
security_sem_semctl(struct kern_ipc_perm * sma,int cmd)4033 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
4034 {
4035 return call_int_hook(sem_semctl, sma, cmd);
4036 }
4037
4038 /**
4039 * security_sem_semop() - Check if a sysv semaphore operation is allowed
4040 * @sma: sysv ipc permission structure
4041 * @sops: operations to perform
4042 * @nsops: number of operations
4043 * @alter: flag indicating changes will be made
4044 *
4045 * Check permissions before performing operations on members of the semaphore
4046 * set. If the @alter flag is nonzero, the semaphore set may be modified.
4047 *
4048 * Return: Returns 0 if permission is granted.
4049 */
security_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)4050 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
4051 unsigned nsops, int alter)
4052 {
4053 return call_int_hook(sem_semop, sma, sops, nsops, alter);
4054 }
4055
4056 /**
4057 * security_d_instantiate() - Populate an inode's LSM state based on a dentry
4058 * @dentry: dentry
4059 * @inode: inode
4060 *
4061 * Fill in @inode security information for a @dentry if allowed.
4062 */
security_d_instantiate(struct dentry * dentry,struct inode * inode)4063 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
4064 {
4065 if (unlikely(inode && IS_PRIVATE(inode)))
4066 return;
4067 call_void_hook(d_instantiate, dentry, inode);
4068 }
4069 EXPORT_SYMBOL(security_d_instantiate);
4070
4071 /*
4072 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4073 */
4074
4075 /**
4076 * security_getselfattr - Read an LSM attribute of the current process.
4077 * @attr: which attribute to return
4078 * @uctx: the user-space destination for the information, or NULL
4079 * @size: pointer to the size of space available to receive the data
4080 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
4081 * attributes associated with the LSM identified in the passed @ctx be
4082 * reported.
4083 *
4084 * A NULL value for @uctx can be used to get both the number of attributes
4085 * and the size of the data.
4086 *
4087 * Returns the number of attributes found on success, negative value
4088 * on error. @size is reset to the total size of the data.
4089 * If @size is insufficient to contain the data -E2BIG is returned.
4090 */
security_getselfattr(unsigned int attr,struct lsm_ctx __user * uctx,u32 __user * size,u32 flags)4091 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4092 u32 __user *size, u32 flags)
4093 {
4094 struct lsm_static_call *scall;
4095 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
4096 u8 __user *base = (u8 __user *)uctx;
4097 u32 entrysize;
4098 u32 total = 0;
4099 u32 left;
4100 bool toobig = false;
4101 bool single = false;
4102 int count = 0;
4103 int rc;
4104
4105 if (attr == LSM_ATTR_UNDEF)
4106 return -EINVAL;
4107 if (size == NULL)
4108 return -EINVAL;
4109 if (get_user(left, size))
4110 return -EFAULT;
4111
4112 if (flags) {
4113 /*
4114 * Only flag supported is LSM_FLAG_SINGLE
4115 */
4116 if (flags != LSM_FLAG_SINGLE || !uctx)
4117 return -EINVAL;
4118 if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4119 return -EFAULT;
4120 /*
4121 * If the LSM ID isn't specified it is an error.
4122 */
4123 if (lctx.id == LSM_ID_UNDEF)
4124 return -EINVAL;
4125 single = true;
4126 }
4127
4128 /*
4129 * In the usual case gather all the data from the LSMs.
4130 * In the single case only get the data from the LSM specified.
4131 */
4132 lsm_for_each_hook(scall, getselfattr) {
4133 if (single && lctx.id != scall->hl->lsmid->id)
4134 continue;
4135 entrysize = left;
4136 if (base)
4137 uctx = (struct lsm_ctx __user *)(base + total);
4138 rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
4139 if (rc == -EOPNOTSUPP) {
4140 rc = 0;
4141 continue;
4142 }
4143 if (rc == -E2BIG) {
4144 rc = 0;
4145 left = 0;
4146 toobig = true;
4147 } else if (rc < 0)
4148 return rc;
4149 else
4150 left -= entrysize;
4151
4152 total += entrysize;
4153 count += rc;
4154 if (single)
4155 break;
4156 }
4157 if (put_user(total, size))
4158 return -EFAULT;
4159 if (toobig)
4160 return -E2BIG;
4161 if (count == 0)
4162 return LSM_RET_DEFAULT(getselfattr);
4163 return count;
4164 }
4165
4166 /*
4167 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4168 */
4169
4170 /**
4171 * security_setselfattr - Set an LSM attribute on the current process.
4172 * @attr: which attribute to set
4173 * @uctx: the user-space source for the information
4174 * @size: the size of the data
4175 * @flags: reserved for future use, must be 0
4176 *
4177 * Set an LSM attribute for the current process. The LSM, attribute
4178 * and new value are included in @uctx.
4179 *
4180 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4181 * if the user buffer is inaccessible, E2BIG if size is too big, or an
4182 * LSM specific failure.
4183 */
security_setselfattr(unsigned int attr,struct lsm_ctx __user * uctx,u32 size,u32 flags)4184 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4185 u32 size, u32 flags)
4186 {
4187 struct lsm_static_call *scall;
4188 struct lsm_ctx *lctx;
4189 int rc = LSM_RET_DEFAULT(setselfattr);
4190 u64 required_len;
4191
4192 if (flags)
4193 return -EINVAL;
4194 if (size < sizeof(*lctx))
4195 return -EINVAL;
4196 if (size > PAGE_SIZE)
4197 return -E2BIG;
4198
4199 lctx = memdup_user(uctx, size);
4200 if (IS_ERR(lctx))
4201 return PTR_ERR(lctx);
4202
4203 if (size < lctx->len ||
4204 check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4205 lctx->len < required_len) {
4206 rc = -EINVAL;
4207 goto free_out;
4208 }
4209
4210 lsm_for_each_hook(scall, setselfattr)
4211 if ((scall->hl->lsmid->id) == lctx->id) {
4212 rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
4213 break;
4214 }
4215
4216 free_out:
4217 kfree(lctx);
4218 return rc;
4219 }
4220
4221 /**
4222 * security_getprocattr() - Read an attribute for a task
4223 * @p: the task
4224 * @lsmid: LSM identification
4225 * @name: attribute name
4226 * @value: attribute value
4227 *
4228 * Read attribute @name for task @p and store it into @value if allowed.
4229 *
4230 * Return: Returns the length of @value on success, a negative value otherwise.
4231 */
security_getprocattr(struct task_struct * p,int lsmid,const char * name,char ** value)4232 int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4233 char **value)
4234 {
4235 struct lsm_static_call *scall;
4236
4237 lsm_for_each_hook(scall, getprocattr) {
4238 if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4239 continue;
4240 return scall->hl->hook.getprocattr(p, name, value);
4241 }
4242 return LSM_RET_DEFAULT(getprocattr);
4243 }
4244
4245 /**
4246 * security_setprocattr() - Set an attribute for a task
4247 * @lsmid: LSM identification
4248 * @name: attribute name
4249 * @value: attribute value
4250 * @size: attribute value size
4251 *
4252 * Write (set) the current task's attribute @name to @value, size @size if
4253 * allowed.
4254 *
4255 * Return: Returns bytes written on success, a negative value otherwise.
4256 */
security_setprocattr(int lsmid,const char * name,void * value,size_t size)4257 int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4258 {
4259 struct lsm_static_call *scall;
4260
4261 lsm_for_each_hook(scall, setprocattr) {
4262 if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4263 continue;
4264 return scall->hl->hook.setprocattr(name, value, size);
4265 }
4266 return LSM_RET_DEFAULT(setprocattr);
4267 }
4268
4269 /**
4270 * security_netlink_send() - Save info and check if netlink sending is allowed
4271 * @sk: sending socket
4272 * @skb: netlink message
4273 *
4274 * Save security information for a netlink message so that permission checking
4275 * can be performed when the message is processed. The security information
4276 * can be saved using the eff_cap field of the netlink_skb_parms structure.
4277 * Also may be used to provide fine grained control over message transmission.
4278 *
4279 * Return: Returns 0 if the information was successfully saved and message is
4280 * allowed to be transmitted.
4281 */
security_netlink_send(struct sock * sk,struct sk_buff * skb)4282 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4283 {
4284 return call_int_hook(netlink_send, sk, skb);
4285 }
4286
4287 /**
4288 * security_ismaclabel() - Check if the named attribute is a MAC label
4289 * @name: full extended attribute name
4290 *
4291 * Check if the extended attribute specified by @name represents a MAC label.
