• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 #include <linux/pm_runtime.h>	/* for runtime PM */
24 
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28 
29 /*-------------------------------------------------------------------------*/
30 
31 /*
32  * Host-side wrappers for standard USB descriptors ... these are parsed
33  * from the data provided by devices.  Parsing turns them from a flat
34  * sequence of descriptors into a hierarchy:
35  *
36  *  - devices have one (usually) or more configs;
37  *  - configs have one (often) or more interfaces;
38  *  - interfaces have one (usually) or more settings;
39  *  - each interface setting has zero or (usually) more endpoints.
40  *  - a SuperSpeed endpoint has a companion descriptor
41  *
42  * And there might be other descriptors mixed in with those.
43  *
44  * Devices may also have class-specific or vendor-specific descriptors.
45  */
46 
47 struct ep_device;
48 
49 /**
50  * struct usb_host_endpoint - host-side endpoint descriptor and queue
51  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53  * @urb_list: urbs queued to this endpoint; maintained by usbcore
54  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55  *	with one or more transfer descriptors (TDs) per urb
56  * @ep_dev: ep_device for sysfs info
57  * @extra: descriptors following this endpoint in the configuration
58  * @extralen: how many bytes of "extra" are valid
59  * @enabled: URBs may be submitted to this endpoint
60  * @streams: number of USB-3 streams allocated on the endpoint
61  *
62  * USB requests are always queued to a given endpoint, identified by a
63  * descriptor within an active interface in a given USB configuration.
64  */
65 struct usb_host_endpoint {
66 	struct usb_endpoint_descriptor		desc;
67 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
68 	struct list_head		urb_list;
69 	void				*hcpriv;
70 	struct ep_device		*ep_dev;	/* For sysfs info */
71 
72 	unsigned char *extra;   /* Extra descriptors */
73 	int extralen;
74 	int enabled;
75 	int streams;
76 };
77 
78 /* host-side wrapper for one interface setting's parsed descriptors */
79 struct usb_host_interface {
80 	struct usb_interface_descriptor	desc;
81 
82 	int extralen;
83 	unsigned char *extra;   /* Extra descriptors */
84 
85 	/* array of desc.bNumEndpoints endpoints associated with this
86 	 * interface setting.  these will be in no particular order.
87 	 */
88 	struct usb_host_endpoint *endpoint;
89 
90 	char *string;		/* iInterface string, if present */
91 };
92 
93 enum usb_interface_condition {
94 	USB_INTERFACE_UNBOUND = 0,
95 	USB_INTERFACE_BINDING,
96 	USB_INTERFACE_BOUND,
97 	USB_INTERFACE_UNBINDING,
98 };
99 
100 /**
101  * struct usb_interface - what usb device drivers talk to
102  * @altsetting: array of interface structures, one for each alternate
103  *	setting that may be selected.  Each one includes a set of
104  *	endpoint configurations.  They will be in no particular order.
105  * @cur_altsetting: the current altsetting.
106  * @num_altsetting: number of altsettings defined.
107  * @intf_assoc: interface association descriptor
108  * @minor: the minor number assigned to this interface, if this
109  *	interface is bound to a driver that uses the USB major number.
110  *	If this interface does not use the USB major, this field should
111  *	be unused.  The driver should set this value in the probe()
112  *	function of the driver, after it has been assigned a minor
113  *	number from the USB core by calling usb_register_dev().
114  * @condition: binding state of the interface: not bound, binding
115  *	(in probe()), bound to a driver, or unbinding (in disconnect())
116  * @sysfs_files_created: sysfs attributes exist
117  * @ep_devs_created: endpoint child pseudo-devices exist
118  * @unregistering: flag set when the interface is being unregistered
119  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
120  *	capability during autosuspend.
121  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
122  *	has been deferred.
123  * @needs_binding: flag set when the driver should be re-probed or unbound
124  *	following a reset or suspend operation it doesn't support.
125  * @authorized: This allows to (de)authorize individual interfaces instead
126  *	a whole device in contrast to the device authorization.
127  * @dev: driver model's view of this device
128  * @usb_dev: if an interface is bound to the USB major, this will point
129  *	to the sysfs representation for that device.
130  * @pm_usage_cnt: PM usage counter for this interface
131  * @reset_ws: Used for scheduling resets from atomic context.
132  * @resetting_device: USB core reset the device, so use alt setting 0 as
133  *	current; needs bandwidth alloc after reset.
134  *
135  * USB device drivers attach to interfaces on a physical device.  Each
136  * interface encapsulates a single high level function, such as feeding
137  * an audio stream to a speaker or reporting a change in a volume control.
138  * Many USB devices only have one interface.  The protocol used to talk to
139  * an interface's endpoints can be defined in a usb "class" specification,
140  * or by a product's vendor.  The (default) control endpoint is part of
141  * every interface, but is never listed among the interface's descriptors.
142  *
143  * The driver that is bound to the interface can use standard driver model
144  * calls such as dev_get_drvdata() on the dev member of this structure.
145  *
146  * Each interface may have alternate settings.  The initial configuration
147  * of a device sets altsetting 0, but the device driver can change
148  * that setting using usb_set_interface().  Alternate settings are often
149  * used to control the use of periodic endpoints, such as by having
150  * different endpoints use different amounts of reserved USB bandwidth.
151  * All standards-conformant USB devices that use isochronous endpoints
152  * will use them in non-default settings.
153  *
154  * The USB specification says that alternate setting numbers must run from
155  * 0 to one less than the total number of alternate settings.  But some
156  * devices manage to mess this up, and the structures aren't necessarily
157  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
158  * look up an alternate setting in the altsetting array based on its number.
159  */
160 struct usb_interface {
161 	/* array of alternate settings for this interface,
162 	 * stored in no particular order */
163 	struct usb_host_interface *altsetting;
164 
165 	struct usb_host_interface *cur_altsetting;	/* the currently
166 					 * active alternate setting */
167 	unsigned num_altsetting;	/* number of alternate settings */
168 
169 	/* If there is an interface association descriptor then it will list
170 	 * the associated interfaces */
171 	struct usb_interface_assoc_descriptor *intf_assoc;
172 
173 	int minor;			/* minor number this interface is
174 					 * bound to */
175 	enum usb_interface_condition condition;		/* state of binding */
176 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
177 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
178 	unsigned unregistering:1;	/* unregistration is in progress */
179 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
180 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
181 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
182 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
183 	unsigned authorized:1;		/* used for interface authorization */
184 
185 	struct device dev;		/* interface specific device info */
186 	struct device *usb_dev;
187 	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
188 	struct work_struct reset_ws;	/* for resets in atomic context */
189 };
190 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
191 
usb_get_intfdata(struct usb_interface * intf)192 static inline void *usb_get_intfdata(struct usb_interface *intf)
193 {
194 	return dev_get_drvdata(&intf->dev);
195 }
196 
usb_set_intfdata(struct usb_interface * intf,void * data)197 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
198 {
199 	dev_set_drvdata(&intf->dev, data);
200 }
201 
202 struct usb_interface *usb_get_intf(struct usb_interface *intf);
203 void usb_put_intf(struct usb_interface *intf);
204 
205 /* Hard limit */
206 #define USB_MAXENDPOINTS	30
207 /* this maximum is arbitrary */
208 #define USB_MAXINTERFACES	32
209 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
210 
211 /*
212  * USB Resume Timer: Every Host controller driver should drive the resume
213  * signalling on the bus for the amount of time defined by this macro.
214  *
215  * That way we will have a 'stable' behavior among all HCDs supported by Linux.
216  *
217  * Note that the USB Specification states we should drive resume for *at least*
218  * 20 ms, but it doesn't give an upper bound. This creates two possible
219  * situations which we want to avoid:
220  *
221  * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
222  * us to fail USB Electrical Tests, thus failing Certification
223  *
224  * (b) Some (many) devices actually need more than 20 ms of resume signalling,
225  * and while we can argue that's against the USB Specification, we don't have
226  * control over which devices a certification laboratory will be using for
227  * certification. If CertLab uses a device which was tested against Windows and
228  * that happens to have relaxed resume signalling rules, we might fall into
229  * situations where we fail interoperability and electrical tests.
230  *
231  * In order to avoid both conditions, we're using a 40 ms resume timeout, which
232  * should cope with both LPJ calibration errors and devices not following every
233  * detail of the USB Specification.
234  */
235 #define USB_RESUME_TIMEOUT	40 /* ms */
236 
237 /**
238  * struct usb_interface_cache - long-term representation of a device interface
239  * @num_altsetting: number of altsettings defined.
240  * @ref: reference counter.
