• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // A btree implementation of the STL set and map interfaces. A btree is smaller
16 // and generally also faster than STL set/map (refer to the benchmarks below).
17 // The red-black tree implementation of STL set/map has an overhead of 3
18 // pointers (left, right and parent) plus the node color information for each
19 // stored value. So a set<int32_t> consumes 40 bytes for each value stored in
20 // 64-bit mode. This btree implementation stores multiple values on fixed
21 // size nodes (usually 256 bytes) and doesn't store child pointers for leaf
22 // nodes. The result is that a btree_set<int32_t> may use much less memory per
23 // stored value. For the random insertion benchmark in btree_bench.cc, a
24 // btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value.
25 //
26 // The packing of multiple values on to each node of a btree has another effect
27 // besides better space utilization: better cache locality due to fewer cache
28 // lines being accessed. Better cache locality translates into faster
29 // operations.
30 //
31 // CAVEATS
32 //
33 // Insertions and deletions on a btree can cause splitting, merging or
34 // rebalancing of btree nodes. And even without these operations, insertions
35 // and deletions on a btree will move values around within a node. In both
36 // cases, the result is that insertions and deletions can invalidate iterators
37 // pointing to values other than the one being inserted/deleted. Therefore, this
38 // container does not provide pointer stability. This is notably different from
39 // STL set/map which takes care to not invalidate iterators on insert/erase
40 // except, of course, for iterators pointing to the value being erased.  A
41 // partial workaround when erasing is available: erase() returns an iterator
42 // pointing to the item just after the one that was erased (or end() if none
43 // exists).
44 
45 #ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_
46 #define ABSL_CONTAINER_INTERNAL_BTREE_H_
47 
48 #include <algorithm>
49 #include <cassert>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <functional>
54 #include <iterator>
55 #include <limits>
56 #include <new>
57 #include <string>
58 #include <type_traits>
59 #include <utility>
60 
61 #include "absl/base/macros.h"
62 #include "absl/container/internal/common.h"
63 #include "absl/container/internal/compressed_tuple.h"
64 #include "absl/container/internal/container_memory.h"
65 #include "absl/container/internal/layout.h"
66 #include "absl/memory/memory.h"
67 #include "absl/meta/type_traits.h"
68 #include "absl/strings/string_view.h"
69 #include "absl/types/compare.h"
70 #include "absl/utility/utility.h"
71 
72 namespace absl {
73 ABSL_NAMESPACE_BEGIN
74 namespace container_internal {
75 
76 // A helper class that indicates if the Compare parameter is a key-compare-to
77 // comparator.
78 template <typename Compare, typename T>
79 using btree_is_key_compare_to =
80     std::is_convertible<absl::result_of_t<Compare(const T &, const T &)>,
81                         absl::weak_ordering>;
82 
83 struct StringBtreeDefaultLess {
84   using is_transparent = void;
85 
86   StringBtreeDefaultLess() = default;
87 
88   // Compatibility constructor.
StringBtreeDefaultLessStringBtreeDefaultLess89   StringBtreeDefaultLess(std::less<std::string>) {}  // NOLINT
StringBtreeDefaultLessStringBtreeDefaultLess90   StringBtreeDefaultLess(std::less<string_view>) {}  // NOLINT
91 
operatorStringBtreeDefaultLess92   absl::weak_ordering operator()(absl::string_view lhs,
93                                  absl::string_view rhs) const {
94     return compare_internal::compare_result_as_ordering(lhs.compare(rhs));
95   }
96 };
97 
98 struct StringBtreeDefaultGreater {
99   using is_transparent = void;
100 
101   StringBtreeDefaultGreater() = default;
102 
StringBtreeDefaultGreaterStringBtreeDefaultGreater103   StringBtreeDefaultGreater(std::greater<std::string>) {}  // NOLINT
StringBtreeDefaultGreaterStringBtreeDefaultGreater104   StringBtreeDefaultGreater(std::greater<string_view>) {}  // NOLINT
105 
operatorStringBtreeDefaultGreater106   absl::weak_ordering operator()(absl::string_view lhs,
107                                  absl::string_view rhs) const {
108     return compare_internal::compare_result_as_ordering(rhs.compare(lhs));
109   }
110 };
111 
112 // A helper class to convert a boolean comparison into a three-way "compare-to"
113 // comparison that returns a negative value to indicate less-than, zero to
114 // indicate equality and a positive value to indicate greater-than. This helper
115 // class is specialized for less<std::string>, greater<std::string>,
116 // less<string_view>, and greater<string_view>.
117 //
118 // key_compare_to_adapter is provided so that btree users
119 // automatically get the more efficient compare-to code when using common
120 // google string types with common comparison functors.
121 // These string-like specializations also turn on heterogeneous lookup by
122 // default.
123 template <typename Compare>
124 struct key_compare_to_adapter {
125   using type = Compare;
126 };
127 
128 template <>
129 struct key_compare_to_adapter<std::less<std::string>> {
130   using type = StringBtreeDefaultLess;
131 };
132 
133 template <>
134 struct key_compare_to_adapter<std::greater<std::string>> {
135   using type = StringBtreeDefaultGreater;
136 };
137 
138 template <>
139 struct key_compare_to_adapter<std::less<absl::string_view>> {
140   using type = StringBtreeDefaultLess;
141 };
142 
143 template <>
144 struct key_compare_to_adapter<std::greater<absl::string_view>> {
145   using type = StringBtreeDefaultGreater;
146 };
147 
148 template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
149           bool Multi, typename SlotPolicy>
150 struct common_params {
151   // If Compare is a common comparator for a std::string-like type, then we adapt it
152   // to use heterogeneous lookup and to be a key-compare-to comparator.
153   using key_compare = typename key_compare_to_adapter<Compare>::type;
154   // A type which indicates if we have a key-compare-to functor or a plain old
155   // key-compare functor.
156   using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>;
157 
158   using allocator_type = Alloc;
159   using key_type = Key;
160   using size_type = std::make_signed<size_t>::type;
161   using difference_type = ptrdiff_t;
162 
163   // True if this is a multiset or multimap.
164   using is_multi_container = std::integral_constant<bool, Multi>;
165 
166   using slot_policy = SlotPolicy;
167   using slot_type = typename slot_policy::slot_type;
168   using value_type = typename slot_policy::value_type;
169   using init_type = typename slot_policy::mutable_value_type;
170   using pointer = value_type *;
171   using const_pointer = const value_type *;
172   using reference = value_type &;
173   using const_reference = const value_type &;
174 
175   enum {
176     kTargetNodeSize = TargetNodeSize,
177 
178     // Upper bound for the available space for values. This is largest for leaf
179     // nodes, which have overhead of at least a pointer + 4 bytes (for storing
180     // 3 field_types and an enum).
181     kNodeValueSpace =
182         TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4),
183   };
184 
185   // This is an integral type large enough to hold as many
186   // ValueSize-values as will fit a node of TargetNodeSize bytes.
187   using node_count_type =
188       absl::conditional_t<(kNodeValueSpace / sizeof(value_type) >
189                            (std::numeric_limits<uint8_t>::max)()),
190                           uint16_t, uint8_t>;  // NOLINT
191 
192   // The following methods are necessary for passing this struct as PolicyTraits
193   // for node_handle and/or are used within btree.
194   static value_type &element(slot_type *slot) {
195     return slot_policy::element(slot);
196   }
197   static const value_type &element(const slot_type *slot) {
198     return slot_policy::element(slot);
199   }
200   template <class... Args>
201   static void construct(Alloc *alloc, slot_type *slot, Args &&... args) {
202     slot_policy::construct(alloc, slot, std::forward<Args>(args)...);
203   }
204   static void construct(Alloc *alloc, slot_type *slot, slot_type *other) {
205     slot_policy::construct(alloc, slot, other);
206   }
207   static void destroy(Alloc *alloc, slot_type *slot) {
208     slot_policy::destroy(alloc, slot);
209   }
210   static void transfer(Alloc *alloc, slot_type *new_slot, slot_type *old_slot) {
211     construct(alloc, new_slot, old_slot);
212     destroy(alloc, old_slot);
213   }
214   static void swap(Alloc *alloc, slot_type *a, slot_type *b) {
215     slot_policy::swap(alloc, a, b);
216   }
217   static void move(Alloc *alloc, slot_type *src, slot_type *dest) {
218     slot_policy::move(alloc, src, dest);
219   }
220   static void move(Alloc *alloc, slot_type *first, slot_type *last,
221                    slot_type *result) {
222     slot_policy::move(alloc, first, last, result);
223   }
224 };
225 
226 // A parameters structure for holding the type parameters for a btree_map.
227 // Compare and Alloc should be nothrow copy-constructible.
228 template <typename Key, typename Data, typename Compare, typename Alloc,
229           int TargetNodeSize, bool Multi>
230 struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
231                                   map_slot_policy<Key, Data>> {
232   using super_type = typename map_params::common_params;
233   using mapped_type = Data;
234   // This type allows us to move keys when it is safe to do so. It is safe
235   // for maps in which value_type and mutable_value_type are layout compatible.
236   using slot_policy = typename super_type::slot_policy;
237   using slot_type = typename super_type::slot_type;
238   using value_type = typename super_type::value_type;
239   using init_type = typename super_type::init_type;
240 
241   using key_compare = typename super_type::key_compare;
242   // Inherit from key_compare for empty base class optimization.
243   struct value_compare : private key_compare {
244     value_compare() = default;
245     explicit value_compare(const key_compare &cmp) : key_compare(cmp) {}
246 
247     template <typename T, typename U>
248     auto operator()(const T &left, const U &right) const
249         -> decltype(std::declval<key_compare>()(left.first, right.first)) {
250       return key_compare::operator()(left.first, right.first);
251     }
252   };
253   using is_map_container = std::true_type;
254 
255   static const Key &key(const value_type &x) { return x.first; }
256   static const Key &key(const init_type &x) { return x.first; }
257   static const Key &key(const slot_type *x) { return slot_policy::key(x); }
258   static mapped_type &value(value_type *value) { return value->second; }
259 };
260 
261 // This type implements the necessary functions from the
262 // absl::container_internal::slot_type interface.
263 template <typename Key>
264 struct set_slot_policy {
265   using slot_type = Key;
266   using value_type = Key;
267   using mutable_value_type = Key;
268 
269   static value_type &element(slot_type *slot) { return *slot; }
270   static const value_type &element(const slot_type *slot) { return *slot; }
271 
272   template <typename Alloc, class... Args>
273   static void construct(Alloc *alloc, slot_type *slot, Args &&... args) {
274     absl::allocator_traits<Alloc>::construct(*alloc, slot,
275                                              std::forward<Args>(args)...);
276   }
277 
278   template <typename Alloc>
279   static void construct(Alloc *alloc, slot_type *slot, slot_type *other) {
280     absl::allocator_traits<Alloc>::construct(*alloc, slot, std::move(*other));
281   }
282 
283   template <typename Alloc>
284   static void destroy(Alloc *alloc, slot_type *slot) {
285     absl::allocator_traits<Alloc>::destroy(*alloc, slot);
286   }
287 
288   template <typename Alloc>
289   static void swap(Alloc * /*alloc*/, slot_type *a, slot_type *b) {
290     using std::swap;
291     swap(*a, *b);
292   }
293 
294   template <typename Alloc>
295   static void move(Alloc * /*alloc*/, slot_type *src, slot_type *dest) {
296     *dest = std::move(*src);
297   }
298 
299   template <typename Alloc>
300   static void move(Alloc *alloc, slot_type *first, slot_type *last,
301                    slot_type *result) {
302     for (slot_type *src = first, *dest = result; src != last; ++src, ++dest)
303       move(alloc, src, dest);
304   }
305 };
306 
307 // A parameters structure for holding the type parameters for a btree_set.
308 // Compare and Alloc should be nothrow copy-constructible.
309 template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
310           bool Multi>
311 struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
312                                   set_slot_policy<Key>> {
313   using value_type = Key;
314   using slot_type = typename set_params::common_params::slot_type;
315   using value_compare = typename set_params::common_params::key_compare;
316   using is_map_container = std::false_type;
317 
318   static const Key &key(const value_type &x) { return x; }
319   static const Key &key(const slot_type *x) { return *x; }
320 };
321 
322 // An adapter class that converts a lower-bound compare into an upper-bound
323 // compare. Note: there is no need to make a version of this adapter specialized
324 // for key-compare-to functors because the upper-bound (the first value greater
325 // than the input) is never an exact match.