4292 *
4293 * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4294 */
security_ismaclabel(const char * name)4295 int security_ismaclabel(const char *name)
4296 {
4297 return call_int_hook(ismaclabel, name);
4298 }
4299 EXPORT_SYMBOL(security_ismaclabel);
4300
4301 /**
4302 * security_secid_to_secctx() - Convert a secid to a secctx
4303 * @secid: secid
4304 * @secdata: secctx
4305 * @seclen: secctx length
4306 *
4307 * Convert secid to security context. If @secdata is NULL the length of the
4308 * result will be returned in @seclen, but no @secdata will be returned. This
4309 * does mean that the length could change between calls to check the length and
4310 * the next call which actually allocates and returns the @secdata.
4311 *
4312 * Return: Return 0 on success, error on failure.
4313 */
security_secid_to_secctx(u32 secid,char ** secdata,u32 * seclen)4314 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4315 {
4316 return call_int_hook(secid_to_secctx, secid, secdata, seclen);
4317 }
4318 EXPORT_SYMBOL(security_secid_to_secctx);
4319
4320 /**
4321 * security_secctx_to_secid() - Convert a secctx to a secid
4322 * @secdata: secctx
4323 * @seclen: length of secctx
4324 * @secid: secid
4325 *
4326 * Convert security context to secid.
4327 *
4328 * Return: Returns 0 on success, error on failure.
4329 */
security_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)4330 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4331 {
4332 *secid = 0;
4333 return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4334 }
4335 EXPORT_SYMBOL(security_secctx_to_secid);
4336
4337 /**
4338 * security_release_secctx() - Free a secctx buffer
4339 * @secdata: secctx
4340 * @seclen: length of secctx
4341 *
4342 * Release the security context.
4343 */
security_release_secctx(char * secdata,u32 seclen)4344 void security_release_secctx(char *secdata, u32 seclen)
4345 {
4346 call_void_hook(release_secctx, secdata, seclen);
4347 }
4348 EXPORT_SYMBOL(security_release_secctx);
4349
4350 /**
4351 * security_inode_invalidate_secctx() - Invalidate an inode's security label
4352 * @inode: inode
4353 *
4354 * Notify the security module that it must revalidate the security context of
4355 * an inode.
4356 */
security_inode_invalidate_secctx(struct inode * inode)4357 void security_inode_invalidate_secctx(struct inode *inode)
4358 {
4359 call_void_hook(inode_invalidate_secctx, inode);
4360 }
4361 EXPORT_SYMBOL(security_inode_invalidate_secctx);
4362
4363 /**
4364 * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4365 * @inode: inode
4366 * @ctx: secctx
4367 * @ctxlen: length of secctx
4368 *
4369 * Notify the security module of what the security context of an inode should
4370 * be. Initializes the incore security context managed by the security module
4371 * for this inode. Example usage: NFS client invokes this hook to initialize
4372 * the security context in its incore inode to the value provided by the server
4373 * for the file when the server returned the file's attributes to the client.
4374 * Must be called with inode->i_mutex locked.
4375 *
4376 * Return: Returns 0 on success, error on failure.
4377 */
security_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)4378 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4379 {
4380 return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4381 }
4382 EXPORT_SYMBOL(security_inode_notifysecctx);
4383
4384 /**
4385 * security_inode_setsecctx() - Change the security label of an inode
4386 * @dentry: inode
4387 * @ctx: secctx
4388 * @ctxlen: length of secctx
4389 *
4390 * Change the security context of an inode. Updates the incore security
4391 * context managed by the security module and invokes the fs code as needed
4392 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4393 * context. Example usage: NFS server invokes this hook to change the security
4394 * context in its incore inode and on the backing filesystem to a value
4395 * provided by the client on a SETATTR operation. Must be called with
4396 * inode->i_mutex locked.
4397 *
4398 * Return: Returns 0 on success, error on failure.
4399 */
security_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)4400 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4401 {
4402 return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4403 }
4404 EXPORT_SYMBOL(security_inode_setsecctx);
4405
4406 /**
4407 * security_inode_getsecctx() - Get the security label of an inode
4408 * @inode: inode
4409 * @ctx: secctx
4410 * @ctxlen: length of secctx
4411 *
4412 * On success, returns 0 and fills out @ctx and @ctxlen with the security
4413 * context for the given @inode.
4414 *
4415 * Return: Returns 0 on success, error on failure.
4416 */
security_inode_getsecctx(struct inode * inode,void ** ctx,u32 * ctxlen)4417 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4418 {
4419 return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
4420 }
4421 EXPORT_SYMBOL(security_inode_getsecctx);
4422
4423 #ifdef CONFIG_WATCH_QUEUE
4424 /**
4425 * security_post_notification() - Check if a watch notification can be posted
4426 * @w_cred: credentials of the task that set the watch
4427 * @cred: credentials of the task which triggered the watch
4428 * @n: the notification
4429 *
4430 * Check to see if a watch notification can be posted to a particular queue.
4431 *
4432 * Return: Returns 0 if permission is granted.
4433 */
security_post_notification(const struct cred * w_cred,const struct cred * cred,struct watch_notification * n)4434 int security_post_notification(const struct cred *w_cred,
4435 const struct cred *cred,
4436 struct watch_notification *n)
4437 {
4438 return call_int_hook(post_notification, w_cred, cred, n);
4439 }
4440 #endif /* CONFIG_WATCH_QUEUE */
4441
4442 #ifdef CONFIG_KEY_NOTIFICATIONS
4443 /**
4444 * security_watch_key() - Check if a task is allowed to watch for key events
4445 * @key: the key to watch
4446 *
4447 * Check to see if a process is allowed to watch for event notifications from
4448 * a key or keyring.
4449 *
4450 * Return: Returns 0 if permission is granted.
4451 */
security_watch_key(struct key * key)4452 int security_watch_key(struct key *key)
4453 {
4454 return call_int_hook(watch_key, key);
4455 }
4456 #endif /* CONFIG_KEY_NOTIFICATIONS */
4457
4458 #ifdef CONFIG_SECURITY_NETWORK
4459 /**
4460 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4461 * @sock: originating sock
4462 * @other: peer sock
4463 * @newsk: new sock
4464 *
4465 * Check permissions before establishing a Unix domain stream connection
4466 * between @sock and @other.
4467 *
4468 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4469 * Linux provides an alternative to the conventional file name space for Unix
4470 * domain sockets. Whereas binding and connecting to sockets in the file name
4471 * space is mediated by the typical file permissions (and caught by the mknod
4472 * and permission hooks in inode_security_ops), binding and connecting to
4473 * sockets in the abstract name space is completely unmediated. Sufficient
4474 * control of Unix domain sockets in the abstract name space isn't possible
4475 * using only the socket layer hooks, since we need to know the actual target
4476 * socket, which is not looked up until we are inside the af_unix code.
4477 *
4478 * Return: Returns 0 if permission is granted.
4479 */
security_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)4480 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4481 struct sock *newsk)
4482 {
4483 return call_int_hook(unix_stream_connect, sock, other, newsk);
4484 }
4485 EXPORT_SYMBOL(security_unix_stream_connect);
4486
4487 /**
4488 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4489 * @sock: originating sock
4490 * @other: peer sock
4491 *
4492 * Check permissions before connecting or sending datagrams from @sock to
4493 * @other.
4494 *
4495 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4496 * Linux provides an alternative to the conventional file name space for Unix
4497 * domain sockets. Whereas binding and connecting to sockets in the file name
4498 * space is mediated by the typical file permissions (and caught by the mknod
4499 * and permission hooks in inode_security_ops), binding and connecting to
4500 * sockets in the abstract name space is completely unmediated. Sufficient
4501 * control of Unix domain sockets in the abstract name space isn't possible
4502 * using only the socket layer hooks, since we need to know the actual target
4503 * socket, which is not looked up until we are inside the af_unix code.
4504 *
4505 * Return: Returns 0 if permission is granted.
4506 */
security_unix_may_send(struct socket * sock,struct socket * other)4507 int security_unix_may_send(struct socket *sock, struct socket *other)
4508 {
4509 return call_int_hook(unix_may_send, sock, other);
4510 }
4511 EXPORT_SYMBOL(security_unix_may_send);
4512
4513 /**
4514 * security_socket_create() - Check if creating a new socket is allowed
4515 * @family: protocol family
4516 * @type: communications type
4517 * @protocol: requested protocol
4518 * @kern: set to 1 if a kernel socket is requested
4519 *
4520 * Check permissions prior to creating a new socket.