241  * @altsetting: variable-length array of interface structures, one for
242  *	each alternate setting that may be selected.  Each one includes a
243  *	set of endpoint configurations.  They will be in no particular order.
244  *
245  * These structures persist for the lifetime of a usb_device, unlike
246  * struct usb_interface (which persists only as long as its configuration
247  * is installed).  The altsetting arrays can be accessed through these
248  * structures at any time, permitting comparison of configurations and
249  * providing support for the /proc/bus/usb/devices pseudo-file.
250  */
251 struct usb_interface_cache {
252 	unsigned num_altsetting;	/* number of alternate settings */
253 	struct kref ref;		/* reference counter */
254 
255 	/* variable-length array of alternate settings for this interface,
256 	 * stored in no particular order */
257 	struct usb_host_interface altsetting[0];
258 };
259 #define	ref_to_usb_interface_cache(r) \
260 		container_of(r, struct usb_interface_cache, ref)
261 #define	altsetting_to_usb_interface_cache(a) \
262 		container_of(a, struct usb_interface_cache, altsetting[0])
263 
264 /**
265  * struct usb_host_config - representation of a device's configuration
266  * @desc: the device's configuration descriptor.
267  * @string: pointer to the cached version of the iConfiguration string, if
268  *	present for this configuration.
269  * @intf_assoc: list of any interface association descriptors in this config
270  * @interface: array of pointers to usb_interface structures, one for each
271  *	interface in the configuration.  The number of interfaces is stored
272  *	in desc.bNumInterfaces.  These pointers are valid only while the
273  *	the configuration is active.
274  * @intf_cache: array of pointers to usb_interface_cache structures, one
275  *	for each interface in the configuration.  These structures exist
276  *	for the entire life of the device.
277  * @extra: pointer to buffer containing all extra descriptors associated
278  *	with this configuration (those preceding the first interface
279  *	descriptor).
280  * @extralen: length of the extra descriptors buffer.
281  *
282  * USB devices may have multiple configurations, but only one can be active
283  * at any time.  Each encapsulates a different operational environment;
284  * for example, a dual-speed device would have separate configurations for
285  * full-speed and high-speed operation.  The number of configurations
286  * available is stored in the device descriptor as bNumConfigurations.
287  *
288  * A configuration can contain multiple interfaces.  Each corresponds to
289  * a different function of the USB device, and all are available whenever
290  * the configuration is active.  The USB standard says that interfaces
291  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
292  * of devices get this wrong.  In addition, the interface array is not
293  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
294  * look up an interface entry based on its number.
295  *
296  * Device drivers should not attempt to activate configurations.  The choice
297  * of which configuration to install is a policy decision based on such
298  * considerations as available power, functionality provided, and the user's
299  * desires (expressed through userspace tools).  However, drivers can call
300  * usb_reset_configuration() to reinitialize the current configuration and
301  * all its interfaces.
302  */
303 struct usb_host_config {
304 	struct usb_config_descriptor	desc;
305 
306 	char *string;		/* iConfiguration string, if present */
307 
308 	/* List of any Interface Association Descriptors in this
309 	 * configuration. */
310 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
311 
312 	/* the interfaces associated with this configuration,
313 	 * stored in no particular order */
314 	struct usb_interface *interface[USB_MAXINTERFACES];
315 
316 	/* Interface information available even when this is not the
317 	 * active configuration */
318 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
319 
320 	unsigned char *extra;   /* Extra descriptors */
321 	int extralen;
322 };
323 
324 /* USB2.0 and USB3.0 device BOS descriptor set */
325 struct usb_host_bos {
326 	struct usb_bos_descriptor	*desc;
327 
328 	/* wireless cap descriptor is handled by wusb */
329 	struct usb_ext_cap_descriptor	*ext_cap;
330 	struct usb_ss_cap_descriptor	*ss_cap;
331 	struct usb_ssp_cap_descriptor	*ssp_cap;
332 	struct usb_ss_container_id_descriptor	*ss_id;
333 };
334 
335 int __usb_get_extra_descriptor(char *buffer, unsigned size,
336 	unsigned char type, void **ptr);
337 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
338 				__usb_get_extra_descriptor((ifpoint)->extra, \
339 				(ifpoint)->extralen, \
340 				type, (void **)ptr)
341 
342 /* ----------------------------------------------------------------------- */
343 
344 /* USB device number allocation bitmap */
345 struct usb_devmap {
346 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
347 };
348 
349 /*
350  * Allocated per bus (tree of devices) we have:
351  */
352 struct usb_bus {
353 	struct device *controller;	/* host/master side hardware */
354 	int busnum;			/* Bus number (in order of reg) */
355 	const char *bus_name;		/* stable id (PCI slot_name etc) */
356 	u8 uses_dma;			/* Does the host controller use DMA? */
357 	u8 uses_pio_for_control;	/*
358 					 * Does the host controller use PIO
359 					 * for control transfers?
360 					 */
361 	u8 otg_port;			/* 0, or number of OTG/HNP port */
362 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
363 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
364 	unsigned no_stop_on_short:1;    /*
365 					 * Quirk: some controllers don't stop
366 					 * the ep queue on a short transfer
367 					 * with the URB_SHORT_NOT_OK flag set.
368 					 */
369 	unsigned no_sg_constraint:1;	/* no sg constraint */
370 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
371 
372 	int devnum_next;		/* Next open device number in
373 					 * round-robin allocation */
374 
375 	struct usb_devmap devmap;	/* device address allocation map */
376 	struct usb_device *root_hub;	/* Root hub */
377 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
378 	struct list_head bus_list;	/* list of busses */
379 
380 	struct mutex usb_address0_mutex; /* unaddressed device mutex */
381 
382 	int bandwidth_allocated;	/* on this bus: how much of the time
383 					 * reserved for periodic (intr/iso)
384 					 * requests is used, on average?
385 					 * Units: microseconds/frame.
386 					 * Limits: Full/low speed reserve 90%,
387 					 * while high speed reserves 80%.
388 					 */
389 	int bandwidth_int_reqs;		/* number of Interrupt requests */
390 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
391 
392 	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
393 
394 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
395 	struct mon_bus *mon_bus;	/* non-null when associated */
396 	int monitored;			/* non-zero when monitored */
397 #endif
398 };
399 
400 struct usb_dev_state;
401 
402 /* ----------------------------------------------------------------------- */
403 
404 struct usb_tt;
405 
406 enum usb_device_removable {
407 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
408 	USB_DEVICE_REMOVABLE,
409 	USB_DEVICE_FIXED,
410 };
411 
412 enum usb_port_connect_type {
413 	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
414 	USB_PORT_CONNECT_TYPE_HOT_PLUG,
415 	USB_PORT_CONNECT_TYPE_HARD_WIRED,
416 	USB_PORT_NOT_USED,
417 };
418 
419 /*
420  * USB 2.0 Link Power Management (LPM) parameters.
421  */
422 struct usb2_lpm_parameters {
423 	/* Best effort service latency indicate how long the host will drive
424 	 * resume on an exit from L1.
425 	 */
426 	unsigned int besl;
427 
428 	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
429 	 * When the timer counts to zero, the parent hub will initiate a LPM
430 	 * transition to L1.
431 	 */
432 	int timeout;
433 };
434 
435 /*
436  * USB 3.0 Link Power Management (LPM) parameters.
437  *
438  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
439  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
440  * All three are stored in nanoseconds.
441  */
442 struct usb3_lpm_parameters {
443 	/*
444 	 * Maximum exit latency (MEL) for the host to send a packet to the
445 	 * device (either a Ping for isoc endpoints, or a data packet for
446 	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
447 	 * in the path to transition the links to U0.
448 	 */
449 	unsigned int mel;
450 	/*
451 	 * Maximum exit latency for a device-initiated LPM transition to bring
452 	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
453 	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
454 	 */
455 	unsigned int pel;
456 
457 	/*
458 	 * The System Exit Latency (SEL) includes PEL, and three other
459 	 * latencies.  After a device initiates a U0 transition, it will take
460 	 * some time from when the device sends the ERDY to when it will finally
461 	 * receive the data packet.  Basically, SEL should be the worse-case
462 	 * latency from when a device starts initiating a U0 transition to when
463 	 * it will get data.
464 	 */
465 	unsigned int sel;
466 	/*
467 	 * The idle timeout value that is currently programmed into the parent
468 	 * hub for this device.  When the timer counts to zero, the parent hub
469 	 * will initiate an LPM transition to either U1 or U2.
470 	 */
471 	int timeout;
472 };
473 
474 /**
475  * struct usb_device - kernel's representation of a USB device
476  * @devnum: device number; address on a USB bus
477  * @devpath: device ID string for use in messages (e.g., /port/...)
