1 // Copyright 2018 The Abseil Authors. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // https://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 #ifndef ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_ 16 #define ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_ 17 18 #include <algorithm> 19 #include <initializer_list> 20 #include <iterator> 21 #include <utility> 22 23 #include "absl/base/internal/throw_delegate.h" 24 #include "absl/container/internal/btree.h" // IWYU pragma: export 25 #include "absl/container/internal/common.h" 26 #include "absl/meta/type_traits.h" 27 28 namespace absl { 29 ABSL_NAMESPACE_BEGIN 30 namespace container_internal { 31 32 // A common base class for btree_set, btree_map, btree_multiset, and 33 // btree_multimap. 34 template <typename Tree> 35 class btree_container { 36 using params_type = typename Tree::params_type; 37 38 protected: 39 // Alias used for heterogeneous lookup functions. 40 // `key_arg<K>` evaluates to `K` when the functors are transparent and to 41 // `key_type` otherwise. It permits template argument deduction on `K` for the 42 // transparent case. 43 template <class K> 44 using key_arg = 45 typename KeyArg<IsTransparent<typename Tree::key_compare>::value>:: 46 template type<K, typename Tree::key_type>; 47 48 public: 49 using key_type = typename Tree::key_type; 50 using value_type = typename Tree::value_type; 51 using size_type = typename Tree::size_type; 52 using difference_type = typename Tree::difference_type; 53 using key_compare = typename Tree::key_compare; 54 using value_compare = typename Tree::value_compare; 55 using allocator_type = typename Tree::allocator_type; 56 using reference = typename Tree::reference; 57 using const_reference = typename Tree::const_reference; 58 using pointer = typename Tree::pointer; 59 using const_pointer = typename Tree::const_pointer; 60 using iterator = typename Tree::iterator; 61 using const_iterator = typename Tree::const_iterator; 62 using reverse_iterator = typename Tree::reverse_iterator; 63 using const_reverse_iterator = typename Tree::const_reverse_iterator; 64 using node_type = typename Tree::node_handle_type; 65 66 // Constructors/assignments. btree_container()67 btree_container() : tree_(key_compare(), allocator_type()) {} 68 explicit btree_container(const key_compare &comp, 69 const allocator_type &alloc = allocator_type()) tree_(comp,alloc)70 : tree_(comp, alloc) {} 71 btree_container(const btree_container &x) = default; 72 btree_container(btree_container &&x) noexcept = default; 73 btree_container &operator=(const btree_container &x) = default; 74 btree_container &operator=(btree_container &&x) noexcept( 75 std::is_nothrow_move_assignable<Tree>::value) = default; 76 77 // Iterator routines. begin()78 iterator begin() { return tree_.begin(); } begin()79 const_iterator begin() const { return tree_.begin(); } cbegin()80 const_iterator cbegin() const { return tree_.begin(); } end()81 iterator end() { return tree_.end(); } end()82 const_iterator end() const { return tree_.end(); } cend()83 const_iterator cend() const { return tree_.end(); } rbegin()84 reverse_iterator rbegin() { return tree_.rbegin(); } rbegin()85 const_reverse_iterator rbegin() const { return tree_.rbegin(); } crbegin()86 const_reverse_iterator crbegin() const { return tree_.rbegin(); } rend()87 reverse_iterator rend() { return tree_.rend(); } rend()88 const_reverse_iterator rend() const { return tree_.rend(); } crend()89 const_reverse_iterator crend() const { return tree_.rend(); } 90 91 // Lookup routines. 