• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: btree_map.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines B-tree maps: sorted associative containers mapping
20 // keys to values.
21 //
22 //     * `absl::btree_map<>`
23 //     * `absl::btree_multimap<>`
24 //
25 // These B-tree types are similar to the corresponding types in the STL
26 // (`std::map` and `std::multimap`) and generally conform to the STL interfaces
27 // of those types. However, because they are implemented using B-trees, they
28 // are more efficient in most situations.
29 //
30 // Unlike `std::map` and `std::multimap`, which are commonly implemented using
31 // red-black tree nodes, B-tree maps use more generic B-tree nodes able to hold
32 // multiple values per node. Holding multiple values per node often makes
33 // B-tree maps perform better than their `std::map` counterparts, because
34 // multiple entries can be checked within the same cache hit.
35 //
36 // However, these types should not be considered drop-in replacements for
37 // `std::map` and `std::multimap` as there are some API differences, which are
38 // noted in this header file.
39 //
40 // Importantly, insertions and deletions may invalidate outstanding iterators,
41 // pointers, and references to elements. Such invalidations are typically only
42 // an issue if insertion and deletion operations are interleaved with the use of
43 // more than one iterator, pointer, or reference simultaneously. For this
44 // reason, `insert()` and `erase()` return a valid iterator at the current
45 // position.
46 
47 #ifndef ABSL_CONTAINER_BTREE_MAP_H_
48 #define ABSL_CONTAINER_BTREE_MAP_H_
49 
50 #include "absl/container/internal/btree.h"  // IWYU pragma: export
51 #include "absl/container/internal/btree_container.h"  // IWYU pragma: export
52 
53 namespace absl {
54 ABSL_NAMESPACE_BEGIN
55 
56 // absl::btree_map<>
57 //
58 // An `absl::btree_map<K, V>` is an ordered associative container of
59 // unique keys and associated values designed to be a more efficient replacement
60 // for `std::map` (in most cases).
61 //
62 // Keys are sorted using an (optional) comparison function, which defaults to
63 // `std::less<K>`.
64 //
65 // An `absl::btree_map<K, V>` uses a default allocator of
66 // `std::allocator<std::pair<const K, V>>` to allocate (and deallocate)
67 // nodes, and construct and destruct values within those nodes. You may
68 // instead specify a custom allocator `A` (which in turn requires specifying a
69 // custom comparator `C`) as in `absl::btree_map<K, V, C, A>`.
70 //
71 template <typename Key, typename Value, typename Compare = std::less<Key>,
72           typename Alloc = std::allocator<std::pair<const Key, Value>>>
73 class btree_map
74     : public container_internal::btree_map_container<
75           container_internal::btree<container_internal::map_params<
76               Key, Value, Compare, Alloc, /*TargetNodeSize=*/256,
77               /*Multi=*/false>>> {
78   using Base = typename btree_map::btree_map_container;
79 
80  public:
81   // Constructors and Assignment Operators
82   //
83   // A `btree_map` supports the same overload set as `std::map`
84   // for construction and assignment:
85   //
86   // * Default constructor
87   //
88   //   absl::btree_map<int, std::string> map1;
89   //
90   // * Initializer List constructor
91   //
92   //   absl::btree_map<int, std::string> map2 =
93   //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
94   //
95   // * Copy constructor
96   //
97   //   absl::btree_map<int, std::string> map3(map2);
98   //
99   // * Copy assignment operator
100   //
101   //  absl::btree_map<int, std::string> map4;
102   //  map4 = map3;
103   //
104   // * Move constructor
105   //
106   //   // Move is guaranteed efficient
107   //   absl::btree_map<int, std::string> map5(std::move(map4));
108   //
109   // * Move assignment operator
110   //
111   //   // May be efficient if allocators are compatible
112   //   absl::btree_map<int, std::string> map6;
113   //   map6 = std::move(map5);
114   //
115   // * Range constructor
116   //
117   //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
118   //   absl::btree_map<int, std::string> map7(v.begin(), v.end());
btree_map()119   btree_map() {}
120   using Base::Base;
121 
122   // btree_map::begin()
123   //
124   // Returns an iterator to the beginning of the `btree_map`.