478  * @route: tree topology hex string for use with xHCI
479  * @state: device state: configured, not attached, etc.
480  * @speed: device speed: high/full/low (or error)
481  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
482  * @ttport: device port on that tt hub
483  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
484  * @parent: our hub, unless we're the root
485  * @bus: bus we're part of
486  * @ep0: endpoint 0 data (default control pipe)
487  * @dev: generic device interface
488  * @descriptor: USB device descriptor
489  * @bos: USB device BOS descriptor set
490  * @config: all of the device's configs
491  * @actconfig: the active configuration
492  * @ep_in: array of IN endpoints
493  * @ep_out: array of OUT endpoints
494  * @rawdescriptors: raw descriptors for each config
495  * @bus_mA: Current available from the bus
496  * @portnum: parent port number (origin 1)
497  * @level: number of USB hub ancestors
498  * @can_submit: URBs may be submitted
499  * @persist_enabled:  USB_PERSIST enabled for this device
500  * @have_langid: whether string_langid is valid
501  * @authorized: policy has said we can use it;
502  *	(user space) policy determines if we authorize this device to be
503  *	used or not. By default, wired USB devices are authorized.
504  *	WUSB devices are not, until we authorize them from user space.
505  *	FIXME -- complete doc
506  * @authenticated: Crypto authentication passed
507  * @wusb: device is Wireless USB
508  * @lpm_capable: device supports LPM
509  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
510  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
511  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
512  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
513  * @usb3_lpm_enabled: USB3 hardware LPM enabled
514  * @string_langid: language ID for strings
515  * @product: iProduct string, if present (static)
516  * @manufacturer: iManufacturer string, if present (static)
517  * @serial: iSerialNumber string, if present (static)
518  * @filelist: usbfs files that are open to this device
519  * @maxchild: number of ports if hub
520  * @quirks: quirks of the whole device
521  * @urbnum: number of URBs submitted for the whole device
522  * @active_duration: total time device is not suspended
523  * @connect_time: time device was first connected
524  * @do_remote_wakeup:  remote wakeup should be enabled
525  * @reset_resume: needs reset instead of resume
526  * @port_is_suspended: the upstream port is suspended (L2 or U3)
527  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
528  *	specific data for the device.
529  * @slot_id: Slot ID assigned by xHCI
530  * @removable: Device can be physically removed from this port
531  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
532  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
533  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
534  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
535  *	to keep track of the number of functions that require USB 3.0 Link Power
536  *	Management to be disabled for this usb_device.  This count should only
537  *	be manipulated by those functions, with the bandwidth_mutex is held.
538  *
539  * Notes:
540  * Usbcore drivers should not set usbdev->state directly.  Instead use
541  * usb_set_device_state().
542  */
543 struct usb_device {
544 	int		devnum;
545 	char		devpath[16];
546 	u32		route;
547 	enum usb_device_state	state;
548 	enum usb_device_speed	speed;
549 
550 	struct usb_tt	*tt;
551 	int		ttport;
552 
553 	unsigned int toggle[2];
554 
555 	struct usb_device *parent;
556 	struct usb_bus *bus;
557 	struct usb_host_endpoint ep0;
558 
559 	struct device dev;
560 
561 	struct usb_device_descriptor descriptor;
562 	struct usb_host_bos *bos;
563 	struct usb_host_config *config;
564 
565 	struct usb_host_config *actconfig;
566 	struct usb_host_endpoint *ep_in[16];
567 	struct usb_host_endpoint *ep_out[16];
568 
569 	char **rawdescriptors;
570 
571 	unsigned short bus_mA;
572 	u8 portnum;
573 	u8 level;
574 
575 	unsigned can_submit:1;
576 	unsigned persist_enabled:1;
577 	unsigned have_langid:1;
578 	unsigned authorized:1;
579 	unsigned authenticated:1;
580 	unsigned wusb:1;
581 	unsigned lpm_capable:1;
582 	unsigned usb2_hw_lpm_capable:1;
583 	unsigned usb2_hw_lpm_besl_capable:1;
584 	unsigned usb2_hw_lpm_enabled:1;
585 	unsigned usb2_hw_lpm_allowed:1;
586 	unsigned usb3_lpm_enabled:1;
587 	int string_langid;
588 
589 	/* static strings from the device */
590 	char *product;
591 	char *manufacturer;
592 	char *serial;
593 
594 	struct list_head filelist;
595 
596 	int maxchild;
597 
598 	u32 quirks;
599 	atomic_t urbnum;
600 
601 	unsigned long active_duration;
602 
603 #ifdef CONFIG_PM
604 	unsigned long connect_time;
605 
606 	unsigned do_remote_wakeup:1;
607 	unsigned reset_resume:1;
608 	unsigned port_is_suspended:1;
609 #endif
610 	struct wusb_dev *wusb_dev;
611 	int slot_id;
612 	enum usb_device_removable removable;
613 	struct usb2_lpm_parameters l1_params;
614 	struct usb3_lpm_parameters u1_params;
615 	struct usb3_lpm_parameters u2_params;
616 	unsigned lpm_disable_count;
617 };
618 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
619 
interface_to_usbdev(struct usb_interface * intf)620 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
621 {
622 	return to_usb_device(intf->dev.parent);
623 }
624 
625 extern struct usb_device *usb_get_dev(struct usb_device *dev);
626 extern void usb_put_dev(struct usb_device *dev);
627 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
628 	int port1);
629 
630 /**
631  * usb_hub_for_each_child - iterate over all child devices on the hub
632  * @hdev:  USB device belonging to the usb hub
633  * @port1: portnum associated with child device
634  * @child: child device pointer
635  */
636 #define usb_hub_for_each_child(hdev, port1, child) \
637 	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
638 			port1 <= hdev->maxchild; \
639 			child = usb_hub_find_child(hdev, ++port1)) \
640 		if (!child) continue; else
641 
642 /* USB device locking */
643 #define usb_lock_device(udev)		device_lock(&(udev)->dev)
644 #define usb_unlock_device(udev)		device_unlock(&(udev)->dev)
645 #define usb_trylock_device(udev)	device_trylock(&(udev)->dev)
646 extern int usb_lock_device_for_reset(struct usb_device *udev,
647 				     const struct usb_interface *iface);
648 
649 /* USB port reset for device reinitialization */
650 extern int usb_reset_device(struct usb_device *dev);
651 extern void usb_queue_reset_device(struct usb_interface *dev);
652 
653 #ifdef CONFIG_ACPI
654 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
655 	bool enable);
656 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
657 #else
usb_acpi_set_power_state(struct usb_device * hdev,int index,bool enable)658 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
659 	bool enable) { return 0; }
usb_acpi_power_manageable(struct usb_device * hdev,int index)660 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
661 	{ return true; }
662 #endif
663 
664 /* USB autosuspend and autoresume */
665 #ifdef CONFIG_PM
666 extern void usb_enable_autosuspend(struct usb_device *udev);
667 extern void usb_disable_autosuspend(struct usb_device *udev);
668 
669 extern int usb_autopm_get_interface(struct usb_interface *intf);
670 extern void usb_autopm_put_interface(struct usb_interface *intf);
671 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
672 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
673 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
674 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
675 
usb_mark_last_busy(struct usb_device * udev)676 static inline void usb_mark_last_busy(struct usb_device *udev)
677 {
678 	pm_runtime_mark_last_busy(&udev->dev);
679 }
680 
681 #else
682 
usb_enable_autosuspend(struct usb_device * udev)683 static inline int usb_enable_autosuspend(struct usb_device *udev)
684 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)685 static inline int usb_disable_autosuspend(struct usb_device *udev)
686 { return 0; }
687 
usb_autopm_get_interface(struct usb_interface * intf)688 static inline int usb_autopm_get_interface(struct usb_interface *intf)
689 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)690 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
691 { return 0; }
692 
usb_autopm_put_interface(struct usb_interface * intf)693 static inline void usb_autopm_put_interface(struct usb_interface *intf)
694 { }
usb_autopm_put_interface_async(struct usb_interface * intf)695 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
696 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)697 static inline void usb_autopm_get_interface_no_resume(
698 		struct usb_interface *intf)
699 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)700 static inline void usb_autopm_put_interface_no_suspend(
701 		struct usb_interface *intf)
702 { }
usb_mark_last_busy(struct usb_device * udev)703 static inline void usb_mark_last_busy(struct usb_device *udev)
704 { }
705 #endif
706 
707 extern int usb_disable_lpm(struct usb_device *udev);
708 extern void usb_enable_lpm(struct usb_device *udev);
709 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
710 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
711 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
712 
713 extern int usb_disable_ltm(struct usb_device *udev);
714 extern void usb_enable_ltm(struct usb_device *udev);
715 
usb_device_supports_ltm(struct usb_device * udev)716 static inline bool usb_device_supports_ltm(struct usb_device *udev)
717 {
718 	if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
719 		return false;
720 	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
721 }
722 
usb_device_no_sg_constraint(struct usb_device * udev)723 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
724 {
725 	return udev && udev->bus && udev->bus->no_sg_constraint;
726 }
727 
728 
729 /*-------------------------------------------------------------------------*/
730 
731 /* for drivers using iso endpoints */
732 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
733 
734 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
735 extern int usb_alloc_streams(struct usb_interface *interface,
736 		struct usb_host_endpoint **eps, unsigned int num_eps,
737 		unsigned int num_streams, gfp_t mem_flags);
738 
739 /* Reverts a group of bulk endpoints back to not using stream IDs. */
740 extern int usb_free_streams(struct usb_interface *interface,
741 		struct usb_host_endpoint **eps, unsigned int num_eps,
742 		gfp_t mem_flags);
743 
744 /* used these for multi-interface device registration */
745 extern int usb_driver_claim_interface(struct usb_driver *driver,
746 			struct usb_interface *iface, void *priv);
747 
748 /**
749  * usb_interface_claimed - returns true iff an interface is claimed
750  * @iface: the interface being checked
751  *
752  * Return: %true (nonzero) iff the interface is claimed, else %false
753  * (zero).