92 template <typename K = key_type> find(const key_arg<K> & key)93 iterator find(const key_arg<K> &key) { 94 return tree_.find(key); 95 } 96 template <typename K = key_type> find(const key_arg<K> & key)97 const_iterator find(const key_arg<K> &key) const { 98 return tree_.find(key); 99 } 100 template <typename K = key_type> contains(const key_arg<K> & key)101 bool contains(const key_arg<K> &key) const { 102 return find(key) != end(); 103 } 104 template <typename K = key_type> lower_bound(const key_arg<K> & key)105 iterator lower_bound(const key_arg<K> &key) { 106 return tree_.lower_bound(key); 107 } 108 template <typename K = key_type> lower_bound(const key_arg<K> & key)109 const_iterator lower_bound(const key_arg<K> &key) const { 110 return tree_.lower_bound(key); 111 } 112 template <typename K = key_type> upper_bound(const key_arg<K> & key)113 iterator upper_bound(const key_arg<K> &key) { 114 return tree_.upper_bound(key); 115 } 116 template <typename K = key_type> upper_bound(const key_arg<K> & key)117 const_iterator upper_bound(const key_arg<K> &key) const { 118 return tree_.upper_bound(key); 119 } 120 template <typename K = key_type> equal_range(const key_arg<K> & key)121 std::pair<iterator, iterator> equal_range(const key_arg<K> &key) { 122 return tree_.equal_range(key); 123 } 124 template <typename K = key_type> equal_range(const key_arg<K> & key)125 std::pair<const_iterator, const_iterator> equal_range( 126 const key_arg<K> &key) const { 127 return tree_.equal_range(key); 128 } 129 130 // Deletion routines. Note that there is also a deletion routine that is 131 // specific to btree_set_container/btree_multiset_container. 132 133 // Erase the specified iterator from the btree. The iterator must be valid 134 // (i.e. not equal to end()). Return an iterator pointing to the node after 135 // the one that was erased (or end() if none exists). erase(const_iterator iter)136 iterator erase(const_iterator iter) { return tree_.erase(iterator(iter)); } erase(iterator iter)137 iterator erase(iterator iter) { return tree_.erase(iter); } erase(const_iterator first,const_iterator last)138 iterator erase(const_iterator first, const_iterator last) { 139 return tree_.erase_range(iterator(first), iterator(last)).second; 140 } 141 142 // Extract routines. extract(iterator position)143 node_type extract(iterator position) { 144 // Use Move instead of Transfer, because the rebalancing code expects to 145 // have a valid object to scribble metadata bits on top of. 146 auto node = CommonAccess::Move<node_type>(get_allocator(), position.slot()); 147 erase(position); 148 return node; 149 } extract(const_iterator position)150 node_type extract(const_iterator position) { 151 return extract(iterator(position)); 152 } 153 154 public: 155 // Utility routines. clear()156 void clear() { tree_.clear(); } swap(btree_container & x)157 void swap(btree_container &x) { tree_.swap(x.tree_); } verify()158 void verify() const { tree_.verify(); } 159 160 // Size routines. size()161 size_type size() const { return tree_.size(); } max_size()162 size_type max_size() const { return tree_.max_size(); } empty()163 bool empty() const { return tree_.empty(); } 164 165 friend bool operator==(const btree_container &x, const btree_container &y) { 166 if (x.size() != y.size()) return false; 167 return std::equal(x.begin(), x.end(), y.begin()); 168 } 169 170 friend bool operator!=(const btree_container &x, const btree_container &y) { 171 return !(x == y); 172 } 173 174 friend bool operator<(const btree_container &x, const btree_container &y) { 175 return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); 176 } 177 178 friend bool operator>(const btree_container &x, const btree_container &y) { 179 return y < x; 180 } 181 182 friend bool operator<=(const btree_container &x, const btree_container &y) { 183 return !(y < x); 184 } 185 186 friend bool operator>=(const btree_container &x, const btree_container &y) { 187 return !