125   using Base::begin;
126 
127   // btree_map::cbegin()
128   //
129   // Returns a const iterator to the beginning of the `btree_map`.
130   using Base::cbegin;
131 
132   // btree_map::end()
133   //
134   // Returns an iterator to the end of the `btree_map`.
135   using Base::end;
136 
137   // btree_map::cend()
138   //
139   // Returns a const iterator to the end of the `btree_map`.
140   using Base::cend;
141 
142   // btree_map::empty()
143   //
144   // Returns whether or not the `btree_map` is empty.
145   using Base::empty;
146 
147   // btree_map::max_size()
148   //
149   // Returns the largest theoretical possible number of elements within a
150   // `btree_map` under current memory constraints. This value can be thought
151   // of as the largest value of `std::distance(begin(), end())` for a
152   // `btree_map<Key, T>`.
153   using Base::max_size;
154 
155   // btree_map::size()
156   //
157   // Returns the number of elements currently within the `btree_map`.
158   using Base::size;
159 
160   // btree_map::clear()
161   //
162   // Removes all elements from the `btree_map`. Invalidates any references,
163   // pointers, or iterators referring to contained elements.
164   using Base::clear;
165 
166   // btree_map::erase()
167   //
168   // Erases elements within the `btree_map`. If an erase occurs, any references,
169   // pointers, or iterators are invalidated.
170   // Overloads are listed below.
171   //
172   // iterator erase(iterator position):
173   // iterator erase(const_iterator position):
174   //
175   //   Erases the element at `position` of the `btree_map`, returning
176   //   the iterator pointing to the element after the one that was erased
177   //   (or end() if none exists).
178   //
179   // iterator erase(const_iterator first, const_iterator last):
180   //
181   //   Erases the elements in the open interval [`first`, `last`), returning
182   //   the iterator pointing to the element after the interval that was erased
183   //   (or end() if none exists).
184   //
185   // template <typename K> size_type erase(const K& key):
186   //
187   //   Erases the element with the matching key, if it exists, returning the
188   //   number of elements erased.
189   using Base::erase;
190 
191   // btree_map::insert()
192   //
193   // Inserts an element of the specified value into the `btree_map`,
194   // returning an iterator pointing to the newly inserted element, provided that
195   // an element with the given key does not already exist. If an insertion
196   // occurs, any references, pointers, or iterators are invalidated.
197   // Overloads are listed below.
198   //
199   // std::pair<iterator,bool> insert(const value_type& value):
200   //
201   //   Inserts a value into the `btree_map`. Returns a pair consisting of an
202   //   iterator to the inserted element (or to the element that prevented the
203   //   insertion) and a bool denoting whether the insertion took place.
204   //
205   // std::pair<iterator,bool> insert(value_type&& value):
206   //
207   //   Inserts a moveable value into the `btree_map`. Returns a pair
208   //   consisting of an iterator to the inserted element (or to the element that
209   //   prevented the insertion) and a bool denoting whether the insertion took
210   //   place.
211   //
212   // iterator insert(const_iterator hint, const value_type& value):
213   // iterator insert(const_iterator hint, value_type&& value):
214   //
215   //   Inserts a value, using the position of `hint` as a non-binding suggestion
216   //   for where to begin the insertion search. Returns an iterator to the
217   //   inserted element, or to the existing element that prevented the
218   //   insertion.
219   //
220   // void insert(InputIterator first, InputIterator last):
221   //
222   //   Inserts a range of values [`first`, `last`).
223   //
224   // void insert(std::initializer_list<init_type> ilist):
225   //
226   //   Inserts the elements within the initializer list `ilist`.
