1 /*
2 * Copyright (c) 2013-2019 Huawei Technologies Co., Ltd. All rights reserved.
3 * Copyright (c) 2020-2021 Huawei Device Co., Ltd. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without modification,
6 * are permitted provided that the following conditions are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright notice, this list of
9 * conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
12 * of conditions and the following disclaimer in the documentation and/or other materials
13 * provided with the distribution.
14 *
15 * 3. Neither the name of the copyright holder nor the names of its contributors may be used
16 * to endorse or promote products derived from this software without specific prior written
17 * permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
28 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
29 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include "time.h"
33 #include "stdint.h"
34 #include "stdio.h"
35 #include "sys/times.h"
36 #include "time_posix.h"
37 #include "unistd.h"
38 #ifdef LOSCFG_SECURITY_CAPABILITY
39 #include "capability_api.h"
40 #endif
41 #include "los_signal.h"
42 #ifdef LOSCFG_KERNEL_VDSO
43 #include "los_vdso.h"
44 #endif
45 #ifdef LOSCFG_SECURITY_VID
46 #include "vid_api.h"
47 #endif
48 #include "user_copy.h"
49 #include "los_process_pri.h"
50 #include "los_swtmr_pri.h"
51 #include "los_sys_pri.h"
52
53 #define CPUCLOCK_PERTHREAD_MASK 4
54 #define CPUCLOCK_ID_OFFSET 3
55
56 /*
57 * Do a time package defined return. This requires the error code
58 * to be placed in errno, and if it is non-zero, -1 returned as the
59 * result of the function. This also gives us a place to put any
60 * generic tidyup handling needed for things like signal delivery and
61 * cancellation.
62 */
63 #define TIME_RETURN(err) do { \
64 INT32 retVal = 0; \
65 if ((err) != 0) { \
66 retVal = -1; \
67 errno = (err); \
68 } \
69 return retVal; \
70 } while (0)
71
72 #ifdef LOSCFG_AARCH64
73 /*
74 * This two structures originally did't exit,
75 * they added by liteos to support 64bit interfaces on 32bit platform,
76 * in 64bit platform, timeval64 define to timeval which is platform adaptive.
77 */
78 #define timeval64 timeval
79 #define timespec64 timespec
80 #endif
81
ValidTimeval(const struct timeval * tv)82 STATIC INLINE BOOL ValidTimeval(const struct timeval *tv)
83 {
84 /* Fail a NULL pointer */
85 if (tv == NULL) {
86 return FALSE;
87 }
88
89 /* Fail illegal microseconds values */
90 if ((tv->tv_usec < 0) || (tv->tv_usec >= OS_SYS_US_PER_SECOND) || (tv->tv_sec < 0)) {
91 return FALSE;
92 }
93
94 return TRUE;
95 }
96
ValidTimeval64(const struct timeval64 * tv)97 STATIC INLINE BOOL ValidTimeval64(const struct timeval64 *tv)
98 {
99 /* Fail a NULL pointer */
100 if (tv == NULL) {
101 return FALSE;
102 }
103
104 /* Fail illegal microseconds values */
105 if ((tv->tv_usec < 0) || (tv->tv_usec >= OS_SYS_US_PER_SECOND) || (tv->tv_sec < 0)) {
106 return FALSE;
107 }
108
109 return TRUE;
110 }
111
ValidTimerID(UINT16 swtmrID)112 STATIC INLINE BOOL ValidTimerID(UINT16 swtmrID)
113 {
114 /* check timer id */
115 if (swtmrID >= OS_SWTMR_MAX_TIMERID) {
116 return FALSE;
117 }
118
119 /* check owner of this timer */
120 if (OS_SWT_FROM_SID(swtmrID)->uwOwnerPid != LOS_GetCurrProcessID()) {
121 return FALSE;
122 }
123
124 return TRUE;
125 }
126
127 STATIC SPIN_LOCK_INIT(g_timeSpin);
128 STATIC long long g_adjTimeLeft; /* absolute value of adjtime */
129 STATIC INT32 g_adjDirection; /* 1, speed up; 0, slow down; */
130
131 /* Adjust pacement, nanoseconds per SCHED_CLOCK_INTETRVAL_TICKS ticks */
132 STATIC const long long g_adjPacement = (((LOSCFG_BASE_CORE_ADJ_PER_SECOND * SCHED_CLOCK_INTETRVAL_TICKS) /
133 LOSCFG_BASE_CORE_TICK_PER_SECOND) * OS_SYS_NS_PER_US);
134
135 /* accumulative time delta from continuous modify, such as adjtime */
136 STATIC struct timespec64 g_accDeltaFromAdj;
137 /* accumulative time delta from discontinuous modify, such as settimeofday */
138 STATIC struct timespec64 g_accDeltaFromSet;
139
OsAdjTime(VOID)140 VOID OsAdjTime(VOID)
141 {
142 UINT32 intSave;
143
144 LOS_SpinLockSave(&g_timeSpin, &intSave);
145 if (!g_adjTimeLeft) {
146 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
147 return;
148 }
149
150 if (g_adjTimeLeft > g_adjPacement) {
151 if (g_adjDirection) {
152 if ((g_accDeltaFromAdj.tv_nsec + g_adjPacement) >= OS_SYS_NS_PER_SECOND) {
153 g_accDeltaFromAdj.tv_sec++;
154 g_accDeltaFromAdj.tv_nsec = (g_accDeltaFromAdj.tv_nsec + g_adjPacement) % OS_SYS_NS_PER_SECOND;
155 } else {
156 g_accDeltaFromAdj.tv_nsec = g_accDeltaFromAdj.tv_nsec + g_adjPacement;
157 }
158 } else {
159 if ((g_accDeltaFromAdj.tv_nsec - g_adjPacement) < 0) {
160 g_accDeltaFromAdj.tv_sec--;
161 g_accDeltaFromAdj.tv_nsec = g_accDeltaFromAdj.tv_nsec - g_adjPacement + OS_SYS_NS_PER_SECOND;
162 } else {
163 g_accDeltaFromAdj.tv_nsec = g_accDeltaFromAdj.tv_nsec - g_adjPacement;
164 }
165 }
166
167 g_adjTimeLeft -= g_adjPacement;
168 } else {
169 if (g_adjDirection) {
170 if ((g_accDeltaFromAdj.tv_nsec + g_adjTimeLeft) >= OS_SYS_NS_PER_SECOND) {
171 g_accDeltaFromAdj.tv_sec++;
172 g_accDeltaFromAdj.tv_nsec = (g_accDeltaFromAdj.tv_nsec + g_adjTimeLeft) % OS_SYS_NS_PER_SECOND;
173 } else {
174 g_accDeltaFromAdj.tv_nsec = g_accDeltaFromAdj.tv_nsec + g_adjTimeLeft;
175 }
176 } else {
177 if ((g_accDeltaFromAdj.tv_nsec - g_adjTimeLeft) < 0) {
178 g_accDeltaFromAdj.tv_sec--;
179 g_accDeltaFromAdj.tv_nsec = g_accDeltaFromAdj.tv_nsec - g_adjTimeLeft + OS_SYS_NS_PER_SECOND;
180 } else {
181 g_accDeltaFromAdj.tv_nsec = g_accDeltaFromAdj.tv_nsec - g_adjTimeLeft;
182 }
183 }
184
185 g_adjTimeLeft = 0;
186 }
187 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
188 return;
189 }
190
191 /*
192 * Function: adjtime
193 * Description: correct the time to synchronize the system clock.