(x < y); 188 } 189 190 // The allocator used by the btree. get_allocator()191 allocator_type get_allocator() const { return tree_.get_allocator(); } 192 193 // The key comparator used by the btree. key_comp()194 key_compare key_comp() const { return tree_.key_comp(); } value_comp()195 value_compare value_comp() const { return tree_.value_comp(); } 196 197 // Support absl::Hash. 198 template <typename State> AbslHashValue(State h,const btree_container & b)199 friend State AbslHashValue(State h, const btree_container &b) { 200 for (const auto &v : b) { 201 h = State::combine(std::move(h), v); 202 } 203 return State::combine(std::move(h), b.size()); 204 } 205 206 protected: 207 Tree tree_; 208 }; 209 210 // A common base class for btree_set and btree_map. 211 template <typename Tree> 212 class btree_set_container : public btree_container<Tree> { 213 using super_type = btree_container<Tree>; 214 using params_type = typename Tree::params_type; 215 using init_type = typename params_type::init_type; 216 using is_key_compare_to = typename params_type::is_key_compare_to; 217 friend class BtreeNodePeer; 218 219 protected: 220 template <class K> 221 using key_arg = typename super_type::template key_arg<K>; 222 223 public: 224 using key_type = typename Tree::key_type; 225 using value_type = typename Tree::value_type; 226 using size_type = typename Tree::size_type; 227 using key_compare = typename Tree::key_compare; 228 using allocator_type = typename Tree::allocator_type; 229 using iterator = typename Tree::iterator; 230 using const_iterator = typename Tree::const_iterator; 231 using node_type = typename super_type::node_type; 232 using insert_return_type = InsertReturnType<iterator, node_type>; 233 234 // Inherit constructors. 235 using super_type::super_type; btree_set_container()236 btree_set_container() {} 237 238 // Range constructor. 239 template <class InputIterator> 240 btree_set_container(InputIterator b, InputIterator e, 241 const key_compare &comp = key_compare(), 242 const allocator_type &alloc = allocator_type()) super_type(comp,alloc)243 : super_type(comp, alloc) { 244 insert(b, e); 245 } 246 247 // Initializer list constructor. 248 btree_set_container(std::initializer_list<init_type> init, 249 const key_compare &comp = key_compare(), 250 const allocator_type &alloc = allocator_type()) 251 : btree_set_container(init.begin(), init.end(), comp, alloc) {} 252 253 // Lookup routines. 254 template <typename K = key_type> count(const key_arg<K> & key)255 size_type count(const key_arg<K> &key) const { 256 return this->tree_.count_unique(key); 257 } 258 259 // Insertion routines. insert(const value_type & x)260 std::pair<iterator, bool> insert(const value_type &x) { 261 return this->tree_.insert_unique(params_type::key(x), x); 262 } insert(value_type && x)263 std::pair<iterator, bool> insert(value_type &&x) { 264 return this->tree_.insert_unique(params_type::key(x), std::move(x)); 265 } 266 template <typename... Args> emplace(Args &&...args)267 std::pair<iterator, bool> emplace(Args &&... args) { 268 init_type v(std::forward<Args>(args)...); 269 return this->tree_.insert_unique(params_type::key(v), std::move(v)); 270 } insert(const_iterator position,const value_type & x)271 iterator insert(const_iterator position, const value_type &x) { 272 return this->tree_ 273 .insert_hint_unique(iterator(position), params_type::key(x), x) 274 .first; 275 } insert(const_iterator position,value_type && x)276 iterator insert(const_iterator position, value_type &&x) { 277 return this->tree_ 278 .insert_hint_unique(iterator(position), params_type::key(x), 279 std::move(x)) 280 .first; 281 } 282 template <typename... Args> emplace_hint(const_iterator position,Args &&...args)283 iterator emplace_hint(const_iterator position, Args &&... args) { 284 init_type v(std::forward<Args>(args)...); 285 return this->tree_ 286 .insert_hint_unique(iterator(position), params_type::key(v), 287 std::move(v)) 288 .first; 289 } 290 template <typename InputIterator> insert(InputIterator b,InputIterator e)291 void insert(InputIterator