227   using Base::insert;
228 
229   // btree_map::insert_or_assign()
230   //
231   // Inserts an element of the specified value into the `btree_map` provided
232   // that a value with the given key does not already exist, or replaces the
233   // corresponding mapped type with the forwarded `obj` argument if a key for
234   // that value already exists, returning an iterator pointing to the newly
235   // inserted element. Overloads are listed below.
236   //
237   // pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj):
238   // pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj):
239   //
240   //   Inserts/Assigns (or moves) the element of the specified key into the
241   //   `btree_map`. If the returned bool is true, insertion took place, and if
242   //   it's false, assignment took place.
243   //
244   // iterator insert_or_assign(const_iterator hint,
245   //                           const key_type& k, M&& obj):
246   // iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj):
247   //
248   //   Inserts/Assigns (or moves) the element of the specified key into the
249   //   `btree_map` using the position of `hint` as a non-binding suggestion
250   //   for where to begin the insertion search.
251   using Base::insert_or_assign;
252 
253   // btree_map::emplace()
254   //
255   // Inserts an element of the specified value by constructing it in-place
256   // within the `btree_map`, provided that no element with the given key
257   // already exists.
258   //
259   // The element may be constructed even if there already is an element with the
260   // key in the container, in which case the newly constructed element will be
261   // destroyed immediately. Prefer `try_emplace()` unless your key is not
262   // copyable or moveable.
263   //
264   // If an insertion occurs, any references, pointers, or iterators are
265   // invalidated.
266   using Base::emplace;
267 
268   // btree_map::emplace_hint()
269   //
270   // Inserts an element of the specified value by constructing it in-place
271   // within the `btree_map`, using the position of `hint` as a non-binding
272   // suggestion for where to begin the insertion search, and only inserts
273   // provided that no element with the given key already exists.
274   //
275   // The element may be constructed even if there already is an element with the
276   // key in the container, in which case the newly constructed element will be
277   // destroyed immediately. Prefer `try_emplace()` unless your key is not
278   // copyable or moveable.
279   //
280   // If an insertion occurs, any references, pointers, or iterators are
281   // invalidated.
282   using Base::emplace_hint;
283 
284   // btree_map::try_emplace()
285   //
286   // Inserts an element of the specified value by constructing it in-place
287   // within the `btree_map`, provided that no element with the given key
288   // already exists. Unlike `emplace()`, if an element with the given key
289   // already exists, we guarantee that no element is constructed.
290   //
291   // If an insertion occurs, any references, pointers, or iterators are
292   // invalidated.
293   //
294   // Overloads are listed below.
295   //
296   //   std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
297   //   std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
298   //
299   // Inserts (via copy or move) the element of the specified key into the
300   // `btree_map`.
301   //
302   //   iterator try_emplace(const_iterator hint,
303   //                        const key_type& k, Args&&... args):
304   //   iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args):
305   //
306   // Inserts (via copy or move) the element of the specified key into the
307   // `btree_map` using the position of `hint` as a non-binding suggestion
308   // for where to begin the insertion search.
309   using Base::try_emplace;
310 
311   // btree_map::extract()
312   //
313   // Extracts the indicated element, erasing it in the process, and returns it
314   // as a C++17-compatible node handle. Overloads are listed below.
315   //
316   // node_type extract(const_iterator position):
317   //
318   //   Extracts the element at the indicated position and returns a node handle
319   //   owning that extracted data.
320   //
321   // template <typename K> node_type extract(const K& x):
322   //
323   //   Extracts the element with the key matching the passed key value and
324   //   returns a node handle owning that extracted data. If the `btree_map`
325   //   does not contain an element with a matching key, this function returns an
326   //   empty node handle.
327   //
328   // NOTE: In this context, `node_type` refers to the C++17 concept of a
329   // move-only type that owns and provides access to the elements in associative
330   // containers (https://en.cppreference.com/w/cpp/container/node_handle).