326 template <typename Compare>
327 struct upper_bound_adapter {
328   explicit upper_bound_adapter(const Compare &c) : comp(c) {}
329   template <typename K, typename LK>
330   bool operator()(const K &a, const LK &b) const {
331     // Returns true when a is not greater than b.
332     return !compare_internal::compare_result_as_less_than(comp(b, a));
333   }
334 
335  private:
336   Compare comp;
337 };
338 
339 enum class MatchKind : uint8_t { kEq, kNe };
340 
341 template <typename V, bool IsCompareTo>
342 struct SearchResult {
343   V value;
344   MatchKind match;
345 
346   static constexpr bool HasMatch() { return true; }
347   bool IsEq() const { return match == MatchKind::kEq; }
348 };
349 
350 // When we don't use CompareTo, `match` is not present.
351 // This ensures that callers can't use it accidentally when it provides no
352 // useful information.
353 template <typename V>
354 struct SearchResult<V, false> {
355   V value;
356 
357   static constexpr bool HasMatch() { return false; }
358   static constexpr bool IsEq() { return false; }
359 };
360 
361 // A node in the btree holding. The same node type is used for both internal
362 // and leaf nodes in the btree, though the nodes are allocated in such a way
363 // that the children array is only valid in internal nodes.
364 template <typename Params>
365 class btree_node {
366   using is_key_compare_to = typename Params::is_key_compare_to;
367   using is_multi_container = typename Params::is_multi_container;
368   using field_type = typename Params::node_count_type;
369   using allocator_type = typename Params::allocator_type;
370   using slot_type = typename Params::slot_type;
371 
372  public:
373   using params_type = Params;
374   using key_type = typename Params::key_type;
375   using value_type = typename Params::value_type;
376   using pointer = typename Params::pointer;
377   using const_pointer = typename Params::const_pointer;
378   using reference = typename Params::reference;
379   using const_reference = typename Params::const_reference;
380   using key_compare = typename Params::key_compare;
381   using size_type = typename Params::size_type;
382   using difference_type = typename Params::difference_type;
383 
384   // Btree decides whether to use linear node search as follows:
385   //   - If the key is arithmetic and the comparator is std::less or
386   //     std::greater, choose linear.
387   //   - Otherwise, choose binary.
388   // TODO(ezb): Might make sense to add condition(s) based on node-size.
389   using use_linear_search = std::integral_constant<
390       bool,
391                 std::is_arithmetic<key_type>::value &&
392                     (std::is_same<std::less<key_type>, key_compare>::value ||
393                      std::is_same<std::greater<key_type>, key_compare>::value)>;
394 
395   // This class is organized by gtl::Layout as if it had the following
396   // structure:
397   //   // A pointer to the node's parent.
398   //   btree_node *parent;
399   //
400   //   // The position of the node in the node's parent.
401   //   field_type position;
402   //   // The index of the first populated value in `values`.
403   //   // TODO(ezb): right now, `start` is always 0. Update insertion/merge
404   //   // logic to allow for floating storage within nodes.
405   //   field_type start;
406   //   // The index after the last populated value in `values`. Currently, this
407   //   // is the same as the count of values.
408   //   field_type finish;
409   //   // The maximum number of values the node can hold. This is an integer in
410   //   // [1, kNodeValues] for root leaf nodes, kNodeValues for non-root leaf
411   //   // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal
412   //   // nodes (even though there are still kNodeValues values in the node).
413   //   // TODO(ezb): make max_count use only 4 bits and record log2(capacity)
414   //   // to free extra bits for is_root, etc.
415   //   field_type max_count;
416   //
417   //   // The array of values. The capacity is `max_count` for leaf nodes and
418   //   // kNodeValues for internal nodes. Only the values in
419   //   // [start, finish) have been initialized and are valid.
420   //   slot_type values[max_count];
421   //
422   //   // The array of child pointers. The keys in children[i] are all less
423   //   // than key(i). The keys in children[i + 1] are all greater than key(i).
424   //   // There are 0 children for leaf nodes and kNodeValues + 1 children for
425   //   // internal nodes.
426   //   btree_node *children[kNodeValues + 1];
427   //
428   // This class is only constructed by EmptyNodeType. Normally, pointers to the
429   // layout above are allocated, cast to btree_node*, and de-allocated within
430   // the btree implementation.
431   ~btree_node() = default;
432   btree_node(btree_node const &) = delete;
433   btree_node &operator=(btree_node const &) = delete;
434 
435   // Public for EmptyNodeType.
436   constexpr static size_type Alignment() {
437     static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(),
438                   "Alignment of all nodes must be equal.");
439     return InternalLayout().Alignment();
440   }
441 
442  protected:
443   btree_node() = default;
444 
445  private:
446   using layout_type = absl::container_internal::Layout<btree_node *, field_type,
447                                                        slot_type, btree_node *>;
448   constexpr static size_type SizeWithNValues(size_type n) {
449     return layout_type(/*parent*/ 1,
450                        /*position, start, finish, max_count*/ 4,
451                        /*values*/ n,
452                        /*children*/ 0)
453         .AllocSize();
454   }
455   // A lower bound for the overhead of fields other than values in a leaf node.
456   constexpr static size_type MinimumOverhead() {
457     return SizeWithNValues(1) - sizeof(value_type);
458   }
459 
460   // Compute how many values we can fit onto a leaf node taking into account
461   // padding.
462   constexpr static size_type NodeTargetValues(const int begin, const int end) {
463     return begin == end ? begin
464                         : SizeWithNValues((begin + end) / 2 + 1) >
465                                   params_type::kTargetNodeSize
466                               ? NodeTargetValues(begin, (begin + end) / 2)
467                               : NodeTargetValues((begin + end) / 2 + 1, end);
468   }
469 
470   enum {
471     kTargetNodeSize = params_type::kTargetNodeSize,
472     kNodeTargetValues = NodeTargetValues(0, params_type::kTargetNodeSize),
473 
474     // We need a minimum of 3 values per internal node in order to perform
475     // splitting (1 value for the two nodes involved in the split and 1 value
476     // propagated to the parent as the delimiter for the split).
477     kNodeValues = kNodeTargetValues >= 3 ? kNodeTargetValues : 3,
478 
479     // The node is internal (i.e. is not a leaf node) if and only if `max_count`
480     // has this value.
481     kInternalNodeMaxCount = 0,
482   };
483 
484   // Leaves can have less than kNodeValues values.
485   constexpr static layout_type LeafLayout(const int max_values = kNodeValues) {
486     return layout_type(/*parent*/ 1,
487                        /*position, start, finish, max_count*/ 4,
488                        /*values*/ max_values,
489                        /*children*/ 0);
490   }
491   constexpr static layout_type InternalLayout() {
492     return layout_type(/*parent*/ 1,
493                        /*position, start, finish, max_count*/ 4,
494                        /*values*/ kNodeValues,
495                        /*children*/ kNodeValues + 1);
496   }
497   constexpr static size_type LeafSize(const int max_values = kNodeValues) {
498     return LeafLayout(max_values).AllocSize();
499   }
500   constexpr static size_type InternalSize() {
501     return InternalLayout().AllocSize();
502   }
503 
504   // N is the index of the type in the Layout definition.
505   // ElementType<N> is the Nth type in the Layout definition.
506   template <size_type N>
507   inline typename layout_type::template ElementType<N> *GetField() {
508     // We assert that we don't read from values that aren't there.
509     assert(N < 3 || !leaf());
510     return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this));
511   }
512   template <size_type N>
513   inline const typename layout_type::template ElementType<N> *GetField() const {
514     assert(N < 3 || !leaf());
515     return InternalLayout().template Pointer<N>(
516         reinterpret_cast<const char *>(this));
517   }
518   void set_parent(btree_node *p) { *GetField<0>() = p; }
519   field_type &mutable_finish() { return GetField<1>()[2]; }
520   slot_type *slot(int i) { return &GetField<2>()[i]; }
521   slot_type *start_slot() { return slot(start()); }
522   slot_type *finish_slot() { return slot(finish()); }
523   const slot_type *slot(int i) const { return &GetField<2>()[i]; }
524   void set_position(field_type v) { GetField<1>()[0] = v; }
525   void set_start(field_type v) { GetField<1>()[1] = v; }
526   void set_finish(field_type v) { GetField<1>()[2] = v; }
527   // This method is only called by the node init methods.
528   void set_max_count(field_type v) { GetField<1>()[3] = v; }
529 
530  public:
531   // Whether this is a leaf node or not. This value doesn't change after the
532   // node is created.
533   bool leaf() const { return GetField<1>()[3] != kInternalNodeMaxCount; }
534 
535   // Getter for the position of this node in its parent.
536   field_type position() const { return GetField<1>()[0]; }
537 
538   // Getter for the offset of the first value in the `values` array.
539   field_type start() const {
540     // TODO(ezb): when floating storage is implemented, return GetField<1>()[1];
541     assert(GetField<1>()[1] == 0);
542     return 0;
543   }
544 
545   // Getter for the offset after the last value in the `values` array.
546   field_type finish() const { return GetField<1>()[2]; }
547 
548   // Getters for the number of values stored in this node.
549   field_type count() const {
550     assert(finish() >= start());
551     return finish() - start();
552   }
553   field_type max_count() const {
554     // Internal nodes have max_count==kInternalNodeMaxCount.
555     // Leaf nodes have max_count in [1, kNodeValues].
556     const field_type max_count = GetField<1>()[3];
557     return max_count == field_type{kInternalNodeMaxCount}
558                ? field_type{kNodeValues}
559                : max_count;
560   }
561 
562   // Getter for the parent of this node.
563   btree_node *parent() const { return *GetField<0>(); }
564   // Getter for whether the node is the root of the tree. The parent of the
565   // root of the tree is the leftmost node in the tree which is guaranteed to
566   // be a leaf.
567   bool is_root() const { return parent()->leaf(); }
568   void make_root() {
569     assert(parent()->is_root());
570     set_parent(parent()->parent());
571   }
572 
573   // Getters for the key/value at position i in the node.
574   const key_type &key(int i) const { return params_type::key(slot(i)); }
575   reference value(int i) { return params_type::element(slot(i)); }
576   const_reference value(int i) const { return params_type::element(slot(i)); }
577 
578   // Getters/setter for the child at position i in the node.
579   btree_node *child(int i) const { return GetField<3>()[i]; }
580   btree_node *start_child() const { return child(start()); }
581   btree_node *&mutable_child(int i) { return GetField<3>()[i]; }
582   void clear_child(int i) {
583     absl::container_internal::SanitizerPoisonObject(&mutable_child(i));
584   }
585   void set_child(int i, btree_node *c) {
586     absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i));
587     mutable_child(i) = c;
588     c->set_position(i);
589   }
590   void init_child(int i, btree_node *c) {
591     set_child(i, c);
592     c->set_parent(this);
593   }
594 
595   // Returns the position of the first value whose key is not less than k.
596   template <typename K>
597   SearchResult<int, is_key_compare_to::value> lower_bound(
598       const K &k, const key_compare &comp) const {
599     return use_linear_search::value ? linear_search(k, comp)
600                                     : binary_search(k, comp);
601   }
602   // Returns the position of the first value whose key is greater than k.
603   template <typename K>
604   int upper_bound(const K &k, const key_compare &comp) const {
605     auto upper_compare = upper_bound_adapter<key_compare>(comp);
606     return use_linear_search::value ? linear_search(k, upper_compare).value
607                                     : binary_search(k, upper_compare).value;
608   }
609 
610   template <typename K, typename Compare>
611   SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
612   linear_search(const K &k, const Compare &comp) const {
613     return linear_search_impl(k, start(), finish(), comp,
614                               btree_is_key_compare_to<Compare, key_type>());
615   }
616 
617   template <typename K, typename Compare>
618   SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
619   binary_search(const K &k, const Compare &comp) const {
620     return binary_search_impl(k, start(), finish(), comp,
621                               btree_is_key_compare_to<Compare, key_type>());
622   }
623 
624   // Returns the position of the first value whose key is not less than k using
625   // linear search performed using plain compare.