4521 *
4522 * Return: Returns 0 if permission is granted.
4523 */
security_socket_create(int family,int type,int protocol,int kern)4524 int security_socket_create(int family, int type, int protocol, int kern)
4525 {
4526 return call_int_hook(socket_create, family, type, protocol, kern);
4527 }
4528
4529 /**
4530 * security_socket_post_create() - Initialize a newly created socket
4531 * @sock: socket
4532 * @family: protocol family
4533 * @type: communications type
4534 * @protocol: requested protocol
4535 * @kern: set to 1 if a kernel socket is requested
4536 *
4537 * This hook allows a module to update or allocate a per-socket security
4538 * structure. Note that the security field was not added directly to the socket
4539 * structure, but rather, the socket security information is stored in the
4540 * associated inode. Typically, the inode alloc_security hook will allocate
4541 * and attach security information to SOCK_INODE(sock)->i_security. This hook
4542 * may be used to update the SOCK_INODE(sock)->i_security field with additional
4543 * information that wasn't available when the inode was allocated.
4544 *
4545 * Return: Returns 0 if permission is granted.
4546 */
security_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)4547 int security_socket_post_create(struct socket *sock, int family,
4548 int type, int protocol, int kern)
4549 {
4550 return call_int_hook(socket_post_create, sock, family, type,
4551 protocol, kern);
4552 }
4553
4554 /**
4555 * security_socket_socketpair() - Check if creating a socketpair is allowed
4556 * @socka: first socket
4557 * @sockb: second socket
4558 *
4559 * Check permissions before creating a fresh pair of sockets.
4560 *
4561 * Return: Returns 0 if permission is granted and the connection was
4562 * established.
4563 */
security_socket_socketpair(struct socket * socka,struct socket * sockb)4564 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4565 {
4566 return call_int_hook(socket_socketpair, socka, sockb);
4567 }
4568 EXPORT_SYMBOL(security_socket_socketpair);
4569
4570 /**
4571 * security_socket_bind() - Check if a socket bind operation is allowed
4572 * @sock: socket
4573 * @address: requested bind address
4574 * @addrlen: length of address
4575 *
4576 * Check permission before socket protocol layer bind operation is performed
4577 * and the socket @sock is bound to the address specified in the @address
4578 * parameter.
4579 *
4580 * Return: Returns 0 if permission is granted.
4581 */
security_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)4582 int security_socket_bind(struct socket *sock,
4583 struct sockaddr *address, int addrlen)
4584 {
4585 return call_int_hook(socket_bind, sock, address, addrlen);
4586 }
4587
4588 /**
4589 * security_socket_connect() - Check if a socket connect operation is allowed
4590 * @sock: socket
4591 * @address: address of remote connection point
4592 * @addrlen: length of address
4593 *
4594 * Check permission before socket protocol layer connect operation attempts to
4595 * connect socket @sock to a remote address, @address.
4596 *
4597 * Return: Returns 0 if permission is granted.
4598 */
security_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)4599 int security_socket_connect(struct socket *sock,
4600 struct sockaddr *address, int addrlen)
4601 {
4602 return call_int_hook(socket_connect, sock, address, addrlen);
4603 }
4604
4605 /**
4606 * security_socket_listen() - Check if a socket is allowed to listen
4607 * @sock: socket
4608 * @backlog: connection queue size
4609 *
4610 * Check permission before socket protocol layer listen operation.
4611 *
4612 * Return: Returns 0 if permission is granted.
4613 */
security_socket_listen(struct socket * sock,int backlog)4614 int security_socket_listen(struct socket *sock, int backlog)
4615 {
4616 return call_int_hook(socket_listen, sock, backlog);
4617 }
4618
4619 /**
4620 * security_socket_accept() - Check if a socket is allowed to accept connections
4621 * @sock: listening socket
4622 * @newsock: newly creation connection socket
4623 *
4624 * Check permission before accepting a new connection. Note that the new
4625 * socket, @newsock, has been created and some information copied to it, but
4626 * the accept operation has not actually been performed.
4627 *
4628 * Return: Returns 0 if permission is granted.
4629 */
security_socket_accept(struct socket * sock,struct socket * newsock)4630 int security_socket_accept(struct socket *sock, struct socket *newsock)
4631 {
4632 return call_int_hook(socket_accept, sock, newsock);
4633 }
4634
4635 /**
4636 * security_socket_sendmsg() - Check if sending a message is allowed
4637 * @sock: sending socket
4638 * @msg: message to send
4639 * @size: size of message
4640 *
4641 * Check permission before transmitting a message to another socket.
4642 *
4643 * Return: Returns 0 if permission is granted.
4644 */
security_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)4645 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4646 {
4647 return call_int_hook(socket_sendmsg, sock, msg, size);
4648 }
4649
4650 /**
4651 * security_socket_recvmsg() - Check if receiving a message is allowed
4652 * @sock: receiving socket
4653 * @msg: message to receive
4654 * @size: size of message
4655 * @flags: operational flags
4656 *
4657 * Check permission before receiving a message from a socket.
4658 *
4659 * Return: Returns 0 if permission is granted.
4660 */
security_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)4661 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4662 int size, int flags)
4663 {
4664 return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4665 }
4666
4667 /**
4668 * security_socket_getsockname() - Check if reading the socket addr is allowed
4669 * @sock: socket
4670 *
4671 * Check permission before reading the local address (name) of the socket
4672 * object.
4673 *
4674 * Return: Returns 0 if permission is granted.
4675 */
security_socket_getsockname(struct socket * sock)4676 int security_socket_getsockname(struct socket *sock)
4677 {
4678 return call_int_hook(socket_getsockname, sock);
4679 }
4680
4681 /**
4682 * security_socket_getpeername() - Check if reading the peer's addr is allowed
4683 * @sock: socket
4684 *
4685 * Check permission before the remote address (name) of a socket object.
4686 *
4687 * Return: Returns 0 if permission is granted.
4688 */
security_socket_getpeername(struct socket * sock)4689 int security_socket_getpeername(struct socket *sock)
4690 {
4691 return call_int_hook(socket_getpeername, sock);
4692 }
4693
4694 /**
4695 * security_socket_getsockopt() - Check if reading a socket option is allowed
4696 * @sock: socket
4697 * @level: option's protocol level
4698 * @optname: option name
4699 *
4700 * Check permissions before retrieving the options associated with socket
4701 * @sock.
4702 *
4703 * Return: Returns 0 if permission is granted.
4704 */
security_socket_getsockopt(struct socket * sock,int level,int optname)4705 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4706 {
4707 return call_int_hook(socket_getsockopt, sock, level, optname);
4708 }
4709
4710 /**
4711 * security_socket_setsockopt() - Check if setting a socket option is allowed
4712 * @sock: socket
4713 * @level: option's protocol level
4714 * @optname: option name
4715 *
4716 * Check permissions before setting the options associated with socket @sock.
4717 *
4718 * Return: Returns 0 if permission is granted.
4719 */
security_socket_setsockopt(struct socket * sock,int level,int optname)4720 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4721 {
4722 return call_int_hook(socket_setsockopt, sock, level, optname);
4723 }
4724
4725 /**
4726 * security_socket_shutdown() - Checks if shutting down the socket is allowed
4727 * @sock: socket
4728 * @how: flag indicating how sends and receives are handled
4729 *
4730 * Checks permission before all or part of a connection on the socket @sock is
4731 * shut down.
4732 *
4733 * Return: Returns 0 if permission is granted.
4734 */
security_socket_shutdown(struct socket * sock,int how)4735 int security_socket_shutdown(struct socket *sock, int how)
4736 {
4737 return call_int_hook(socket_shutdown, sock, how);
4738 }
4739
4740 /**
4741 * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4742 * @sk: destination sock
4743 * @skb: incoming packet
4744 *
4745 * Check permissions on incoming network packets. This hook is distinct from
4746 * Netfilter's IP input hooks since it is the first time that the incoming
4747 * sk_buff @skb has been associated with a particular socket, @sk. Must not
4748 * sleep inside this hook because some callers hold spinlocks.
4749 *
4750 * Return: Returns 0 if permission is granted.
4751 */
security_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)4752 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4753 {
4754 return call_int_hook(socket_sock_rcv_skb, sk, skb);
4755 }
4756 EXPORT_SYMBOL(security_sock_rcv_skb);
4757
4758 /**
4759 * security_socket_getpeersec_stream() - Get the remote peer label
4760 * @sock: socket
4761 * @optval: destination buffer
4762 * @optlen: size of peer label copied into the buffer
4763 * @len: maximum size of the destination buffer
4764 *
4765 * This hook allows the security module to provide peer socket security state
4766 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4767 * For tcp sockets this can be meaningful if the socket is associated with an
4768 * ipsec SA.