331   // It does NOT refer to the data layout of the underlying btree.
332   using Base::extract;
333 
334   // btree_map::merge()
335   //
336   // Extracts elements from a given `source` btree_map into this
337   // `btree_map`. If the destination `btree_map` already contains an
338   // element with an equivalent key, that element is not extracted.
339   using Base::merge;
340 
341   // btree_map::swap(btree_map& other)
342   //
343   // Exchanges the contents of this `btree_map` with those of the `other`
344   // btree_map, avoiding invocation of any move, copy, or swap operations on
345   // individual elements.
346   //
347   // All iterators and references on the `btree_map` remain valid, excepting
348   // for the past-the-end iterator, which is invalidated.
349   using Base::swap;
350 
351   // btree_map::at()
352   //
353   // Returns a reference to the mapped value of the element with key equivalent
354   // to the passed key.
355   using Base::at;
356 
357   // btree_map::contains()
358   //
359   // template <typename K> bool contains(const K& key) const:
360   //
361   // Determines whether an element comparing equal to the given `key` exists
362   // within the `btree_map`, returning `true` if so or `false` otherwise.
363   //
364   // Supports heterogeneous lookup, provided that the map is provided a
365   // compatible heterogeneous comparator.
366   using Base::contains;
367 
368   // btree_map::count()
369   //
370   // template <typename K> size_type count(const K& key) const:
371   //
372   // Returns the number of elements comparing equal to the given `key` within
373   // the `btree_map`. Note that this function will return either `1` or `0`
374   // since duplicate elements are not allowed within a `btree_map`.
375   //
376   // Supports heterogeneous lookup, provided that the map is provided a
377   // compatible heterogeneous comparator.
378   using Base::count;
379 
380   // btree_map::equal_range()
381   //
382   // Returns a closed range [first, last], defined by a `std::pair` of two
383   // iterators, containing all elements with the passed key in the
384   // `btree_map`.
385   using Base::equal_range;
386 
387   // btree_map::find()
388   //
389   // template <typename K> iterator find(const K& key):
390   // template <typename K> const_iterator find(const K& key) const:
391   //
392   // Finds an element with the passed `key` within the `btree_map`.
393   //
394   // Supports heterogeneous lookup, provided that the map is provided a
395   // compatible heterogeneous comparator.
396   using Base::find;
397 
398   // btree_map::operator[]()
399   //
400   // Returns a reference to the value mapped to the passed key within the
401   // `btree_map`, performing an `insert()` if the key does not already
402   // exist.
403   //
404   // If an insertion occurs, any references, pointers, or iterators are
405   // invalidated. Otherwise iterators are not affected and references are not
406   // invalidated. Overloads are listed below.
407   //
408   // T& operator[](key_type&& key):
409   // T& operator[](const key_type& key):
410   //
411   //   Inserts a value_type object constructed in-place if the element with the
412   //   given key does not exist.
413   using Base::operator[];
414 
415   // btree_map::get_allocator()
416   //
417   // Returns the allocator function associated with this `btree_map`.
418   using Base::get_allocator;
419 
420   // btree_map::key_comp();
421   //
422   // Returns the key comparator associated with this `btree_map`.
423   using Base::key_comp;
424 
425   // btree_map::value_comp();
426   //
427   // Returns the value comparator associated with this `btree_map`.
428   using Base::value_comp;
429 };
430 
431 // absl::swap(absl::btree_map<>, absl::btree_map<>)
432 //
433 // Swaps the contents of two `absl::btree_map` containers.
434 template <typename K, typename V, typename C, typename A>
swap(btree_map<K,V,C,A> & x,btree_map<K,V,C,A> & y)435 void swap(btree_map<K, V, C, A> &x, btree_map<K, V, C, A> &y) {
436   return x.swap(y);
437 }
438 
439 // absl::erase_if(absl::btree_map<>, Pred)
440 //
441 // Erases all elements that satisfy the predicate pred from the container.