194 * Input: delta - The amount of time by which the clock is to be adjusted.
195 * Output: oldDelta - the amount of time remaining from any previous adjustment that has not yet been completed.
196 * Return: On success, returns 0. On failure, -1 is returned, and errno is set to indicate the error.
197 */
adjtime(const struct timeval * delta,struct timeval * oldDelta)198 int adjtime(const struct timeval *delta, struct timeval *oldDelta)
199 {
200 UINT32 intSave;
201 LOS_SpinLockSave(&g_timeSpin, &intSave);
202 /* return the amount of time remaining from any previous adjustment that has not yet been completed. */
203 if (oldDelta != NULL) {
204 if (g_adjDirection == 1) {
205 oldDelta->tv_sec = g_adjTimeLeft / OS_SYS_NS_PER_SECOND;
206 oldDelta->tv_usec = (g_adjTimeLeft % OS_SYS_NS_PER_SECOND) / OS_SYS_NS_PER_US;
207 } else {
208 oldDelta->tv_sec = -(g_adjTimeLeft / OS_SYS_NS_PER_SECOND);
209 oldDelta->tv_usec = -((g_adjTimeLeft % OS_SYS_NS_PER_SECOND) / OS_SYS_NS_PER_US);
210 }
211 }
212
213 if ((delta == NULL) || ((delta->tv_sec == 0) && (delta->tv_usec == 0))) {
214 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
215 return 0;
216 }
217
218 if ((delta->tv_usec > OS_SYS_US_PER_SECOND) || (delta->tv_usec < -OS_SYS_US_PER_SECOND)) {
219 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
220 TIME_RETURN(EINVAL);
221 }
222
223 /*
224 * 2: in the glibc implementation, delta must be less than or equal to (INT_MAX / 1000000 - 2) and
225 * greater than or equal to (INT_MIN / 1000000 + 2)
226 */
227 if ((delta->tv_sec < (INT_MIN / OS_SYS_US_PER_SECOND + 2)) ||
228 (delta->tv_sec > (INT_MAX / OS_SYS_US_PER_SECOND + 2))) {
229 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
230 TIME_RETURN(EINVAL);
231 }
232
233 g_adjTimeLeft = (INT64)delta->tv_sec * OS_SYS_NS_PER_SECOND + delta->tv_usec * OS_SYS_NS_PER_US;
234 if (g_adjTimeLeft > 0) {
235 g_adjDirection = 1;
236 } else {
237 g_adjDirection = 0;
238 g_adjTimeLeft = -g_adjTimeLeft;
239 }
240
241 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
242 return 0;
243 }
244
OsTimeSpecAdd(const struct timespec64 t1,const struct timespec64 t2)245 STATIC INLINE struct timespec64 OsTimeSpecAdd(const struct timespec64 t1, const struct timespec64 t2)
246 {
247 struct timespec64 ret = {0};
248
249 ret.tv_sec = t1.tv_sec + t2.tv_sec;
250 ret.tv_nsec = t1.tv_nsec + t2.tv_nsec;
251 if (ret.tv_nsec >= OS_SYS_NS_PER_SECOND) {
252 ret.tv_sec += 1;
253 ret.tv_nsec -= OS_SYS_NS_PER_SECOND;
254 } else if (ret.tv_nsec < 0L) {
255 ret.tv_sec -= 1;
256 ret.tv_nsec += OS_SYS_NS_PER_SECOND;
257 }
258
259 return ret;
260 }
261
OsTimeSpecSub(const struct timespec64 t1,const struct timespec64 t2)262 STATIC INLINE struct timespec64 OsTimeSpecSub(const struct timespec64 t1, const struct timespec64 t2)
263 {
264 struct timespec64 ret = {0};
265
266 ret.tv_sec = t1.tv_sec - t2.tv_sec;
267 ret.tv_nsec = t1.tv_nsec - t2.tv_nsec;
268 if (ret.tv_nsec < 0) {
269 ret.tv_sec -= 1;
270 ret.tv_nsec += OS_SYS_NS_PER_SECOND;
271 }
272
273 return ret;
274 }
275
OsGetHwTime(struct timespec64 * hwTime)276 STATIC VOID OsGetHwTime(struct timespec64 *hwTime)
277 {
278 UINT64 nowNsec;
279
280 nowNsec = LOS_CurrNanosec();
281 hwTime->tv_sec = nowNsec / OS_SYS_NS_PER_SECOND;
282 hwTime->tv_nsec = nowNsec - hwTime->tv_sec * OS_SYS_NS_PER_SECOND;
283 }
284
OsSetTimeOfDay(const struct timeval64 * tv,const struct timezone * tz)285 STATIC INT32 OsSetTimeOfDay(const struct timeval64 *tv, const struct timezone *tz)
286 {
287 UINT32 intSave;
288 struct timespec64 setTime = {0};
289 struct timespec64 hwTime = {0};
290 struct timespec64 realTime = {0};
291 struct timespec64 tmp = {0};
292
293 #ifdef LOSCFG_SECURITY_CAPABILITY
294 if (!IsCapPermit(CAP_SET_TIMEOFDAY)) {
295 TIME_RETURN(EPERM);
296 }
297 #endif
298
299 (VOID)tz;
300 OsGetHwTime(&hwTime);
301 setTime.tv_sec = tv->tv_sec;
302 setTime.tv_nsec = tv->tv_usec * OS_SYS_NS_PER_US;
303
304 LOS_SpinLockSave(&g_timeSpin, &intSave);