b, InputIterator e) { 292 this->tree_.insert_iterator_unique(b, e); 293 } insert(std::initializer_list<init_type> init)294 void insert(std::initializer_list<init_type> init) { 295 this->tree_.insert_iterator_unique(init.begin(), init.end()); 296 } insert(node_type && node)297 insert_return_type insert(node_type &&node) { 298 if (!node) return {this->end(), false, node_type()}; 299 std::pair<iterator, bool> res = 300 this->tree_.insert_unique(params_type::key(CommonAccess::GetSlot(node)), 301 CommonAccess::GetSlot(node)); 302 if (res.second) { 303 CommonAccess::Destroy(&node); 304 return {res.first, true, node_type()}; 305 } else { 306 return {res.first, false, std::move(node)}; 307 } 308 } insert(const_iterator hint,node_type && node)309 iterator insert(const_iterator hint, node_type &&node) { 310 if (!node) return this->end(); 311 std::pair<iterator, bool> res = this->tree_.insert_hint_unique( 312 iterator(hint), params_type::key(CommonAccess::GetSlot(node)), 313 CommonAccess::GetSlot(node)); 314 if (res.second) CommonAccess::Destroy(&node); 315 return res.first; 316 } 317 318 // Deletion routines. 319 template <typename K = key_type> erase(const key_arg<K> & key)320 size_type erase(const key_arg<K> &key) { 321 return this->tree_.erase_unique(key); 322 } 323 using super_type::erase; 324 325 // Node extraction routines. 326 template <typename K = key_type> extract(const key_arg<K> & key)327 node_type extract(const key_arg<K> &key) { 328 auto it = this->find(key); 329 return it == this->end() ? node_type() : extract(it); 330 } 331 using super_type::extract; 332 333 // Merge routines. 334 // Moves elements from `src` into `this`. If the element already exists in 335 // `this`, it is left unmodified in `src`. 336 template < 337 typename T, 338 typename absl::enable_if_t< 339 absl::conjunction< 340 std::is_same<value_type, typename T::value_type>, 341 std::is_same<allocator_type, typename T::allocator_type>, 342 std::is_same<typename params_type::is_map_container, 343 typename T::params_type::is_map_container>>::value, 344 int> = 0> merge(btree_container<T> & src)345 void merge(btree_container<T> &src) { // NOLINT 346 for (auto src_it = src.begin(); src_it != src.end();) { 347 if (insert(std::move(*src_it)).second) { 348 src_it = src.erase(src_it); 349 } else { 350 ++src_it; 351 } 352 } 353 } 354 355 template < 356 typename T, 357 typename absl::enable_if_t< 358 absl::conjunction< 359 std::is_same<value_type, typename T::value_type>, 360 std::is_same<allocator_type, typename T::allocator_type>, 361 std::is_same<typename params_type::is_map_container, 362 typename T::params_type::is_map_container>>::value, 363 int> = 0> merge(btree_container<T> && src)364 void merge(btree_container<T> &&src) { 365 merge(src); 366 } 367 }; 368 369 // Base class for btree_map. 370 template <typename Tree> 371 class btree_map_container : public btree_set_container<Tree> { 372 using super_type = btree_set_container<Tree>; 373 using params_type = typename Tree::params_type; 374 375 private: 376 template <class K> 377 using key_arg = typename super_type::template key_arg<K>; 378 379 public: 380 using key_type = typename Tree::key_type; 381 using mapped_type = typename params_type::mapped_type; 382 using value_type = typename Tree::value_type; 383 using key_compare = typename Tree::key_compare; 384 using allocator_type = typename Tree::allocator_type; 385 using iterator = typename Tree::iterator; 386 using const_iterator = typename Tree::const_iterator; 387 388 // Inherit constructors. 389 using super_type::super_type; btree_map_container()390 btree_map_container() {} 391 392 // Insertion routines. 393 // Note: the nullptr template arguments and extra `const M&` overloads allow 394 // for supporting bitfield arguments. 395 // Note: when we call `std::forward<M>(obj)` twice, it's safe because 396 // insert_unique/insert_hint_unique are guaranteed to not consume `obj` when 397 // `ret.second` is false. 