1 // Copyright 2019 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: inlined_vector.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file contains the declaration and definition of an "inlined
20 // vector" which behaves in an equivalent fashion to a `std::vector`, except
21 // that storage for small sequences of the vector are provided inline without
22 // requiring any heap allocation.
23 //
24 // An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of
25 // its template parameters. Instances where `size() <= N` hold contained
26 // elements in inline space. Typically `N` is very small so that sequences that
27 // are expected to be short do not require allocations.
28 //
29 // An `absl::InlinedVector` does not usually require a specific allocator. If
30 // the inlined vector grows beyond its initial constraints, it will need to
31 // allocate (as any normal `std::vector` would). This is usually performed with
32 // the default allocator (defined as `std::allocator<T>`). Optionally, a custom
33 // allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`.
34
35 #ifndef ABSL_CONTAINER_INLINED_VECTOR_H_
36 #define ABSL_CONTAINER_INLINED_VECTOR_H_
37
38 #include <algorithm>
39 #include <cassert>
40 #include <cstddef>
41 #include <cstdlib>
42 #include <cstring>
43 #include <initializer_list>
44 #include <iterator>
45 #include <memory>
46 #include <type_traits>
47 #include <utility>
48
49 #include "absl/algorithm/algorithm.h"
50 #include "absl/base/internal/throw_delegate.h"
51 #include "absl/base/optimization.h"
52 #include "absl/base/port.h"
53 #include "absl/container/internal/inlined_vector.h"
54 #include "absl/memory/memory.h"
55
56 namespace absl {
57 ABSL_NAMESPACE_BEGIN
58 // -----------------------------------------------------------------------------
59 // InlinedVector
60 // -----------------------------------------------------------------------------
61 //
62 // An `absl::InlinedVector` is designed to be a drop-in replacement for
63 // `std::vector` for use cases where the vector's size is sufficiently small
64 // that it can be inlined. If the inlined vector does grow beyond its estimated
65 // capacity, it will trigger an initial allocation on the heap, and will behave
66 // as a `std:vector`. The API of the `absl::InlinedVector` within this file is
67 // designed to cover the same API footprint as covered by `std::vector`.
68 template <typename T, size_t N, typename A = std::allocator<T>>
69 class InlinedVector {
70 static_assert(N > 0, "`absl::InlinedVector` requires an inlined capacity.");
71
72 using Storage = inlined_vector_internal::Storage<T, N, A>;
73
74 using AllocatorTraits = typename Storage::AllocatorTraits;
75 using RValueReference = typename Storage::RValueReference;
76 using MoveIterator = typename Storage::MoveIterator;
77 using IsMemcpyOk = typename Storage::IsMemcpyOk;
78
79 template <typename Iterator>
80 using IteratorValueAdapter =
81 typename Storage::template IteratorValueAdapter<Iterator>;
82 using CopyValueAdapter = typename Storage::CopyValueAdapter;
83 using DefaultValueAdapter = typename Storage::DefaultValueAdapter;
84
85 template <typename Iterator>
86 using EnableIfAtLeastForwardIterator = absl::enable_if_t<
87 inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
88 template <typename Iterator>
89 using DisableIfAtLeastForwardIterator = absl::enable_if_t<
90 !inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
91
92 public:
93 using allocator_type = typename Storage::allocator_type;
94 using value_type = typename Storage::value_type;
95 using pointer = typename Storage::pointer;
96 using const_pointer = typename Storage::const_pointer;
97 using size_type = typename Storage::size_type;
98 using difference_type = typename Storage::difference_type;
99 using reference = typename Storage::reference;
100 using const_reference = typename Storage::const_reference;
101 using iterator = typename Storage::iterator;
102 using const_iterator = typename Storage::const_iterator;
103 using reverse_iterator = typename Storage::reverse_iterator;
104 using const_reverse_iterator = typename Storage::const_reverse_iterator;
105
106 // ---------------------------------------------------------------------------
107 // InlinedVector Constructors and Destructor
108 // ---------------------------------------------------------------------------
109
110 // Creates an empty inlined vector with a value-initialized allocator.
noexcept(noexcept (allocator_type ()))111 InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {}
112
113 // Creates an empty inlined vector with a copy of `alloc`.