626   template <typename K, typename Compare>
627   SearchResult<int, false> linear_search_impl(
628       const K &k, int s, const int e, const Compare &comp,
629       std::false_type /* IsCompareTo */) const {
630     while (s < e) {
631       if (!comp(key(s), k)) {
632         break;
633       }
634       ++s;
635     }
636     return {s};
637   }
638 
639   // Returns the position of the first value whose key is not less than k using
640   // linear search performed using compare-to.
641   template <typename K, typename Compare>
642   SearchResult<int, true> linear_search_impl(
643       const K &k, int s, const int e, const Compare &comp,
644       std::true_type /* IsCompareTo */) const {
645     while (s < e) {
646       const absl::weak_ordering c = comp(key(s), k);
647       if (c == 0) {
648         return {s, MatchKind::kEq};
649       } else if (c > 0) {
650         break;
651       }
652       ++s;
653     }
654     return {s, MatchKind::kNe};
655   }
656 
657   // Returns the position of the first value whose key is not less than k using
658   // binary search performed using plain compare.
659   template <typename K, typename Compare>
660   SearchResult<int, false> binary_search_impl(
661       const K &k, int s, int e, const Compare &comp,
662       std::false_type /* IsCompareTo */) const {
663     while (s != e) {
664       const int mid = (s + e) >> 1;
665       if (comp(key(mid), k)) {
666         s = mid + 1;
667       } else {
668         e = mid;
669       }
670     }
671     return {s};
672   }
673 
674   // Returns the position of the first value whose key is not less than k using
675   // binary search performed using compare-to.
676   template <typename K, typename CompareTo>
677   SearchResult<int, true> binary_search_impl(
678       const K &k, int s, int e, const CompareTo &comp,
679       std::true_type /* IsCompareTo */) const {
680     if (is_multi_container::value) {
681       MatchKind exact_match = MatchKind::kNe;
682       while (s != e) {
683         const int mid = (s + e) >> 1;
684         const absl::weak_ordering c = comp(key(mid), k);
685         if (c < 0) {
686           s = mid + 1;
687         } else {
688           e = mid;
689           if (c == 0) {
690             // Need to return the first value whose key is not less than k,
691             // which requires continuing the binary search if this is a
692             // multi-container.
693             exact_match = MatchKind::kEq;
694           }
695         }
696       }
697       return {s, exact_match};
698     } else {  // Not a multi-container.
699       while (s != e) {
700         const int mid = (s + e) >> 1;
701         const absl::weak_ordering c = comp(key(mid), k);
702         if (c < 0) {
703           s = mid + 1;
704         } else if (c > 0) {
705           e = mid;
706         } else {
707           return {mid, MatchKind::kEq};
708         }
709       }
710       return {s, MatchKind::kNe};
711     }
712   }
713 
714   // Emplaces a value at position i, shifting all existing values and
715   // children at positions >= i to the right by 1.
716   template <typename... Args>
717   void emplace_value(size_type i, allocator_type *alloc, Args &&... args);
718 
719   // Removes the value at position i, shifting all existing values and children
720   // at positions > i to the left by 1.
721   void remove_value(int i, allocator_type *alloc);
722 
723   // Removes the values at positions [i, i + to_erase), shifting all values
724   // after that range to the left by to_erase. Does not change children at all.
725   void remove_values_ignore_children(int i, int to_erase,
726                                      allocator_type *alloc);
727 
728   // Rebalances a node with its right sibling.
729   void rebalance_right_to_left(int to_move, btree_node *right,
730                                allocator_type *alloc);
731   void rebalance_left_to_right(int to_move, btree_node *right,
732                                allocator_type *alloc);
733 
734   // Splits a node, moving a portion of the node's values to its right sibling.
735   void split(int insert_position, btree_node *dest, allocator_type *alloc);
736 
737   // Merges a node with its right sibling, moving all of the values and the
738   // delimiting key in the parent node onto itself.
739   void merge(btree_node *sibling, allocator_type *alloc);
740 
741   // Swap the contents of "this" and "src".
742   void swap(btree_node *src, allocator_type *alloc);
743 
744   // Node allocation/deletion routines.
745   static btree_node *init_leaf(btree_node *n, btree_node *parent,
746                                int max_count) {
747     n->set_parent(parent);
748     n->set_position(0);
749     n->set_start(0);
750     n->set_finish(0);
751     n->set_max_count(max_count);
752     absl::container_internal::SanitizerPoisonMemoryRegion(
753         n->start_slot(), max_count * sizeof(slot_type));
754     return n;
755   }
756   static btree_node *init_internal(btree_node *n, btree_node *parent) {
757     init_leaf(n, parent, kNodeValues);
758     // Set `max_count` to a sentinel value to indicate that this node is
759     // internal.
760     n->set_max_count(kInternalNodeMaxCount);
761     absl::container_internal::SanitizerPoisonMemoryRegion(
762         &n->mutable_child(n->start()),
763         (kNodeValues + 1) * sizeof(btree_node *));
764     return n;
765   }
766   void destroy(allocator_type *alloc) {
767     for (int i = start(); i < finish(); ++i) {
768       value_destroy(i, alloc);
769     }
770   }
771 
772  public:
773   // Exposed only for tests.
774   static bool testonly_uses_linear_node_search() {
775     return use_linear_search::value;
776   }
777 
778  private:
779   template <typename... Args>
780   void value_init(const size_type i, allocator_type *alloc, Args &&... args) {
781     absl::container_internal::SanitizerUnpoisonObject(slot(i));
782     params_type::construct(alloc, slot(i), std::forward<Args>(args)...);
783   }
784   void value_destroy(const size_type i, allocator_type *alloc) {
785     params_type::destroy(alloc, slot(i));
786     absl::container_internal::SanitizerPoisonObject(slot(i));
787   }
788 
789   // Move n values starting at value i in this node into the values starting at
790   // value j in node x.
791   void uninitialized_move_n(const size_type n, const size_type i,
792                             const size_type j, btree_node *x,
793                             allocator_type *alloc) {
794     absl::container_internal::SanitizerUnpoisonMemoryRegion(
795         x->slot(j), n * sizeof(slot_type));
796     for (slot_type *src = slot(i), *end = src + n, *dest = x->slot(j);
797          src != end; ++src, ++dest) {
798       params_type::construct(alloc, dest, src);
799     }
800   }
801 
802   // Destroys a range of n values, starting at index i.
803   void value_destroy_n(const size_type i, const size_type n,
804                        allocator_type *alloc) {
805     for (int j = 0; j < n; ++j) {
806       value_destroy(i + j, alloc);
807     }
808   }
809 
810   template <typename P>
811   friend class btree;
812   template <typename N, typename R, typename P>
813   friend struct btree_iterator;
814   friend class BtreeNodePeer;
815 };
816 
817 template <typename Node, typename Reference, typename Pointer>
818 struct btree_iterator {
819  private:
820   using key_type = typename Node::key_type;
821   using size_type = typename Node::size_type;
822   using params_type = typename Node::params_type;
823 
824   using node_type = Node;
825   using normal_node = typename std::remove_const<Node>::type;
826   using const_node = const Node;
827   using normal_pointer = typename params_type::pointer;
828   using normal_reference = typename params_type::reference;
829   using const_pointer = typename params_type::const_pointer;
830   using const_reference = typename params_type::const_reference;
831   using slot_type = typename params_type::slot_type;
832 
833   using iterator =
834       btree_iterator<normal_node, normal_reference, normal_pointer>;
835   using const_iterator =
836       btree_iterator<const_node, const_reference, const_pointer>;
837 
838  public:
839   // These aliases are public for std::iterator_traits.
840   using difference_type = typename Node::difference_type;
841   using value_type = typename params_type::value_type;
842   using pointer = Pointer;
843   using reference = Reference;
844   using iterator_category = std::bidirectional_iterator_tag;
845 
846   btree_iterator() : node(nullptr), position(-1) {}
847   explicit btree_iterator(Node *n) : node(n), position(n->start()) {}
848   btree_iterator(Node *n, int p) : node(n), position(p) {}
849 
850   // NOTE: this SFINAE allows for implicit conversions from iterator to
851   // const_iterator, but it specifically avoids defining copy constructors so
852   // that btree_iterator can be trivially copyable. This is for performance and
853   // binary size reasons.
854   template <typename N, typename R, typename P,
855             absl::enable_if_t<
856                 std::is_same<btree_iterator<N, R, P>, iterator>::value &&
857                     std::is_same<btree_iterator, const_iterator>::value,
858                 int> = 0>
859   btree_iterator(const btree_iterator<N, R, P> &x)  // NOLINT
860       : node(x.node), position(x.position) {}
861 
862  private:
863   // This SFINAE allows explicit conversions from const_iterator to
864   // iterator, but also avoids defining a copy constructor.
865   // NOTE: the const_cast is safe because this constructor is only called by
866   // non-const methods and the container owns the nodes.
867   template <typename N, typename R, typename P,
868             absl::enable_if_t<
869                 std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
870                     std::is_same<btree_iterator, iterator>::value,
871                 int> = 0>
872   explicit btree_iterator(const btree_iterator<N, R, P> &x)
873       : node(const_cast<node_type *>(x.node)), position(x.position) {}
874 
875   // Increment/decrement the iterator.
876   void increment() {
877     if (node->leaf() && ++position < node->finish()) {
878       return;
879     }
880     increment_slow();
881   }
882   void increment_slow();
883 
884   void decrement() {
885     if (node->leaf() && --position >= node->start()) {
886       return;
887     }
888     decrement_slow();
889   }
890   void decrement_slow();
891 
892  public:
893   bool operator==(const const_iterator &x) const {
894     return node == x.node && position == x.position;
895   }
896   bool operator!=(const const_iterator &x) const {
897     return node != x.node || position != x.position;
898   }
899 
900   // Accessors for the key/value the iterator is pointing at.
901   reference operator*() const { return node->value(position); }
902   pointer operator->() const { return &node->value(position); }
903 
904   btree_iterator &operator++() {
905     increment();
906     return *this;
907   }
908   btree_iterator &operator--() {
909     decrement();
910     return *this;
911   }
912   btree_iterator operator++(int) {
913     btree_iterator tmp = *this;
914     ++*this;
915     return tmp;
916   }
917   btree_iterator operator--(int) {
918     btree_iterator tmp = *this;
919     --*this;
920     return tmp;
921   }
922 
923  private:
924   template <typename Params>
925   friend class btree;
926   template <typename Tree>
927   friend class btree_container;
928   template <typename Tree>
929   friend class btree_set_container;
930   template <typename Tree>
931   friend class btree_map_container;
932   template <typename Tree>
933   friend class btree_multiset_container;
934   template <typename N, typename R, typename P>
935   friend struct btree_iterator;
936   template <typename TreeType, typename CheckerType>
937   friend class base_checker;
938 
939   const key_type &key() const { return node->key(position); }
940   slot_type *slot() { return node->slot(position); }
941 
942   // The node in the tree the iterator is pointing at.
943   Node *node;
944   // The position within the node of the tree the iterator is pointing at.
945   // TODO(ezb): make this a field_type
946   int position;
947 };
948 
949 template <typename Params>
950 class btree {
951   using node_type = btree_node<Params>;
952   using is_key_compare_to = typename Params::is_key_compare_to;
953 
954   // We use a static empty node for the root/leftmost/rightmost of empty btrees
955   // in order to avoid branching in begin()/end().
956   struct alignas(node_type::Alignment()) EmptyNodeType : node_type {
957     using field_type = typename node_type::field_type;
958     node_type *parent;
959     field_type position = 0;
960     field_type start = 0;
961     field_type finish = 0;
962     // max_count must be != kInternalNodeMaxCount (so that this node is regarded
963     // as a leaf node). max_count() is never called when the tree is empty.
964     field_type max_count = node_type::kInternalNodeMaxCount + 1;
965 
966 #ifdef _MSC_VER
967     // MSVC has constexpr code generations bugs here.
968     EmptyNodeType() : parent(this) {}
969 #else
970     constexpr EmptyNodeType(node_type *p) : parent(p) {}
971 #endif
972   };
973 
974   static node_type *EmptyNode() {
975 #ifdef _MSC_VER
976     static EmptyNodeType *empty_node = new EmptyNodeType;
977     // This assert fails on some other construction methods.