398 template <class M> insert_or_assign(const key_type & k,const M & obj)399 std::pair<iterator, bool> insert_or_assign(const key_type &k, const M &obj) { 400 const std::pair<iterator, bool> ret = this->tree_.insert_unique(k, k, obj); 401 if (!ret.second) ret.first->second = obj; 402 return ret; 403 } 404 template <class M, key_type * = nullptr> insert_or_assign(key_type && k,const M & obj)405 std::pair<iterator, bool> insert_or_assign(key_type &&k, const M &obj) { 406 const std::pair<iterator, bool> ret = 407 this->tree_.insert_unique(k, std::move(k), obj); 408 if (!ret.second) ret.first->second = obj; 409 return ret; 410 } 411 template <class M, M * = nullptr> insert_or_assign(const key_type & k,M && obj)412 std::pair<iterator, bool> insert_or_assign(const key_type &k, M &&obj) { 413 const std::pair<iterator, bool> ret = 414 this->tree_.insert_unique(k, k, std::forward<M>(obj)); 415 if (!ret.second) ret.first->second = std::forward<M>(obj); 416 return ret; 417 } 418 template <class M, key_type * = nullptr, M * = nullptr> insert_or_assign(key_type && k,M && obj)419 std::pair<iterator, bool> insert_or_assign(key_type &&k, M &&obj) { 420 const std::pair<iterator, bool> ret = 421 this->tree_.insert_unique(k, std::move(k), std::forward<M>(obj)); 422 if (!ret.second) ret.first->second = std::forward<M>(obj); 423 return ret; 424 } 425 template <class M> insert_or_assign(const_iterator position,const key_type & k,const M & obj)426 iterator insert_or_assign(const_iterator position, const key_type &k, 427 const M &obj) { 428 const std::pair<iterator, bool> ret = 429 this->tree_.insert_hint_unique(iterator(position), k, k, obj); 430 if (!ret.second) ret.first->second = obj; 431 return ret.first; 432 } 433 template <class M, key_type * = nullptr> insert_or_assign(const_iterator position,key_type && k,const M & obj)434 iterator insert_or_assign(const_iterator position, key_type &&k, 435 const M &obj) { 436 const std::pair<iterator, bool> ret = this->tree_.insert_hint_unique( 437 iterator(position), k, std::move(k), obj); 438 if (!ret.second) ret.first->second = obj; 439 return ret.first; 440 } 441 template <class M, M * = nullptr> insert_or_assign(const_iterator position,const key_type & k,M && obj)442 iterator insert_or_assign(const_iterator position, const key_type &k, 443 M &&obj) { 444 const std::pair<iterator, bool> ret = this->tree_.insert_hint_unique( 445 iterator(position), k, k, std::forward<M>(obj)); 446 if (!ret.second) ret.first->second = std::forward<M>(obj); 447 return ret.first; 448 } 449 template <class M, key_type * = nullptr, M * = nullptr> insert_or_assign(const_iterator position,key_type && k,M && obj)450 iterator insert_or_assign(const_iterator position, key_type &&k, M &&obj) { 451 const std::pair<iterator, bool> ret = this->tree_.insert_hint_unique( 452 iterator(position), k, std::move(k), std::forward<M>(obj)); 453 if (!ret.second) ret.first->second = std::forward<M>(obj); 454 return ret.first; 455 } 456 template <typename... Args> try_emplace(const key_type & k,Args &&...args)457 std::pair<iterator, bool> try_emplace(const key_type &k, Args &&... args) { 458 return this->tree_.insert_unique( 459 k, std::piecewise_construct, std::forward_as_tuple(k), 460 std::forward_as_tuple(std::forward<Args>(args)...)); 461 } 462 template <typename... Args> try_emplace(key_type && k,Args &&...args)463 std::pair<iterator, bool> try_emplace(key_type &&k, Args &&... args) { 464 // Note: `key_ref` exists to avoid a ClangTidy warning about moving from `k` 465 // and then using `k` unsequenced. This is safe because the move is into a 466 // forwarding reference and insert_unique guarantees that `key` is never 467 // referenced after consuming `args`. 