4769 *
4770 * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4771 * values.
4772 */
security_socket_getpeersec_stream(struct socket * sock,sockptr_t optval,sockptr_t optlen,unsigned int len)4773 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4774 sockptr_t optlen, unsigned int len)
4775 {
4776 return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4777 len);
4778 }
4779
4780 /**
4781 * security_socket_getpeersec_dgram() - Get the remote peer label
4782 * @sock: socket
4783 * @skb: datagram packet
4784 * @secid: remote peer label secid
4785 *
4786 * This hook allows the security module to provide peer socket security state
4787 * for udp sockets on a per-packet basis to userspace via getsockopt
4788 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4789 * option via getsockopt. It can then retrieve the security state returned by
4790 * this hook for a packet via the SCM_SECURITY ancillary message type.
4791 *
4792 * Return: Returns 0 on success, error on failure.
4793 */
security_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)4794 int security_socket_getpeersec_dgram(struct socket *sock,
4795 struct sk_buff *skb, u32 *secid)
4796 {
4797 return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4798 }
4799 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4800
4801 /**
4802 * lsm_sock_alloc - allocate a composite sock blob
4803 * @sock: the sock that needs a blob
4804 * @gfp: allocation mode
4805 *
4806 * Allocate the sock blob for all the modules
4807 *
4808 * Returns 0, or -ENOMEM if memory can't be allocated.
4809 */
lsm_sock_alloc(struct sock * sock,gfp_t gfp)4810 static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4811 {
4812 return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4813 }
4814
4815 /**
4816 * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4817 * @sk: sock
4818 * @family: protocol family
4819 * @priority: gfp flags
4820 *
4821 * Allocate and attach a security structure to the sk->sk_security field, which
4822 * is used to copy security attributes between local stream sockets.
4823 *
4824 * Return: Returns 0 on success, error on failure.
4825 */
security_sk_alloc(struct sock * sk,int family,gfp_t priority)4826 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4827 {
4828 int rc = lsm_sock_alloc(sk, priority);
4829
4830 if (unlikely(rc))
4831 return rc;
4832 rc = call_int_hook(sk_alloc_security, sk, family, priority);
4833 if (unlikely(rc))
4834 security_sk_free(sk);
4835 return rc;
4836 }
4837
4838 /**
4839 * security_sk_free() - Free the sock's LSM blob
4840 * @sk: sock
4841 *
4842 * Deallocate security structure.
4843 */
security_sk_free(struct sock * sk)4844 void security_sk_free(struct sock *sk)
4845 {
4846 call_void_hook(sk_free_security, sk);
4847 kfree(sk->sk_security);
4848 sk->sk_security = NULL;
4849 }
4850
4851 /**
4852 * security_sk_clone() - Clone a sock's LSM state
4853 * @sk: original sock
4854 * @newsk: target sock
4855 *
4856 * Clone/copy security structure.
4857 */
security_sk_clone(const struct sock * sk,struct sock * newsk)4858 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4859 {
4860 call_void_hook(sk_clone_security, sk, newsk);
4861 }
4862 EXPORT_SYMBOL(security_sk_clone);
4863
4864 /**
4865 * security_sk_classify_flow() - Set a flow's secid based on socket
4866 * @sk: original socket
4867 * @flic: target flow
4868 *
4869 * Set the target flow's secid to socket's secid.
4870 */
security_sk_classify_flow(const struct sock * sk,struct flowi_common * flic)4871 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4872 {
4873 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4874 }
4875 EXPORT_SYMBOL(security_sk_classify_flow);
4876
4877 /**
4878 * security_req_classify_flow() - Set a flow's secid based on request_sock
4879 * @req: request_sock
4880 * @flic: target flow
4881 *
4882 * Sets @flic's secid to @req's secid.
4883 */
security_req_classify_flow(const struct request_sock * req,struct flowi_common * flic)4884 void security_req_classify_flow(const struct request_sock *req,
4885 struct flowi_common *flic)
4886 {
4887 call_void_hook(req_classify_flow, req, flic);
4888 }
4889 EXPORT_SYMBOL(security_req_classify_flow);
4890
4891 /**
4892 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4893 * @sk: sock being grafted
4894 * @parent: target parent socket
4895 *
4896 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4897 * LSM state from @parent.
4898 */
security_sock_graft(struct sock * sk,struct socket * parent)4899 void security_sock_graft(struct sock *sk, struct socket *parent)
4900 {
4901 call_void_hook(sock_graft, sk, parent);
4902 }
4903 EXPORT_SYMBOL(security_sock_graft);
4904
4905 /**
4906 * security_inet_conn_request() - Set request_sock state using incoming connect
4907 * @sk: parent listening sock
4908 * @skb: incoming connection
4909 * @req: new request_sock
4910 *
4911 * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4912 *
4913 * Return: Returns 0 if permission is granted.
4914 */
security_inet_conn_request(const struct sock * sk,struct sk_buff * skb,struct request_sock * req)4915 int security_inet_conn_request(const struct sock *sk,
4916 struct sk_buff *skb, struct request_sock *req)
4917 {
4918 return call_int_hook(inet_conn_request, sk, skb, req);
4919 }
4920 EXPORT_SYMBOL(security_inet_conn_request);
4921
4922 /**
4923 * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4924 * @newsk: new sock
4925 * @req: connection request_sock
4926 *
4927 * Set that LSM state of @sock using the LSM state from @req.
4928 */
security_inet_csk_clone(struct sock * newsk,const struct request_sock * req)4929 void security_inet_csk_clone(struct sock *newsk,
4930 const struct request_sock *req)
4931 {
4932 call_void_hook(inet_csk_clone, newsk, req);
4933 }
4934
4935 /**
4936 * security_inet_conn_established() - Update sock's LSM state with connection
4937 * @sk: sock
4938 * @skb: connection packet
4939 *
4940 * Update @sock's LSM state to represent a new connection from @skb.
4941 */
security_inet_conn_established(struct sock * sk,struct sk_buff * skb)4942 void security_inet_conn_established(struct sock *sk,
4943 struct sk_buff *skb)
4944 {
4945 call_void_hook(inet_conn_established, sk, skb);
4946 }
4947 EXPORT_SYMBOL(security_inet_conn_established);
4948
4949 /**
4950 * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4951 * @secid: new secmark value
4952 *
4953 * Check if the process should be allowed to relabel packets to @secid.
4954 *
4955 * Return: Returns 0 if permission is granted.
4956 */
security_secmark_relabel_packet(u32 secid)4957 int security_secmark_relabel_packet(u32 secid)
4958 {
4959 return call_int_hook(secmark_relabel_packet, secid);
4960 }
4961 EXPORT_SYMBOL(security_secmark_relabel_packet);
4962
4963 /**
4964 * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4965 *
4966 * Tells the LSM to increment the number of secmark labeling rules loaded.
4967 */
security_secmark_refcount_inc(void)4968 void security_secmark_refcount_inc(void)
4969 {
4970 call_void_hook(secmark_refcount_inc);
4971 }
4972 EXPORT_SYMBOL(security_secmark_refcount_inc);
4973
4974 /**
4975 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4976 *
4977 * Tells the LSM to decrement the number of secmark labeling rules loaded.
4978 */
security_secmark_refcount_dec(void)4979 void security_secmark_refcount_dec(void)
4980 {
4981 call_void_hook(secmark_refcount_dec);
4982 }
4983 EXPORT_SYMBOL(security_secmark_refcount_dec);
4984
4985 /**
4986 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4987 * @security: pointer to the LSM blob
4988 *
4989 * This hook allows a module to allocate a security structure for a TUN device,
4990 * returning the pointer in @security.
4991 *
4992 * Return: Returns a zero on success, negative values on failure.
4993 */
security_tun_dev_alloc_security(void ** security)4994 int security_tun_dev_alloc_security(void **security)
4995 {
4996 int rc;
4997
4998 rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
4999 if (rc)
5000 return rc;
5001
5002 rc = call_int_hook(tun_dev_alloc_security, *security);
5003 if (rc) {
5004 kfree(*security);
5005 *security = NULL;
5006 }
5007 return rc;
5008 }
5009 EXPORT_SYMBOL(security_tun_dev_alloc_security);
5010
5011 /**
5012 * security_tun_dev_free_security() - Free a TUN device LSM blob
5013 * @security: LSM blob
5014 *
5015 * This hook allows a module to free the security structure for a TUN device.