754  *
755  * Note:
756  * Callers must own the driver model's usb bus readlock.  So driver
757  * probe() entries don't need extra locking, but other call contexts
758  * may need to explicitly claim that lock.
759  *
760  */
usb_interface_claimed(struct usb_interface * iface)761 static inline int usb_interface_claimed(struct usb_interface *iface)
762 {
763 	return (iface->dev.driver != NULL);
764 }
765 
766 extern void usb_driver_release_interface(struct usb_driver *driver,
767 			struct usb_interface *iface);
768 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
769 					 const struct usb_device_id *id);
770 extern int usb_match_one_id(struct usb_interface *interface,
771 			    const struct usb_device_id *id);
772 
773 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
774 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
775 		int minor);
776 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
777 		unsigned ifnum);
778 extern struct usb_host_interface *usb_altnum_to_altsetting(
779 		const struct usb_interface *intf, unsigned int altnum);
780 extern struct usb_host_interface *usb_find_alt_setting(
781 		struct usb_host_config *config,
782 		unsigned int iface_num,
783 		unsigned int alt_num);
784 
785 /* port claiming functions */
786 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
787 		struct usb_dev_state *owner);
788 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
789 		struct usb_dev_state *owner);
790 
791 /**
792  * usb_make_path - returns stable device path in the usb tree
793  * @dev: the device whose path is being constructed
794  * @buf: where to put the string
795  * @size: how big is "buf"?
796  *
797  * Return: Length of the string (> 0) or negative if size was too small.
798  *
799  * Note:
800  * This identifier is intended to be "stable", reflecting physical paths in
801  * hardware such as physical bus addresses for host controllers or ports on
802  * USB hubs.  That makes it stay the same until systems are physically
803  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
804  * controllers.  Adding and removing devices, including virtual root hubs
805  * in host controller driver modules, does not change these path identifiers;
806  * neither does rebooting or re-enumerating.  These are more useful identifiers
807  * than changeable ("unstable") ones like bus numbers or device addresses.
808  *
809  * With a partial exception for devices connected to USB 2.0 root hubs, these
810  * identifiers are also predictable.  So long as the device tree isn't changed,
811  * plugging any USB device into a given hub port always gives it the same path.
812  * Because of the use of "companion" controllers, devices connected to ports on
813  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
814  * high speed, and a different one if they are full or low speed.
815  */
usb_make_path(struct usb_device * dev,char * buf,size_t size)816 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
817 {
818 	int actual;
819 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
820 			  dev->devpath);
821 	return (actual >= (int)size) ? -1 : actual;
822 }
823 
824 /*-------------------------------------------------------------------------*/
825 
826 #define USB_DEVICE_ID_MATCH_DEVICE \
827 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
828 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
829 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
830 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
831 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
832 #define USB_DEVICE_ID_MATCH_DEV_INFO \
833 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
834 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
835 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
836 #define USB_DEVICE_ID_MATCH_INT_INFO \
837 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
838 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
839 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
840 
841 /**
842  * USB_DEVICE - macro used to describe a specific usb device
843  * @vend: the 16 bit USB Vendor ID
844  * @prod: the 16 bit USB Product ID
845  *
846  * This macro is used to create a struct usb_device_id that matches a
847  * specific device.
848  */
849 #define USB_DEVICE(vend, prod) \
850 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
851 	.idVendor = (vend), \
852 	.idProduct = (prod)
853 /**
854  * USB_DEVICE_VER - describe a specific usb device with a version range
855  * @vend: the 16 bit USB Vendor ID
856  * @prod: the 16 bit USB Product ID
857  * @lo: the bcdDevice_lo value
858  * @hi: the bcdDevice_hi value
859  *
860  * This macro is used to create a struct usb_device_id that matches a
861  * specific device, with a version range.
862  */
863 #define USB_DEVICE_VER(vend, prod, lo, hi) \
864 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
865 	.idVendor = (vend), \
866 	.idProduct = (prod), \
867 	.bcdDevice_lo = (lo), \
868 	.bcdDevice_hi = (hi)
869 
870 /**
871  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
872  * @vend: the 16 bit USB Vendor ID
873  * @prod: the 16 bit USB Product ID
874  * @cl: bInterfaceClass value
875  *
876  * This macro is used to create a struct usb_device_id that matches a
877  * specific interface class of devices.
878  */
879 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
880 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
881 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
882 	.idVendor = (vend), \
883 	.idProduct = (prod), \
884 	.bInterfaceClass = (cl)
885 
886 /**
887  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
888  * @vend: the 16 bit USB Vendor ID
889  * @prod: the 16 bit USB Product ID
890  * @pr: bInterfaceProtocol value
891  *
892  * This macro is used to create a struct usb_device_id that matches a
893  * specific interface protocol of devices.
894  */
895 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
896 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
897 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
898 	.idVendor = (vend), \
899 	.idProduct = (prod), \
900 	.bInterfaceProtocol = (pr)
901 
902 /**
903  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
904  * @vend: the 16 bit USB Vendor ID
905  * @prod: the 16 bit USB Product ID
906  * @num: bInterfaceNumber value
907  *
908  * This macro is used to create a struct usb_device_id that matches a
909  * specific interface number of devices.
910  */
911 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
912 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
913 		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
914 	.idVendor = (vend), \
915 	.idProduct = (prod), \
916 	.bInterfaceNumber = (num)
917 
918 /**
919  * USB_DEVICE_INFO - macro used to describe a class of usb devices
920  * @cl: bDeviceClass value
921  * @sc: bDeviceSubClass value
922  * @pr: bDeviceProtocol value
923  *
924  * This macro is used to create a struct usb_device_id that matches a
925  * specific class of devices.
926  */
927 #define USB_DEVICE_INFO(cl, sc, pr) \
928 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
929 	.bDeviceClass = (cl), \
930 	.bDeviceSubClass = (sc), \
931 	.bDeviceProtocol = (pr)
932 
933 /**
934  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
935  * @cl: bInterfaceClass value
936  * @sc: bInterfaceSubClass value
937  * @pr: bInterfaceProtocol value
938  *
939  * This macro is used to create a struct usb_device_id that matches a
940  * specific class of interfaces.
941  */
942 #define USB_INTERFACE_INFO(cl, sc, pr) \
943 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
944 	.bInterfaceClass = (cl), \
945 	.bInterfaceSubClass = (sc), \
946 	.bInterfaceProtocol = (pr)
947 
948 /**
949  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
950  * @vend: the 16 bit USB Vendor ID
951  * @prod: the 16 bit USB Product ID
952  * @cl: bInterfaceClass value
953  * @sc: bInterfaceSubClass value
954  * @pr: bInterfaceProtocol value
955  *
956  * This macro is used to create a struct usb_device_id that matches a
957  * specific device with a specific class of interfaces.
958  *
959  * This is especially useful when explicitly matching devices that have
960  * vendor specific bDeviceClass values, but standards-compliant interfaces.
961  */
962 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
963 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
964 		| USB_DEVICE_ID_MATCH_DEVICE, \
965 	.idVendor = (vend), \
966 	.idProduct = (prod), \
967 	.bInterfaceClass = (cl), \
968 	.bInterfaceSubClass = (sc), \
969 	.bInterfaceProtocol = (pr)
970 
971 /**
972  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
973  * @vend: the 16 bit USB Vendor ID
974  * @cl: bInterfaceClass value
975  * @sc: bInterfaceSubClass value
976  * @pr: bInterfaceProtocol value
977  *
978  * This macro is used to create a struct usb_device_id that matches a
979  * specific vendor with a specific class of interfaces.