305 /* stop on-going continuous adjusement */
306 if (g_adjTimeLeft) {
307 g_adjTimeLeft = 0;
308 }
309 realTime = OsTimeSpecAdd(hwTime, g_accDeltaFromAdj);
310 realTime = OsTimeSpecAdd(realTime, g_accDeltaFromSet);
311
312 tmp = OsTimeSpecSub(setTime, realTime);
313 g_accDeltaFromSet = OsTimeSpecAdd(g_accDeltaFromSet, tmp);
314
315 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
316
317 return 0;
318 }
319
settimeofday(const struct timeval * tv,const struct timezone * tz)320 int settimeofday(const struct timeval *tv, const struct timezone *tz)
321 {
322 struct timeval64 stTimeVal64 = {0};
323
324 if (!ValidTimeval(tv)) {
325 TIME_RETURN(EINVAL);
326 }
327
328 stTimeVal64.tv_sec = tv->tv_sec;
329 stTimeVal64.tv_usec = tv->tv_usec;
330
331 return OsSetTimeOfDay(&stTimeVal64, tz);
332 }
333
334 #ifndef LOSCFG_AARCH64
settimeofday64(const struct timeval64 * tv,const struct timezone * tz)335 int settimeofday64(const struct timeval64 *tv, const struct timezone *tz)
336 {
337 if (!ValidTimeval64(tv)) {
338 TIME_RETURN(EINVAL);
339 }
340
341 return OsSetTimeOfDay(tv, tz);
342 }
343 #endif
344
setlocalseconds(int seconds)345 int setlocalseconds(int seconds)
346 {
347 struct timeval tv = {0};
348
349 tv.tv_sec = seconds;
350 tv.tv_usec = 0;
351
352 return settimeofday(&tv, NULL);
353 }
354
OsGetTimeOfDay(struct timeval64 * tv,struct timezone * tz)355 STATIC INT32 OsGetTimeOfDay(struct timeval64 *tv, struct timezone *tz)
356 {
357 UINT32 intSave;
358
359 (VOID)tz;
360 struct timespec64 hwTime = {0};
361 struct timespec64 realTime = {0};
362
363 OsGetHwTime(&hwTime);
364
365 LOS_SpinLockSave(&g_timeSpin, &intSave);
366 realTime = OsTimeSpecAdd(hwTime, g_accDeltaFromAdj);
367 realTime = OsTimeSpecAdd(realTime, g_accDeltaFromSet);
368 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
369
370 tv->tv_sec = realTime.tv_sec;
371 tv->tv_usec = realTime.tv_nsec / OS_SYS_NS_PER_US;
372
373 if (tv->tv_sec < 0) {
374 TIME_RETURN(EINVAL);
375 }
376 return 0;
377 }
378
379 #ifndef LOSCFG_AARCH64
gettimeofday64(struct timeval64 * tv,struct timezone * tz)380 int gettimeofday64(struct timeval64 *tv, struct timezone *tz)
381 {
382 if (tv == NULL) {
383 TIME_RETURN(EINVAL);
384 }
385
386 return OsGetTimeOfDay(tv, tz);
387 }
388 #endif
389
gettimeofday(struct timeval * tv,struct timezone * tz)390 int gettimeofday(struct timeval *tv, struct timezone *tz)
391 {
392 struct timeval64 stTimeVal64 = {0};
393
394 if (tv == NULL) {
395 TIME_RETURN(EINVAL);
396 }
397
398 if (OsGetTimeOfDay(&stTimeVal64, tz) == -1) {
399 return -1;
400 }
401
402 #ifdef LOSCFG_AARCH64
403 tv->tv_sec = stTimeVal64.tv_sec;
404 tv->tv_usec = stTimeVal64.tv_usec;
405 #else
406 if (stTimeVal64.tv_sec > (long long)LONG_MAX) {
407 return -1;
408 }
409 tv->tv_sec = (time_t)stTimeVal64.tv_sec;
410 tv->tv_usec = (suseconds_t)stTimeVal64.tv_usec;
411 #endif
412
413 return 0;
414 }
415
clock_settime(clockid_t clockID,const struct timespec * tp)416 int clock_settime(clockid_t clockID, const struct timespec *tp)
417 {
418 struct timeval tv = {0};
419
420 switch (clockID) {
421 case CLOCK_REALTIME:
422 /* we only support the realtime clock currently */
423 break;
424 case CLOCK_MONOTONIC_COARSE:
425 case CLOCK_REALTIME_COARSE:
426 case CLOCK_MONOTONIC_RAW:
427 case CLOCK_PROCESS_CPUTIME_ID:
428 case CLOCK_BOOTTIME:
429 case CLOCK_REALTIME_ALARM:
430 case CLOCK_BOOTTIME_ALARM:
431 case CLOCK_TAI:
432 case CLOCK_THREAD_CPUTIME_ID:
433 TIME_RETURN(ENOTSUP);
434 case CLOCK_MONOTONIC:
435 default:
436 TIME_RETURN(EINVAL);
437 }
438
439 if (!ValidTimeSpec(tp)) {
440 TIME_RETURN(EINVAL);
441 }
442
443 #ifdef LOSCFG_SECURITY_CAPABILITY
444 if (!IsCapPermit(CAP_CLOCK_SETTIME)) {
445 TIME_RETURN(EPERM);
446 }
447 #endif
448
449 tv.tv_sec = tp->tv_sec;
450 tv.tv_usec = tp->tv_nsec / OS_SYS_NS_PER_US;
451 return settimeofday(&tv, NULL);
452 }
453
454 #ifdef LOSCFG_KERNEL_CPUP