5016 */
security_tun_dev_free_security(void * security)5017 void security_tun_dev_free_security(void *security)
5018 {
5019 kfree(security);
5020 }
5021 EXPORT_SYMBOL(security_tun_dev_free_security);
5022
5023 /**
5024 * security_tun_dev_create() - Check if creating a TUN device is allowed
5025 *
5026 * Check permissions prior to creating a new TUN device.
5027 *
5028 * Return: Returns 0 if permission is granted.
5029 */
security_tun_dev_create(void)5030 int security_tun_dev_create(void)
5031 {
5032 return call_int_hook(tun_dev_create);
5033 }
5034 EXPORT_SYMBOL(security_tun_dev_create);
5035
5036 /**
5037 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
5038 * @security: TUN device LSM blob
5039 *
5040 * Check permissions prior to attaching to a TUN device queue.
5041 *
5042 * Return: Returns 0 if permission is granted.
5043 */
security_tun_dev_attach_queue(void * security)5044 int security_tun_dev_attach_queue(void *security)
5045 {
5046 return call_int_hook(tun_dev_attach_queue, security);
5047 }
5048 EXPORT_SYMBOL(security_tun_dev_attach_queue);
5049
5050 /**
5051 * security_tun_dev_attach() - Update TUN device LSM state on attach
5052 * @sk: associated sock
5053 * @security: TUN device LSM blob
5054 *
5055 * This hook can be used by the module to update any security state associated
5056 * with the TUN device's sock structure.
5057 *
5058 * Return: Returns 0 if permission is granted.
5059 */
security_tun_dev_attach(struct sock * sk,void * security)5060 int security_tun_dev_attach(struct sock *sk, void *security)
5061 {
5062 return call_int_hook(tun_dev_attach, sk, security);
5063 }
5064 EXPORT_SYMBOL(security_tun_dev_attach);
5065
5066 /**
5067 * security_tun_dev_open() - Update TUN device LSM state on open
5068 * @security: TUN device LSM blob
5069 *
5070 * This hook can be used by the module to update any security state associated
5071 * with the TUN device's security structure.
5072 *
5073 * Return: Returns 0 if permission is granted.
5074 */
security_tun_dev_open(void * security)5075 int security_tun_dev_open(void *security)
5076 {
5077 return call_int_hook(tun_dev_open, security);
5078 }
5079 EXPORT_SYMBOL(security_tun_dev_open);
5080
5081 /**
5082 * security_sctp_assoc_request() - Update the LSM on a SCTP association req
5083 * @asoc: SCTP association
5084 * @skb: packet requesting the association
5085 *
5086 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
5087 *
5088 * Return: Returns 0 on success, error on failure.
5089 */
security_sctp_assoc_request(struct sctp_association * asoc,struct sk_buff * skb)5090 int security_sctp_assoc_request(struct sctp_association *asoc,
5091 struct sk_buff *skb)
5092 {
5093 return call_int_hook(sctp_assoc_request, asoc, skb);
5094 }
5095 EXPORT_SYMBOL(security_sctp_assoc_request);
5096
5097 /**
5098 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
5099 * @sk: socket
5100 * @optname: SCTP option to validate
5101 * @address: list of IP addresses to validate
5102 * @addrlen: length of the address list
5103 *
5104 * Validiate permissions required for each address associated with sock @sk.
5105 * Depending on @optname, the addresses will be treated as either a connect or
5106 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
5107 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
5108 *
5109 * Return: Returns 0 on success, error on failure.
5110 */
security_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)5111 int security_sctp_bind_connect(struct sock *sk, int optname,
5112 struct sockaddr *address, int addrlen)
5113 {
5114 return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
5115 }
5116 EXPORT_SYMBOL(security_sctp_bind_connect);
5117
5118 /**
5119 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5120 * @asoc: SCTP association
5121 * @sk: original sock
5122 * @newsk: target sock
5123 *
5124 * Called whenever a new socket is created by accept(2) (i.e. a TCP style
5125 * socket) or when a socket is 'peeled off' e.g userspace calls
5126 * sctp_peeloff(3).
5127 */
security_sctp_sk_clone(struct sctp_association * asoc,struct sock * sk,struct sock * newsk)5128 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5129 struct sock *newsk)
5130 {
5131 call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5132 }
5133 EXPORT_SYMBOL(security_sctp_sk_clone);
5134
5135 /**
5136 * security_sctp_assoc_established() - Update LSM state when assoc established
5137 * @asoc: SCTP association
5138 * @skb: packet establishing the association
5139 *
5140 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5141 * security module.
5142 *
5143 * Return: Returns 0 if permission is granted.
5144 */
security_sctp_assoc_established(struct sctp_association * asoc,struct sk_buff * skb)5145 int security_sctp_assoc_established(struct sctp_association *asoc,
5146 struct sk_buff *skb)
5147 {
5148 return call_int_hook(sctp_assoc_established, asoc, skb);
5149 }
5150 EXPORT_SYMBOL(security_sctp_assoc_established);
5151
5152 /**
5153 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5154 * @sk: the owning MPTCP socket
5155 * @ssk: the new subflow
5156 *
5157 * Update the labeling for the given MPTCP subflow, to match the one of the
5158 * owning MPTCP socket. This hook has to be called after the socket creation and
5159 * initialization via the security_socket_create() and
5160 * security_socket_post_create() LSM hooks.
5161 *
5162 * Return: Returns 0 on success or a negative error code on failure.
5163 */
security_mptcp_add_subflow(struct sock * sk,struct sock * ssk)5164 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5165 {
5166 return call_int_hook(mptcp_add_subflow, sk, ssk);
5167 }
5168
5169 #endif /* CONFIG_SECURITY_NETWORK */
5170
5171 #ifdef CONFIG_SECURITY_INFINIBAND
5172 /**
5173 * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5174 * @sec: LSM blob
5175 * @subnet_prefix: subnet prefix of the port
5176 * @pkey: IB pkey
5177 *
5178 * Check permission to access a pkey when modifying a QP.
5179 *
5180 * Return: Returns 0 if permission is granted.
5181 */
security_ib_pkey_access(void * sec,u64 subnet_prefix,u16 pkey)5182 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5183 {
5184 return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5185 }
5186 EXPORT_SYMBOL(security_ib_pkey_access);
5187
5188 /**
5189 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5190 * @sec: LSM blob
5191 * @dev_name: IB device name
5192 * @port_num: port number
5193 *
5194 * Check permissions to send and receive SMPs on a end port.
5195 *
5196 * Return: Returns 0 if permission is granted.
5197 */
security_ib_endport_manage_subnet(void * sec,const char * dev_name,u8 port_num)5198 int security_ib_endport_manage_subnet(void *sec,
5199 const char *dev_name, u8 port_num)
5200 {
5201 return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5202 }
5203 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5204
5205 /**
5206 * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5207 * @sec: LSM blob
5208 *
5209 * Allocate a security structure for Infiniband objects.
5210 *
5211 * Return: Returns 0 on success, non-zero on failure.
5212 */
security_ib_alloc_security(void ** sec)5213 int security_ib_alloc_security(void **sec)
5214 {
5215 int rc;
5216
5217 rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5218 if (rc)
5219 return rc;
5220
5221 rc = call_int_hook(ib_alloc_security, *sec);
5222 if (rc) {
5223 kfree(*sec);
5224 *sec = NULL;
5225 }
5226 return rc;
5227 }
5228 EXPORT_SYMBOL(security_ib_alloc_security);
5229
5230 /**
5231 * security_ib_free_security() - Free an Infiniband LSM blob
5232 * @sec: LSM blob
5233 *
5234 * Deallocate an Infiniband security structure.
5235 */
security_ib_free_security(void * sec)5236 void security_ib_free_security(void *sec)
5237 {
5238 kfree(sec);
5239 }
5240 EXPORT_SYMBOL(security_ib_free_security);
5241 #endif /* CONFIG_SECURITY_INFINIBAND */
5242
5243 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5244 /**
5245 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5246 * @ctxp: xfrm security context being added to the SPD
5247 * @sec_ctx: security label provided by userspace
5248 * @gfp: gfp flags
5249 *
5250 * Allocate a security structure to the xp->security field; the security field
5251 * is initialized to NULL when the xfrm_policy is allocated.
5252 *
5253 * Return: Return 0 if operation was successful.