980  *
981  * This is especially useful when explicitly matching devices that have
982  * vendor specific bDeviceClass values, but standards-compliant interfaces.
983  */
984 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
985 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
986 		| USB_DEVICE_ID_MATCH_VENDOR, \
987 	.idVendor = (vend), \
988 	.bInterfaceClass = (cl), \
989 	.bInterfaceSubClass = (sc), \
990 	.bInterfaceProtocol = (pr)
991 
992 /* ----------------------------------------------------------------------- */
993 
994 /* Stuff for dynamic usb ids */
995 struct usb_dynids {
996 	spinlock_t lock;
997 	struct list_head list;
998 };
999 
1000 struct usb_dynid {
1001 	struct list_head node;
1002 	struct usb_device_id id;
1003 };
1004 
1005 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1006 				const struct usb_device_id *id_table,
1007 				struct device_driver *driver,
1008 				const char *buf, size_t count);
1009 
1010 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1011 
1012 /**
1013  * struct usbdrv_wrap - wrapper for driver-model structure
1014  * @driver: The driver-model core driver structure.
1015  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1016  */
1017 struct usbdrv_wrap {
1018 	struct device_driver driver;
1019 	int for_devices;
1020 };
1021 
1022 /**
1023  * struct usb_driver - identifies USB interface driver to usbcore
1024  * @name: The driver name should be unique among USB drivers,
1025  *	and should normally be the same as the module name.
1026  * @probe: Called to see if the driver is willing to manage a particular
1027  *	interface on a device.  If it is, probe returns zero and uses
1028  *	usb_set_intfdata() to associate driver-specific data with the
1029  *	interface.  It may also use usb_set_interface() to specify the
1030  *	appropriate altsetting.  If unwilling to manage the interface,
1031  *	return -ENODEV, if genuine IO errors occurred, an appropriate
1032  *	negative errno value.
1033  * @disconnect: Called when the interface is no longer accessible, usually
1034  *	because its device has been (or is being) disconnected or the
1035  *	driver module is being unloaded.
1036  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1037  *	the "usbfs" filesystem.  This lets devices provide ways to
1038  *	expose information to user space regardless of where they
1039  *	do (or don't) show up otherwise in the filesystem.
1040  * @suspend: Called when the device is going to be suspended by the
1041  *	system either from system sleep or runtime suspend context. The
1042  *	return value will be ignored in system sleep context, so do NOT
1043  *	try to continue using the device if suspend fails in this case.
1044  *	Instead, let the resume or reset-resume routine recover from
1045  *	the failure.
1046  * @resume: Called when the device is being resumed by the system.
1047  * @reset_resume: Called when the suspended device has been reset instead
1048  *	of being resumed.
1049  * @pre_reset: Called by usb_reset_device() when the device is about to be
1050  *	reset.  This routine must not return until the driver has no active
1051  *	URBs for the device, and no more URBs may be submitted until the
1052  *	post_reset method is called.
1053  * @post_reset: Called by usb_reset_device() after the device
1054  *	has been reset
1055  * @id_table: USB drivers use ID table to support hotplugging.
1056  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1057  *	or your driver's probe function will never get called.
1058  * @dynids: used internally to hold the list of dynamically added device
1059  *	ids for this driver.
1060  * @drvwrap: Driver-model core structure wrapper.
1061  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1062  *	added to this driver by preventing the sysfs file from being created.
1063  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1064  *	for interfaces bound to this driver.
1065  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1066  *	endpoints before calling the driver's disconnect method.
1067  * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1068  *	to initiate lower power link state transitions when an idle timeout
1069  *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1070  *
1071  * USB interface drivers must provide a name, probe() and disconnect()
1072  * methods, and an id_table.  Other driver fields are optional.
1073  *
1074  * The id_table is used in hotplugging.  It holds a set of descriptors,
1075  * and specialized data may be associated with each entry.  That table
1076  * is used by both user and kernel mode hotplugging support.
1077  *
1078  * The probe() and disconnect() methods are called in a context where
1079  * they can sleep, but they should avoid abusing the privilege.  Most
1080  * work to connect to a device should be done when the device is opened,
1081  * and undone at the last close.  The disconnect code needs to address
1082  * concurrency issues with respect to open() and close() methods, as
1083  * well as forcing all pending I/O requests to complete (by unlinking
1084  * them as necessary, and blocking until the unlinks complete).
1085  */
1086 struct usb_driver {
1087 	const char *name;
1088 
1089 	int (*probe) (struct usb_interface *intf,
1090 		      const struct usb_device_id *id);
1091 
1092 	void (*disconnect) (struct usb_interface *intf);
1093 
1094 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1095 			void *buf);
1096 
1097 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1098 	int (*resume) (struct usb_interface *intf);
1099 	int (*reset_resume)(struct usb_interface *intf);
1100 
1101 	int (*pre_reset)(struct usb_interface *intf);
1102 	int (*post_reset)(struct usb_interface *intf);
1103 
1104 	const struct usb_device_id *id_table;
1105 
1106 	struct usb_dynids dynids;
1107 	struct usbdrv_wrap drvwrap;
1108 	unsigned int no_dynamic_id:1;
1109 	unsigned int supports_autosuspend:1;
1110 	unsigned int disable_hub_initiated_lpm:1;
1111 	unsigned int soft_unbind:1;
1112 };
1113 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1114 
1115 /**
1116  * struct usb_device_driver - identifies USB device driver to usbcore
1117  * @name: The driver name should be unique among USB drivers,
1118  *	and should normally be the same as the module name.
1119  * @probe: Called to see if the driver is willing to manage a particular
1120  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1121  *	to associate driver-specific data with the device.  If unwilling
1122  *	to manage the device, return a negative errno value.
1123  * @disconnect: Called when the device is no longer accessible, usually
1124  *	because it has been (or is being) disconnected or the driver's
1125  *	module is being unloaded.
1126  * @suspend: Called when the device is going to be suspended by the system.
1127  * @resume: Called when the device is being resumed by the system.
1128  * @drvwrap: Driver-model core structure wrapper.
1129  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1130  *	for devices bound to this driver.
1131  *
1132  * USB drivers must provide all the fields listed above except drvwrap.
1133  */
1134 struct usb_device_driver {
1135 	const char *name;
1136 
1137 	int (*probe) (struct usb_device *udev);
1138 	void (*disconnect) (struct usb_device *udev);
1139 
1140 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1141 	int (*resume) (struct usb_device *udev, pm_message_t message);
1142 	struct usbdrv_wrap drvwrap;
1143 	unsigned int supports_autosuspend:1;
1144 };
1145 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1146 		drvwrap.driver)
1147 
1148 extern struct bus_type usb_bus_type;
1149 
1150 /**
1151  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1152  * @name: the usb class device name for this driver.  Will show up in sysfs.
1153  * @devnode: Callback to provide a naming hint for a possible
1154  *	device node to create.
1155  * @fops: pointer to the struct file_operations of this driver.
1156  * @minor_base: the start of the minor range for this driver.
1157  *
1158  * This structure is used for the usb_register_dev() and
1159  * usb_unregister_dev() functions, to consolidate a number of the
1160  * parameters used for them.