InlinedVector(const allocator_type & alloc)114 explicit InlinedVector(const allocator_type& alloc) noexcept
115 : storage_(alloc) {}
116
117 // Creates an inlined vector with `n` copies of `value_type()`.
118 explicit InlinedVector(size_type n,
119 const allocator_type& alloc = allocator_type())
storage_(alloc)120 : storage_(alloc) {
121 storage_.Initialize(DefaultValueAdapter(), n);
122 }
123
124 // Creates an inlined vector with `n` copies of `v`.
125 InlinedVector(size_type n, const_reference v,
126 const allocator_type& alloc = allocator_type())
storage_(alloc)127 : storage_(alloc) {
128 storage_.Initialize(CopyValueAdapter(v), n);
129 }
130
131 // Creates an inlined vector with copies of the elements of `list`.
132 InlinedVector(std::initializer_list<value_type> list,
133 const allocator_type& alloc = allocator_type())
134 : InlinedVector(list.begin(), list.end(), alloc) {}
135
136 // Creates an inlined vector with elements constructed from the provided
137 // forward iterator range [`first`, `last`).
138 //
139 // NOTE: the `enable_if` prevents ambiguous interpretation between a call to
140 // this constructor with two integral arguments and a call to the above
141 // `InlinedVector(size_type, const_reference)` constructor.
142 template <typename ForwardIterator,
143 EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
144 InlinedVector(ForwardIterator first, ForwardIterator last,
145 const allocator_type& alloc = allocator_type())
storage_(alloc)146 : storage_(alloc) {
147 storage_.Initialize(IteratorValueAdapter<ForwardIterator>(first),
148 std::distance(first, last));
149 }
150
151 // Creates an inlined vector with elements constructed from the provided input
152 // iterator range [`first`, `last`).
153 template <typename InputIterator,
154 DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
155 InlinedVector(InputIterator first, InputIterator last,
156 const allocator_type& alloc = allocator_type())
storage_(alloc)157 : storage_(alloc) {
158 std::copy(first, last, std::back_inserter(*this));
159 }
160
161 // Creates an inlined vector by copying the contents of `other` using
162 // `other`'s allocator.
InlinedVector(const InlinedVector & other)163 InlinedVector(const InlinedVector& other)
164 : InlinedVector(other, *other.storage_.GetAllocPtr()) {}
165
166 // Creates an inlined vector by copying the contents of `other` using `alloc`.
InlinedVector(const InlinedVector & other,const allocator_type & alloc)167 InlinedVector(const InlinedVector& other, const allocator_type& alloc)
168 : storage_(alloc) {
169 if (IsMemcpyOk::value && !other.storage_.GetIsAllocated()) {
170 storage_.MemcpyFrom(other.storage_);
171 } else {
172 storage_.Initialize(IteratorValueAdapter<const_pointer>(other.data()),
173 other.size());
174 }
175 }
176
177 // Creates an inlined vector by moving in the contents of `other` without
178 // allocating. If `other` contains allocated memory, the newly-created inlined
179 // vector will take ownership of that memory. However, if `other` does not
180 // contain allocated memory, the newly-created inlined vector will perform
181 // element-wise move construction of the contents of `other`.
182 //
183 // NOTE: since no allocation is performed for the inlined vector in either
184 // case, the `noexcept(...)` specification depends on whether moving the
185 // underlying objects can throw. It is assumed assumed that...
186 // a) move constructors should only throw due to allocation failure.
187 // b) if `value_type`'s move constructor allocates, it uses the same
188 // allocation function as the inlined vector's allocator.
189 // Thus, the move constructor is non-throwing if the allocator is non-throwing
190 // or `value_type`'s move constructor is specified as `noexcept`.