5254 */
security_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * sec_ctx,gfp_t gfp)5255 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5256 struct xfrm_user_sec_ctx *sec_ctx,
5257 gfp_t gfp)
5258 {
5259 return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5260 }
5261 EXPORT_SYMBOL(security_xfrm_policy_alloc);
5262
5263 /**
5264 * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5265 * @old_ctx: xfrm security context
5266 * @new_ctxp: target xfrm security context
5267 *
5268 * Allocate a security structure in new_ctxp that contains the information from
5269 * the old_ctx structure.
5270 *
5271 * Return: Return 0 if operation was successful.
5272 */
security_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)5273 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5274 struct xfrm_sec_ctx **new_ctxp)
5275 {
5276 return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5277 }
5278
5279 /**
5280 * security_xfrm_policy_free() - Free a xfrm security context
5281 * @ctx: xfrm security context
5282 *
5283 * Free LSM resources associated with @ctx.
5284 */
security_xfrm_policy_free(struct xfrm_sec_ctx * ctx)5285 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5286 {
5287 call_void_hook(xfrm_policy_free_security, ctx);
5288 }
5289 EXPORT_SYMBOL(security_xfrm_policy_free);
5290
5291 /**
5292 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5293 * @ctx: xfrm security context
5294 *
5295 * Authorize deletion of a SPD entry.
5296 *
5297 * Return: Returns 0 if permission is granted.
5298 */
security_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)5299 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5300 {
5301 return call_int_hook(xfrm_policy_delete_security, ctx);
5302 }
5303
5304 /**
5305 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5306 * @x: xfrm state being added to the SAD
5307 * @sec_ctx: security label provided by userspace
5308 *
5309 * Allocate a security structure to the @x->security field; the security field
5310 * is initialized to NULL when the xfrm_state is allocated. Set the context to
5311 * correspond to @sec_ctx.
5312 *
5313 * Return: Return 0 if operation was successful.
5314 */
security_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * sec_ctx)5315 int security_xfrm_state_alloc(struct xfrm_state *x,
5316 struct xfrm_user_sec_ctx *sec_ctx)
5317 {
5318 return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5319 }
5320 EXPORT_SYMBOL(security_xfrm_state_alloc);
5321
5322 /**
5323 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5324 * @x: xfrm state being added to the SAD
5325 * @polsec: associated policy's security context
5326 * @secid: secid from the flow
5327 *
5328 * Allocate a security structure to the x->security field; the security field
5329 * is initialized to NULL when the xfrm_state is allocated. Set the context to
5330 * correspond to secid.
5331 *
5332 * Return: Returns 0 if operation was successful.
5333 */
security_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)5334 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5335 struct xfrm_sec_ctx *polsec, u32 secid)
5336 {
5337 return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5338 }
5339
5340 /**
5341 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5342 * @x: xfrm state
5343 *
5344 * Authorize deletion of x->security.
5345 *
5346 * Return: Returns 0 if permission is granted.
5347 */
security_xfrm_state_delete(struct xfrm_state * x)5348 int security_xfrm_state_delete(struct xfrm_state *x)
5349 {
5350 return call_int_hook(xfrm_state_delete_security, x);
5351 }
5352 EXPORT_SYMBOL(security_xfrm_state_delete);
5353
5354 /**
5355 * security_xfrm_state_free() - Free a xfrm state
5356 * @x: xfrm state
5357 *
5358 * Deallocate x->security.
5359 */
security_xfrm_state_free(struct xfrm_state * x)5360 void security_xfrm_state_free(struct xfrm_state *x)
5361 {
5362 call_void_hook(xfrm_state_free_security, x);
5363 }
5364
5365 /**
5366 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5367 * @ctx: target xfrm security context
5368 * @fl_secid: flow secid used to authorize access
5369 *
5370 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5371 * packet. The hook is called when selecting either a per-socket policy or a
5372 * generic xfrm policy.
5373 *
5374 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5375 * other errors.
5376 */
security_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid)5377 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5378 {
5379 return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5380 }
5381
5382 /**
5383 * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5384 * @x: xfrm state to match
5385 * @xp: xfrm policy to check for a match
5386 * @flic: flow to check for a match.
5387 *
5388 * Check @xp and @flic for a match with @x.
5389 *
5390 * Return: Returns 1 if there is a match.
5391 */
security_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi_common * flic)5392 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5393 struct xfrm_policy *xp,
5394 const struct flowi_common *flic)
5395 {
5396 struct lsm_static_call *scall;
5397 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5398
5399 /*
5400 * Since this function is expected to return 0 or 1, the judgment
5401 * becomes difficult if multiple LSMs supply this call. Fortunately,
5402 * we can use the first LSM's judgment because currently only SELinux
5403 * supplies this call.
5404 *
5405 * For speed optimization, we explicitly break the loop rather than
5406 * using the macro
5407 */
5408 lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
5409 rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
5410 break;
5411 }
5412 return rc;
5413 }
5414
5415 /**
5416 * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5417 * @skb: xfrm packet
5418 * @secid: secid
5419 *
5420 * Decode the packet in @skb and return the security label in @secid.
5421 *
5422 * Return: Return 0 if all xfrms used have the same secid.
5423 */
security_xfrm_decode_session(struct sk_buff * skb,u32 * secid)5424 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5425 {
5426 return call_int_hook(xfrm_decode_session, skb, secid, 1);
5427 }
5428
security_skb_classify_flow(struct sk_buff * skb,struct flowi_common * flic)5429 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5430 {
5431 int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5432 0);
5433
5434 BUG_ON(rc);
5435 }
5436 EXPORT_SYMBOL(security_skb_classify_flow);
5437 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
5438
5439 #ifdef CONFIG_KEYS
5440 /**
5441 * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5442 * @key: key
5443 * @cred: credentials
5444 * @flags: allocation flags
5445 *
5446 * Permit allocation of a key and assign security data. Note that key does not
5447 * have a serial number assigned at this point.
5448 *
5449 * Return: Return 0 if permission is granted, -ve error otherwise.
5450 */
security_key_alloc(struct key * key,const struct cred * cred,unsigned long flags)5451 int security_key_alloc(struct key *key, const struct cred *cred,
5452 unsigned long flags)
5453 {
5454 int rc = lsm_key_alloc(key);
5455
5456 if (unlikely(rc))
5457 return rc;
5458 rc = call_int_hook(key_alloc, key, cred, flags);
5459 if (unlikely(rc))
5460 security_key_free(key);
5461 return rc;
5462 }
5463
5464 /**
5465 * security_key_free() - Free a kernel key LSM blob
5466 * @key: key
5467 *
5468 * Notification of destruction; free security data.
5469 */
security_key_free(struct key * key)5470 void security_key_free(struct key *key)
5471 {
5472 kfree(key->security);
5473 key->security = NULL;
5474 }
5475
5476 /**
5477 * security_key_permission() - Check if a kernel key operation is allowed
5478 * @key_ref: key reference
5479 * @cred: credentials of actor requesting access
5480 * @need_perm: requested permissions
5481 *
5482 * See whether a specific operational right is granted to a process on a key.
5483 *
5484 * Return: Return 0 if permission is granted, -ve error otherwise.
5485 */
security_key_permission(key_ref_t key_ref,const struct cred * cred,enum key_need_perm need_perm)5486 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5487 enum key_need_perm need_perm)
5488 {
5489 return call_int_hook(key_permission, key_ref, cred, need_perm);
5490 }
5491
5492 /**
5493 * security_key_getsecurity() - Get the key's security label
5494 * @key: key
5495 * @buffer: security label buffer
5496 *
5497 * Get a textual representation of the security context attached to a key for
5498 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the
5499 * storage for the NUL-terminated string and the caller should free it.
5500 *
5501 * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5502 * an error occurs. May also return 0 (and a NULL buffer pointer) if
5503 * there is no security label assigned to the key.
5504 */
security_key_getsecurity(struct key * key,char ** buffer)5505 int security_key_getsecurity(struct key *key, char **buffer)
5506 {
5507 *buffer = NULL;
5508 return call_int_hook(key_getsecurity, key, buffer);
5509 }
5510
5511 /**
5512 * security_key_post_create_or_update() - Notification of key create or update
5513 * @keyring: keyring to which the key is linked to
5514 * @key: created or updated key
5515 * @payload: data used to instantiate or update the key
5516 * @payload_len: length of payload
5517 * @flags: key flags
5518 * @create: flag indicating whether the key was created or updated
5519 *
5520 * Notify the caller of a key creation or update.