1161  */
1162 struct usb_class_driver {
1163 	char *name;
1164 	char *(*devnode)(struct device *dev, umode_t *mode);
1165 	const struct file_operations *fops;
1166 	int minor_base;
1167 };
1168 
1169 /*
1170  * use these in module_init()/module_exit()
1171  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1172  */
1173 extern int usb_register_driver(struct usb_driver *, struct module *,
1174 			       const char *);
1175 
1176 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1177 #define usb_register(driver) \
1178 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1179 
1180 extern void usb_deregister(struct usb_driver *);
1181 
1182 /**
1183  * module_usb_driver() - Helper macro for registering a USB driver
1184  * @__usb_driver: usb_driver struct
1185  *
1186  * Helper macro for USB drivers which do not do anything special in module
1187  * init/exit. This eliminates a lot of boilerplate. Each module may only
1188  * use this macro once, and calling it replaces module_init() and module_exit()
1189  */
1190 #define module_usb_driver(__usb_driver) \
1191 	module_driver(__usb_driver, usb_register, \
1192 		       usb_deregister)
1193 
1194 extern int usb_register_device_driver(struct usb_device_driver *,
1195 			struct module *);
1196 extern void usb_deregister_device_driver(struct usb_device_driver *);
1197 
1198 extern int usb_register_dev(struct usb_interface *intf,
1199 			    struct usb_class_driver *class_driver);
1200 extern void usb_deregister_dev(struct usb_interface *intf,
1201 			       struct usb_class_driver *class_driver);
1202 
1203 extern int usb_disabled(void);
1204 
1205 /* ----------------------------------------------------------------------- */
1206 
1207 /*
1208  * URB support, for asynchronous request completions
1209  */
1210 
1211 /*
1212  * urb->transfer_flags:
1213  *
1214  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1215  */
1216 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1217 #define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1218 					 * slot in the schedule */
1219 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1220 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
1221 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1222 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1223 					 * needed */
1224 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1225 
1226 /* The following flags are used internally by usbcore and HCDs */
1227 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1228 #define URB_DIR_OUT		0
1229 #define URB_DIR_MASK		URB_DIR_IN
1230 
1231 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1232 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1233 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1234 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1235 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1236 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1237 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1238 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1239 
1240 struct usb_iso_packet_descriptor {
1241 	unsigned int offset;
1242 	unsigned int length;		/* expected length */
1243 	unsigned int actual_length;
1244 	int status;
1245 };
1246 
1247 struct urb;
1248 
1249 struct usb_anchor {
1250 	struct list_head urb_list;
1251 	wait_queue_head_t wait;
1252 	spinlock_t lock;
1253 	atomic_t suspend_wakeups;
1254 	unsigned int poisoned:1;
1255 };
1256 
init_usb_anchor(struct usb_anchor * anchor)1257 static inline void init_usb_anchor(struct usb_anchor *anchor)
1258 {
1259 	memset(anchor, 0, sizeof(*anchor));
1260 	INIT_LIST_HEAD(&anchor->urb_list);
1261 	init_waitqueue_head(&anchor->wait);
1262 	spin_lock_init(&anchor->lock);
1263 }
1264 
1265 typedef void (*usb_complete_t)(struct urb *);
1266 
1267 /**
1268  * struct urb - USB Request Block
1269  * @urb_list: For use by current owner of the URB.
1270  * @anchor_list: membership in the list of an anchor
1271  * @anchor: to anchor URBs to a common mooring
1272  * @ep: Points to the endpoint's data structure.  Will eventually
1273  *	replace @pipe.
1274  * @pipe: Holds endpoint number, direction, type, and more.
1275  *	Create these values with the eight macros available;
1276  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1277  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1278  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1279  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1280  *	is a different endpoint (and pipe) from "out" endpoint two.
1281  *	The current configuration controls the existence, type, and
1282  *	maximum packet size of any given endpoint.
1283  * @stream_id: the endpoint's stream ID for bulk streams
1284  * @dev: Identifies the USB device to perform the request.
1285  * @status: This is read in non-iso completion functions to get the
1286  *	status of the particular request.  ISO requests only use it
1287  *	to tell whether the URB was unlinked; detailed status for
1288  *	each frame is in the fields of the iso_frame-desc.
1289  * @transfer_flags: A variety of flags may be used to affect how URB
1290  *	submission, unlinking, or operation are handled.  Different
1291  *	kinds of URB can use different flags.
1292  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1293  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1294  *	(however, do not leave garbage in transfer_buffer even then).
1295  *	This buffer must be suitable for DMA; allocate it with
1296  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1297  *	of this buffer will be modified.  This buffer is used for the data
1298  *	stage of control transfers.
1299  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1300  *	the device driver is saying that it provided this DMA address,
1301  *	which the host controller driver should use in preference to the
1302  *	transfer_buffer.
1303  * @sg: scatter gather buffer list, the buffer size of each element in
1304  * 	the list (except the last) must be divisible by the endpoint's
1305  * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1306  * @num_mapped_sgs: (internal) number of mapped sg entries
1307  * @num_sgs: number of entries in the sg list
1308  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1309  *	be broken up into chunks according to the current maximum packet
1310  *	size for the endpoint, which is a function of the configuration
1311  *	and is encoded in the pipe.  When the length is zero, neither
1312  *	transfer_buffer nor transfer_dma is used.
1313  * @actual_length: This is read in non-iso completion functions, and
1314  *	it tells how many bytes (out of transfer_buffer_length) were
1315  *	transferred.  It will normally be the same as requested, unless
1316  *	either an error was reported or a short read was performed.
1317  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1318  *	short reads be reported as errors.
1319  * @setup_packet: Only used for control transfers, this points to eight bytes
1320  *	of setup data.  Control transfers always start by sending this data
1321  *	to the device.  Then transfer_buffer is read or written, if needed.
1322  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1323  *	this field; setup_packet must point to a valid buffer.
1324  * @start_frame: Returns the initial frame for isochronous transfers.
1325  * @number_of_packets: Lists the number of ISO transfer buffers.
1326  * @interval: Specifies the polling interval for interrupt or isochronous
1327  *	transfers.  The units are frames (milliseconds) for full and low
1328  *	speed devices, and microframes (1/8 millisecond) for highspeed
1329  *	and SuperSpeed devices.
1330  * @error_count: Returns the number of ISO transfers that reported errors.
1331  * @context: For use in completion functions.  This normally points to
1332  *	request-specific driver context.
1333  * @complete: Completion handler. This URB is passed as the parameter to the
1334  *	completion function.  The completion function may then do what
1335  *	it likes with the URB, including resubmitting or freeing it.
1336  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1337  *	collect the transfer status for each buffer.
1338  *
1339  * This structure identifies USB transfer requests.  URBs must be allocated by
1340  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1341  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1342  * are submitted using usb_submit_urb(), and pending requests may be canceled
1343  * using usb_unlink_urb() or usb_kill_urb().
1344  *
1345  * Data Transfer Buffers:
1346  *
1347  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1348  * taken from the general page pool.  That is provided by transfer_buffer
1349  * (control requests also use setup_packet), and host controller drivers
1350  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1351  * mapping operations can be expensive on some platforms (perhaps using a dma
1352  * bounce buffer or talking to an IOMMU),
1353  * although they're cheap on commodity x86 and ppc hardware.
1354  *
1355  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1356  * which tells the host controller driver that no such mapping is needed for
1357  * the transfer_buffer since
1358  * the device driver is DMA-aware.  For example, a device driver might
1359  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1360  * When this transfer flag is provided, host controller drivers will
1361  * attempt to use the dma address found in the transfer_dma
1362  * field rather than determining a dma address themselves.
1363  *
1364  * Note that transfer_buffer must still be set if the controller
1365  * does not support DMA (as indicated by bus.uses_dma) and when talking
1366  * to root hub. If you have to trasfer between highmem zone and the device
1367  * on such controller, create a bounce buffer or bail out with an error.
1368  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1369  * capable, assign NULL to it, so that usbmon knows not to use the value.
1370  * The setup_packet must always be set, so it cannot be located in highmem.
1371  *
1372  * Initialization:
1373  *
1374  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1375  * zero), and complete fields.  All URBs must also initialize
1376  * transfer_buffer and transfer_buffer_length.  They may provide the
1377  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1378  * to be treated as errors; that flag is invalid for write requests.
1379  *
1380  * Bulk URBs may
1381  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1382  * should always terminate with a short packet, even if it means adding an
1383  * extra zero length packet.
1384  *
1385  * Control URBs must provide a valid pointer in the setup_packet field.
1386  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1387  * beforehand.
1388  *
1389  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1390  * or, for highspeed devices, 125 microsecond units)
1391  * to poll for transfers.  After the URB has been submitted, the interval
1392  * field reflects how the transfer was actually scheduled.
1393  * The polling interval may be more frequent than requested.
1394  * For example, some controllers have a maximum interval of 32 milliseconds,
1395  * while others support intervals of up to 1024 milliseconds.
1396  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1397  * endpoints, as well as high speed interrupt endpoints, the encoding of
1398  * the transfer interval in the endpoint descriptor is logarithmic.
1399  * Device drivers must convert that value to linear units themselves.)
1400  *
1401  * If an isochronous endpoint queue isn't already running, the host
1402  * controller will schedule a new URB to start as soon as bandwidth
1403  * utilization allows.  If the queue is running then a new URB will be
1404  * scheduled to start in the first transfer slot following the end of the
1405  * preceding URB, if that slot has not already expired.  If the slot has
1406  * expired (which can happen when IRQ delivery is delayed for a long time),
1407  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1408  * is clear then the URB will be scheduled to start in the expired slot,
1409  * implying that some of its packets will not be transferred; if the flag
1410  * is set then the URB will be scheduled in the first unexpired slot,
1411  * breaking the queue's synchronization.  Upon URB completion, the
1412  * start_frame field will be set to the (micro)frame number in which the
1413  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1414  * and can go from as low as 256 to as high as 65536 frames.