978     assert(empty_node->parent == empty_node);
979     return empty_node;
980 #else
981     static constexpr EmptyNodeType empty_node(
982         const_cast<EmptyNodeType *>(&empty_node));
983     return const_cast<EmptyNodeType *>(&empty_node);
984 #endif
985   }
986 
987   enum {
988     kNodeValues = node_type::kNodeValues,
989     kMinNodeValues = kNodeValues / 2,
990   };
991 
992   struct node_stats {
993     using size_type = typename Params::size_type;
994 
995     node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {}
996 
997     node_stats &operator+=(const node_stats &x) {
998       leaf_nodes += x.leaf_nodes;
999       internal_nodes += x.internal_nodes;
1000       return *this;
1001     }
1002 
1003     size_type leaf_nodes;
1004     size_type internal_nodes;
1005   };
1006 
1007  public:
1008   using key_type = typename Params::key_type;
1009   using value_type = typename Params::value_type;
1010   using size_type = typename Params::size_type;
1011   using difference_type = typename Params::difference_type;
1012   using key_compare = typename Params::key_compare;
1013   using value_compare = typename Params::value_compare;
1014   using allocator_type = typename Params::allocator_type;
1015   using reference = typename Params::reference;
1016   using const_reference = typename Params::const_reference;
1017   using pointer = typename Params::pointer;
1018   using const_pointer = typename Params::const_pointer;
1019   using iterator = btree_iterator<node_type, reference, pointer>;
1020   using const_iterator = typename iterator::const_iterator;
1021   using reverse_iterator = std::reverse_iterator<iterator>;
1022   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
1023   using node_handle_type = node_handle<Params, Params, allocator_type>;
1024 
1025   // Internal types made public for use by btree_container types.
1026   using params_type = Params;
1027   using slot_type = typename Params::slot_type;
1028 
1029  private:
1030   // For use in copy_or_move_values_in_order.
1031   const value_type &maybe_move_from_iterator(const_iterator x) { return *x; }
1032   value_type &&maybe_move_from_iterator(iterator x) { return std::move(*x); }
1033 
1034   // Copies or moves (depending on the template parameter) the values in
1035   // x into this btree in their order in x. This btree must be empty before this
1036   // method is called. This method is used in copy construction, copy
1037   // assignment, and move assignment.
1038   template <typename Btree>
1039   void copy_or_move_values_in_order(Btree *x);
1040 
1041   // Validates that various assumptions/requirements are true at compile time.
1042   constexpr static bool static_assert_validation();
1043 
1044  public:
1045   btree(const key_compare &comp, const allocator_type &alloc);
1046 
1047   btree(const btree &x);
1048   btree(btree &&x) noexcept
1049       : root_(std::move(x.root_)),
1050         rightmost_(absl::exchange(x.rightmost_, EmptyNode())),
1051         size_(absl::exchange(x.size_, 0)) {
1052     x.mutable_root() = EmptyNode();
1053   }
1054 
1055   ~btree() {
1056     // Put static_asserts in destructor to avoid triggering them before the type
1057     // is complete.
1058     static_assert(static_assert_validation(), "This call must be elided.");
1059     clear();
1060   }
1061 
1062   // Assign the contents of x to *this.
1063   btree &operator=(const btree &x);
1064   btree &operator=(btree &&x) noexcept;
1065 
1066   iterator begin() { return iterator(leftmost()); }
1067   const_iterator begin() const { return const_iterator(leftmost()); }
1068   iterator end() { return iterator(rightmost_, rightmost_->finish()); }
1069   const_iterator end() const {
1070     return const_iterator(rightmost_, rightmost_->finish());
1071   }
1072   reverse_iterator rbegin() { return reverse_iterator(end()); }
1073   const_reverse_iterator rbegin() const {
1074     return const_reverse_iterator(end());
1075   }
1076   reverse_iterator rend() { return reverse_iterator(begin()); }
1077   const_reverse_iterator rend() const {
1078     return const_reverse_iterator(begin());
1079   }
1080 
1081   // Finds the first element whose key is not less than key.
1082   template <typename K>
1083   iterator lower_bound(const K &key) {
1084     return internal_end(internal_lower_bound(key));
1085   }
1086   template <typename K>
1087   const_iterator lower_bound(const K &key) const {
1088     return internal_end(internal_lower_bound(key));
1089   }
1090 
1091   // Finds the first element whose key is greater than key.
1092   template <typename K>
1093   iterator upper_bound(const K &key) {
1094     return internal_end(internal_upper_bound(key));
1095   }
1096   template <typename K>
1097   const_iterator upper_bound(const K &key) const {
1098     return internal_end(internal_upper_bound(key));
1099   }
1100 
1101   // Finds the range of values which compare equal to key. The first member of
1102   // the returned pair is equal to lower_bound(key). The second member pair of
1103   // the pair is equal to upper_bound(key).
1104   template <typename K>
1105   std::pair<iterator, iterator> equal_range(const K &key) {
1106     return {lower_bound(key), upper_bound(key)};
1107   }
1108   template <typename K>
1109   std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
1110     return {lower_bound(key), upper_bound(key)};
1111   }
1112 
1113   // Inserts a value into the btree only if it does not already exist. The
1114   // boolean return value indicates whether insertion succeeded or failed.
1115   // Requirement: if `key` already exists in the btree, does not consume `args`.
1116   // Requirement: `key` is never referenced after consuming `args`.
1117   template <typename... Args>
1118   std::pair<iterator, bool> insert_unique(const key_type &key, Args &&... args);
1119 
1120   // Inserts with hint. Checks to see if the value should be placed immediately
1121   // before `position` in the tree. If so, then the insertion will take
1122   // amortized constant time. If not, the insertion will take amortized
1123   // logarithmic time as if a call to insert_unique() were made.
1124   // Requirement: if `key` already exists in the btree, does not consume `args`.
1125   // Requirement: `key` is never referenced after consuming `args`.
1126   template <typename... Args>
1127   std::pair<iterator, bool> insert_hint_unique(iterator position,
1128                                                const key_type &key,
1129                                                Args &&... args);
1130 
1131   // Insert a range of values into the btree.
1132   template <typename InputIterator>
1133   void insert_iterator_unique(InputIterator b, InputIterator e);
1134 
1135   // Inserts a value into the btree.
1136   template <typename ValueType>
1137   iterator insert_multi(const key_type &key, ValueType &&v);
1138 
1139   // Inserts a value into the btree.
1140   template <typename ValueType>
1141   iterator insert_multi(ValueType &&v) {
1142     return insert_multi(params_type::key(v), std::forward<ValueType>(v));
1143   }
1144 
1145   // Insert with hint. Check to see if the value should be placed immediately
1146   // before position in the tree. If it does, then the insertion will take
1147   // amortized constant time. If not, the insertion will take amortized
1148   // logarithmic time as if a call to insert_multi(v) were made.
1149   template <typename ValueType>
1150   iterator insert_hint_multi(iterator position, ValueType &&v);
1151 
1152   // Insert a range of values into the btree.
1153   template <typename InputIterator>
1154   void insert_iterator_multi(InputIterator b, InputIterator e);
1155 
1156   // Erase the specified iterator from the btree. The iterator must be valid
1157   // (i.e. not equal to end()).  Return an iterator pointing to the node after
1158   // the one that was erased (or end() if none exists).
1159   // Requirement: does not read the value at `*iter`.
1160   iterator erase(iterator iter);
1161 
1162   // Erases range. Returns the number of keys erased and an iterator pointing
1163   // to the element after the last erased element.
1164   std::pair<size_type, iterator> erase_range(iterator begin, iterator end);
1165 
1166   // Erases the specified key from the btree. Returns 1 if an element was
1167   // erased and 0 otherwise.
1168   template <typename K>
1169   size_type erase_unique(const K &key);
1170 
1171   // Erases all of the entries matching the specified key from the
1172   // btree. Returns the number of elements erased.
1173   template <typename K>
1174   size_type erase_multi(const K &key);
1175 
1176   // Finds the iterator corresponding to a key or returns end() if the key is
1177   // not present.
1178   template <typename K>
1179   iterator find(const K &key) {
1180     return internal_end(internal_find(key));
1181   }
1182   template <typename K>
1183   const_iterator find(const K &key) const {
1184     return internal_end(internal_find(key));
1185   }
1186 
1187   // Returns a count of the number of times the key appears in the btree.
1188   template <typename K>
1189   size_type count_unique(const K &key) const {
1190     const iterator begin = internal_find(key);
1191     if (begin.node == nullptr) {
1192       // The key doesn't exist in the tree.
1193       return 0;
1194     }
1195     return 1;
1196   }
1197   // Returns a count of the number of times the key appears in the btree.
1198   template <typename K>
1199   size_type count_multi(const K &key) const {
1200     const auto range = equal_range(key);
1201     return std::distance(range.first, range.second);
1202   }
1203 
1204   // Clear the btree, deleting all of the values it contains.
1205   void clear();
1206 
1207   // Swap the contents of *this and x.
1208   void swap(btree &x);
1209 
1210   const key_compare &key_comp() const noexcept {
1211     return root_.template get<0>();
1212   }
1213   template <typename K, typename LK>
1214   bool compare_keys(const K &x, const LK &y) const {
1215     return compare_internal::compare_result_as_less_than(key_comp()(x, y));
1216   }
1217 
1218   value_compare value_comp() const { return value_compare(key_comp()); }
1219 
1220   // Verifies the structure of the btree.
1221   void verify() const;
1222 
1223   // Size routines.
1224   size_type size() const { return size_; }
1225   size_type max_size() const { return (std::numeric_limits<size_type>::max)(); }
1226   bool empty() const { return size_ == 0; }
1227 
1228   // The height of the btree. An empty tree will have height 0.
1229   size_type height() const {
1230     size_type h = 0;
1231     if (!empty()) {
1232       // Count the length of the chain from the leftmost node up to the
1233       // root. We actually count from the root back around to the level below
1234       // the root, but the calculation is the same because of the circularity
1235       // of that traversal.
1236       const node_type *n = root();
1237       do {
1238         ++h;
1239         n = n->parent();
1240       } while (n != root());
1241     }
1242     return h;
1243   }
1244 
1245   // The number of internal, leaf and total nodes used by the btree.
1246   size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; }
1247   size_type internal_nodes() const {
1248     return internal_stats(root()).internal_nodes;
1249   }
1250   size_type nodes() const {
1251     node_stats stats = internal_stats(root());
1252     return stats.leaf_nodes + stats.internal_nodes;
1253   }
1254 
1255   // The total number of bytes used by the btree.
1256   size_type bytes_used() const {
1257     node_stats stats = internal_stats(root());
1258     if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
1259       return sizeof(*this) + node_type::LeafSize(root()->max_count());
1260     } else {
1261       return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() +
1262              stats.internal_nodes * node_type::InternalSize();
1263     }
1264   }
1265 
1266   // The average number of bytes used per value stored in the btree.
1267   static double average_bytes_per_value() {
1268     // Returns the number of bytes per value on a leaf node that is 75%
1269     // full. Experimentally, this matches up nicely with the computed number of
1270     // bytes per value in trees that had their values inserted in random order.
1271     return node_type::LeafSize() / (kNodeValues * 0.75);
1272   }
1273 
1274   // The fullness of the btree. Computed as the number of elements in the btree
1275   // divided by the maximum number of elements a tree with the current number
1276   // of nodes could hold. A value of 1 indicates perfect space
1277   // utilization. Smaller values indicate space wastage.
1278   // Returns 0 for empty trees.
1279   double fullness() const {
1280     if (empty()) return 0.0;
1281     return static_cast<double>(size()) / (nodes() * kNodeValues);
1282   }
1283   // The overhead of the btree structure in bytes per node. Computed as the
1284   // total number of bytes used by the btree minus the number of bytes used for
1285   // storing elements divided by the number of elements.
1286   // Returns 0 for empty trees.
1287   double overhead() const {
1288     if (empty()) return 0.0;
1289     return (bytes_used() - size() * sizeof(value_type)) /
1290            static_cast<double>(size());
1291   }
1292 
1293   // The allocator used by the btree.
1294   allocator_type get_allocator() const { return allocator(); }
1295 
1296  private:
1297   // Internal accessor routines.