5521 */
security_key_post_create_or_update(struct key * keyring,struct key * key,const void * payload,size_t payload_len,unsigned long flags,bool create)5522 void security_key_post_create_or_update(struct key *keyring, struct key *key,
5523 const void *payload, size_t payload_len,
5524 unsigned long flags, bool create)
5525 {
5526 call_void_hook(key_post_create_or_update, keyring, key, payload,
5527 payload_len, flags, create);
5528 }
5529 #endif /* CONFIG_KEYS */
5530
5531 #ifdef CONFIG_AUDIT
5532 /**
5533 * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5534 * @field: audit action
5535 * @op: rule operator
5536 * @rulestr: rule context
5537 * @lsmrule: receive buffer for audit rule struct
5538 * @gfp: GFP flag used for kmalloc
5539 *
5540 * Allocate and initialize an LSM audit rule structure.
5541 *
5542 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5543 * an invalid rule.
5544 */
security_audit_rule_init(u32 field,u32 op,char * rulestr,void ** lsmrule,gfp_t gfp)5545 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5546 gfp_t gfp)
5547 {
5548 return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5549 }
5550
5551 /**
5552 * security_audit_rule_known() - Check if an audit rule contains LSM fields
5553 * @krule: audit rule
5554 *
5555 * Specifies whether given @krule contains any fields related to the current
5556 * LSM.
5557 *
5558 * Return: Returns 1 in case of relation found, 0 otherwise.
5559 */
security_audit_rule_known(struct audit_krule * krule)5560 int security_audit_rule_known(struct audit_krule *krule)
5561 {
5562 return call_int_hook(audit_rule_known, krule);
5563 }
5564
5565 /**
5566 * security_audit_rule_free() - Free an LSM audit rule struct
5567 * @lsmrule: audit rule struct
5568 *
5569 * Deallocate the LSM audit rule structure previously allocated by
5570 * audit_rule_init().
5571 */
security_audit_rule_free(void * lsmrule)5572 void security_audit_rule_free(void *lsmrule)
5573 {
5574 call_void_hook(audit_rule_free, lsmrule);
5575 }
5576
5577 /**
5578 * security_audit_rule_match() - Check if a label matches an audit rule
5579 * @secid: security label
5580 * @field: LSM audit field
5581 * @op: matching operator
5582 * @lsmrule: audit rule
5583 *
5584 * Determine if given @secid matches a rule previously approved by
5585 * security_audit_rule_known().
5586 *
5587 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5588 * failure.
5589 */
security_audit_rule_match(u32 secid,u32 field,u32 op,void * lsmrule)5590 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
5591 {
5592 return call_int_hook(audit_rule_match, secid, field, op, lsmrule);
5593 }
5594 #endif /* CONFIG_AUDIT */
5595
5596 #ifdef CONFIG_BPF_SYSCALL
5597 /**
5598 * security_bpf() - Check if the bpf syscall operation is allowed
5599 * @cmd: command
5600 * @attr: bpf attribute
5601 * @size: size
5602 *
5603 * Do a initial check for all bpf syscalls after the attribute is copied into
5604 * the kernel. The actual security module can implement their own rules to
5605 * check the specific cmd they need.
5606 *
5607 * Return: Returns 0 if permission is granted.
5608 */
security_bpf(int cmd,union bpf_attr * attr,unsigned int size)5609 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5610 {
5611 return call_int_hook(bpf, cmd, attr, size);
5612 }
5613
5614 /**
5615 * security_bpf_map() - Check if access to a bpf map is allowed
5616 * @map: bpf map
5617 * @fmode: mode
5618 *
5619 * Do a check when the kernel generates and returns a file descriptor for eBPF
5620 * maps.
5621 *
5622 * Return: Returns 0 if permission is granted.
5623 */
security_bpf_map(struct bpf_map * map,fmode_t fmode)5624 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5625 {
5626 return call_int_hook(bpf_map, map, fmode);
5627 }
5628
5629 /**
5630 * security_bpf_prog() - Check if access to a bpf program is allowed
5631 * @prog: bpf program
5632 *
5633 * Do a check when the kernel generates and returns a file descriptor for eBPF
5634 * programs.
5635 *
5636 * Return: Returns 0 if permission is granted.
5637 */
security_bpf_prog(struct bpf_prog * prog)5638 int security_bpf_prog(struct bpf_prog *prog)
5639 {
5640 return call_int_hook(bpf_prog, prog);
5641 }
5642
5643 /**
5644 * security_bpf_map_create() - Check if BPF map creation is allowed
5645 * @map: BPF map object
5646 * @attr: BPF syscall attributes used to create BPF map
5647 * @token: BPF token used to grant user access
5648 *
5649 * Do a check when the kernel creates a new BPF map. This is also the
5650 * point where LSM blob is allocated for LSMs that need them.
5651 *
5652 * Return: Returns 0 on success, error on failure.
5653 */
security_bpf_map_create(struct bpf_map * map,union bpf_attr * attr,struct bpf_token * token)5654 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5655 struct bpf_token *token)
5656 {
5657 return call_int_hook(bpf_map_create, map, attr, token);
5658 }
5659
5660 /**
5661 * security_bpf_prog_load() - Check if loading of BPF program is allowed
5662 * @prog: BPF program object
5663 * @attr: BPF syscall attributes used to create BPF program
5664 * @token: BPF token used to grant user access to BPF subsystem
5665 *
5666 * Perform an access control check when the kernel loads a BPF program and
5667 * allocates associated BPF program object. This hook is also responsible for
5668 * allocating any required LSM state for the BPF program.
5669 *
5670 * Return: Returns 0 on success, error on failure.
5671 */
security_bpf_prog_load(struct bpf_prog * prog,union bpf_attr * attr,struct bpf_token * token)5672 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5673 struct bpf_token *token)
5674 {
5675 return call_int_hook(bpf_prog_load, prog, attr, token);
5676 }
5677
5678 /**
5679 * security_bpf_token_create() - Check if creating of BPF token is allowed
5680 * @token: BPF token object
5681 * @attr: BPF syscall attributes used to create BPF token
5682 * @path: path pointing to BPF FS mount point from which BPF token is created
5683 *
5684 * Do a check when the kernel instantiates a new BPF token object from BPF FS
5685 * instance. This is also the point where LSM blob can be allocated for LSMs.
5686 *
5687 * Return: Returns 0 on success, error on failure.
5688 */
security_bpf_token_create(struct bpf_token * token,union bpf_attr * attr,const struct path * path)5689 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5690 const struct path *path)
5691 {
5692 return call_int_hook(bpf_token_create, token, attr, path);
5693 }
5694
5695 /**
5696 * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5697 * requested BPF syscall command
5698 * @token: BPF token object
5699 * @cmd: BPF syscall command requested to be delegated by BPF token
5700 *
5701 * Do a check when the kernel decides whether provided BPF token should allow
5702 * delegation of requested BPF syscall command.
5703 *
5704 * Return: Returns 0 on success, error on failure.
5705 */
security_bpf_token_cmd(const struct bpf_token * token,enum bpf_cmd cmd)5706 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5707 {
5708 return call_int_hook(bpf_token_cmd, token, cmd);
5709 }
5710
5711 /**
5712 * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5713 * requested BPF-related capability
5714 * @token: BPF token object
5715 * @cap: capabilities requested to be delegated by BPF token
5716 *
5717 * Do a check when the kernel decides whether provided BPF token should allow
5718 * delegation of requested BPF-related capabilities.
5719 *
5720 * Return: Returns 0 on success, error on failure.
5721 */
security_bpf_token_capable(const struct bpf_token * token,int cap)5722 int security_bpf_token_capable(const struct bpf_token *token, int cap)
5723 {
5724 return call_int_hook(bpf_token_capable, token, cap);
5725 }
5726
5727 /**
5728 * security_bpf_map_free() - Free a bpf map's LSM blob
5729 * @map: bpf map
5730 *
5731 * Clean up the security information stored inside bpf map.
5732 */
security_bpf_map_free(struct bpf_map * map)5733 void security_bpf_map_free(struct bpf_map *map)
5734 {
5735 call_void_hook(bpf_map_free, map);
5736 }
5737
5738 /**
5739 * security_bpf_prog_free() - Free a BPF program's LSM blob
5740 * @prog: BPF program struct
5741 *
5742 * Clean up the security information stored inside BPF program.
5743 */
security_bpf_prog_free(struct bpf_prog * prog)5744 void security_bpf_prog_free(struct bpf_prog *prog)
5745 {
5746 call_void_hook(bpf_prog_free, prog);
5747 }
5748
5749 /**
5750 * security_bpf_token_free() - Free a BPF token's LSM blob
5751 * @token: BPF token struct
5752 *
5753 * Clean up the security information stored inside BPF token.
