1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/base/internal/sysinfo.h"
16
17 #include "absl/base/attributes.h"
18
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <fcntl.h>
23 #include <pthread.h>
24 #include <sys/stat.h>
25 #include <sys/types.h>
26 #include <unistd.h>
27 #endif
28
29 #ifdef __linux__
30 #include <sys/syscall.h>
31 #endif
32
33 #if defined(__APPLE__) || defined(__FreeBSD__)
34 #include <sys/sysctl.h>
35 #endif
36
37 #if defined(__myriad2__)
38 #include <rtems.h>
39 #endif
40
41 #include <string.h>
42 #include <cassert>
43 #include <cstdint>
44 #include <cstdio>
45 #include <cstdlib>
46 #include <ctime>
47 #include <limits>
48 #include <thread> // NOLINT(build/c++11)
49 #include <utility>
50 #include <vector>
51
52 #include "absl/base/call_once.h"
53 #include "absl/base/internal/raw_logging.h"
54 #include "absl/base/internal/spinlock.h"
55 #include "absl/base/internal/unscaledcycleclock.h"
56
57 namespace absl {
58 ABSL_NAMESPACE_BEGIN
59 namespace base_internal {
60
GetNumCPUs()61 static int GetNumCPUs() {
62 #if defined(__myriad2__)
63 return 1;
64 #else
65 // Other possibilities:
66 // - Read /sys/devices/system/cpu/online and use cpumask_parse()
67 // - sysconf(_SC_NPROCESSORS_ONLN)
68 return std::thread::hardware_concurrency();
69 #endif
70 }
71
72 #if defined(_WIN32)
73
GetNominalCPUFrequency()74 static double GetNominalCPUFrequency() {
75 #pragma comment(lib, "advapi32.lib") // For Reg* functions.
76 HKEY key;
77 // Use the Reg* functions rather than the SH functions because shlwapi.dll
78 // pulls in gdi32.dll which makes process destruction much more costly.
79 if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,
80 "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0,
81 KEY_READ, &key) == ERROR_SUCCESS) {
82 DWORD type = 0;
83 DWORD data = 0;
84 DWORD data_size = sizeof(data);
85 auto result = RegQueryValueExA(key, "~MHz", 0, &type,
86 reinterpret_cast<LPBYTE>(&data), &data_size);
87 RegCloseKey(key);
88 if (result == ERROR_SUCCESS && type == REG_DWORD &&
89 data_size == sizeof(data)) {
90 return data * 1e6; // Value is MHz.
91 }
92 }
93 return 1.0;
94 }
95
96 #elif defined(CTL_HW) && defined(HW_CPU_FREQ)
97
GetNominalCPUFrequency()98 static double GetNominalCPUFrequency() {
99 unsigned freq;
100 size_t size = sizeof(freq);
101 int mib[2] = {CTL_HW, HW_CPU_FREQ};
102 if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) {
103 return static_cast<double>(freq);
104 }
105 return 1.0;
106 }
107
108 #else
109
110 // Helper function for reading a long from a file. Returns true if successful
111 // and the memory location pointed to by value is set to the value read.
ReadLongFromFile(const char * file,long * value)112 static bool ReadLongFromFile(const char *file, long *value) {
113 bool ret = false;
114 int fd = open(file, O_RDONLY);
115 if (fd != -1) {
116 char line[1024];
117 char *err;
118 memset(line, '\0', sizeof(line));
119 int len = read(fd, line, sizeof(line) - 1);
120 if (len <= 0) {
121 ret = false;
122 } else {
123 const long temp_value = strtol(line, &err, 10);
124 if (line[0] != '\0' && (*err == '\n' || *err == '\0')) {
125 *value = temp_value;
126 ret = true;
127 }
128 }
129 close(fd);
130 }
131 return ret;
132 }
133
134 #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
135
136 // Reads a monotonic time source and returns a value in
137 // nanoseconds. The returned value uses an arbitrary epoch, not the
138 // Unix epoch.
ReadMonotonicClockNanos()139 static int64_t ReadMonotonicClockNanos() {
140 struct timespec t;
141 #ifdef CLOCK_MONOTONIC_RAW
142 int rc = clock_gettime(CLOCK_MONOTONIC_RAW, &t);
143 #else
144 int rc = clock_gettime(CLOCK_MONOTONIC, &t);
145 #endif
146 if (rc != 0) {
147 perror("clock_gettime() failed");
148 abort();
149 }
150 return int64_t{t.tv_sec} * 1000000000 + t.tv_nsec;
151 }
152
153 class UnscaledCycleClockWrapperForInitializeFrequency {
154 public:
Now()155 static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); }
156 };
157
158 struct TimeTscPair {
159 int64_t time; // From ReadMonotonicClockNanos().
160 int64_t tsc; // From UnscaledCycleClock::Now().
161 };
162
163 // Returns a pair of values (monotonic kernel time, TSC ticks) that
164 // approximately correspond to each other. This is accomplished by
165 // doing several reads and picking the reading with the lowest
166 // latency. This approach is used to minimize the probability that
167 // our thread was preempted between clock reads.