1298   node_type *root() { return root_.template get<2>(); }
1299   const node_type *root() const { return root_.template get<2>(); }
1300   node_type *&mutable_root() noexcept { return root_.template get<2>(); }
1301   key_compare *mutable_key_comp() noexcept { return &root_.template get<0>(); }
1302 
1303   // The leftmost node is stored as the parent of the root node.
1304   node_type *leftmost() { return root()->parent(); }
1305   const node_type *leftmost() const { return root()->parent(); }
1306 
1307   // Allocator routines.
1308   allocator_type *mutable_allocator() noexcept {
1309     return &root_.template get<1>();
1310   }
1311   const allocator_type &allocator() const noexcept {
1312     return root_.template get<1>();
1313   }
1314 
1315   // Allocates a correctly aligned node of at least size bytes using the
1316   // allocator.
1317   node_type *allocate(const size_type size) {
1318     return reinterpret_cast<node_type *>(
1319         absl::container_internal::Allocate<node_type::Alignment()>(
1320             mutable_allocator(), size));
1321   }
1322 
1323   // Node creation/deletion routines.
1324   node_type *new_internal_node(node_type *parent) {
1325     node_type *p = allocate(node_type::InternalSize());
1326     return node_type::init_internal(p, parent);
1327   }
1328   node_type *new_leaf_node(node_type *parent) {
1329     node_type *p = allocate(node_type::LeafSize());
1330     return node_type::init_leaf(p, parent, kNodeValues);
1331   }
1332   node_type *new_leaf_root_node(const int max_count) {
1333     node_type *p = allocate(node_type::LeafSize(max_count));
1334     return node_type::init_leaf(p, p, max_count);
1335   }
1336 
1337   // Deletion helper routines.
1338   void erase_same_node(iterator begin, iterator end);
1339   iterator erase_from_leaf_node(iterator begin, size_type to_erase);
1340   iterator rebalance_after_delete(iterator iter);
1341 
1342   // Deallocates a node of a certain size in bytes using the allocator.
1343   void deallocate(const size_type size, node_type *node) {
1344     absl::container_internal::Deallocate<node_type::Alignment()>(
1345         mutable_allocator(), node, size);
1346   }
1347 
1348   void delete_internal_node(node_type *node) {
1349     node->destroy(mutable_allocator());
1350     deallocate(node_type::InternalSize(), node);
1351   }
1352   void delete_leaf_node(node_type *node) {
1353     node->destroy(mutable_allocator());
1354     deallocate(node_type::LeafSize(node->max_count()), node);
1355   }
1356 
1357   // Rebalances or splits the node iter points to.
1358   void rebalance_or_split(iterator *iter);
1359 
1360   // Merges the values of left, right and the delimiting key on their parent
1361   // onto left, removing the delimiting key and deleting right.
1362   void merge_nodes(node_type *left, node_type *right);
1363 
1364   // Tries to merge node with its left or right sibling, and failing that,
1365   // rebalance with its left or right sibling. Returns true if a merge
1366   // occurred, at which point it is no longer valid to access node. Returns
1367   // false if no merging took place.
1368   bool try_merge_or_rebalance(iterator *iter);
1369 
1370   // Tries to shrink the height of the tree by 1.
1371   void try_shrink();
1372 
1373   iterator internal_end(iterator iter) {
1374     return iter.node != nullptr ? iter : end();
1375   }
1376   const_iterator internal_end(const_iterator iter) const {
1377     return iter.node != nullptr ? iter : end();
1378   }
1379 
1380   // Emplaces a value into the btree immediately before iter. Requires that
1381   // key(v) <= iter.key() and (--iter).key() <= key(v).
1382   template <typename... Args>
1383   iterator internal_emplace(iterator iter, Args &&... args);
1384 
1385   // Returns an iterator pointing to the first value >= the value "iter" is
1386   // pointing at. Note that "iter" might be pointing to an invalid location such
1387   // as iter.position == iter.node->finish(). This routine simply moves iter up
1388   // in the tree to a valid location.
1389   // Requires: iter.node is non-null.
1390   template <typename IterType>
1391   static IterType internal_last(IterType iter);
1392 
1393   // Returns an iterator pointing to the leaf position at which key would
1394   // reside in the tree. We provide 2 versions of internal_locate. The first
1395   // version uses a less-than comparator and is incapable of distinguishing when
1396   // there is an exact match. The second version is for the key-compare-to
1397   // specialization and distinguishes exact matches. The key-compare-to
1398   // specialization allows the caller to avoid a subsequent comparison to
1399   // determine if an exact match was made, which is important for keys with
1400   // expensive comparison, such as strings.
1401   template <typename K>
1402   SearchResult<iterator, is_key_compare_to::value> internal_locate(
1403       const K &key) const;
1404 
1405   template <typename K>
1406   SearchResult<iterator, false> internal_locate_impl(
1407       const K &key, std::false_type /* IsCompareTo */) const;
1408 
1409   template <typename K>
1410   SearchResult<iterator, true> internal_locate_impl(
1411       const K &key, std::true_type /* IsCompareTo */) const;
1412 
1413   // Internal routine which implements lower_bound().
1414   template <typename K>
1415   iterator internal_lower_bound(const K &key) const;
1416 
1417   // Internal routine which implements upper_bound().
1418   template <typename K>
1419   iterator internal_upper_bound(const K &key) const;
1420 
1421   // Internal routine which implements find().
1422   template <typename K>
1423   iterator internal_find(const K &key) const;
1424 
1425   // Deletes a node and all of its children.
1426   void internal_clear(node_type *node);
1427 
1428   // Verifies the tree structure of node.
1429   int internal_verify(const node_type *node, const key_type *lo,
1430                       const key_type *hi) const;
1431 
1432   node_stats internal_stats(const node_type *node) const {
1433     // The root can be a static empty node.
1434     if (node == nullptr || (node == root() && empty())) {
1435       return node_stats(0, 0);
1436     }
1437     if (node->leaf()) {
1438       return node_stats(1, 0);
1439     }
1440     node_stats res(0, 1);
1441     for (int i = node->start(); i <= node->finish(); ++i) {
1442       res += internal_stats(node->child(i));
1443     }
1444     return res;
1445   }
1446 
1447  public:
1448   // Exposed only for tests.
1449   static bool testonly_uses_linear_node_search() {
1450     return node_type::testonly_uses_linear_node_search();
1451   }
1452 
1453  private:
1454   // We use compressed tuple in order to save space because key_compare and
1455   // allocator_type are usually empty.
1456   absl::container_internal::CompressedTuple<key_compare, allocator_type,
1457                                             node_type *>
1458       root_;
1459 
1460   // A pointer to the rightmost node. Note that the leftmost node is stored as
1461   // the root's parent.
1462   node_type *rightmost_;
1463 
1464   // Number of values.
1465   size_type size_;
1466 };
1467 
1468 ////
1469 // btree_node methods
1470 template <typename P>
1471 template <typename... Args>
1472 inline void btree_node<P>::emplace_value(const size_type i,
1473                                          allocator_type *alloc,
1474                                          Args &&... args) {
1475   assert(i >= start());
1476   assert(i <= finish());
1477   // Shift old values to create space for new value and then construct it in
1478   // place.
1479   if (i < finish()) {
1480     value_init(finish(), alloc, slot(finish() - 1));
1481     for (size_type j = finish() - 1; j > i; --j)
1482       params_type::move(alloc, slot(j - 1), slot(j));
1483     value_destroy(i, alloc);
1484   }
1485   value_init(i, alloc, std::forward<Args>(args)...);
1486   set_finish(finish() + 1);
1487 
1488   if (!leaf() && finish() > i + 1) {
1489     for (int j = finish(); j > i + 1; --j) {
1490       set_child(j, child(j - 1));
1491     }
1492     clear_child(i + 1);
1493   }
1494 }
1495 
1496 template <typename P>
1497 inline void btree_node<P>::remove_value(const int i, allocator_type *alloc) {
1498   if (!leaf() && finish() > i + 1) {
1499     assert(child(i + 1)->count() == 0);
1500     for (size_type j = i + 1; j < finish(); ++j) {
1501       set_child(j, child(j + 1));
1502     }
1503     clear_child(finish());
1504   }
1505 
1506   remove_values_ignore_children(i, /*to_erase=*/1, alloc);
1507 }
1508 
1509 template <typename P>
1510 inline void btree_node<P>::remove_values_ignore_children(
1511     const int i, const int to_erase, allocator_type *alloc) {
1512   params_type::move(alloc, slot(i + to_erase), finish_slot(), slot(i));
1513   value_destroy_n(finish() - to_erase, to_erase, alloc);
1514   set_finish(finish() - to_erase);
1515 }
1516 
1517 template <typename P>
1518 void btree_node<P>::rebalance_right_to_left(const int to_move,
1519                                             btree_node *right,
1520                                             allocator_type *alloc) {
1521   assert(parent() == right->parent());
1522   assert(position() + 1 == right->position());
1523   assert(right->count() >= count());
1524   assert(to_move >= 1);
1525   assert(to_move <= right->count());
1526 
1527   // 1) Move the delimiting value in the parent to the left node.
1528   value_init(finish(), alloc, parent()->slot(position()));
1529 
1530   // 2) Move the (to_move - 1) values from the right node to the left node.
1531   right->uninitialized_move_n(to_move - 1, right->start(), finish() + 1, this,
1532                               alloc);
1533 
1534   // 3) Move the new delimiting value to the parent from the right node.
1535   params_type::move(alloc, right->slot(to_move - 1),
1536                     parent()->slot(position()));
1537 
1538   // 4) Shift the values in the right node to their correct position.
1539   params_type::move(alloc, right->slot(to_move), right->finish_slot(),
1540                     right->start_slot());
1541 
1542   // 5) Destroy the now-empty to_move entries in the right node.
1543   right->value_destroy_n(right->finish() - to_move, to_move, alloc);
1544 
1545   if (!leaf()) {
1546     // Move the child pointers from the right to the left node.
1547     for (int i = 0; i < to_move; ++i) {
1548       init_child(finish() + i + 1, right->child(i));
1549     }
1550     for (int i = right->start(); i <= right->finish() - to_move; ++i) {
1551       assert(i + to_move <= right->max_count());
1552       right->init_child(i, right->child(i + to_move));
1553       right->clear_child(i + to_move);
1554     }
1555   }
1556 
1557   // Fixup `finish` on the left and right nodes.
1558   set_finish(finish() + to_move);
1559   right->set_finish(right->finish() - to_move);
1560 }
1561 
1562 template <typename P>
1563 void btree_node<P>::rebalance_left_to_right(const int to_move,
1564                                             btree_node *right,
1565                                             allocator_type *alloc) {
1566   assert(parent() == right->parent());
1567   assert(position() + 1 == right->position());
1568   assert(count() >= right->count());
1569   assert(to_move >= 1);
1570   assert(to_move <= count());
1571 
1572   // Values in the right node are shifted to the right to make room for the
1573   // new to_move values. Then, the delimiting value in the parent and the
1574   // other (to_move - 1) values in the left node are moved into the right node.
1575   // Lastly, a new delimiting value is moved from the left node into the
1576   // parent, and the remaining empty left node entries are destroyed.
1577 
1578   if (right->count() >= to_move) {
1579     // The original location of the right->count() values are sufficient to hold
1580     // the new to_move entries from the parent and left node.
1581 
1582     // 1) Shift existing values in the right node to their correct positions.
1583     right->uninitialized_move_n(to_move, right->finish() - to_move,
1584                                 right->finish(), right, alloc);
1585     for (slot_type *src = right->slot(right->finish() - to_move - 1),
1586                    *dest = right->slot(right->finish() - 1),
1587                    *end = right->start_slot();
1588          src >= end; --src, --dest) {
1589       params_type::move(alloc, src, dest);
1590     }
1591 
1592     // 2) Move the delimiting value in the parent to the right node.
1593     params_type::move(alloc, parent()->slot(position()),
1594                       right->slot(to_move - 1));
1595 
1596     // 3) Move the (to_move - 1) values from the left node to the right node.
1597     params_type::move(alloc, slot(finish() - (to_move - 1)), finish_slot(),
1598                       right->start_slot());
1599   } else {
1600     // The right node does not have enough initialized space to hold the new
1601     // to_move entries, so part of them will move to uninitialized space.
1602 
1603     // 1) Shift existing values in the right node to their correct positions.