5754 */
security_bpf_token_free(struct bpf_token * token)5755 void security_bpf_token_free(struct bpf_token *token)
5756 {
5757 call_void_hook(bpf_token_free, token);
5758 }
5759 #endif /* CONFIG_BPF_SYSCALL */
5760
5761 /**
5762 * security_locked_down() - Check if a kernel feature is allowed
5763 * @what: requested kernel feature
5764 *
5765 * Determine whether a kernel feature that potentially enables arbitrary code
5766 * execution in kernel space should be permitted.
5767 *
5768 * Return: Returns 0 if permission is granted.
5769 */
security_locked_down(enum lockdown_reason what)5770 int security_locked_down(enum lockdown_reason what)
5771 {
5772 return call_int_hook(locked_down, what);
5773 }
5774 EXPORT_SYMBOL(security_locked_down);
5775
5776 /**
5777 * security_bdev_alloc() - Allocate a block device LSM blob
5778 * @bdev: block device
5779 *
5780 * Allocate and attach a security structure to @bdev->bd_security. The
5781 * security field is initialized to NULL when the bdev structure is
5782 * allocated.
5783 *
5784 * Return: Return 0 if operation was successful.
5785 */
security_bdev_alloc(struct block_device * bdev)5786 int security_bdev_alloc(struct block_device *bdev)
5787 {
5788 int rc = 0;
5789
5790 rc = lsm_bdev_alloc(bdev);
5791 if (unlikely(rc))
5792 return rc;
5793
5794 rc = call_int_hook(bdev_alloc_security, bdev);
5795 if (unlikely(rc))
5796 security_bdev_free(bdev);
5797
5798 return rc;
5799 }
5800 EXPORT_SYMBOL(security_bdev_alloc);
5801
5802 /**
5803 * security_bdev_free() - Free a block device's LSM blob
5804 * @bdev: block device
5805 *
5806 * Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5807 */
security_bdev_free(struct block_device * bdev)5808 void security_bdev_free(struct block_device *bdev)
5809 {
5810 if (!bdev->bd_security)
5811 return;
5812
5813 call_void_hook(bdev_free_security, bdev);
5814
5815 kfree(bdev->bd_security);
5816 bdev->bd_security = NULL;
5817 }
5818 EXPORT_SYMBOL(security_bdev_free);
5819
5820 /**
5821 * security_bdev_setintegrity() - Set the device's integrity data
5822 * @bdev: block device
5823 * @type: type of integrity, e.g. hash digest, signature, etc
5824 * @value: the integrity value
5825 * @size: size of the integrity value
5826 *
5827 * Register a verified integrity measurement of a bdev with LSMs.
5828 * LSMs should free the previously saved data if @value is NULL.
5829 * Please note that the new hook should be invoked every time the security
5830 * information is updated to keep these data current. For example, in dm-verity,
5831 * if the mapping table is reloaded and configured to use a different dm-verity
5832 * target with a new roothash and signing information, the previously stored
5833 * data in the LSM blob will become obsolete. It is crucial to re-invoke the
5834 * hook to refresh these data and ensure they are up to date. This necessity
5835 * arises from the design of device-mapper, where a device-mapper device is
5836 * first created, and then targets are subsequently loaded into it. These
5837 * targets can be modified multiple times during the device's lifetime.
5838 * Therefore, while the LSM blob is allocated during the creation of the block
5839 * device, its actual contents are not initialized at this stage and can change
5840 * substantially over time. This includes alterations from data that the LSMs
5841 * 'trusts' to those they do not, making it essential to handle these changes
5842 * correctly. Failure to address this dynamic aspect could potentially allow
5843 * for bypassing LSM checks.
5844 *
5845 * Return: Returns 0 on success, negative values on failure.
5846 */
security_bdev_setintegrity(struct block_device * bdev,enum lsm_integrity_type type,const void * value,size_t size)5847 int security_bdev_setintegrity(struct block_device *bdev,
5848 enum lsm_integrity_type type, const void *value,
5849 size_t size)
5850 {
5851 return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5852 }
5853 EXPORT_SYMBOL(security_bdev_setintegrity);
5854
5855 #ifdef CONFIG_PERF_EVENTS
5856 /**
5857 * security_perf_event_open() - Check if a perf event open is allowed
5858 * @attr: perf event attribute
5859 * @type: type of event
5860 *
5861 * Check whether the @type of perf_event_open syscall is allowed.
5862 *
5863 * Return: Returns 0 if permission is granted.
5864 */
security_perf_event_open(struct perf_event_attr * attr,int type)5865 int security_perf_event_open(struct perf_event_attr *attr, int type)
5866 {
5867 return call_int_hook(perf_event_open, attr, type);
5868 }
5869
5870 /**
5871 * security_perf_event_alloc() - Allocate a perf event LSM blob
5872 * @event: perf event
5873 *
5874 * Allocate and save perf_event security info.
5875 *
5876 * Return: Returns 0 on success, error on failure.
5877 */
security_perf_event_alloc(struct perf_event * event)5878 int security_perf_event_alloc(struct perf_event *event)
5879 {
5880 int rc;
5881
5882 rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5883 GFP_KERNEL);
5884 if (rc)
5885 return rc;
5886
5887 rc = call_int_hook(perf_event_alloc, event);
5888 if (rc) {
5889 kfree(event->security);
5890 event->security = NULL;
5891 }
5892 return rc;
5893 }
5894
5895 /**
5896 * security_perf_event_free() - Free a perf event LSM blob
5897 * @event: perf event
5898 *
5899 * Release (free) perf_event security info.
5900 */
security_perf_event_free(struct perf_event * event)5901 void security_perf_event_free(struct perf_event *event)
5902 {
5903 kfree(event->security);
5904 event->security = NULL;
5905 }
5906
5907 /**
5908 * security_perf_event_read() - Check if reading a perf event label is allowed
5909 * @event: perf event
5910 *
5911 * Read perf_event security info if allowed.
5912 *
5913 * Return: Returns 0 if permission is granted.
5914 */
security_perf_event_read(struct perf_event * event)5915 int security_perf_event_read(struct perf_event *event)
5916 {
5917 return call_int_hook(perf_event_read, event);
5918 }
5919
5920 /**
5921 * security_perf_event_write() - Check if writing a perf event label is allowed
5922 * @event: perf event
5923 *
5924 * Write perf_event security info if allowed.
5925 *
5926 * Return: Returns 0 if permission is granted.
5927 */
security_perf_event_write(struct perf_event * event)5928 int security_perf_event_write(struct perf_event *event)
5929 {
5930 return call_int_hook(perf_event_write, event);
5931 }
5932 #endif /* CONFIG_PERF_EVENTS */
5933
5934 #ifdef CONFIG_IO_URING
5935 /**
5936 * security_uring_override_creds() - Check if overriding creds is allowed
5937 * @new: new credentials
5938 *
5939 * Check if the current task, executing an io_uring operation, is allowed to
5940 * override it's credentials with @new.
5941 *
5942 * Return: Returns 0 if permission is granted.
5943 */
security_uring_override_creds(const struct cred * new)5944 int security_uring_override_creds(const struct cred *new)
5945 {
5946 return call_int_hook(uring_override_creds, new);
5947 }
5948
5949 /**
5950 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5951 *
5952 * Check whether the current task is allowed to spawn a io_uring polling thread
5953 * (IORING_SETUP_SQPOLL).
5954 *
5955 * Return: Returns 0 if permission is granted.
5956 */
security_uring_sqpoll(void)5957 int security_uring_sqpoll(void)
5958 {
5959 return call_int_hook(uring_sqpoll);
5960 }
5961
5962 /**
5963 * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5964 * @ioucmd: command
5965 *
5966 * Check whether the file_operations uring_cmd is allowed to run.
5967 *
5968 * Return: Returns 0 if permission is granted.
5969 */
security_uring_cmd(struct io_uring_cmd * ioucmd)5970 int security_uring_cmd(struct io_uring_cmd *ioucmd)
5971 {
5972 return call_int_hook(uring_cmd, ioucmd);
5973 }
5974 #endif /* CONFIG_IO_URING */
5975
5976 /**
5977 * security_initramfs_populated() - Notify LSMs that initramfs has been loaded
5978 *
5979 * Tells the LSMs the initramfs has been unpacked into the rootfs.
5980 */
security_initramfs_populated(void)5981 void security_initramfs_populated(void)
5982 {
5983 call_void_hook(initramfs_populated);
5984 }
5985