GetTidFromClockID(clockid_t clockID)455 inline UINT32 GetTidFromClockID(clockid_t clockID)
456 {
457 // In musl/src/thread/pthread_getcpuclockid.c, we know 'clockid = (-tid - 1) * 8 + 6'
458 UINT32 tid = -(clockID - 6) / 8 - 1; // 6 8 1 inverse operation from clockID to tid
459 return tid;
460 }
461
GetPidFromClockID(clockid_t clockID)462 inline const pid_t GetPidFromClockID(clockid_t clockID)
463 {
464 // In musl/src/time/clock_getcpuclockid.c, we know 'clockid = (-pid - 1) * 8 + 2'
465 const pid_t pid = -(clockID - 2) / 8 - 1; // 2 8 1 inverse operation from clockID to pid
466 return pid;
467 }
468
PthreadGetCputime(clockid_t clockID,struct timespec * ats)469 static int PthreadGetCputime(clockid_t clockID, struct timespec *ats)
470 {
471 uint64_t runtime;
472 UINT32 intSave;
473 UINT32 tid = GetTidFromClockID(clockID);
474
475 if (OS_TID_CHECK_INVALID(tid)) {
476 return -EINVAL;
477 }
478
479 LosTaskCB *task = OsGetTaskCB(tid);
480
481 if (OsCurrTaskGet()->processID != task->processID) {
482 return -EINVAL;
483 }
484
485 SCHEDULER_LOCK(intSave);
486 runtime = task->taskCpup.allTime;
487 SCHEDULER_UNLOCK(intSave);
488
489 ats->tv_sec = runtime / OS_SYS_NS_PER_SECOND;
490 ats->tv_nsec = runtime % OS_SYS_NS_PER_SECOND;
491
492 return 0;
493 }
494
ProcessGetCputime(clockid_t clockID,struct timespec * ats)495 static int ProcessGetCputime(clockid_t clockID, struct timespec *ats)
496 {
497 UINT64 runtime;
498 UINT32 intSave;
499 const pid_t pid = GetPidFromClockID(clockID);
500 LosProcessCB *spcb = NULL;
501
502 if (OsProcessIDUserCheckInvalid(pid) || pid < 0) {
503 return -EINVAL;
504 }
505
506 spcb = OS_PCB_FROM_PID(pid);
507 if (OsProcessIsUnused(spcb)) {
508 return -EINVAL;
509 }
510
511 SCHEDULER_LOCK(intSave);
512 runtime = spcb->processCpup.allTime;
513 SCHEDULER_UNLOCK(intSave);
514
515 ats->tv_sec = runtime / OS_SYS_NS_PER_SECOND;
516 ats->tv_nsec = runtime % OS_SYS_NS_PER_SECOND;
517
518 return 0;
519 }
520
GetCputime(clockid_t clockID,struct timespec * tp)521 static int GetCputime(clockid_t clockID, struct timespec *tp)
522 {
523 int ret;
524
525 if (clockID >= 0) {
526 return -EINVAL;
527 }
528
529 if ((UINT32)clockID & CPUCLOCK_PERTHREAD_MASK) {
530 ret = PthreadGetCputime(clockID, tp);
531 } else {
532 ret = ProcessGetCputime(clockID, tp);
533 }
534
535 return ret;
536 }
537
CheckClock(const clockid_t clockID)538 static int CheckClock(const clockid_t clockID)
539 {
540 int error = 0;
541 const pid_t pid = GetPidFromClockID(clockID);
542
543 if (!((UINT32)clockID & CPUCLOCK_PERTHREAD_MASK)) {
544 LosProcessCB *spcb = NULL;
545 if (OsProcessIDUserCheckInvalid(pid) || pid < 0) {
546 return -EINVAL;
547 }
548 spcb = OS_PCB_FROM_PID(pid);
549 if (OsProcessIsUnused(spcb)) {
550 error = -EINVAL;
551 }
552 } else {
553 error = -EINVAL;
554 }
555
556 return error;
557 }
558
CpuClockGetres(const clockid_t clockID,struct timespec * tp)559 static int CpuClockGetres(const clockid_t clockID, struct timespec *tp)
560 {
561 if (clockID > 0) {
562 return -EINVAL;
563 }
564
565 int error = CheckClock(clockID);
566 if (!error) {
567 error = ProcessGetCputime(clockID, tp);
568 }
569
570 return error;
571 }
572 #endif
573
clock_gettime(clockid_t clockID,struct timespec * tp)574 int clock_gettime(clockid_t clockID, struct timespec *tp)
575 {
576 UINT32 intSave;
577 struct timespec64 tmp = {0};
578 struct timespec64 hwTime = {0};
579
580 if (clockID > MAX_CLOCKS) {
581 goto ERROUT;
582 }
583
584 if (tp == NULL) {
585 goto ERROUT;
586 }
587
588 OsGetHwTime(&hwTime);
589
590 switch (clockID) {
591 case CLOCK_MONOTONIC_RAW:
592 tp->tv_sec = hwTime.tv_sec;
593 tp->tv_nsec = hwTime.tv_nsec;
594 break;
595 case CLOCK_MONOTONIC:
596 LOS_SpinLockSave(&g_timeSpin, &intSave);
597 tmp = OsTimeSpecAdd(hwTime, g_accDeltaFromAdj);
598 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
599 tp->tv_sec = tmp.tv_sec;
600 tp->tv_nsec = tmp.tv_nsec;
601 break;
602 case CLOCK_REALTIME:
603 LOS_SpinLockSave(&g_timeSpin, &intSave);