1604     right->uninitialized_move_n(right->count(), right->start(),
1605                                 right->start() + to_move, right, alloc);
1606 
1607     // 2) Move the delimiting value in the parent to the right node.
1608     right->value_init(to_move - 1, alloc, parent()->slot(position()));
1609 
1610     // 3) Move the (to_move - 1) values from the left node to the right node.
1611     const size_type uninitialized_remaining = to_move - right->count() - 1;
1612     uninitialized_move_n(uninitialized_remaining,
1613                          finish() - uninitialized_remaining, right->finish(),
1614                          right, alloc);
1615     params_type::move(alloc, slot(finish() - (to_move - 1)),
1616                       slot(finish() - uninitialized_remaining),
1617                       right->start_slot());
1618   }
1619 
1620   // 4) Move the new delimiting value to the parent from the left node.
1621   params_type::move(alloc, slot(finish() - to_move),
1622                     parent()->slot(position()));
1623 
1624   // 5) Destroy the now-empty to_move entries in the left node.
1625   value_destroy_n(finish() - to_move, to_move, alloc);
1626 
1627   if (!leaf()) {
1628     // Move the child pointers from the left to the right node.
1629     for (int i = right->finish(); i >= right->start(); --i) {
1630       right->init_child(i + to_move, right->child(i));
1631       right->clear_child(i);
1632     }
1633     for (int i = 1; i <= to_move; ++i) {
1634       right->init_child(i - 1, child(finish() - to_move + i));
1635       clear_child(finish() - to_move + i);
1636     }
1637   }
1638 
1639   // Fixup the counts on the left and right nodes.
1640   set_finish(finish() - to_move);
1641   right->set_finish(right->finish() + to_move);
1642 }
1643 
1644 template <typename P>
1645 void btree_node<P>::split(const int insert_position, btree_node *dest,
1646                           allocator_type *alloc) {
1647   assert(dest->count() == 0);
1648   assert(max_count() == kNodeValues);
1649 
1650   // We bias the split based on the position being inserted. If we're
1651   // inserting at the beginning of the left node then bias the split to put
1652   // more values on the right node. If we're inserting at the end of the
1653   // right node then bias the split to put more values on the left node.
1654   if (insert_position == start()) {
1655     dest->set_finish(dest->start() + finish() - 1);
1656   } else if (insert_position == kNodeValues) {
1657     dest->set_finish(dest->start());
1658   } else {
1659     dest->set_finish(dest->start() + count() / 2);
1660   }
1661   set_finish(finish() - dest->count());
1662   assert(count() >= 1);
1663 
1664   // Move values from the left sibling to the right sibling.
1665   uninitialized_move_n(dest->count(), finish(), dest->start(), dest, alloc);
1666 
1667   // Destroy the now-empty entries in the left node.
1668   value_destroy_n(finish(), dest->count(), alloc);
1669 
1670   // The split key is the largest value in the left sibling.
1671   --mutable_finish();
1672   parent()->emplace_value(position(), alloc, finish_slot());
1673   value_destroy(finish(), alloc);
1674   parent()->init_child(position() + 1, dest);
1675 
1676   if (!leaf()) {
1677     for (int i = dest->start(), j = finish() + 1; i <= dest->finish();
1678          ++i, ++j) {
1679       assert(child(j) != nullptr);
1680       dest->init_child(i, child(j));
1681       clear_child(j);
1682     }
1683   }
1684 }
1685 
1686 template <typename P>
1687 void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
1688   assert(parent() == src->parent());
1689   assert(position() + 1 == src->position());
1690 
1691   // Move the delimiting value to the left node.
1692   value_init(finish(), alloc, parent()->slot(position()));
1693 
1694   // Move the values from the right to the left node.
1695   src->uninitialized_move_n(src->count(), src->start(), finish() + 1, this,
1696                             alloc);
1697 
1698   // Destroy the now-empty entries in the right node.
1699   src->value_destroy_n(src->start(), src->count(), alloc);
1700 
1701   if (!leaf()) {
1702     // Move the child pointers from the right to the left node.
1703     for (int i = src->start(), j = finish() + 1; i <= src->finish(); ++i, ++j) {
1704       init_child(j, src->child(i));
1705       src->clear_child(i);
1706     }
1707   }
1708 
1709   // Fixup `finish` on the src and dest nodes.
1710   set_finish(start() + 1 + count() + src->count());
1711   src->set_finish(src->start());
1712 
1713   // Remove the value on the parent node.
1714   parent()->remove_value(position(), alloc);
1715 }
1716 
1717 template <typename P>
1718 void btree_node<P>::swap(btree_node *x, allocator_type *alloc) {
1719   using std::swap;
1720   assert(leaf() == x->leaf());
1721 
1722   // Determine which is the smaller/larger node.
1723   btree_node *smaller = this, *larger = x;
1724   if (smaller->count() > larger->count()) {
1725     swap(smaller, larger);
1726   }
1727 
1728   // Swap the values.
1729   for (slot_type *a = smaller->start_slot(), *b = larger->start_slot(),
1730                  *end = smaller->finish_slot();
1731        a != end; ++a, ++b) {
1732     params_type::swap(alloc, a, b);
1733   }
1734 
1735   // Move values that can't be swapped.
1736   const size_type to_move = larger->count() - smaller->count();
1737   larger->uninitialized_move_n(to_move, smaller->finish(), smaller->finish(),
1738                                smaller, alloc);
1739   larger->value_destroy_n(smaller->finish(), to_move, alloc);
1740 
1741   if (!leaf()) {
1742     // Swap the child pointers.
1743     std::swap_ranges(&smaller->mutable_child(smaller->start()),
1744                      &smaller->mutable_child(smaller->finish() + 1),
1745                      &larger->mutable_child(larger->start()));
1746     // Update swapped children's parent pointers.
1747     int i = smaller->start();
1748     int j = larger->start();
1749     for (; i <= smaller->finish(); ++i, ++j) {
1750       smaller->child(i)->set_parent(smaller);
1751       larger->child(j)->set_parent(larger);
1752     }
1753     // Move the child pointers that couldn't be swapped.
1754     for (; j <= larger->finish(); ++i, ++j) {
1755       smaller->init_child(i, larger->child(j));
1756       larger->clear_child(j);
1757     }
1758   }
1759 
1760   // Swap the `finish`s.
1761   // TODO(ezb): with floating storage, will also need to swap starts.
1762   swap(mutable_finish(), x->mutable_finish());
1763 }
1764 
1765 ////
1766 // btree_iterator methods
1767 template <typename N, typename R, typename P>
1768 void btree_iterator<N, R, P>::increment_slow() {
1769   if (node->leaf()) {
1770     assert(position >= node->finish());
1771     btree_iterator save(*this);
1772     while (position == node->finish() && !node->is_root()) {
1773       assert(node->parent()->child(node->position()) == node);
1774       position = node->position();
1775       node = node->parent();
1776     }
1777     if (position == node->finish()) {
1778       *this = save;
1779     }
1780   } else {
1781     assert(position < node->finish());
1782     node = node->child(position + 1);
1783     while (!node->leaf()) {
1784       node = node->start_child();
1785     }
1786     position = node->start();
1787   }
1788 }
1789 
1790 template <typename N, typename R, typename P>
1791 void btree_iterator<N, R, P>::decrement_slow() {
1792   if (node->leaf()) {
1793     assert(position <= -1);
1794     btree_iterator save(*this);
1795     while (position < node->start() && !node->is_root()) {
1796       assert(node->parent()->child(node->position()) == node);
1797       position = node->position() - 1;
1798       node = node->parent();
1799     }
1800     if (position < node->start()) {
1801       *this = save;
1802     }
1803   } else {
1804     assert(position >= node->start());
1805     node = node->child(position);
1806     while (!node->leaf()) {
1807       node = node->child(node->finish());
1808     }
1809     position = node->finish() - 1;
1810   }
1811 }
1812 
1813 ////
1814 // btree methods
1815 template <typename P>
1816 template <typename Btree>
1817 void btree<P>::copy_or_move_values_in_order(Btree *x) {
1818   static_assert(std::is_same<btree, Btree>::value ||
1819                     std::is_same<const btree, Btree>::value,
1820                 "Btree type must be same or const.");
1821   assert(empty());
1822 
1823   // We can avoid key comparisons because we know the order of the
1824   // values is the same order we'll store them in.
1825   auto iter = x->begin();
1826   if (iter == x->end()) return;
1827   insert_multi(maybe_move_from_iterator(iter));
1828   ++iter;
1829   for (; iter != x->end(); ++iter) {
1830     // If the btree is not empty, we can just insert the new value at the end
1831     // of the tree.
1832     internal_emplace(end(), maybe_move_from_iterator(iter));
1833   }
1834 }
1835 
1836 template <typename P>
1837 constexpr bool btree<P>::static_assert_validation() {
1838   static_assert(std::is_nothrow_copy_constructible<key_compare>::value,
1839                 "Key comparison must be nothrow copy constructible");
1840   static_assert(std::is_nothrow_copy_constructible<allocator_type>::value,
1841                 "Allocator must be nothrow copy constructible");
1842   static_assert(type_traits_internal::is_trivially_copyable<iterator>::value,
1843                 "iterator not trivially copyable.");
1844 
1845   // Note: We assert that kTargetValues, which is computed from
1846   // Params::kTargetNodeSize, must fit the node_type::field_type.
1847   static_assert(
1848       kNodeValues < (1 << (8 * sizeof(typename node_type::field_type))),
1849       "target node size too large");
1850 
1851   // Verify that key_compare returns an absl::{weak,strong}_ordering or bool.
1852   using compare_result_type =
1853       absl::result_of_t<key_compare(key_type, key_type)>;
1854   static_assert(
1855       std::is_same<compare_result_type, bool>::value ||
1856           std::is_convertible<compare_result_type, absl::weak_ordering>::value,
1857       "key comparison function must return absl::{weak,strong}_ordering or "
1858       "bool.");
1859 
1860   // Test the assumption made in setting kNodeValueSpace.
1861   static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4,
1862                 "node space assumption incorrect");
1863 
1864   return true;
1865 }
1866 
1867 template <typename P>
1868 btree<P>::btree(const key_compare &comp, const allocator_type &alloc)
1869     : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {}
1870 
1871 template <typename P>
1872 btree<P>::btree(const btree &x) : btree(x.key_comp(), x.allocator()) {
1873   copy_or_move_values_in_order(&x);
1874 }
1875 
1876 template <typename P>
1877 template <typename... Args>
1878 auto btree<P>::insert_unique(const key_type &key, Args &&... args)
1879     -> std::pair<iterator, bool> {
1880   if (empty()) {
1881     mutable_root() = rightmost_ = new_leaf_root_node(1);
1882   }
1883 
1884   auto res = internal_locate(key);
1885   iterator &iter = res.value;
1886 
1887   if (res.HasMatch()) {
1888     if (res.IsEq()) {
1889       // The key already exists in the tree, do nothing.
1890       return {iter, false};
1891     }
1892   } else {
1893     iterator last = internal_last(iter);
1894     if (last.node && !compare_keys(key, last.key())) {
1895       // The key already exists in the tree, do nothing.