1415  *
1416  * Isochronous URBs have a different data transfer model, in part because
1417  * the quality of service is only "best effort".  Callers provide specially
1418  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1419  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1420  * URBs are normally queued, submitted by drivers to arrange that
1421  * transfers are at least double buffered, and then explicitly resubmitted
1422  * in completion handlers, so
1423  * that data (such as audio or video) streams at as constant a rate as the
1424  * host controller scheduler can support.
1425  *
1426  * Completion Callbacks:
1427  *
1428  * The completion callback is made in_interrupt(), and one of the first
1429  * things that a completion handler should do is check the status field.
1430  * The status field is provided for all URBs.  It is used to report
1431  * unlinked URBs, and status for all non-ISO transfers.  It should not
1432  * be examined before the URB is returned to the completion handler.
1433  *
1434  * The context field is normally used to link URBs back to the relevant
1435  * driver or request state.
1436  *
1437  * When the completion callback is invoked for non-isochronous URBs, the
1438  * actual_length field tells how many bytes were transferred.  This field
1439  * is updated even when the URB terminated with an error or was unlinked.
1440  *
1441  * ISO transfer status is reported in the status and actual_length fields
1442  * of the iso_frame_desc array, and the number of errors is reported in
1443  * error_count.  Completion callbacks for ISO transfers will normally
1444  * (re)submit URBs to ensure a constant transfer rate.
1445  *
1446  * Note that even fields marked "public" should not be touched by the driver
1447  * when the urb is owned by the hcd, that is, since the call to
1448  * usb_submit_urb() till the entry into the completion routine.
1449  */
1450 struct urb {
1451 	/* private: usb core and host controller only fields in the urb */
1452 	struct kref kref;		/* reference count of the URB */
1453 	void *hcpriv;			/* private data for host controller */
1454 	atomic_t use_count;		/* concurrent submissions counter */
1455 	atomic_t reject;		/* submissions will fail */
1456 	int unlinked;			/* unlink error code */
1457 
1458 	/* public: documented fields in the urb that can be used by drivers */
1459 	struct list_head urb_list;	/* list head for use by the urb's
1460 					 * current owner */
1461 	struct list_head anchor_list;	/* the URB may be anchored */
1462 	struct usb_anchor *anchor;
1463 	struct usb_device *dev;		/* (in) pointer to associated device */
1464 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1465 	unsigned int pipe;		/* (in) pipe information */
1466 	unsigned int stream_id;		/* (in) stream ID */
1467 	int status;			/* (return) non-ISO status */
1468 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1469 	void *transfer_buffer;		/* (in) associated data buffer */
1470 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1471 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1472 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1473 	int num_sgs;			/* (in) number of entries in the sg list */
1474 	u32 transfer_buffer_length;	/* (in) data buffer length */
1475 	u32 actual_length;		/* (return) actual transfer length */
1476 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1477 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1478 	int start_frame;		/* (modify) start frame (ISO) */
1479 	int number_of_packets;		/* (in) number of ISO packets */
1480 	int interval;			/* (modify) transfer interval
1481 					 * (INT/ISO) */
1482 	int error_count;		/* (return) number of ISO errors */
1483 	void *context;			/* (in) context for completion */
1484 	usb_complete_t complete;	/* (in) completion routine */
1485 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1486 					/* (in) ISO ONLY */
1487 };
1488 
1489 /* ----------------------------------------------------------------------- */
1490 
1491 /**
1492  * usb_fill_control_urb - initializes a control urb
1493  * @urb: pointer to the urb to initialize.
1494  * @dev: pointer to the struct usb_device for this urb.
1495  * @pipe: the endpoint pipe
1496  * @setup_packet: pointer to the setup_packet buffer
1497  * @transfer_buffer: pointer to the transfer buffer
1498  * @buffer_length: length of the transfer buffer
1499  * @complete_fn: pointer to the usb_complete_t function
1500  * @context: what to set the urb context to.
1501  *
1502  * Initializes a control urb with the proper information needed to submit
1503  * it to a device.
1504  */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1505 static inline void usb_fill_control_urb(struct urb *urb,
1506 					struct usb_device *dev,
1507 					unsigned int pipe,
1508 					unsigned char *setup_packet,
1509 					void *transfer_buffer,
1510 					int buffer_length,
1511 					usb_complete_t complete_fn,
1512 					void *context)
1513 {
1514 	urb->dev = dev;
1515 	urb->pipe = pipe;
1516 	urb->setup_packet = setup_packet;
1517 	urb->transfer_buffer = transfer_buffer;
1518 	urb->transfer_buffer_length = buffer_length;
1519 	urb->complete = complete_fn;
1520 	urb->context = context;
1521 }
1522 
1523 /**
1524  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1525  * @urb: pointer to the urb to initialize.
1526  * @dev: pointer to the struct usb_device for this urb.
1527  * @pipe: the endpoint pipe
1528  * @transfer_buffer: pointer to the transfer buffer
1529  * @buffer_length: length of the transfer buffer
1530  * @complete_fn: pointer to the usb_complete_t function
1531  * @context: what to set the urb context to.
1532  *
1533  * Initializes a bulk urb with the proper information needed to submit it
1534  * to a device.
1535  */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1536 static inline void usb_fill_bulk_urb(struct urb *urb,
1537 				     struct usb_device *dev,
1538 				     unsigned int pipe,
1539 				     void *transfer_buffer,
1540 				     int buffer_length,
1541 				     usb_complete_t complete_fn,
1542 				     void *context)
1543 {
1544 	urb->dev = dev;
1545 	urb->pipe = pipe;
1546 	urb->transfer_buffer = transfer_buffer;
1547 	urb->transfer_buffer_length = buffer_length;
1548 	urb->complete = complete_fn;
1549 	urb->context = context;
1550 }
1551 
1552 /**
1553  * usb_fill_int_urb - macro to help initialize a interrupt urb
1554  * @urb: pointer to the urb to initialize.
1555  * @dev: pointer to the struct usb_device for this urb.
1556  * @pipe: the endpoint pipe
1557  * @transfer_buffer: pointer to the transfer buffer
1558  * @buffer_length: length of the transfer buffer
1559  * @complete_fn: pointer to the usb_complete_t function
1560  * @context: what to set the urb context to.
1561  * @interval: what to set the urb interval to, encoded like
1562  *	the endpoint descriptor's bInterval value.
1563  *
1564  * Initializes a interrupt urb with the proper information needed to submit
1565  * it to a device.
1566  *
1567  * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1568  * encoding of the endpoint interval, and express polling intervals in
1569  * microframes (eight per millisecond) rather than in frames (one per
1570  * millisecond).
1571  *
1572  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1573  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1574  * through to the host controller, rather than being translated into microframe
1575  * units.
1576  */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1577 static inline void usb_fill_int_urb(struct urb *urb,
1578 				    struct usb_device *dev,
1579 				    unsigned int pipe,
1580 				    void *transfer_buffer,
1581 				    int buffer_length,
1582 				    usb_complete_t complete_fn,
1583 				    void *context,
1584 				    int interval)
1585 {
1586 	urb->dev = dev;
1587 	urb->pipe = pipe;
1588 	urb->transfer_buffer = transfer_buffer;
1589 	urb->transfer_buffer_length = buffer_length;
1590 	urb->complete = complete_fn;
1591 	urb->context = context;
1592 
1593 	if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1594 		/* make sure interval is within allowed range */
1595 		interval = clamp(interval, 1, 16);
1596 
1597 		urb->interval = 1 << (interval - 1);
1598 	} else {
1599 		urb->interval = interval;
1600 	}
1601 
1602 	urb->start_frame = -1;
1603 }
1604 
1605 extern void usb_init_urb(struct urb *urb);
1606 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1607 extern void usb_free_urb(struct urb *urb);
1608 #define usb_put_urb usb_free_urb
1609 extern struct urb *usb_get_urb(struct urb *urb);
1610 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1611 extern int usb_unlink_urb(struct urb *urb);
1612 extern void usb_kill_urb(struct urb *urb);
1613 extern void usb_poison_urb(struct urb *urb);
1614 extern void usb_unpoison_urb(struct urb *urb);
1615 extern void usb_block_urb(struct urb *urb);
1616 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1617 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1618 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1619 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1620 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1621 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1622 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1623 extern void usb_unanchor_urb(struct urb *urb);
1624 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1625 					 unsigned int timeout);
1626 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1627 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1628 extern int usb_anchor_empty(struct usb_anchor *anchor);
1629 
1630 #define usb_unblock_urb	usb_unpoison_urb
1631 
1632 /**
1633  * usb_urb_dir_in - check if an URB describes an IN transfer
1634  * @urb: URB to be checked
1635  *
1636  * Return: 1 if @urb describes an IN transfer (device-to-host),
1637  * otherwise 0.
