1 /*
2  * Copyright 2023 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 @file:Suppress("NOTHING_TO_INLINE")
18 
19 package androidx.graphics.shapes
20 
21 import androidx.collection.FloatFloatPair
22 import kotlin.math.sqrt
23 
24 internal typealias Point = FloatFloatPair
25 
26 internal val Point.x
27     get() = first
28 
29 internal val Point.y
30     get() = second
31 
copynull32 internal fun Point.copy(x: Float = first, y: Float = second) = Point(x, y)
33 
34 /**
35  * The magnitude of the Point, which is the distance of this point from (0, 0).
36  *
37  * If you need this value to compare it to another [Point]'s distance, consider using
38  * [getDistanceSquared] instead, since it is cheaper to compute.
39  */
40 internal fun Point.getDistance() = sqrt(x * x + y * y)
41 
42 /**
43  * The square of the magnitude (which is the distance of this point from (0, 0)) of the Point.
44  *
45  * This is cheaper than computing the [getDistance] itself.
46  */
47 internal fun Point.getDistanceSquared() = x * x + y * y
48 
49 internal fun Point.dotProduct(other: Point) = x * other.x + y * other.y
50 
51 internal fun Point.dotProduct(otherX: Float, otherY: Float) = x * otherX + y * otherY
52 
53 /**
54  * Compute the Z coordinate of the cross product of two vectors, to check if the second vector is
55  * going clockwise ( > 0 ) or counterclockwise (< 0) compared with the first one. It could also be
56  * 0, if the vectors are co-linear.
57  */
58 internal fun Point.clockwise(other: Point) = x * other.y - y * other.x > 0
59 
60 /** Returns unit vector representing the direction to this point from (0, 0) */
61 internal fun Point.getDirection() = run {
62     val d = this.getDistance()
63     require(d > 0f) { "Can't get the direction of a 0-length vector" }
64     this / d
65 }
66 
67 /**
68  * Unary negation operator.
69  *
70  * Returns a Point with the coordinates negated.
71  *
72  * If the [Point] represents an arrow on a plane, this operator returns the same arrow but pointing
73  * in the reverse direction.
74  */
unaryMinusnull75 internal operator fun Point.unaryMinus(): Point = Point(-x, -y)
76 
77 /**
78  * Binary subtraction operator.
79  *
80  * Returns a Point whose [x] value is the left-hand-side operand's [x] minus the right-hand-side
81  * operand's [x] and whose [y] value is the left-hand-side operand's [y] minus the right-hand-side
82  * operand's [y].
83  */
84 internal operator fun Point.minus(other: Point): Point = Point(x - other.x, y - other.y)
85 
86 /**
87  * Binary addition operator.
88  *
89  * Returns a Point whose [x] value is the sum of the [x] values of the two operands, and whose [y]
90  * value is the sum of the [y] values of the two operands.
91  */
92 internal operator fun Point.plus(other: Point): Point = Point(x + other.x, y + other.y)
93 
94 /**
95  * Multiplication operator.
96  *
97  * Returns a Point whose coordinates are the coordinates of the left-hand-side operand (a Point)
98  * multiplied by the scalar right-hand-side operand (a Float).
99  */
100 internal operator fun Point.times(operand: Float): Point = Point(x * operand, y * operand)
101 
102 /**
103  * Division operator.
104  *
105  * Returns a Point whose coordinates are the coordinates of the left-hand-side operand (a Point)
106  * divided by the scalar right-hand-side operand (a Float).
107  */
108 internal operator fun Point.div(operand: Float): Point = Point(x / operand, y / operand)
109 
110 /**
111  * Modulo (remainder) operator.
112  *
113  * Returns a Point whose coordinates are the remainder of dividing the coordinates of the
114  * left-hand-side operand (a Point) by the scalar right-hand-side operand (a Float).
115  */
116 internal operator fun Point.rem(operand: Float) = Point(x % operand, y % operand)
117 
118 /**
119  * Linearly interpolate between two Points.
120  *
121  * The [fraction] argument represents position on the timeline, with 0.0 meaning that the
122  * interpolation has not started, returning [start] (or something equivalent to [start]), 1.0
123  * meaning that the interpolation has finished, returning [stop] (or something equivalent to
124  * [stop]), and values in between meaning that the interpolation is at the relevant point on the
125  * timeline between [start] and [stop]. The interpolation can be extrapolated beyond 0.0 and 1.0, so
126  * negative values and values greater than 1.0 are valid (and can easily be generated by curves).
127  *
128  * Values for [fraction] are usually obtained from an [Animation<Float>], such as an
129  * `AnimationController`.
130  */
131 internal fun interpolate(start: Point, stop: Point, fraction: Float): Point {
132     return Point(interpolate(start.x, stop.x, fraction), interpolate(start.y, stop.y, fraction))
133 }
134 
transformednull135 internal fun Point.transformed(f: PointTransformer): Point {
136     val result = f.transform(x, y)
137     return Point(result.first, result.second)
138 }
139