191 InlinedVector(InlinedVector&& other) noexcept(
192 absl::allocator_is_nothrow<allocator_type>::value ||
193 std::is_nothrow_move_constructible<value_type>::value)
194 : storage_(*other.storage_.GetAllocPtr()) {
195 if (IsMemcpyOk::value) {
196 storage_.MemcpyFrom(other.storage_);
197
198 other.storage_.SetInlinedSize(0);
199 } else if (other.storage_.GetIsAllocated()) {
200 storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
201 other.storage_.GetAllocatedCapacity());
202 storage_.SetAllocatedSize(other.storage_.GetSize());
203
204 other.storage_.SetInlinedSize(0);
205 } else {
206 IteratorValueAdapter<MoveIterator> other_values(
207 MoveIterator(other.storage_.GetInlinedData()));
208
209 inlined_vector_internal::ConstructElements(
210 storage_.GetAllocPtr(), storage_.GetInlinedData(), &other_values,
211 other.storage_.GetSize());
212
213 storage_.SetInlinedSize(other.storage_.GetSize());
214 }
215 }
216
217 // Creates an inlined vector by moving in the contents of `other` with a copy
218 // of `alloc`.
219 //
220 // NOTE: if `other`'s allocator is not equal to `alloc`, even if `other`
221 // contains allocated memory, this move constructor will still allocate. Since
222 // allocation is performed, this constructor can only be `noexcept` if the
223 // specified allocator is also `noexcept`.
InlinedVector(InlinedVector && other,const allocator_type & alloc)224 InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept(
225 absl::allocator_is_nothrow<allocator_type>::value)
226 : storage_(alloc) {
227 if (IsMemcpyOk::value) {
228 storage_.MemcpyFrom(other.storage_);
229
230 other.storage_.SetInlinedSize(0);
231 } else if ((*storage_.GetAllocPtr() == *other.storage_.GetAllocPtr()) &&
232 other.storage_.GetIsAllocated()) {
233 storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
234 other.storage_.GetAllocatedCapacity());
235 storage_.SetAllocatedSize(other.storage_.GetSize());
236
237 other.storage_.SetInlinedSize(0);
238 } else {
239 storage_.Initialize(
240 IteratorValueAdapter<MoveIterator>(MoveIterator(other.data())),
241 other.size());
242 }
243 }
244
~InlinedVector()245 ~InlinedVector() {}
246
247 // ---------------------------------------------------------------------------
248 // InlinedVector Member Accessors
249 // ---------------------------------------------------------------------------
250
251 // `InlinedVector::empty()`
252 //
253 // Returns whether the inlined vector contains no elements.
empty()254 bool empty() const noexcept { return !size(); }
255
256 // `InlinedVector::size()`
257 //
258 // Returns the number of elements in the inlined vector.
size()259 size_type size() const noexcept { return storage_.GetSize(); }
260
261 // `InlinedVector::max_size()`
262 //
263 // Returns the maximum number of elements the inlined vector can hold.
max_size()264 size_type max_size() const noexcept {
265 // One bit of the size storage is used to indicate whether the inlined
266 // vector contains allocated memory. As a result, the maximum size that the
267 // inlined vector can express is half of the max for `size_type`.
268 return (std::numeric_limits<size_type>::max)() / 2;
269 }
270
271 // `InlinedVector::capacity()`
272 //
273 // Returns the number of elements that could be stored in the inlined vector
274 // without requiring a reallocation.
275 //
276 // NOTE: for most inlined vectors, `capacity()` should be equal to the
277 // template parameter `N`. For inlined vectors which exceed this capacity,
278 // they will no longer be inlined and `capacity()` will equal the capactity of
279 // the allocated memory.
capacity()280 size_type capacity() const noexcept {
281 return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity()
282 : storage_.GetInlinedCapacity();
283 }
284
285 // `InlinedVector::data()`
286 //
287 // Returns a `pointer` to the elements of the inlined vector. This pointer
288 // can be used to access and modify the contained elements.
289 //
290 // NOTE: only elements within [`data()`, `data() + size()`) are valid.
data()291 pointer data() noexcept {
292 return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
293 : storage_.GetInlinedData();
294 }
295
296 // Overload of `InlinedVector::data()` that returns a `const_pointer` to the
297 // elements of the inlined vector. This pointer can be used to access but not
298 // modify the contained elements.