442 template <typename K, typename V, typename C, typename A, typename Pred>
erase_if(btree_map<K,V,C,A> & map,Pred pred)443 void erase_if(btree_map<K, V, C, A> &map, Pred pred) {
444   for (auto it = map.begin(); it != map.end();) {
445     if (pred(*it)) {
446       it = map.erase(it);
447     } else {
448       ++it;
449     }
450   }
451 }
452 
453 // absl::btree_multimap
454 //
455 // An `absl::btree_multimap<K, V>` is an ordered associative container of
456 // keys and associated values designed to be a more efficient replacement for
457 // `std::multimap` (in most cases). Unlike `absl::btree_map`, a B-tree multimap
458 // allows multiple elements with equivalent keys.
459 //
460 // Keys are sorted using an (optional) comparison function, which defaults to
461 // `std::less<K>`.
462 //
463 // An `absl::btree_multimap<K, V>` uses a default allocator of
464 // `std::allocator<std::pair<const K, V>>` to allocate (and deallocate)
465 // nodes, and construct and destruct values within those nodes. You may
466 // instead specify a custom allocator `A` (which in turn requires specifying a
467 // custom comparator `C`) as in `absl::btree_multimap<K, V, C, A>`.
468 //
469 template <typename Key, typename Value, typename Compare = std::less<Key>,
470           typename Alloc = std::allocator<std::pair<const Key, Value>>>
471 class btree_multimap
472     : public container_internal::btree_multimap_container<
473           container_internal::btree<container_internal::map_params<
474               Key, Value, Compare, Alloc, /*TargetNodeSize=*/256,
475               /*Multi=*/true>>> {
476   using Base = typename btree_multimap::btree_multimap_container;
477 
478  public:
479   // Constructors and Assignment Operators
480   //
481   // A `btree_multimap` supports the same overload set as `std::multimap`
482   // for construction and assignment:
483   //
484   // * Default constructor
485   //
486   //   absl::btree_multimap<int, std::string> map1;
487   //
488   // * Initializer List constructor
489   //
490   //   absl::btree_multimap<int, std::string> map2 =
491   //       {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
492   //
493   // * Copy constructor
494   //
495   //   absl::btree_multimap<int, std::string> map3(map2);
496   //
497   // * Copy assignment operator
498   //
499   //  absl::btree_multimap<int, std::string> map4;
500   //  map4 = map3;
501   //
502   // * Move constructor
503   //
504   //   // Move is guaranteed efficient
505   //   absl::btree_multimap<int, std::string> map5(std::move(map4));
506   //
507   // * Move assignment operator
508   //
509   //   // May be efficient if allocators are compatible
510   //   absl::btree_multimap<int, std::string> map6;
511   //   map6 = std::move(map5);
512   //
513   // * Range constructor
514   //
515   //   std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
516   //   absl::btree_multimap<int, std::string> map7(v.begin(), v.end());
btree_multimap()517   btree_multimap() {}
518   using Base::Base;
519 
520   // btree_multimap::begin()
521   //
522   // Returns an iterator to the beginning of the `btree_multimap`.
523   using Base::begin;
524 
525   // btree_multimap::cbegin()
526   //
527   // Returns a const iterator to the beginning of the `btree_multimap`.
528   using Base::cbegin;
529 
530   // btree_multimap::end()
531   //
532   // Returns an iterator to the end of the `btree_multimap`.
533   using Base::end;
534 
535   // btree_multimap::cend()
536   //
537   // Returns a const iterator to the end of the `btree_multimap`.
538   using Base::cend;
539 
540   // btree_multimap::empty()
541   //
542   // Returns whether or not the `btree_multimap` is empty.
543   using Base::empty;
544 
545   // btree_multimap::max_size()
546   //
547   // Returns the largest theoretical possible number of elements within a
548   // `btree_multimap` under current memory constraints. This value can be
549   // thought of as the largest value of `std::distance(begin(), end())` for a
550   // `btree_multimap<Key, T>`.