604 tmp = OsTimeSpecAdd(hwTime, g_accDeltaFromAdj);
605 tmp = OsTimeSpecAdd(tmp, g_accDeltaFromSet);
606 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
607 tp->tv_sec = tmp.tv_sec;
608 tp->tv_nsec = tmp.tv_nsec;
609 break;
610 case CLOCK_MONOTONIC_COARSE:
611 case CLOCK_REALTIME_COARSE:
612 case CLOCK_THREAD_CPUTIME_ID:
613 case CLOCK_PROCESS_CPUTIME_ID:
614 case CLOCK_BOOTTIME:
615 case CLOCK_REALTIME_ALARM:
616 case CLOCK_BOOTTIME_ALARM:
617 case CLOCK_TAI:
618 TIME_RETURN(ENOTSUP);
619 default:
620 {
621 #ifdef LOSCFG_KERNEL_CPUP
622 int ret = GetCputime(clockID, tp);
623 TIME_RETURN(-ret);
624 #else
625 TIME_RETURN(EINVAL);
626 #endif
627 }
628 }
629
630 return 0;
631
632 ERROUT:
633 TIME_RETURN(EINVAL);
634 }
635
clock_getres(clockid_t clockID,struct timespec * tp)636 int clock_getres(clockid_t clockID, struct timespec *tp)
637 {
638 if (tp == NULL) {
639 TIME_RETURN(EINVAL);
640 }
641
642 switch (clockID) {
643 case CLOCK_MONOTONIC_RAW:
644 case CLOCK_MONOTONIC:
645 case CLOCK_REALTIME:
646 /* the accessable rtc resolution */
647 tp->tv_nsec = OS_SYS_NS_PER_US; /* the precision of clock_gettime is 1us */
648 tp->tv_sec = 0;
649 break;
650 case CLOCK_MONOTONIC_COARSE:
651 case CLOCK_REALTIME_COARSE:
652 /* the clock coarse resolution, supported by vdso.
653 * the precision of clock_gettime is 1tick */
654 tp->tv_nsec = OS_SYS_NS_PER_SECOND / LOSCFG_BASE_CORE_TICK_PER_SECOND;
655 tp->tv_sec = 0;
656 break;
657 case CLOCK_THREAD_CPUTIME_ID:
658 case CLOCK_PROCESS_CPUTIME_ID:
659 case CLOCK_BOOTTIME:
660 case CLOCK_REALTIME_ALARM:
661 case CLOCK_BOOTTIME_ALARM:
662 case CLOCK_TAI:
663 TIME_RETURN(ENOTSUP);
664 default:
665 #ifdef LOSCFG_KERNEL_CPUP
666 {
667 int ret = CpuClockGetres(clockID, tp);
668 TIME_RETURN(-ret);
669 }
670 #else
671 TIME_RETURN(EINVAL);
672 #endif
673 }
674
675 TIME_RETURN(0);
676 }
677
clock_nanosleep(clockid_t clk,int flags,const struct timespec * req,struct timespec * rem)678 int clock_nanosleep(clockid_t clk, int flags, const struct timespec *req, struct timespec *rem)
679 {
680 switch (clk) {
681 case CLOCK_REALTIME:
682 if (flags == 0) {
683 /* we only support the realtime clock currently */
684 return nanosleep(req, rem);
685 }
686 /* fallthrough */
687 case CLOCK_MONOTONIC_COARSE:
688 case CLOCK_REALTIME_COARSE:
689 case CLOCK_MONOTONIC_RAW:
690 case CLOCK_MONOTONIC:
691 case CLOCK_PROCESS_CPUTIME_ID:
692 case CLOCK_BOOTTIME:
693 case CLOCK_REALTIME_ALARM:
694 case CLOCK_BOOTTIME_ALARM:
695 case CLOCK_TAI:
696 if (flags == 0 || flags == TIMER_ABSTIME) {
697 TIME_RETURN(ENOTSUP);
698 }
699 /* fallthrough */
700 case CLOCK_THREAD_CPUTIME_ID:
701 default:
702 TIME_RETURN(EINVAL);
703 }
704
705 TIME_RETURN(0);
706 }
707
708 typedef struct {
709 int sigev_signo;
710 pid_t pid;
711 unsigned int tid;
712 union sigval sigev_value;
713 } swtmr_proc_arg;
714
SwtmrProc(UINTPTR tmrArg)715 static VOID SwtmrProc(UINTPTR tmrArg)
716 {
717 INT32 sig, ret;
718 UINT32 intSave;
719 pid_t pid;
720 siginfo_t info;
721 LosTaskCB *stcb = NULL;
722
723 swtmr_proc_arg *arg = (swtmr_proc_arg *)tmrArg;
724 OS_GOTO_EXIT_IF(arg == NULL, EINVAL);
725
726 sig = arg->sigev_signo;
727 pid = arg->pid;
728 OS_GOTO_EXIT_IF(!GOOD_SIGNO(sig), EINVAL);
729
730 /* Create the siginfo structure */
731 info.si_signo = sig;
732 info.si_code = SI_TIMER;
733 info.si_value.sival_ptr = arg->sigev_value.sival_ptr;
734
735 /* Send signals to threads or processes */
736 if (arg->tid > 0) {
737 /* Make sure that the para is valid */
738 OS_GOTO_EXIT_IF(OS_TID_CHECK_INVALID(arg->tid), EINVAL);
739 stcb = OsGetTaskCB(arg->tid);
740 ret = OsUserProcessOperatePermissionsCheck(stcb, stcb->processID);
741 OS_GOTO_EXIT_IF(ret != LOS_OK, -ret);
742
743 /* Dispatch the signal to thread, bypassing normal task group thread
744 * dispatch rules. */
745 SCHEDULER_LOCK(intSave);
746 ret = OsTcbDispatch(stcb, &info);
747 SCHEDULER_UNLOCK(intSave);
748 OS_GOTO_EXIT_IF(ret != LOS_OK, -ret);