GetTimeTscPair()168 static TimeTscPair GetTimeTscPair() {
169 int64_t best_latency = std::numeric_limits<int64_t>::max();
170 TimeTscPair best;
171 for (int i = 0; i < 10; ++i) {
172 int64_t t0 = ReadMonotonicClockNanos();
173 int64_t tsc = UnscaledCycleClockWrapperForInitializeFrequency::Now();
174 int64_t t1 = ReadMonotonicClockNanos();
175 int64_t latency = t1 - t0;
176 if (latency < best_latency) {
177 best_latency = latency;
178 best.time = t0;
179 best.tsc = tsc;
180 }
181 }
182 return best;
183 }
184
185 // Measures and returns the TSC frequency by taking a pair of
186 // measurements approximately `sleep_nanoseconds` apart.
MeasureTscFrequencyWithSleep(int sleep_nanoseconds)187 static double MeasureTscFrequencyWithSleep(int sleep_nanoseconds) {
188 auto t0 = GetTimeTscPair();
189 struct timespec ts;
190 ts.tv_sec = 0;
191 ts.tv_nsec = sleep_nanoseconds;
192 while (nanosleep(&ts, &ts) != 0 && errno == EINTR) {}
193 auto t1 = GetTimeTscPair();
194 double elapsed_ticks = t1.tsc - t0.tsc;
195 double elapsed_time = (t1.time - t0.time) * 1e-9;
196 return elapsed_ticks / elapsed_time;
197 }
198
199 // Measures and returns the TSC frequency by calling
200 // MeasureTscFrequencyWithSleep(), doubling the sleep interval until the
201 // frequency measurement stabilizes.
MeasureTscFrequency()202 static double MeasureTscFrequency() {
203 double last_measurement = -1.0;
204 int sleep_nanoseconds = 1000000; // 1 millisecond.
205 for (int i = 0; i < 8; ++i) {
206 double measurement = MeasureTscFrequencyWithSleep(sleep_nanoseconds);
207 if (measurement * 0.99 < last_measurement &&
208 last_measurement < measurement * 1.01) {
209 // Use the current measurement if it is within 1% of the
210 // previous measurement.
211 return measurement;
212 }
213 last_measurement = measurement;
214 sleep_nanoseconds *= 2;
215 }
216 return last_measurement;
217 }
218
219 #endif // ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
220
GetNominalCPUFrequency()221 static double GetNominalCPUFrequency() {
222 long freq = 0;
223
224 // Google's production kernel has a patch to export the TSC
225 // frequency through sysfs. If the kernel is exporting the TSC
226 // frequency use that. There are issues where cpuinfo_max_freq
227 // cannot be relied on because the BIOS may be exporting an invalid
228 // p-state (on x86) or p-states may be used to put the processor in
229 // a new mode (turbo mode). Essentially, those frequencies cannot
230 // always be relied upon. The same reasons apply to /proc/cpuinfo as
231 // well.
232 if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)) {
233 return freq * 1e3; // Value is kHz.
234 }
235
236 #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
237 // On these platforms, the TSC frequency is the nominal CPU
238 // frequency. But without having the kernel export it directly
239 // though /sys/devices/system/cpu/cpu0/tsc_freq_khz, there is no
240 // other way to reliably get the TSC frequency, so we have to
241 // measure it ourselves. Some CPUs abuse cpuinfo_max_freq by
242 // exporting "fake" frequencies for implementing new features. For
243 // example, Intel's turbo mode is enabled by exposing a p-state
244 // value with a higher frequency than that of the real TSC
245 // rate. Because of this, we prefer to measure the TSC rate
246 // ourselves on i386 and x86-64.
247 return MeasureTscFrequency();
248 #else
249
250 // If CPU scaling is in effect, we want to use the *maximum*
251 // frequency, not whatever CPU speed some random processor happens
252 // to be using now.
253 if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
254 &freq)) {
255 return freq * 1e3; // Value is kHz.
256 }
257
258 return 1.0;
259 #endif // !ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
260 }
261
262 #endif
263
264 ABSL_CONST_INIT static once_flag init_num_cpus_once;
265 ABSL_CONST_INIT static int num_cpus = 0;
266
267 // NumCPUs() may be called before main() and before malloc is properly
268 // initialized, therefore this must not allocate memory.
NumCPUs()269 int NumCPUs() {
270 base_internal::LowLevelCallOnce(
271 &init_num_cpus_once, []() { num_cpus = GetNumCPUs(); });
272 return num_cpus;
273 }
274
275 // A default frequency of 0.0 might be dangerous if it is used in division.
276 ABSL_CONST_INIT static once_flag init_nominal_cpu_frequency_once;
277 ABSL_CONST_INIT static double nominal_cpu_frequency = 1.0;
278
279 // NominalCPUFrequency() may be called before main() and before malloc is
280 // properly initialized, therefore this must not allocate memory.