551   using Base::max_size;
552 
553   // btree_multimap::size()
554   //
555   // Returns the number of elements currently within the `btree_multimap`.
556   using Base::size;
557 
558   // btree_multimap::clear()
559   //
560   // Removes all elements from the `btree_multimap`. Invalidates any references,
561   // pointers, or iterators referring to contained elements.
562   using Base::clear;
563 
564   // btree_multimap::erase()
565   //
566   // Erases elements within the `btree_multimap`. If an erase occurs, any
567   // references, pointers, or iterators are invalidated.
568   // Overloads are listed below.
569   //
570   // iterator erase(iterator position):
571   // iterator erase(const_iterator position):
572   //
573   //   Erases the element at `position` of the `btree_multimap`, returning
574   //   the iterator pointing to the element after the one that was erased
575   //   (or end() if none exists).
576   //
577   // iterator erase(const_iterator first, const_iterator last):
578   //
579   //   Erases the elements in the open interval [`first`, `last`), returning
580   //   the iterator pointing to the element after the interval that was erased
581   //   (or end() if none exists).
582   //
583   // template <typename K> size_type erase(const K& key):
584   //
585   //   Erases the elements matching the key, if any exist, returning the
586   //   number of elements erased.
587   using Base::erase;
588 
589   // btree_multimap::insert()
590   //
591   // Inserts an element of the specified value into the `btree_multimap`,
592   // returning an iterator pointing to the newly inserted element.
593   // Any references, pointers, or iterators are invalidated.  Overloads are
594   // listed below.
595   //
596   // iterator insert(const value_type& value):
597   //
598   //   Inserts a value into the `btree_multimap`, returning an iterator to the
599   //   inserted element.
600   //
601   // iterator insert(value_type&& value):
602   //
603   //   Inserts a moveable value into the `btree_multimap`, returning an iterator
604   //   to the inserted element.
605   //
606   // iterator insert(const_iterator hint, const value_type& value):
607   // iterator insert(const_iterator hint, value_type&& value):
608   //
609   //   Inserts a value, using the position of `hint` as a non-binding suggestion
610   //   for where to begin the insertion search. Returns an iterator to the
611   //   inserted element.
612   //
613   // void insert(InputIterator first, InputIterator last):
614   //
615   //   Inserts a range of values [`first`, `last`).
616   //
617   // void insert(std::initializer_list<init_type> ilist):
618   //
619   //   Inserts the elements within the initializer list `ilist`.
620   using Base::insert;
621 
622   // btree_multimap::emplace()
623   //
624   // Inserts an element of the specified value by constructing it in-place
625   // within the `btree_multimap`. Any references, pointers, or iterators are
626   // invalidated.
627   using Base::emplace;
628 
629   // btree_multimap::emplace_hint()
630   //
631   // Inserts an element of the specified value by constructing it in-place
632   // within the `btree_multimap`, using the position of `hint` as a non-binding
633   // suggestion for where to begin the insertion search.
634   //
635   // Any references, pointers, or iterators are invalidated.
636   using Base::emplace_hint;
637 
638   // btree_multimap::extract()
639   //
640   // Extracts the indicated element, erasing it in the process, and returns it
641   // as a C++17-compatible node handle. Overloads are listed below.
642   //
643   // node_type extract(const_iterator position):
644   //
645   //   Extracts the element at the indicated position and returns a node handle
646   //   owning that extracted data.
647   //
648   // template <typename K> node_type extract(const K& x):
649   //
650   //   Extracts the element with the key matching the passed key value and
651   //   returns a node handle owning that extracted data. If the `btree_multimap`
652   //   does not contain an element with a matching key, this function returns an
653   //   empty node handle.
654   //
655   // NOTE: In this context, `node_type` refers to the C++17 concept of a
656   // move-only type that owns and provides access to the elements in associative
657   // containers (https://en.cppreference.com/w/cpp/container/node_handle).