749 } else {
750 /* Make sure that the para is valid */
751 OS_GOTO_EXIT_IF(pid <= 0 || OS_PID_CHECK_INVALID(pid), EINVAL);
752 /* Dispatch the signal to process */
753 SCHEDULER_LOCK(intSave);
754 OsDispatch(pid, &info, OS_USER_KILL_PERMISSION);
755 SCHEDULER_UNLOCK(intSave);
756 }
757 return;
758 EXIT:
759 PRINT_ERR("Dsipatch signals failed!, ret: %d\r\n", ret);
760 return;
761 }
762
OsTimerCreate(clockid_t clockID,struct ksigevent * evp,timer_t * timerID)763 int OsTimerCreate(clockid_t clockID, struct ksigevent *evp, timer_t *timerID)
764 {
765 UINT32 ret;
766 UINT16 swtmrID;
767 swtmr_proc_arg *arg = NULL;
768 int signo;
769 #ifdef LOSCFG_SECURITY_VID
770 UINT16 vid;
771 #endif
772
773 if ((clockID != CLOCK_REALTIME) || (timerID == NULL)) {
774 errno = EINVAL;
775 return -1;
776 }
777
778 signo = evp ? evp->sigev_signo : SIGALRM;
779 if (signo > SIGRTMAX || signo < 1) {
780 errno = EINVAL;
781 return -1;
782 }
783 if (evp && (evp->sigev_notify != SIGEV_SIGNAL && evp->sigev_notify != SIGEV_THREAD_ID)) {
784 errno = ENOTSUP;
785 return -1;
786 }
787
788 arg = (swtmr_proc_arg *)malloc(sizeof(swtmr_proc_arg));
789 if (arg == NULL) {
790 errno = ENOMEM;
791 return -1;
792 }
793
794 arg->tid = evp ? evp->sigev_tid : 0;
795 arg->sigev_signo = signo;
796 arg->pid = LOS_GetCurrProcessID();
797 arg->sigev_value.sival_ptr = evp ? evp->sigev_value.sival_ptr : NULL;
798 ret = LOS_SwtmrCreate(1, LOS_SWTMR_MODE_ONCE, SwtmrProc, &swtmrID, (UINTPTR)arg);
799 if (ret != LOS_OK) {
800 errno = (ret == LOS_ERRNO_SWTMR_MAXSIZE) ? EAGAIN : EINVAL;
801 free(arg);
802 return -1;
803 }
804
805 #ifdef LOSCFG_SECURITY_VID
806 vid = AddNodeByRid(swtmrID);
807 if (vid == MAX_INVALID_TIMER_VID) {
808 free(arg);
809 (VOID)LOS_SwtmrDelete(swtmrID);
810 return -1;
811 }
812 swtmrID = vid;
813 #endif
814 *timerID = (timer_t)(UINTPTR)swtmrID;
815 return 0;
816 }
817
timer_delete(timer_t timerID)818 int timer_delete(timer_t timerID)
819 {
820 UINT16 swtmrID = (UINT16)(UINTPTR)timerID;
821 VOID *arg = NULL;
822
823 #ifdef LOSCFG_SECURITY_VID
824 swtmrID = GetRidByVid(swtmrID);
825 #endif
826 if (OS_INT_ACTIVE || !ValidTimerID(swtmrID)) {
827 goto ERROUT;
828 }
829
830 arg = (VOID *)OS_SWT_FROM_SID(swtmrID)->uwArg;
831 if (LOS_SwtmrDelete(swtmrID)) {
832 goto ERROUT;
833 }
834 if (arg != NULL) {
835 free(arg);
836 }
837
838 #ifdef LOSCFG_SECURITY_VID
839 RemoveNodeByVid((UINT16)(UINTPTR)timerID);
840 #endif
841 return 0;
842
843 ERROUT:
844 errno = EINVAL;
845 return -1;
846 }
847
timer_settime(timer_t timerID,int flags,const struct itimerspec * value,struct itimerspec * oldValue)848 int timer_settime(timer_t timerID, int flags,
849 const struct itimerspec *value, /* new value */
850 struct itimerspec *oldValue) /* old value to return, always 0 */
851 {
852 UINT16 swtmrID = (UINT16)(UINTPTR)timerID;
853 SWTMR_CTRL_S *swtmr = NULL;
854 UINT32 interval, expiry, ret;
855 UINT32 intSave;
856
857 if (flags != 0) {
858 /* flags not supported currently */
859 errno = ENOSYS;
860 return -1;
861 }
862
863 #ifdef LOSCFG_SECURITY_VID
864 swtmrID = GetRidByVid(swtmrID);
865 #endif
866 if ((value == NULL) || OS_INT_ACTIVE || !ValidTimerID(swtmrID)) {
867 errno = EINVAL;
868 return -1;
869 }
870
871 if (!ValidTimeSpec(&value->it_value) || !ValidTimeSpec(&value->it_interval)) {
872 errno = EINVAL;
873 return -1;
874 }
875
876 if (oldValue) {
877 (VOID)timer_gettime(timerID, oldValue);
878 }
879
880 swtmr = OS_SWT_FROM_SID(swtmrID);
881 ret = LOS_SwtmrStop(swtmr->usTimerID);
882 if ((ret != LOS_OK) && (ret != LOS_ERRNO_SWTMR_NOT_STARTED)) {
883 errno = EINVAL;
884 return -1;
885 }
886
887 expiry = OsTimeSpec2Tick(&value->it_value);
888 interval = OsTimeSpec2Tick(&value->it_interval);
889
890 LOS_SpinLockSave(&g_swtmrSpin, &intSave);
891 swtmr->ucMode = interval ? LOS_SWTMR_MODE_OPP : LOS_SWTMR_MODE_NO_SELFDELETE;
892 swtmr->uwExpiry = expiry + !!expiry; // PS: skip the first tick because it is NOT a full tick.