299 //
300 // NOTE: only elements within [`data()`, `data() + size()`) are valid.
data()301 const_pointer data() const noexcept {
302 return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
303 : storage_.GetInlinedData();
304 }
305
306 // `InlinedVector::operator[](...)`
307 //
308 // Returns a `reference` to the `i`th element of the inlined vector.
309 reference operator[](size_type i) {
310 assert(i < size());
311
312 return data()[i];
313 }
314
315 // Overload of `InlinedVector::operator[](...)` that returns a
316 // `const_reference` to the `i`th element of the inlined vector.
317 const_reference operator[](size_type i) const {
318 assert(i < size());
319
320 return data()[i];
321 }
322
323 // `InlinedVector::at(...)`
324 //
325 // Returns a `reference` to the `i`th element of the inlined vector.
326 //
327 // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
328 // in both debug and non-debug builds, `std::out_of_range` will be thrown.
at(size_type i)329 reference at(size_type i) {
330 if (ABSL_PREDICT_FALSE(i >= size())) {
331 base_internal::ThrowStdOutOfRange(
332 "`InlinedVector::at(size_type)` failed bounds check");
333 }
334
335 return data()[i];
336 }
337
338 // Overload of `InlinedVector::at(...)` that returns a `const_reference` to
339 // the `i`th element of the inlined vector.
340 //
341 // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
342 // in both debug and non-debug builds, `std::out_of_range` will be thrown.
at(size_type i)343 const_reference at(size_type i) const {
344 if (ABSL_PREDICT_FALSE(i >= size())) {
345 base_internal::ThrowStdOutOfRange(
346 "`InlinedVector::at(size_type) const` failed bounds check");
347 }
348
349 return data()[i];
350 }
351
352 // `InlinedVector::front()`
353 //
354 // Returns a `reference` to the first element of the inlined vector.
front()355 reference front() {
356 assert(!empty());
357
358 return at(0);
359 }
360
361 // Overload of `InlinedVector::front()` that returns a `const_reference` to
362 // the first element of the inlined vector.
front()363 const_reference front() const {
364 assert(!empty());
365
366 return at(0);
367 }
368
369 // `InlinedVector::back()`
370 //
371 // Returns a `reference` to the last element of the inlined vector.
back()372 reference back() {
373 assert(!empty());
374
375 return at(size() - 1);
376 }
377
378 // Overload of `InlinedVector::back()` that returns a `const_reference` to the
379 // last element of the inlined vector.
back()380 const_reference back() const {
381 assert(!empty());
382
383 return at(size() - 1);
384 }
385
386 // `InlinedVector::begin()`
387 //
388 // Returns an `iterator` to the beginning of the inlined vector.
begin()389 iterator begin() noexcept { return data(); }
390
391 // Overload of `InlinedVector::begin()` that returns a `const_iterator` to
392 // the beginning of the inlined vector.
begin()393 const_iterator begin() const noexcept { return data(); }
394
395 // `InlinedVector::end()`
396 //
397 // Returns an `iterator` to the end of the inlined vector.
end()398 iterator end() noexcept { return data() + size(); }
399
400 // Overload of `InlinedVector::end()` that returns a `const_iterator` to the
401 // end of the inlined vector.
end()402 const_iterator end() const noexcept { return data() + size(); }
403
404 // `InlinedVector::cbegin()`
405 //
406 // Returns a `const_iterator` to the beginning of the inlined vector.
cbegin()407 const_iterator cbegin() const noexcept { return begin(); }
408
409 // `InlinedVector::cend()`
410 //
411 // Returns a `const_iterator` to the end of the inlined vector.
cend()412 const_iterator cend() const noexcept { return end(); }
413
414 // `InlinedVector::rbegin()`
415 //
416 // Returns a `reverse_iterator` from the end of the inlined vector.
rbegin()417 reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
418
419 // Overload of `InlinedVector::rbegin()` that returns a
420 // `const_reverse_iterator` from the end of the inlined vector.