NominalCPUFrequency()281 double NominalCPUFrequency() {
282 base_internal::LowLevelCallOnce(
283 &init_nominal_cpu_frequency_once,
284 []() { nominal_cpu_frequency = GetNominalCPUFrequency(); });
285 return nominal_cpu_frequency;
286 }
287
288 #if defined(_WIN32)
289
GetTID()290 pid_t GetTID() {
291 return pid_t{GetCurrentThreadId()};
292 }
293
294 #elif defined(__linux__)
295
296 #ifndef SYS_gettid
297 #define SYS_gettid __NR_gettid
298 #endif
299
GetTID()300 pid_t GetTID() {
301 return syscall(SYS_gettid);
302 }
303
304 #elif defined(__akaros__)
305
GetTID()306 pid_t GetTID() {
307 // Akaros has a concept of "vcore context", which is the state the program
308 // is forced into when we need to make a user-level scheduling decision, or
309 // run a signal handler. This is analogous to the interrupt context that a
310 // CPU might enter if it encounters some kind of exception.
311 //
312 // There is no current thread context in vcore context, but we need to give
313 // a reasonable answer if asked for a thread ID (e.g., in a signal handler).
314 // Thread 0 always exists, so if we are in vcore context, we return that.
315 //
316 // Otherwise, we know (since we are using pthreads) that the uthread struct
317 // current_uthread is pointing to is the first element of a
318 // struct pthread_tcb, so we extract and return the thread ID from that.
319 //
320 // TODO(dcross): Akaros anticipates moving the thread ID to the uthread
321 // structure at some point. We should modify this code to remove the cast
322 // when that happens.
323 if (in_vcore_context())
324 return 0;
325 return reinterpret_cast<struct pthread_tcb *>(current_uthread)->id;
326 }
327
328 #elif defined(__myriad2__)
329
GetTID()330 pid_t GetTID() {
331 uint32_t tid;
332 rtems_task_ident(RTEMS_SELF, 0, &tid);
333 return tid;
334 }
335
336 #else
337
338 // Fallback implementation of GetTID using pthread_getspecific.
339 static once_flag tid_once;
340 static pthread_key_t tid_key;
341 static absl::base_internal::SpinLock tid_lock(
342 absl::base_internal::kLinkerInitialized);
343
344 // We set a bit per thread in this array to indicate that an ID is in
345 // use. ID 0 is unused because it is the default value returned by
346 // pthread_getspecific().
347 static std::vector<uint32_t>* tid_array GUARDED_BY(tid_lock) = nullptr;
348 static constexpr int kBitsPerWord = 32; // tid_array is uint32_t.
349
350 // Returns the TID to tid_array.
FreeTID(void * v)351 static void FreeTID(void *v) {
352 intptr_t tid = reinterpret_cast<intptr_t>(v);
353 int word = tid / kBitsPerWord;
354 uint32_t mask = ~(1u << (tid % kBitsPerWord));
355 absl::base_internal::SpinLockHolder lock(&tid_lock);
356 assert(0 <= word && static_cast<size_t>(word) < tid_array->size());
357 (*tid_array)[word] &= mask;
358 }
359
InitGetTID()360 static void InitGetTID() {
361 if (pthread_key_create(&tid_key, FreeTID) != 0) {
362 // The logging system calls GetTID() so it can't be used here.
363 perror("pthread_key_create failed");
364 abort();
365 }
366
367 // Initialize tid_array.
368 absl::base_internal::SpinLockHolder lock(&tid_lock);
369 tid_array = new std::vector<uint32_t>(1);
370 (*tid_array)[0] = 1; // ID 0 is never-allocated.
371 }
372
373 // Return a per-thread small integer ID from pthread's thread-specific data.
GetTID()374 pid_t GetTID() {
375 absl::call_once(tid_once, InitGetTID);
376
377 intptr_t tid = reinterpret_cast<intptr_t>(pthread_getspecific(tid_key));
378 if (tid != 0) {
379 return tid;
380 }
381
382 int bit; // tid_array[word] = 1u << bit;
383 size_t word;
384 {
385 // Search for the first unused ID.
386 absl::base_internal::SpinLockHolder lock(&tid_lock);
387 // First search for a word in the array that is not all ones.
388 word = 0;
389 while (word < tid_array->size() && ~(*tid_array)[word] == 0) {
390 ++word;
391 }
392 if (word == tid_array->size()) {
393 tid_array->push_back(0); // No space left, add kBitsPerWord more IDs.
394 }
395 // Search for a zero bit in the word.
396 bit = 0;
397 while (bit < kBitsPerWord && (((*tid_array)[word] >> bit) & 1) != 0) {
398 ++bit;
399 }
400 tid = (word * kBitsPerWord) + bit;
401 (*tid_array)[word] |= 1u << bit; // Mark the TID as allocated.
402 }
403
404 if (pthread_setspecific(tid_key, reinterpret_cast<void *>(tid)) != 0) {
405 perror("pthread_setspecific failed");
406 abort();
407 }
408
409 return static_cast<pid_t>(tid);
410 }
411
412 #endif
413
414 } // namespace base_internal
415 ABSL_NAMESPACE_END
416 } // namespace absl
417