893 swtmr->uwInterval = interval;
894 swtmr->uwOverrun = 0;
895 LOS_SpinUnlockRestore(&g_swtmrSpin, intSave);
896
897 if ((value->it_value.tv_sec == 0) && (value->it_value.tv_nsec == 0)) {
898 /*
899 * 1) when expiry is 0, means timer should be stopped.
900 * 2) If timer is ticking, stopping timer is already done before.
901 * 3) If timer is created but not ticking, return 0 as well.
902 */
903 return 0;
904 }
905
906 if (LOS_SwtmrStart(swtmr->usTimerID)) {
907 errno = EINVAL;
908 return -1;
909 }
910
911 return 0;
912 }
913
timer_gettime(timer_t timerID,struct itimerspec * value)914 int timer_gettime(timer_t timerID, struct itimerspec *value)
915 {
916 UINT32 tick = 0;
917 SWTMR_CTRL_S *swtmr = NULL;
918 UINT16 swtmrID = (UINT16)(UINTPTR)timerID;
919 UINT32 ret;
920
921 #ifdef LOSCFG_SECURITY_VID
922 swtmrID = GetRidByVid(swtmrID);
923 #endif
924 if ((value == NULL) || !ValidTimerID(swtmrID)) {
925 errno = EINVAL;
926 return -1;
927 }
928
929 swtmr = OS_SWT_FROM_SID(swtmrID);
930
931 /* get expire time */
932 ret = LOS_SwtmrTimeGet(swtmr->usTimerID, &tick);
933 if ((ret != LOS_OK) && (ret != LOS_ERRNO_SWTMR_NOT_STARTED)) {
934 errno = EINVAL;
935 return -1;
936 }
937
938 OsTick2TimeSpec(&value->it_value, tick);
939 OsTick2TimeSpec(&value->it_interval, (swtmr->ucMode == LOS_SWTMR_MODE_ONCE) ? 0 : swtmr->uwInterval);
940 return 0;
941 }
942
timer_getoverrun(timer_t timerID)943 int timer_getoverrun(timer_t timerID)
944 {
945 UINT16 swtmrID = (UINT16)(UINTPTR)timerID;
946 SWTMR_CTRL_S *swtmr = NULL;
947 INT32 overRun;
948
949 #ifdef LOSCFG_SECURITY_VID
950 swtmrID = GetRidByVid(swtmrID);
951 #endif
952 if (!ValidTimerID(swtmrID)) {
953 errno = EINVAL;
954 return -1;
955 }
956
957 swtmr = OS_SWT_FROM_SID(swtmrID);
958 if (swtmr->usTimerID >= OS_SWTMR_MAX_TIMERID) {
959 errno = EINVAL;
960 return -1;
961 }
962
963 overRun = (INT32)(swtmr->uwOverrun);
964 return (overRun > DELAYTIMER_MAX) ? DELAYTIMER_MAX : overRun;
965 }
966
DoNanoSleep(UINT64 nanoseconds)967 STATIC INT32 DoNanoSleep(UINT64 nanoseconds)
968 {
969 UINT32 ret;
970
971 ret = LOS_TaskDelay(OsNS2Tick(nanoseconds));
972 if (ret == LOS_OK || ret == LOS_ERRNO_TSK_YIELD_NOT_ENOUGH_TASK) {
973 return 0;
974 }
975 return -1;
976 }
977
usleep(unsigned useconds)978 int usleep(unsigned useconds)
979 {
980 return DoNanoSleep((UINT64)useconds * OS_SYS_NS_PER_US);
981 }
982
nanosleep(const struct timespec * rqtp,struct timespec * rmtp)983 int nanosleep(const struct timespec *rqtp, struct timespec *rmtp)
984 {
985 UINT64 nanoseconds;
986 INT32 ret = -1;
987
988 (VOID)rmtp;
989 /* expire time */
990
991 if (!ValidTimeSpec(rqtp)) {
992 errno = EINVAL;
993 return ret;
994 }
995
996 nanoseconds = (UINT64)rqtp->tv_sec * OS_SYS_NS_PER_SECOND + rqtp->tv_nsec;
997
998 return DoNanoSleep(nanoseconds);
999 }
1000
sleep(unsigned int seconds)1001 unsigned int sleep(unsigned int seconds)
1002 {
1003 return DoNanoSleep((UINT64)seconds * OS_SYS_NS_PER_SECOND);
1004 }
1005
difftime(time_t time2,time_t time1)1006 double difftime(time_t time2, time_t time1)
1007 {
1008 return (double)(time2 - time1);
1009 }
1010
clock(VOID)1011 clock_t clock(VOID)
1012 {
1013 clock_t clockMsec;
1014 UINT64 nowNsec;
1015
1016 nowNsec = LOS_CurrNanosec();
1017 clockMsec = (clock_t)(nowNsec / (OS_SYS_NS_PER_SECOND / CLOCKS_PER_SEC));
1018
1019 return clockMsec;
1020 }
1021
times(struct tms * buf)1022 clock_t times(struct tms *buf)
1023 {
1024 clock_t clockTick = -1;
1025
1026 (void)buf;
1027 set_errno(ENOSYS);
1028
1029 return clockTick;
1030 }
1031
setitimer(int which,const struct itimerval * value,struct itimerval * ovalue)1032 int setitimer(int which, const struct itimerval *value, struct itimerval *ovalue)
1033 {
1034 UINT32 intSave;
1035 LosTaskCB *taskCB = OS_TCB_FROM_TID(LOS_CurTaskIDGet());
1036 LosProcessCB *processCB = OS_PCB_FROM_PID(taskCB->processID);
1037 timer_t timerID = 0;
1038 struct itimerspec spec;
1039 struct itimerspec ospec;
1040 int ret = LOS_OK;
1041
1042 /* we only support the realtime clock timer currently */
1043 if (which != ITIMER_REAL || !value) {
1044 set_errno(EINVAL);
1045 return -1;
1046 }
1047
1048 /* To avoid creating an invalid timer after the timer has already been create */
1049 if (processCB->timerID == (timer_t)(UINTPTR)MAX_INVALID_TIMER_VID) {
1050 ret = OsTimerCreate(CLOCK_REALTIME, NULL, &timerID);
1051 if (ret != LOS_OK) {
1052 return ret;
1053 }
1054 }
1055
1056 /* The initialization of this global timer must be in spinlock
1057 * OsTimerCreate cannot be located in spinlock.