rbegin()421 const_reverse_iterator rbegin() const noexcept {
422 return const_reverse_iterator(end());
423 }
424
425 // `InlinedVector::rend()`
426 //
427 // Returns a `reverse_iterator` from the beginning of the inlined vector.
rend()428 reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
429
430 // Overload of `InlinedVector::rend()` that returns a `const_reverse_iterator`
431 // from the beginning of the inlined vector.
rend()432 const_reverse_iterator rend() const noexcept {
433 return const_reverse_iterator(begin());
434 }
435
436 // `InlinedVector::crbegin()`
437 //
438 // Returns a `const_reverse_iterator` from the end of the inlined vector.
crbegin()439 const_reverse_iterator crbegin() const noexcept { return rbegin(); }
440
441 // `InlinedVector::crend()`
442 //
443 // Returns a `const_reverse_iterator` from the beginning of the inlined
444 // vector.
crend()445 const_reverse_iterator crend() const noexcept { return rend(); }
446
447 // `InlinedVector::get_allocator()`
448 //
449 // Returns a copy of the inlined vector's allocator.
get_allocator()450 allocator_type get_allocator() const { return *storage_.GetAllocPtr(); }
451
452 // ---------------------------------------------------------------------------
453 // InlinedVector Member Mutators
454 // ---------------------------------------------------------------------------
455
456 // `InlinedVector::operator=(...)`
457 //
458 // Replaces the elements of the inlined vector with copies of the elements of
459 // `list`.
460 InlinedVector& operator=(std::initializer_list<value_type> list) {
461 assign(list.begin(), list.end());
462
463 return *this;
464 }
465
466 // Overload of `InlinedVector::operator=(...)` that replaces the elements of
467 // the inlined vector with copies of the elements of `other`.
468 InlinedVector& operator=(const InlinedVector& other) {
469 if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
470 const_pointer other_data = other.data();
471 assign(other_data, other_data + other.size());
472 }
473
474 return *this;
475 }
476
477 // Overload of `InlinedVector::operator=(...)` that moves the elements of
478 // `other` into the inlined vector.
479 //
480 // NOTE: as a result of calling this overload, `other` is left in a valid but
481 // unspecified state.
482 InlinedVector& operator=(InlinedVector&& other) {
483 if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
484 if (IsMemcpyOk::value || other.storage_.GetIsAllocated()) {
485 inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
486 size());
487 storage_.DeallocateIfAllocated();
488 storage_.MemcpyFrom(other.storage_);
489
490 other.storage_.SetInlinedSize(0);
491 } else {
492 storage_.Assign(IteratorValueAdapter<MoveIterator>(
493 MoveIterator(other.storage_.GetInlinedData())),
494 other.size());
495 }
496 }
497
498 return *this;
499 }
500
501 // `InlinedVector::assign(...)`
502 //
503 // Replaces the contents of the inlined vector with `n` copies of `v`.
assign(size_type n,const_reference v)504 void assign(size_type n, const_reference v) {
505 storage_.Assign(CopyValueAdapter(v), n);
506 }
507
508 // Overload of `InlinedVector::assign(...)` that replaces the contents of the
509 // inlined vector with copies of the elements of `list`.
assign(std::initializer_list<value_type> list)510 void assign(std::initializer_list<value_type> list) {
511 assign(list.begin(), list.end());
512 }
513
514 // Overload of `InlinedVector::assign(...)` to replace the contents of the
515 // inlined vector with the range [`first`, `last`).
516 //
517 // NOTE: this overload is for iterators that are "forward" category or better.
518 template <typename ForwardIterator,
519 EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
assign(ForwardIterator first,ForwardIterator last)520 void assign(ForwardIterator first, ForwardIterator last) {
521 storage_.Assign(IteratorValueAdapter<ForwardIterator>(first),
522 std::distance(first, last));
523 }
524
525 // Overload of `InlinedVector::assign(...)` to replace the contents of the
526 // inlined vector with the range [`first`, `last`).
527 //
528 // NOTE: this overload is for iterators that are "input" category.
