1# Development Guidelines<a name="EN-US_TOPIC_0000001078588414"></a> 2 3- [Available APIs](#section158501652121514) 4- [How to Develop](#section783435801510) 5- [Development Example](#section1426719434114) 6 - [Example Description](#section896412438910) 7 - [Sample Code](#section149077554912) 8 - [Verification](#section2059413981311) 9 10 11## Available APIs<a name="section158501652121514"></a> 12 13**Table 1** APIs of the mutex module 14 15<a name="table37108292611"></a> 16<table><thead align="left"><tr id="row8711112919610"><th class="cellrowborder" valign="top" width="33.33333333333333%" id="mcps1.2.4.1.1"><p id="p3711102912617"><a name="p3711102912617"></a><a name="p3711102912617"></a>Category</p> 17</th> 18<th class="cellrowborder" valign="top" width="33.33333333333333%" id="mcps1.2.4.1.2"><p id="p1671110293610"><a name="p1671110293610"></a><a name="p1671110293610"></a>API</p> 19</th> 20<th class="cellrowborder" valign="top" width="33.33333333333333%" id="mcps1.2.4.1.3"><p id="p87114292617"><a name="p87114292617"></a><a name="p87114292617"></a>Description</p> 21</th> 22</tr> 23</thead> 24<tbody><tr id="row37115291166"><td class="cellrowborder" rowspan="2" valign="top" width="33.33333333333333%" headers="mcps1.2.4.1.1 "><p id="p1795312108911"><a name="p1795312108911"></a><a name="p1795312108911"></a>Creating or deleting a mutex</p> 25</td> 26<td class="cellrowborder" valign="top" width="33.33333333333333%" headers="mcps1.2.4.1.2 "><p id="p1671120293611"><a name="p1671120293611"></a><a name="p1671120293611"></a>LOS_MuxCreate</p> 27</td> 28<td class="cellrowborder" valign="top" width="33.33333333333333%" headers="mcps1.2.4.1.3 "><p id="p171112291967"><a name="p171112291967"></a><a name="p171112291967"></a>Creates a mutex.</p> 29</td> 30</tr> 31<tr id="row17711329268"><td class="cellrowborder" valign="top" headers="mcps1.2.4.1.1 "><p id="p071114291864"><a name="p071114291864"></a><a name="p071114291864"></a>LOS_MuxDelete</p> 32</td> 33<td class="cellrowborder" valign="top" headers="mcps1.2.4.1.2 "><p id="p137111129965"><a name="p137111129965"></a><a name="p137111129965"></a>Deletes the specified mutex.</p> 34</td> 35</tr> 36<tr id="row5711192912616"><td class="cellrowborder" rowspan="2" valign="top" width="33.33333333333333%" headers="mcps1.2.4.1.1 "><p id="p86087143910"><a name="p86087143910"></a><a name="p86087143910"></a>Requesting or releasing a mutex</p> 37</td> 38<td class="cellrowborder" valign="top" width="33.33333333333333%" headers="mcps1.2.4.1.2 "><p id="p1171112295614"><a name="p1171112295614"></a><a name="p1171112295614"></a>LOS_MuxPend</p> 39</td> 40<td class="cellrowborder" valign="top" width="33.33333333333333%" headers="mcps1.2.4.1.3 "><p id="p1271110291969"><a name="p1271110291969"></a><a name="p1271110291969"></a>Requests the specified mutex.</p> 41</td> 42</tr> 43<tr id="row1571162918615"><td class="cellrowborder" valign="top" headers="mcps1.2.4.1.1 "><p id="p57111229967"><a name="p57111229967"></a><a name="p57111229967"></a>LOS_MuxPost</p> 44</td> 45<td class="cellrowborder" valign="top" headers="mcps1.2.4.1.2 "><p id="p107118291660"><a name="p107118291660"></a><a name="p107118291660"></a>Releases the specified mutex.</p> 46</td> 47</tr> 48</tbody> 49</table> 50 51## How to Develop<a name="section783435801510"></a> 52 53The typical mutex development process is as follows: 54 551. Call **LOS\_MuxCreate** to create a mutex. 562. Call **LOS\_MuxPend** to request a mutex. 57 58 The following modes are available: 59 60 - Non-block mode: A task acquires the mutex if the requested mutex is not held by any task or the task holding the mutex is the same as the task requesting the mutex. 61 - Permanent block mode: A task acquires the mutex if the requested mutex is not occupied. If the mutex is occupied, the task will be blocked and the task with the highest priority in the ready queue will be executed. The blocked task can be unlocked and executed only when the mutex is released. 62 - Scheduled block mode: A task acquires the mutex if the requested mutex is not occupied. If the mutex is occupied, the task will be blocked and the task with the highest priority in the ready queue will be executed. The blocked task can be executed only when the mutex is released within the specified timeout period or when the specified timeout period expires. 63 643. Call **LOS\_MuxPost** to release a mutex. 65 - If tasks are blocked by the specified mutex, the task with a higher priority will be unblocked when the mutex is released. The unblocked task changes to the Ready state and is scheduled. 66 - If no task is blocked by the specified mutex, the mutex is released successfully. 67 684. Call **LOS\_MuxDelete** to delete a mutex. 69 70> **NOTE:** 71>- Two tasks cannot lock the same mutex. If a task attempts to lock a mutex held by another task, the task will be blocked until the mutex is unclocked. 