658   // It does NOT refer to the data layout of the underlying btree.
659   using Base::extract;
660 
661   // btree_multimap::merge()
662   //
663   // Extracts elements from a given `source` btree_multimap into this
664   // `btree_multimap`. If the destination `btree_multimap` already contains an
665   // element with an equivalent key, that element is not extracted.
666   using Base::merge;
667 
668   // btree_multimap::swap(btree_multimap& other)
669   //
670   // Exchanges the contents of this `btree_multimap` with those of the `other`
671   // btree_multimap, avoiding invocation of any move, copy, or swap operations
672   // on individual elements.
673   //
674   // All iterators and references on the `btree_multimap` remain valid,
675   // excepting for the past-the-end iterator, which is invalidated.
676   using Base::swap;
677 
678   // btree_multimap::contains()
679   //
680   // template <typename K> bool contains(const K& key) const:
681   //
682   // Determines whether an element comparing equal to the given `key` exists
683   // within the `btree_multimap`, returning `true` if so or `false` otherwise.
684   //
685   // Supports heterogeneous lookup, provided that the map is provided a
686   // compatible heterogeneous comparator.
687   using Base::contains;
688 
689   // btree_multimap::count()
690   //
691   // template <typename K> size_type count(const K& key) const:
692   //
693   // Returns the number of elements comparing equal to the given `key` within
694   // the `btree_multimap`.
695   //
696   // Supports heterogeneous lookup, provided that the map is provided a
697   // compatible heterogeneous comparator.
698   using Base::count;
699 
700   // btree_multimap::equal_range()
701   //
702   // Returns a closed range [first, last], defined by a `std::pair` of two
703   // iterators, containing all elements with the passed key in the
704   // `btree_multimap`.
705   using Base::equal_range;
706 
707   // btree_multimap::find()
708   //
709   // template <typename K> iterator find(const K& key):
710   // template <typename K> const_iterator find(const K& key) const:
711   //
712   // Finds an element with the passed `key` within the `btree_multimap`.
713   //
714   // Supports heterogeneous lookup, provided that the map is provided a
715   // compatible heterogeneous comparator.
716   using Base::find;
717 
718   // btree_multimap::get_allocator()
719   //
720   // Returns the allocator function associated with this `btree_multimap`.
721   using Base::get_allocator;
722 
723   // btree_multimap::key_comp();
724   //
725   // Returns the key comparator associated with this `btree_multimap`.
726   using Base::key_comp;
727 
728   // btree_multimap::value_comp();
729   //
730   // Returns the value comparator associated with this `btree_multimap`.
731   using Base::value_comp;
732 };
733 
734 // absl::swap(absl::btree_multimap<>, absl::btree_multimap<>)
735 //
736 // Swaps the contents of two `absl::btree_multimap` containers.
737 template <typename K, typename V, typename C, typename A>
swap(btree_multimap<K,V,C,A> & x,btree_multimap<K,V,C,A> & y)738 void swap(btree_multimap<K, V, C, A> &x, btree_multimap<K, V, C, A> &y) {
739   return x.swap(y);
740 }
741 
742 // absl::erase_if(absl::btree_multimap<>, Pred)
743 //
744 // Erases all elements that satisfy the predicate pred from the container.
745 template <typename K, typename V, typename C, typename A, typename Pred>
erase_if(btree_multimap<K,V,C,A> & map,Pred pred)746 void erase_if(btree_multimap<K, V, C, A> &map, Pred pred) {
747   for (auto it = map.begin(); it != map.end();) {
748     if (pred(*it)) {
749       it = map.erase(it);
750     } else {
751       ++it;
752     }
753   }
754 }
755 
756 ABSL_NAMESPACE_END
757 }  // namespace absl
758 
759 #endif  // ABSL_CONTAINER_BTREE_MAP_H_
760