529 template <typename InputIterator,
530 DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
assign(InputIterator first,InputIterator last)531 void assign(InputIterator first, InputIterator last) {
532 size_type i = 0;
533 for (; i < size() && first != last; ++i, static_cast<void>(++first)) {
534 at(i) = *first;
535 }
536
537 erase(data() + i, data() + size());
538 std::copy(first, last, std::back_inserter(*this));
539 }
540
541 // `InlinedVector::resize(...)`
542 //
543 // Resizes the inlined vector to contain `n` elements.
544 //
545 // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
546 // is larger than `size()`, new elements are value-initialized.
resize(size_type n)547 void resize(size_type n) { storage_.Resize(DefaultValueAdapter(), n); }
548
549 // Overload of `InlinedVector::resize(...)` that resizes the inlined vector to
550 // contain `n` elements.
551 //
552 // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
553 // is larger than `size()`, new elements are copied-constructed from `v`.
resize(size_type n,const_reference v)554 void resize(size_type n, const_reference v) {
555 storage_.Resize(CopyValueAdapter(v), n);
556 }
557
558 // `InlinedVector::insert(...)`
559 //
560 // Inserts a copy of `v` at `pos`, returning an `iterator` to the newly
561 // inserted element.
insert(const_iterator pos,const_reference v)562 iterator insert(const_iterator pos, const_reference v) {
563 return emplace(pos, v);
564 }
565
566 // Overload of `InlinedVector::insert(...)` that inserts `v` at `pos` using
567 // move semantics, returning an `iterator` to the newly inserted element.
insert(const_iterator pos,RValueReference v)568 iterator insert(const_iterator pos, RValueReference v) {
569 return emplace(pos, std::move(v));
570 }
571
572 // Overload of `InlinedVector::insert(...)` that inserts `n` contiguous copies
573 // of `v` starting at `pos`, returning an `iterator` pointing to the first of
574 // the newly inserted elements.
insert(const_iterator pos,size_type n,const_reference v)575 iterator insert(const_iterator pos, size_type n, const_reference v) {
576 assert(pos >= begin());
577 assert(pos <= end());
578
579 if (ABSL_PREDICT_TRUE(n != 0)) {
580 value_type dealias = v;
581 return storage_.Insert(pos, CopyValueAdapter(dealias), n);
582 } else {
583 return const_cast<iterator>(pos);
584 }
585 }
586
587 // Overload of `InlinedVector::insert(...)` that inserts copies of the
588 // elements of `list` starting at `pos`, returning an `iterator` pointing to
589 // the first of the newly inserted elements.
insert(const_iterator pos,std::initializer_list<value_type> list)590 iterator insert(const_iterator pos, std::initializer_list<value_type> list) {
591 return insert(pos, list.begin(), list.end());
592 }
593
594 // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
595 // `last`) starting at `pos`, returning an `iterator` pointing to the first
596 // of the newly inserted elements.
597 //
598 // NOTE: this overload is for iterators that are "forward" category or better.
599 template <typename ForwardIterator,
600 EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
insert(const_iterator pos,ForwardIterator first,ForwardIterator last)601 iterator insert(const_iterator pos, ForwardIterator first,
602 ForwardIterator last) {
603 assert(pos >= begin());
604 assert(pos <= end());
605
606 if (ABSL_PREDICT_TRUE(first != last)) {
607 return storage_.Insert(pos, IteratorValueAdapter<ForwardIterator>(first),
608 std::distance(first, last));
609 } else {
610 return const_cast<iterator>(pos);
611 }
612 }
613
614 // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
615 // `last`) starting at `pos`, returning an `iterator` pointing to the first
616 // of the newly inserted elements.
617 //
618 // NOTE: this overload is for iterators that are "input" category.
619 template <typename InputIterator,
620 DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
insert(const_iterator pos,InputIterator first,InputIterator last)621 iterator insert(const_iterator pos, InputIterator first, InputIterator last) {
622 assert(pos >= begin());
623 assert(pos <= end());
624
625 size_type index = std::distance(cbegin(), pos);
626 for (size_type i = index; first != last; ++i, static_cast<void>(++first)) {
627 insert(data() + i, *first);
628 }
629
630 return iterator(data() + index);
631 }
632
633 // `InlinedVector::emplace(...)`
634 //
635 // Constructs and inserts an element using `args...` in the inlined vector at
636 // `pos`, returning an `iterator` pointing to the newly emplaced element.