72>- Mutexes cannot be used in the interrupt service program. 73>- When using the LiteOS-M kernel, OpenHarmony must ensure real-time task scheduling and avoid long-time task blocking. Therefore, a mutex must be released as soon as possible after use. 74>- When a mutex is held by a task, the task priority cannot be changed by using APIs such as **LOS\_TaskPriSet**. 75 76## Development Example<a name="section1426719434114"></a> 77 78### Example Description<a name="section896412438910"></a> 79 80This example implements the following: 81 821. Create the **Example\_TaskEntry** task. In this task, create a mutex, lock task scheduling, create two tasks **Example\_MutexTask1** \(with a lower priority\) and **Example\_MutexTask2** \(with a higher priority\), and unlock task scheduling. 832. When being scheduled, **Example\_MutexTask2** requests a mutex in permanent block mode. After acquiring the mutex, **Example\_MutexTask2** enters the sleep mode for 100 ticks. **Example\_MutexTask2** is suspended, and **Example\_MutexTask1** is woken up. 843. **Example\_MutexTask1** requests a mutex in scheduled block mode, and waits for 10 ticks. Because the mutex is still held by **Example\_MutexTask2**, **Example\_MutexTask1** is suspended. After 10 ticks, **Example\_MutexTask1** is woken up and attempts to request a mutex in permanent block mode. **Example\_MutexTask1** is suspended because the mutex is still held by **Example\_MutexTask2**. 854. After 100 ticks, **Example\_MutexTask2** is woken up and releases the mutex, and then **Example\_MutexTask1** is woken up. **Example\_MutexTask1** acquires the mutex and then releases the mutex. At last, the mutex is deleted. 86 87### Sample Code<a name="section149077554912"></a> 88 89The sample code is as follows: 90 91``` 92#include <string.h> 93#include "los_mux.h" 94 95/* Mutex handler ID*/ 96UINT32 g_testMux; 97/* Task ID*/ 98UINT32 g_testTaskId01; 99UINT32 g_testTaskId02; 100 101VOID Example_MutexTask1(VOID) 102{ 103 UINT32 ret; 104 105 printf("task1 try to get mutex, wait 10 ticks.\n"); 106 /* Request a mutex.*/ 107 ret = LOS_MuxPend(g_testMux, 10); 108 109 if (ret == LOS_OK) { 110 printf("task1 get mutex g_testMux.\n"); 111 /*Release the mutex.*/ 112 LOS_MuxPost(g_testMux); 113 return; 114 } 115 if (ret == LOS_ERRNO_MUX_TIMEOUT ) { 116 printf("task1 timeout and try to get mutex, wait forever.\n"); 117 /* Request a mutex.*/ 118 ret = LOS_MuxPend(g_testMux, LOS_WAIT_FOREVER); 119 if (ret == LOS_OK) { 120 printf("task1 wait forever, get mutex g_testMux.\n"); 121 /*Release the mutex.*/ 122 LOS_MuxPost(g_testMux); 123 /* Delete the mutex. */ 124 LOS_MuxDelete(g_testMux); 125 printf("task1 post and delete mutex g_testMux.\n"); 126 return; 127 } 128 } 129 return; 130} 131 132VOID Example_MutexTask2(VOID) 133{ 134 printf("task2 try to get mutex, wait forever.\n"); 135 /* Request a mutex.*/ 136 (VOID)LOS_MuxPend(g_testMux, LOS_WAIT_FOREVER); 137 138 printf("task2 get mutex g_testMux and suspend 100 ticks.\n"); 139 140 /* Enable the task to enter sleep mode for 100 ticks.*/ 141 LOS_TaskDelay(100); 142 143 printf("task2 resumed and post the g_testMux\n"); 144 /* Release the mutex.*/ 145 LOS_MuxPost(g_testMux); 146 return; 147} 148 149UINT32 Example_TaskEntry(VOID) 150{ 151 UINT32 ret; 152 TSK_INIT_PARAM_S task1; 153 TSK_INIT_PARAM_S task2; 154 155 /* Create a mutex.*/ 156 LOS_MuxCreate(&g_testMux); 157 158 /* Lock task scheduling.*/ 159 LOS_TaskLock(); 160 161 /* Create task 1.*/ 162 memset(&task1, 0, sizeof(TSK_INIT_PARAM_S)); 163 task1.pfnTaskEntry = (TSK_ENTRY_FUNC)Example_MutexTask1; 164 task1.pcName = "MutexTsk1"; 165 task1.uwStackSize = LOSCFG_BASE_CORE_TSK_DEFAULT_STACK_SIZE; 166 task1.usTaskPrio = 5; 167 ret = LOS_TaskCreate(&g_testTaskId01, &task1); 168 if (ret != LOS_OK) { 169 printf("task1 create failed.\n"); 170 return LOS_NOK; 171 } 172 173 /* Create task 2.*/ 174 memset(&task2, 0, sizeof(TSK_INIT_PARAM_S)); 175 task2.pfnTaskEntry = (TSK_ENTRY_FUNC)Example_MutexTask2; 176 task2.pcName = "MutexTsk2"; 177 task2.uwStackSize = LOSCFG_BASE_CORE_TSK_DEFAULT_STACK_SIZE; 178 task2.usTaskPrio = 4; 179 ret = LOS_TaskCreate(&g_testTaskId02, &task2); 180 if (ret != LOS_OK) { 181 printf("task2 create failed.\n"); 182 return LOS_NOK; 183 } 184 185 /* Unlock task scheduling.*/ 186 LOS_TaskUnlock(); 187 188 return LOS_OK; 189} 190``` 191 192### Verification<a name="section2059413981311"></a> 193 194The development is successful if the return result is as follows: 195 196``` 197task2 try to get mutex, wait forever. 198task2 get mutex g_testMux and suspend 100 ticks. 199task1 try to get mutex, wait 10 ticks. 200task1 timeout and try to get mutex, wait forever. 201task2 resumed and post the g_testMux 202task1 wait forever, get mutex g_testMux. 203task1 post and delete mutex g_testMux. 204``` 205 206