1896       return {last, false};
1897     }
1898   }
1899   return {internal_emplace(iter, std::forward<Args>(args)...), true};
1900 }
1901 
1902 template <typename P>
1903 template <typename... Args>
1904 inline auto btree<P>::insert_hint_unique(iterator position, const key_type &key,
1905                                          Args &&... args)
1906     -> std::pair<iterator, bool> {
1907   if (!empty()) {
1908     if (position == end() || compare_keys(key, position.key())) {
1909       if (position == begin() || compare_keys(std::prev(position).key(), key)) {
1910         // prev.key() < key < position.key()
1911         return {internal_emplace(position, std::forward<Args>(args)...), true};
1912       }
1913     } else if (compare_keys(position.key(), key)) {
1914       ++position;
1915       if (position == end() || compare_keys(key, position.key())) {
1916         // {original `position`}.key() < key < {current `position`}.key()
1917         return {internal_emplace(position, std::forward<Args>(args)...), true};
1918       }
1919     } else {
1920       // position.key() == key
1921       return {position, false};
1922     }
1923   }
1924   return insert_unique(key, std::forward<Args>(args)...);
1925 }
1926 
1927 template <typename P>
1928 template <typename InputIterator>
1929 void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e) {
1930   for (; b != e; ++b) {
1931     insert_hint_unique(end(), params_type::key(*b), *b);
1932   }
1933 }
1934 
1935 template <typename P>
1936 template <typename ValueType>
1937 auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator {
1938   if (empty()) {
1939     mutable_root() = rightmost_ = new_leaf_root_node(1);
1940   }
1941 
1942   iterator iter = internal_upper_bound(key);
1943   if (iter.node == nullptr) {
1944     iter = end();
1945   }
1946   return internal_emplace(iter, std::forward<ValueType>(v));
1947 }
1948 
1949 template <typename P>
1950 template <typename ValueType>
1951 auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator {
1952   if (!empty()) {
1953     const key_type &key = params_type::key(v);
1954     if (position == end() || !compare_keys(position.key(), key)) {
1955       if (position == begin() ||
1956           !compare_keys(key, std::prev(position).key())) {
1957         // prev.key() <= key <= position.key()
1958         return internal_emplace(position, std::forward<ValueType>(v));
1959       }
1960     } else {
1961       ++position;
1962       if (position == end() || !compare_keys(position.key(), key)) {
1963         // {original `position`}.key() < key < {current `position`}.key()
1964         return internal_emplace(position, std::forward<ValueType>(v));
1965       }
1966     }
1967   }
1968   return insert_multi(std::forward<ValueType>(v));
1969 }
1970 
1971 template <typename P>
1972 template <typename InputIterator>
1973 void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) {
1974   for (; b != e; ++b) {
1975     insert_hint_multi(end(), *b);
1976   }
1977 }
1978 
1979 template <typename P>
1980 auto btree<P>::operator=(const btree &x) -> btree & {
1981   if (this != &x) {
1982     clear();
1983 
1984     *mutable_key_comp() = x.key_comp();
1985     if (absl::allocator_traits<
1986             allocator_type>::propagate_on_container_copy_assignment::value) {
1987       *mutable_allocator() = x.allocator();
1988     }
1989 
1990     copy_or_move_values_in_order(&x);
1991   }
1992   return *this;
1993 }
1994 
1995 template <typename P>
1996 auto btree<P>::operator=(btree &&x) noexcept -> btree & {
1997   if (this != &x) {
1998     clear();
1999 
2000     using std::swap;
2001     if (absl::allocator_traits<
2002             allocator_type>::propagate_on_container_copy_assignment::value) {
2003       // Note: `root_` also contains the allocator and the key comparator.
2004       swap(root_, x.root_);
2005       swap(rightmost_, x.rightmost_);
2006       swap(size_, x.size_);
2007     } else {
2008       if (allocator() == x.allocator()) {
2009         swap(mutable_root(), x.mutable_root());
2010         swap(*mutable_key_comp(), *x.mutable_key_comp());
2011         swap(rightmost_, x.rightmost_);
2012         swap(size_, x.size_);
2013       } else {
2014         // We aren't allowed to propagate the allocator and the allocator is
2015         // different so we can't take over its memory. We must move each element
2016         // individually. We need both `x` and `this` to have `x`s key comparator
2017         // while moving the values so we can't swap the key comparators.
2018         *mutable_key_comp() = x.key_comp();
2019         copy_or_move_values_in_order(&x);
2020       }
2021     }
2022   }
2023   return *this;
2024 }
2025 
2026 template <typename P>
2027 auto btree<P>::erase(iterator iter) -> iterator {
2028   bool internal_delete = false;
2029   if (!iter.node->leaf()) {
2030     // Deletion of a value on an internal node. First, move the largest value
2031     // from our left child here, then delete that position (in remove_value()
2032     // below). We can get to the largest value from our left child by
2033     // decrementing iter.
2034     iterator internal_iter(iter);
2035     --iter;
2036     assert(iter.node->leaf());
2037     params_type::move(mutable_allocator(), iter.node->slot(iter.position),
2038                       internal_iter.node->slot(internal_iter.position));
2039     internal_delete = true;
2040   }
2041 
2042   // Delete the key from the leaf.
2043   iter.node->remove_value(iter.position, mutable_allocator());
2044   --size_;
2045 
2046   // We want to return the next value after the one we just erased. If we
2047   // erased from an internal node (internal_delete == true), then the next
2048   // value is ++(++iter). If we erased from a leaf node (internal_delete ==
2049   // false) then the next value is ++iter. Note that ++iter may point to an
2050   // internal node and the value in the internal node may move to a leaf node
2051   // (iter.node) when rebalancing is performed at the leaf level.
2052 
2053   iterator res = rebalance_after_delete(iter);
2054 
2055   // If we erased from an internal node, advance the iterator.
2056   if (internal_delete) {
2057     ++res;
2058   }
2059   return res;
2060 }
2061 
2062 template <typename P>
2063 auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
2064   // Merge/rebalance as we walk back up the tree.
2065   iterator res(iter);
2066   bool first_iteration = true;
2067   for (;;) {
2068     if (iter.node == root()) {
2069       try_shrink();
2070       if (empty()) {
2071         return end();
2072       }
2073       break;
2074     }
2075     if (iter.node->count() >= kMinNodeValues) {
2076       break;
2077     }
2078     bool merged = try_merge_or_rebalance(&iter);
2079     // On the first iteration, we should update `res` with `iter` because `res`
2080     // may have been invalidated.
2081     if (first_iteration) {
2082       res = iter;
2083       first_iteration = false;
2084     }
2085     if (!merged) {
2086       break;
2087     }
2088     iter.position = iter.node->position();
2089     iter.node = iter.node->parent();
2090   }
2091 
2092   // Adjust our return value. If we're pointing at the end of a node, advance
2093   // the iterator.
2094   if (res.position == res.node->finish()) {
2095     res.position = res.node->finish() - 1;
2096     ++res;
2097   }
2098 
2099   return res;
2100 }
2101 
2102 template <typename P>
2103 auto btree<P>::erase_range(iterator begin, iterator end)
2104     -> std::pair<size_type, iterator> {
2105   difference_type count = std::distance(begin, end);
2106   assert(count >= 0);
2107 
2108   if (count == 0) {
2109     return {0, begin};
2110   }
2111 
2112   if (count == size_) {
2113     clear();
2114     return {count, this->end()};
2115   }
2116 
2117   if (begin.node == end.node) {
2118     erase_same_node(begin, end);
2119     size_ -= count;
2120     return {count, rebalance_after_delete(begin)};
2121   }
2122 
2123   const size_type target_size = size_ - count;
2124   while (size_ > target_size) {
2125     if (begin.node->leaf()) {
2126       const size_type remaining_to_erase = size_ - target_size;
2127       const size_type remaining_in_node = begin.node->finish() - begin.position;
2128       begin = erase_from_leaf_node(
2129           begin, (std::min)(remaining_to_erase, remaining_in_node));
2130     } else {
2131       begin = erase(begin);
2132     }
2133   }
2134   return {count, begin};
2135 }
2136 
2137 template <typename P>
2138 void btree<P>::erase_same_node(iterator begin, iterator end) {
2139   assert(begin.node == end.node);
2140   assert(end.position > begin.position);
2141 
2142   node_type *node = begin.node;
2143   size_type to_erase = end.position - begin.position;
2144   if (!node->leaf()) {
2145     // Delete all children between begin and end.
2146     for (size_type i = 0; i < to_erase; ++i) {
2147       internal_clear(node->child(begin.position + i + 1));
2148     }
2149     // Rotate children after end into new positions.
2150     for (size_type i = begin.position + to_erase + 1; i <= node->finish();
2151          ++i) {
2152       node->set_child(i - to_erase, node->child(i));
2153       node->clear_child(i);
2154     }
2155   }
2156   node->remove_values_ignore_children(begin.position, to_erase,
2157                                       mutable_allocator());
2158 
2159   // Do not need to update rightmost_, because
2160   // * either end == this->end(), and therefore node == rightmost_, and still
2161   //   exists
2162   // * or end != this->end(), and therefore rightmost_ hasn't been erased, since
2163   //   it wasn't covered in [begin, end)
2164 }
2165 
2166 template <typename P>
2167 auto btree<P>::erase_from_leaf_node(iterator begin, size_type to_erase)
2168     -> iterator {
2169   node_type *node = begin.node;
2170   assert(node->leaf());
2171   assert(node->finish() > begin.position);
2172   assert(begin.position + to_erase <= node->finish());
2173 
2174   node->remove_values_ignore_children(begin.position, to_erase,
2175                                       mutable_allocator());
2176 
2177   size_ -= to_erase;
2178 
2179   return rebalance_after_delete(begin);
2180 }
2181 
2182 template <typename P>
2183 template <typename K>
2184 auto btree<P>::erase_unique(const K &key) -> size_type {
2185   const iterator iter = internal_find(key);
2186   if (iter.node == nullptr) {
2187     // The key doesn't exist in the tree, return nothing done.
2188     return 0;
2189   }
2190   erase(iter);
2191   return 1;
2192 }
2193 
2194 template <typename P>
2195 template <typename K>
2196 auto btree<P>::erase_multi(const K &key) -> size_type {
2197   const iterator begin = internal_lower_bound(key);
2198   if (begin.node == nullptr) {
2199     // The key doesn't exist in the tree, return nothing done.
2200     return 0;
2201   }
2202   // Delete all of the keys between begin and upper_bound(key).
2203   const iterator end = internal_end(internal_upper_bound(key));
2204   return erase_range(begin, end).first;
2205 }
2206 
2207 template <typename P>
2208 void btree<P>::clear() {
2209   if (!empty()) {
2210     internal_clear(root());
2211   }
2212   mutable_root() = EmptyNode();
2213   rightmost_ = EmptyNode();
2214   size_ = 0;
2215 }
2216 
2217 template <typename P>
2218 void btree<P>::swap(btree &x) {
2219   using std::swap;
2220   if (absl::allocator_traits<
2221           allocator_type>::propagate_on_container_swap::value) {
2222     // Note: `root_` also contains the allocator and the key comparator.
2223     swap(root_, x.root_);
2224   } else {
2225     // It's undefined behavior if the allocators are unequal here.
2226     assert(allocator() == x.allocator());
2227     swap(mutable_root(), x.mutable_root());
2228     swap(*mutable_key_comp(), *x.mutable_key_comp());
2229   }
2230   swap(rightmost_, x.rightmost_);
2231   swap(size_, x.size_);
2232 }
2233 
2234 template <typename P>
2235 void btree<P>::verify() const {
2236   assert(root() != nullptr);
2237   assert(leftmost() != nullptr);
2238   assert(rightmost_ != nullptr);
2239   assert(empty() || size() == internal_verify(root(), nullptr, nullptr));
2240   assert(leftmost() == (++const_iterator(root(), -1)).node);
2241   assert(rightmost_ == (--const_iterator(root(), root()->finish())).node);
2242   assert(leftmost()->leaf());
2243   assert(rightmost_->leaf());
2244 }
2245 
2246 template <typename P>
2247 void btree<P>::rebalance_or_split(iterator *iter) {
2248   node_type *&node = iter->node;
2249   int &insert_position = iter->position;
2250   assert(node->count() == node->max_count());
2251   assert(kNodeValues == node->max_count());
2252 
2253   // First try to make room on the node by rebalancing.
2254   node_type *parent = node->parent();
2255   if (node != root()) {
2256     if (node->position() > parent->start()) {
2257       // Try rebalancing with our left sibling.
2258       node_type *left = parent->child(node->position() - 1);
2259       assert(left->max_count() == kNodeValues);
2260       if (left->count() < kNodeValues) {
2261         // We bias rebalancing based on the position being inserted. If we're
2262         // inserting at the end of the right node then we bias rebalancing to
2263         // fill up the left node.
2264         int to_move = (kNodeValues - left->count()) /
2265                       (1 + (insert_position < kNodeValues));
2266         to_move = (std::max)(1, to_move);
2267 
2268         if (insert_position - to_move >= node->start() ||
2269             left->count() + to_move < kNodeValues) {
2270           left->rebalance_right_to_left(to_move, node, mutable_allocator());
2271 
2272           assert(node->max_count() - node->count() == to_move);
2273           insert_position = insert_position - to_move;
2274           if (insert_position < node->start()) {
2275             insert_position = insert_position + left->count() + 1;
2276             node = left;
2277           }
2278 
2279           assert(node->count() < node->max_count());
2280           return;
2281         }
2282       }
2283     }
2284 
2285     if (node->position() < parent->finish()) {
2286       // Try rebalancing with our right sibling.