1638  */
usb_urb_dir_in(struct urb * urb)1639 static inline int usb_urb_dir_in(struct urb *urb)
1640 {
1641 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1642 }
1643 
1644 /**
1645  * usb_urb_dir_out - check if an URB describes an OUT transfer
1646  * @urb: URB to be checked
1647  *
1648  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1649  * otherwise 0.
1650  */
usb_urb_dir_out(struct urb * urb)1651 static inline int usb_urb_dir_out(struct urb *urb)
1652 {
1653 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1654 }
1655 
1656 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1657 	gfp_t mem_flags, dma_addr_t *dma);
1658 void usb_free_coherent(struct usb_device *dev, size_t size,
1659 	void *addr, dma_addr_t dma);
1660 
1661 #if 0
1662 struct urb *usb_buffer_map(struct urb *urb);
1663 void usb_buffer_dmasync(struct urb *urb);
1664 void usb_buffer_unmap(struct urb *urb);
1665 #endif
1666 
1667 struct scatterlist;
1668 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1669 		      struct scatterlist *sg, int nents);
1670 #if 0
1671 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1672 			   struct scatterlist *sg, int n_hw_ents);
1673 #endif
1674 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1675 			 struct scatterlist *sg, int n_hw_ents);
1676 
1677 /*-------------------------------------------------------------------*
1678  *                         SYNCHRONOUS CALL SUPPORT                  *
1679  *-------------------------------------------------------------------*/
1680 
1681 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1682 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1683 	void *data, __u16 size, int timeout);
1684 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1685 	void *data, int len, int *actual_length, int timeout);
1686 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1687 	void *data, int len, int *actual_length,
1688 	int timeout);
1689 
1690 /* wrappers around usb_control_msg() for the most common standard requests */
1691 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1692 	unsigned char descindex, void *buf, int size);
1693 extern int usb_get_status(struct usb_device *dev,
1694 	int type, int target, void *data);
1695 extern int usb_string(struct usb_device *dev, int index,
1696 	char *buf, size_t size);
1697 
1698 /* wrappers that also update important state inside usbcore */
1699 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1700 extern int usb_reset_configuration(struct usb_device *dev);
1701 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1702 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1703 
1704 /* this request isn't really synchronous, but it belongs with the others */
1705 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1706 
1707 /* choose and set configuration for device */
1708 extern int usb_choose_configuration(struct usb_device *udev);
1709 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1710 
1711 /*
1712  * timeouts, in milliseconds, used for sending/receiving control messages
1713  * they typically complete within a few frames (msec) after they're issued
1714  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1715  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1716  */
1717 #define USB_CTRL_GET_TIMEOUT	5000
1718 #define USB_CTRL_SET_TIMEOUT	5000
1719 
1720 
1721 /**
1722  * struct usb_sg_request - support for scatter/gather I/O
1723  * @status: zero indicates success, else negative errno
1724  * @bytes: counts bytes transferred.
1725  *
1726  * These requests are initialized using usb_sg_init(), and then are used
1727  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1728  * members of the request object aren't for driver access.
1729  *
1730  * The status and bytecount values are valid only after usb_sg_wait()
1731  * returns.  If the status is zero, then the bytecount matches the total
1732  * from the request.
1733  *
1734  * After an error completion, drivers may need to clear a halt condition
1735  * on the endpoint.
1736  */
1737 struct usb_sg_request {
1738 	int			status;
1739 	size_t			bytes;
1740 
1741 	/* private:
1742 	 * members below are private to usbcore,
1743 	 * and are not provided for driver access!
1744 	 */
1745 	spinlock_t		lock;
1746 
1747 	struct usb_device	*dev;
1748 	int			pipe;
1749 
1750 	int			entries;
1751 	struct urb		**urbs;
1752 
1753 	int			count;
1754 	struct completion	complete;
1755 };
1756 
1757 int usb_sg_init(
1758 	struct usb_sg_request	*io,
1759 	struct usb_device	*dev,
1760 	unsigned		pipe,
1761 	unsigned		period,
1762 	struct scatterlist	*sg,
1763 	int			nents,
1764 	size_t			length,
1765 	gfp_t			mem_flags
1766 );
1767 void usb_sg_cancel(struct usb_sg_request *io);
1768 void usb_sg_wait(struct usb_sg_request *io);
1769 
1770 
1771 /* ----------------------------------------------------------------------- */
1772 
1773 /*
1774  * For various legacy reasons, Linux has a small cookie that's paired with
1775  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1776  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1777  * an unsigned int encoded as:
1778  *
1779  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1780  *					 1 = Device-to-Host [In] ...
1781  *					like endpoint bEndpointAddress)
1782  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1783  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1784  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1785  *					 10 = control, 11 = bulk)
1786  *
1787  * Given the device address and endpoint descriptor, pipes are redundant.
1788  */
1789 
1790 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1791 /* (yet ... they're the values used by usbfs) */
1792 #define PIPE_ISOCHRONOUS		0
1793 #define PIPE_INTERRUPT			1
1794 #define PIPE_CONTROL			2
1795 #define PIPE_BULK			3
1796 
1797 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1798 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1799 
1800 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1801 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1802 
1803 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1804 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1805 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1806 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1807 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1808 
__create_pipe(struct usb_device * dev,unsigned int endpoint)1809 static inline unsigned int __create_pipe(struct usb_device *dev,
1810 		unsigned int endpoint)
1811 {
1812 	return (dev->devnum << 8) | (endpoint << 15);
1813 }
1814 
1815 /* Create various pipes... */
1816 #define usb_sndctrlpipe(dev, endpoint)	\
1817 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1818 #define usb_rcvctrlpipe(dev, endpoint)	\
1819 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1820 #define usb_sndisocpipe(dev, endpoint)	\
1821 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1822 #define usb_rcvisocpipe(dev, endpoint)	\
1823 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1824 #define usb_sndbulkpipe(dev, endpoint)	\
1825 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1826 #define usb_rcvbulkpipe(dev, endpoint)	\
1827 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1828 #define usb_sndintpipe(dev, endpoint)	\
1829 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1830 #define usb_rcvintpipe(dev, endpoint)	\
1831 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1832 
1833 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1834 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1835 {
1836 	struct usb_host_endpoint **eps;
1837 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1838 	return eps[usb_pipeendpoint(pipe)];
1839 }
1840 
1841 /*-------------------------------------------------------------------------*/
1842 
1843 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1844 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1845 {
1846 	struct usb_host_endpoint	*ep;
1847 	unsigned			epnum = usb_pipeendpoint(pipe);
1848 
1849 	if (is_out) {
1850 		WARN_ON(usb_pipein(pipe));
1851 		ep = udev->ep_out[epnum];
1852 	} else {
1853 		WARN_ON(usb_pipeout(pipe));
1854 		ep = udev->ep_in[epnum];
1855 	}
1856 	if (!ep)
1857 		return 0;
1858 
1859 	/* NOTE:  only 0x07ff bits are for packet size... */
1860 	return usb_endpoint_maxp(&ep->desc);
1861 }
1862 
1863 /* ----------------------------------------------------------------------- */
1864 
1865 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)1866 static inline int usb_translate_errors(int error_code)
1867 {
1868 	switch (error_code) {
1869 	case 0:
1870 	case -ENOMEM:
1871 	case -ENODEV:
1872 	case -EOPNOTSUPP:
1873 		return error_code;
1874 	default:
1875 		return -EIO;
1876 	}
1877 }
1878 
1879 /* Events from the usb core */
1880 #define USB_DEVICE_ADD		0x0001
1881 #define USB_DEVICE_REMOVE	0x0002
1882 #define USB_BUS_ADD		0x0003
1883 #define USB_BUS_REMOVE		0x0004
1884 extern void usb_register_notify(struct notifier_block *nb);
1885 extern void usb_unregister_notify(struct notifier_block *nb);
1886 
1887 /* debugfs stuff */
1888 extern struct dentry *usb_debug_root;
1889 
1890 /* LED triggers */
1891 enum usb_led_event {
1892 	USB_LED_EVENT_HOST = 0,
1893 	USB_LED_EVENT_GADGET = 1,
1894 };
1895 
1896 #ifdef CONFIG_USB_LED_TRIG
1897 extern void usb_led_activity(enum usb_led_event ev);
1898 #else
usb_led_activity(enum usb_led_event ev)1899 static inline void usb_led_activity(enum usb_led_event ev) {}
1900 #endif
1901 
1902 #endif  /* __KERNEL__ */
1903 
1904 #endif
1905