637 template <typename... Args>
emplace(const_iterator pos,Args &&...args)638 iterator emplace(const_iterator pos, Args&&... args) {
639 assert(pos >= begin());
640 assert(pos <= end());
641
642 value_type dealias(std::forward<Args>(args)...);
643 return storage_.Insert(pos,
644 IteratorValueAdapter<MoveIterator>(
645 MoveIterator(std::addressof(dealias))),
646 1);
647 }
648
649 // `InlinedVector::emplace_back(...)`
650 //
651 // Constructs and inserts an element using `args...` in the inlined vector at
652 // `end()`, returning a `reference` to the newly emplaced element.
653 template <typename... Args>
emplace_back(Args &&...args)654 reference emplace_back(Args&&... args) {
655 return storage_.EmplaceBack(std::forward<Args>(args)...);
656 }
657
658 // `InlinedVector::push_back(...)`
659 //
660 // Inserts a copy of `v` in the inlined vector at `end()`.
push_back(const_reference v)661 void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }
662
663 // Overload of `InlinedVector::push_back(...)` for inserting `v` at `end()`
664 // using move semantics.
push_back(RValueReference v)665 void push_back(RValueReference v) {
666 static_cast<void>(emplace_back(std::move(v)));
667 }
668
669 // `InlinedVector::pop_back()`
670 //
671 // Destroys the element at `back()`, reducing the size by `1`.
pop_back()672 void pop_back() noexcept {
673 assert(!empty());
674
675 AllocatorTraits::destroy(*storage_.GetAllocPtr(), data() + (size() - 1));
676 storage_.SubtractSize(1);
677 }
678
679 // `InlinedVector::erase(...)`
680 //
681 // Erases the element at `pos`, returning an `iterator` pointing to where the
682 // erased element was located.
683 //
684 // NOTE: may return `end()`, which is not dereferencable.
erase(const_iterator pos)685 iterator erase(const_iterator pos) {
686 assert(pos >= begin());
687 assert(pos < end());
688
689 return storage_.Erase(pos, pos + 1);
690 }
691
692 // Overload of `InlinedVector::erase(...)` that erases every element in the
693 // range [`from`, `to`), returning an `iterator` pointing to where the first
694 // erased element was located.
695 //
696 // NOTE: may return `end()`, which is not dereferencable.
erase(const_iterator from,const_iterator to)697 iterator erase(const_iterator from, const_iterator to) {
698 assert(from >= begin());
699 assert(from <= to);
700 assert(to <= end());
701
702 if (ABSL_PREDICT_TRUE(from != to)) {
703 return storage_.Erase(from, to);
704 } else {
705 return const_cast<iterator>(from);
706 }
707 }
708
709 // `InlinedVector::clear()`
710 //
711 // Destroys all elements in the inlined vector, setting the size to `0` and
712 // deallocating any held memory.
clear()713 void clear() noexcept {
714 inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
715 size());
716 storage_.DeallocateIfAllocated();
717
718 storage_.SetInlinedSize(0);
719 }
720
721 // `InlinedVector::reserve(...)`
722 //
723 // Ensures that there is enough room for at least `n` elements.
reserve(size_type n)724 void reserve(size_type n) { storage_.Reserve(n); }
725
726 // `InlinedVector::shrink_to_fit()`
727 //
728 // Reduces memory usage by freeing unused memory. After being called, calls to
729 // `capacity()` will be equal to `max(N, size())`.
730 //
731 // If `size() <= N` and the inlined vector contains allocated memory, the
732 // elements will all be moved to the inlined space and the allocated memory
733 // will be deallocated.