2287       node_type *right = parent->child(node->position() + 1);
2288       assert(right->max_count() == kNodeValues);
2289       if (right->count() < kNodeValues) {
2290         // We bias rebalancing based on the position being inserted. If we're
2291         // inserting at the beginning of the left node then we bias rebalancing
2292         // to fill up the right node.
2293         int to_move = (kNodeValues - right->count()) /
2294                       (1 + (insert_position > node->start()));
2295         to_move = (std::max)(1, to_move);
2296 
2297         if (insert_position <= node->finish() - to_move ||
2298             right->count() + to_move < kNodeValues) {
2299           node->rebalance_left_to_right(to_move, right, mutable_allocator());
2300 
2301           if (insert_position > node->finish()) {
2302             insert_position = insert_position - node->count() - 1;
2303             node = right;
2304           }
2305 
2306           assert(node->count() < node->max_count());
2307           return;
2308         }
2309       }
2310     }
2311 
2312     // Rebalancing failed, make sure there is room on the parent node for a new
2313     // value.
2314     assert(parent->max_count() == kNodeValues);
2315     if (parent->count() == kNodeValues) {
2316       iterator parent_iter(node->parent(), node->position());
2317       rebalance_or_split(&parent_iter);
2318     }
2319   } else {
2320     // Rebalancing not possible because this is the root node.
2321     // Create a new root node and set the current root node as the child of the
2322     // new root.
2323     parent = new_internal_node(parent);
2324     parent->init_child(parent->start(), root());
2325     mutable_root() = parent;
2326     // If the former root was a leaf node, then it's now the rightmost node.
2327     assert(!parent->start_child()->leaf() ||
2328            parent->start_child() == rightmost_);
2329   }
2330 
2331   // Split the node.
2332   node_type *split_node;
2333   if (node->leaf()) {
2334     split_node = new_leaf_node(parent);
2335     node->split(insert_position, split_node, mutable_allocator());
2336     if (rightmost_ == node) rightmost_ = split_node;
2337   } else {
2338     split_node = new_internal_node(parent);
2339     node->split(insert_position, split_node, mutable_allocator());
2340   }
2341 
2342   if (insert_position > node->finish()) {
2343     insert_position = insert_position - node->count() - 1;
2344     node = split_node;
2345   }
2346 }
2347 
2348 template <typename P>
2349 void btree<P>::merge_nodes(node_type *left, node_type *right) {
2350   left->merge(right, mutable_allocator());
2351   if (right->leaf()) {
2352     if (rightmost_ == right) rightmost_ = left;
2353     delete_leaf_node(right);
2354   } else {
2355     delete_internal_node(right);
2356   }
2357 }
2358 
2359 template <typename P>
2360 bool btree<P>::try_merge_or_rebalance(iterator *iter) {
2361   node_type *parent = iter->node->parent();
2362   if (iter->node->position() > parent->start()) {
2363     // Try merging with our left sibling.
2364     node_type *left = parent->child(iter->node->position() - 1);
2365     assert(left->max_count() == kNodeValues);
2366     if (1 + left->count() + iter->node->count() <= kNodeValues) {
2367       iter->position += 1 + left->count();
2368       merge_nodes(left, iter->node);
2369       iter->node = left;
2370       return true;
2371     }
2372   }
2373   if (iter->node->position() < parent->finish()) {
2374     // Try merging with our right sibling.
2375     node_type *right = parent->child(iter->node->position() + 1);
2376     assert(right->max_count() == kNodeValues);
2377     if (1 + iter->node->count() + right->count() <= kNodeValues) {
2378       merge_nodes(iter->node, right);
2379       return true;
2380     }
2381     // Try rebalancing with our right sibling. We don't perform rebalancing if
2382     // we deleted the first element from iter->node and the node is not
2383     // empty. This is a small optimization for the common pattern of deleting
2384     // from the front of the tree.
2385     if (right->count() > kMinNodeValues &&
2386         (iter->node->count() == 0 || iter->position > iter->node->start())) {
2387       int to_move = (right->count() - iter->node->count()) / 2;
2388       to_move = (std::min)(to_move, right->count() - 1);
2389       iter->node->rebalance_right_to_left(to_move, right, mutable_allocator());
2390       return false;
2391     }
2392   }
2393   if (iter->node->position() > parent->start()) {
2394     // Try rebalancing with our left sibling. We don't perform rebalancing if
2395     // we deleted the last element from iter->node and the node is not
2396     // empty. This is a small optimization for the common pattern of deleting
2397     // from the back of the tree.
2398     node_type *left = parent->child(iter->node->position() - 1);
2399     if (left->count() > kMinNodeValues &&
2400         (iter->node->count() == 0 || iter->position < iter->node->finish())) {
2401       int to_move = (left->count() - iter->node->count()) / 2;
2402       to_move = (std::min)(to_move, left->count() - 1);
2403       left->rebalance_left_to_right(to_move, iter->node, mutable_allocator());
2404       iter->position += to_move;
2405       return false;
2406     }
2407   }
2408   return false;
2409 }
2410 
2411 template <typename P>
2412 void btree<P>::try_shrink() {
2413   if (root()->count() > 0) {
2414     return;
2415   }
2416   // Deleted the last item on the root node, shrink the height of the tree.
2417   if (root()->leaf()) {
2418     assert(size() == 0);
2419     delete_leaf_node(root());
2420     mutable_root() = EmptyNode();
2421     rightmost_ = EmptyNode();
2422   } else {
2423     node_type *child = root()->start_child();
2424     child->make_root();
2425     delete_internal_node(root());
2426     mutable_root() = child;
2427   }
2428 }
2429 
2430 template <typename P>
2431 template <typename IterType>
2432 inline IterType btree<P>::internal_last(IterType iter) {
2433   assert(iter.node != nullptr);
2434   while (iter.position == iter.node->finish()) {
2435     iter.position = iter.node->position();
2436     iter.node = iter.node->parent();
2437     if (iter.node->leaf()) {
2438       iter.node = nullptr;
2439       break;
2440     }
2441   }
2442   return iter;
2443 }
2444 
2445 template <typename P>
2446 template <typename... Args>
2447 inline auto btree<P>::internal_emplace(iterator iter, Args &&... args)
2448     -> iterator {
2449   if (!iter.node->leaf()) {
2450     // We can't insert on an internal node. Instead, we'll insert after the
2451     // previous value which is guaranteed to be on a leaf node.
2452     --iter;
2453     ++iter.position;
2454   }
2455   const int max_count = iter.node->max_count();
2456   if (iter.node->count() == max_count) {
2457     // Make room in the leaf for the new item.
2458     if (max_count < kNodeValues) {
2459       // Insertion into the root where the root is smaller than the full node
2460       // size. Simply grow the size of the root node.
2461       assert(iter.node == root());
2462       iter.node =
2463           new_leaf_root_node((std::min<int>)(kNodeValues, 2 * max_count));
2464       iter.node->swap(root(), mutable_allocator());
2465       delete_leaf_node(root());
2466       mutable_root() = iter.node;
2467       rightmost_ = iter.node;
2468     } else {
2469       rebalance_or_split(&iter);
2470     }
2471   }
2472   iter.node->emplace_value(iter.position, mutable_allocator(),
2473                            std::forward<Args>(args)...);
2474   ++size_;
2475   return iter;
2476 }
2477 
2478 template <typename P>
2479 template <typename K>
2480 inline auto btree<P>::internal_locate(const K &key) const
2481     -> SearchResult<iterator, is_key_compare_to::value> {
2482   return internal_locate_impl(key, is_key_compare_to());
2483 }
2484 
2485 template <typename P>
2486 template <typename K>
2487 inline auto btree<P>::internal_locate_impl(
2488     const K &key, std::false_type /* IsCompareTo */) const
2489     -> SearchResult<iterator, false> {
2490   iterator iter(const_cast<node_type *>(root()));
2491   for (;;) {
2492     iter.position = iter.node->lower_bound(key, key_comp()).value;
2493     // NOTE: we don't need to walk all the way down the tree if the keys are
2494     // equal, but determining equality would require doing an extra comparison
2495     // on each node on the way down, and we will need to go all the way to the
2496     // leaf node in the expected case.
2497     if (iter.node->leaf()) {
2498       break;
2499     }
2500     iter.node = iter.node->child(iter.position);
2501   }
2502   return {iter};
2503 }
2504 
2505 template <typename P>
2506 template <typename K>
2507 inline auto btree<P>::internal_locate_impl(
2508     const K &key, std::true_type /* IsCompareTo */) const
2509     -> SearchResult<iterator, true> {
2510   iterator iter(const_cast<node_type *>(root()));
2511   for (;;) {
2512     SearchResult<int, true> res = iter.node->lower_bound(key, key_comp());
2513     iter.position = res.value;
2514     if (res.match == MatchKind::kEq) {
2515       return {iter, MatchKind::kEq};
2516     }
2517     if (iter.node->leaf()) {
2518       break;
2519     }
2520     iter.node = iter.node->child(iter.position);
2521   }
2522   return {iter, MatchKind::kNe};
2523 }
2524 
2525 template <typename P>
2526 template <typename K>
2527 auto btree<P>::internal_lower_bound(const K &key) const -> iterator {
2528   iterator iter(const_cast<node_type *>(root()));
2529   for (;;) {
2530     iter.position = iter.node->lower_bound(key, key_comp()).value;
2531     if (iter.node->leaf()) {
2532       break;
2533     }
2534     iter.node = iter.node->child(iter.position);
2535   }
2536   return internal_last(iter);
2537 }
2538 
2539 template <typename P>
2540 template <typename K>
2541 auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
2542   iterator iter(const_cast<node_type *>(root()));
2543   for (;;) {
2544     iter.position = iter.node->upper_bound(key, key_comp());
2545     if (iter.node->leaf()) {
2546       break;
2547     }
2548     iter.node = iter.node->child(iter.position);
2549   }
2550   return internal_last(iter);
2551 }
2552 
2553 template <typename P>
2554 template <typename K>
2555 auto btree<P>::internal_find(const K &key) const -> iterator {
2556   auto res = internal_locate(key);
2557   if (res.HasMatch()) {
2558     if (res.IsEq()) {
2559       return res.value;
2560     }
2561   } else {
2562     const iterator iter = internal_last(res.value);
2563     if (iter.node != nullptr && !compare_keys(key, iter.key())) {
2564       return iter;
2565     }
2566   }
2567   return {nullptr, 0};
2568 }
2569 
2570 template <typename P>
2571 void btree<P>::internal_clear(node_type *node) {
2572   if (!node->leaf()) {
2573     for (int i = node->start(); i <= node->finish(); ++i) {
2574       internal_clear(node->child(i));
2575     }
2576     delete_internal_node(node);
2577   } else {
2578     delete_leaf_node(node);
2579   }
2580 }
2581 
2582 template <typename P>
2583 int btree<P>::internal_verify(const node_type *node, const key_type *lo,
2584                               const key_type *hi) const {
2585   assert(node->count() > 0);
2586   assert(node->count() <= node->max_count());
2587   if (lo) {
2588     assert(!compare_keys(node->key(node->start()), *lo));
2589   }
2590   if (hi) {
2591     assert(!compare_keys(*hi, node->key(node->finish() - 1)));
2592   }
2593   for (int i = node->start() + 1; i < node->finish(); ++i) {
2594     assert(!compare_keys(node->key(i), node->key(i - 1)));
2595   }
2596   int count = node->count();
2597   if (!node->leaf()) {
2598     for (int i = node->start(); i <= node->finish(); ++i) {
2599       assert(node->child(i) != nullptr);
2600       assert(node->child(i)->parent() == node);
2601       assert(node->child(i)->position() == i);
2602       count += internal_verify(node->child(i),
2603                                i == node->start() ? lo : &node->key(i - 1),
2604                                i == node->finish() ? hi : &node->key(i));
2605     }
2606   }
2607   return count;
2608 }
2609 
2610 }  // namespace container_internal
2611 ABSL_NAMESPACE_END
2612 }  // namespace absl
2613 
2614 #endif  // ABSL_CONTAINER_INTERNAL_BTREE_H_
2615