1058 */
1059 SCHEDULER_LOCK(intSave);
1060 if (processCB->timerID == (timer_t)(UINTPTR)MAX_INVALID_TIMER_VID) {
1061 processCB->timerID = timerID;
1062 SCHEDULER_UNLOCK(intSave);
1063 } else {
1064 SCHEDULER_UNLOCK(intSave);
1065 if (timerID) {
1066 timer_delete(timerID);
1067 }
1068 }
1069
1070 if (!ValidTimeval(&value->it_value) || !ValidTimeval(&value->it_interval)) {
1071 set_errno(EINVAL);
1072 return -1;
1073 }
1074
1075 TIMEVAL_TO_TIMESPEC(&value->it_value, &spec.it_value);
1076 TIMEVAL_TO_TIMESPEC(&value->it_interval, &spec.it_interval);
1077
1078 ret = timer_settime(processCB->timerID, 0, &spec, ovalue ? &ospec : NULL);
1079 if (ret == LOS_OK && ovalue) {
1080 TIMESPEC_TO_TIMEVAL(&ovalue->it_value, &ospec.it_value);
1081 TIMESPEC_TO_TIMEVAL(&ovalue->it_interval, &ospec.it_interval);
1082 }
1083
1084 return ret;
1085 }
1086
getitimer(int which,struct itimerval * value)1087 int getitimer(int which, struct itimerval *value)
1088 {
1089 LosTaskCB *taskCB = OS_TCB_FROM_TID(LOS_CurTaskIDGet());
1090 LosProcessCB *processCB = OS_PCB_FROM_PID(taskCB->processID);
1091 struct itimerspec spec = {};
1092
1093 int ret = LOS_OK;
1094
1095 /* we only support the realtime clock timer currently */
1096 if (which != ITIMER_REAL || !value) {
1097 set_errno(EINVAL);
1098 return -1;
1099 }
1100
1101 if (processCB->timerID != (timer_t)(UINTPTR)MAX_INVALID_TIMER_VID) {
1102 ret = timer_gettime(processCB->timerID, &spec);
1103 }
1104
1105 if (ret == LOS_OK) {
1106 TIMESPEC_TO_TIMEVAL(&value->it_value, &spec.it_value);
1107 TIMESPEC_TO_TIMEVAL(&value->it_interval, &spec.it_interval);
1108 }
1109
1110 return ret;
1111 }
1112
1113 #ifdef LOSCFG_KERNEL_VDSO
OsVdsoTimeGet(VdsoDataPage * vdsoDataPage)1114 VOID OsVdsoTimeGet(VdsoDataPage *vdsoDataPage)
1115 {
1116 UINT32 intSave;
1117 struct timespec64 tmp = {0};
1118 struct timespec64 hwTime = {0};
1119
1120 if (vdsoDataPage == NULL) {
1121 return;
1122 }
1123
1124 OsGetHwTime(&hwTime);
1125
1126 LOS_SpinLockSave(&g_timeSpin, &intSave);
1127 tmp = OsTimeSpecAdd(hwTime, g_accDeltaFromAdj);
1128 vdsoDataPage->monoTimeSec = tmp.tv_sec;
1129 vdsoDataPage->monoTimeNsec = tmp.tv_nsec;
1130
1131 tmp = OsTimeSpecAdd(tmp, g_accDeltaFromSet);
1132 vdsoDataPage->realTimeSec = tmp.tv_sec;
1133 vdsoDataPage->realTimeNsec = tmp.tv_nsec;
1134 LOS_SpinUnlockRestore(&g_timeSpin, intSave);
1135 }
1136 #endif
1137
time(time_t * t)1138 time_t time(time_t *t)
1139 {
1140 struct timeval tp;
1141 int ret;
1142
1143 /* Get the current time from the system */
1144 ret = gettimeofday(&tp, (struct timezone *)NULL);
1145 if (ret == LOS_OK) {
1146 /* Return the seconds since the epoch */
1147 if (t) {
1148 *t = tp.tv_sec;
1149 }
1150 return tp.tv_sec;
1151 }
1152 return (time_t)OS_ERROR;
1153 }
1154