734 //
735 // If `size() > N` and `size() < capacity()`, the elements will be moved to a
736 // smaller allocation.
shrink_to_fit()737 void shrink_to_fit() {
738 if (storage_.GetIsAllocated()) {
739 storage_.ShrinkToFit();
740 }
741 }
742
743 // `InlinedVector::swap(...)`
744 //
745 // Swaps the contents of the inlined vector with `other`.
swap(InlinedVector & other)746 void swap(InlinedVector& other) {
747 if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
748 storage_.Swap(std::addressof(other.storage_));
749 }
750 }
751
752 private:
753 template <typename H, typename TheT, size_t TheN, typename TheA>
754 friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a);
755
756 Storage storage_;
757 };
758
759 // -----------------------------------------------------------------------------
760 // InlinedVector Non-Member Functions
761 // -----------------------------------------------------------------------------
762
763 // `swap(...)`
764 //
765 // Swaps the contents of two inlined vectors.
766 template <typename T, size_t N, typename A>
swap(absl::InlinedVector<T,N,A> & a,absl::InlinedVector<T,N,A> & b)767 void swap(absl::InlinedVector<T, N, A>& a,
768 absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
769 a.swap(b);
770 }
771
772 // `operator==(...)`
773 //
774 // Tests for value-equality of two inlined vectors.
775 template <typename T, size_t N, typename A>
776 bool operator==(const absl::InlinedVector<T, N, A>& a,
777 const absl::InlinedVector<T, N, A>& b) {
778 auto a_data = a.data();
779 auto b_data = b.data();
780 return absl::equal(a_data, a_data + a.size(), b_data, b_data + b.size());
781 }
782
783 // `operator!=(...)`
784 //
785 // Tests for value-inequality of two inlined vectors.
786 template <typename T, size_t N, typename A>
787 bool operator!=(const absl::InlinedVector<T, N, A>& a,
788 const absl::InlinedVector<T, N, A>& b) {
789 return !(a == b);
790 }
791
792 // `operator<(...)`
793 //
794 // Tests whether the value of an inlined vector is less than the value of
795 // another inlined vector using a lexicographical comparison algorithm.
796 template <typename T, size_t N, typename A>
797 bool operator<(const absl::InlinedVector<T, N, A>& a,
798 const absl::InlinedVector<T, N, A>& b) {
799 auto a_data = a.data();
800 auto b_data = b.data();
801 return std::lexicographical_compare(a_data, a_data + a.size(), b_data,
802 b_data + b.size());
803 }
804
805 // `operator>(...)`
806 //
807 // Tests whether the value of an inlined vector is greater than the value of
808 // another inlined vector using a lexicographical comparison algorithm.
809 template <typename T, size_t N, typename A>
810 bool operator>(const absl::InlinedVector<T, N, A>& a,
811 const absl::InlinedVector<T, N, A>& b) {
812 return b < a;
813 }
814
815 // `operator<=(...)`
816 //
817 // Tests whether the value of an inlined vector is less than or equal to the
818 // value of another inlined vector using a lexicographical comparison algorithm.
819 template <typename T, size_t N, typename A>
820 bool operator<=(const absl::InlinedVector<T, N, A>& a,
821 const absl::InlinedVector<T, N, A>& b) {
822 return !(b < a);
823 }
824
825 // `operator>=(...)`
826 //
827 // Tests whether the value of an inlined vector is greater than or equal to the
828 // value of another inlined vector using a lexicographical comparison algorithm.
829 template <typename T, size_t N, typename A>
830 bool operator>=(const absl::InlinedVector<T, N, A>& a,
831 const absl::InlinedVector<T, N, A>& b) {
832 return !(a < b);
833 }
834
835 // `AbslHashValue(...)`
836 //
837 // Provides `absl::Hash` support for `absl::InlinedVector`. It is uncommon to
838 // call this directly.
839 template <typename H, typename T, size_t N, typename A>
AbslHashValue(H h,const absl::InlinedVector<T,N,A> & a)840 H AbslHashValue(H h, const absl::InlinedVector<T, N, A>& a) {
841 auto size = a.size();
842 return H::combine(H::combine_contiguous(std::move(h), a.data(), size), size);
843 }
844
845 ABSL_NAMESPACE_END
846 } // namespace absl
847
848 #endif // ABSL_CONTAINER_INLINED_VECTOR_H_
849