468 const key_type &key_ref = k; 469 return this->tree_.insert_unique( 470 key_ref, std::piecewise_construct, std::forward_as_tuple(std::move(k)), 471 std::forward_as_tuple(std::forward<Args>(args)...)); 472 } 473 template <typename... Args> try_emplace(const_iterator hint,const key_type & k,Args &&...args)474 iterator try_emplace(const_iterator hint, const key_type &k, 475 Args &&... args) { 476 return this->tree_ 477 .insert_hint_unique(iterator(hint), k, std::piecewise_construct, 478 std::forward_as_tuple(k), 479 std::forward_as_tuple(std::forward<Args>(args)...)) 480 .first; 481 } 482 template <typename... Args> try_emplace(const_iterator hint,key_type && k,Args &&...args)483 iterator try_emplace(const_iterator hint, key_type &&k, Args &&... args) { 484 // Note: `key_ref` exists to avoid a ClangTidy warning about moving from `k` 485 // and then using `k` unsequenced. This is safe because the move is into a 486 // forwarding reference and insert_hint_unique guarantees that `key` is 487 // never referenced after consuming `args`. 488 const key_type &key_ref = k; 489 return this->tree_ 490 .insert_hint_unique(iterator(hint), key_ref, std::piecewise_construct, 491 std::forward_as_tuple(std::move(k)), 492 std::forward_as_tuple(std::forward<Args>(args)...)) 493 .first; 494 } 495 mapped_type &operator[](const key_type &k) { 496 return try_emplace(k).first->second; 497 } 498 mapped_type &operator[](key_type &&k) { 499 return try_emplace(std::move(k)).first->second; 500 } 501 502 template <typename K = key_type> at(const key_arg<K> & key)503 mapped_type &at(const key_arg<K> &key) { 504 auto it = this->find(key); 505 if (it == this->end()) 506 base_internal::ThrowStdOutOfRange("absl::btree_map::at"); 507 return it->second; 508 } 509 template <typename K = key_type> at(const key_arg<K> & key)510 const mapped_type &at(const key_arg<K> &key) const { 511 auto it = this->find(key); 512 if (it == this->end()) 513 base_internal::ThrowStdOutOfRange("absl::btree_map::at"); 514 return it->second; 515 } 516 }; 517 518 // A common base class for btree_multiset and btree_multimap. 519 template <typename Tree> 520 class btree_multiset_container : public btree_container<Tree> { 521 using super_type = btree_container<Tree>; 522 using params_type = typename Tree::params_type; 523 using init_type = typename params_type::init_type; 524 using is_key_compare_to = typename params_type::is_key_compare_to; 525 526 template <class K> 527 using key_arg = typename super_type::template key_arg<K>; 528 529 public: 530 using key_type = typename Tree::key_type; 531 using value_type = typename Tree::value_type; 532 using size_type = typename Tree::size_type; 533 using key_compare = typename Tree::key_compare; 534 using allocator_type = typename Tree::allocator_type; 535 using iterator = typename Tree::iterator; 536 using const_iterator = typename Tree::const_iterator; 537 using node_type = typename super_type::node_type; 538 539 // Inherit constructors. 540 using super_type::super_type; btree_multiset_container()541 btree_multiset_container() {} 542 543 // Range constructor. 544 template <class InputIterator> 545 btree_multiset_container(InputIterator b, InputIterator e, 546 const key_compare &comp = key_compare(), 547 const allocator_type &alloc = allocator_type()) super_type(comp,alloc)548 : super_type(comp, alloc) { 549 insert(b, e); 550 } 551 552 // Initializer list constructor. 553 btree_multiset_container(std::initializer_list<init_type> init, 554 const key_compare &comp = key_compare(), 555 const allocator_type &alloc = allocator_type()) 556 : btree_multiset_container(init.begin(), init.end(), comp, alloc) {} 557 558 // Lookup routines. 559 template <typename K = key_type> count(const key_arg<K> & key)560 size_type count(const key_arg<K> &key) const { 561 return this->tree_.count_multi(key); 562 } 563 564 // Insertion routines. insert(const value_type & x)565 iterator insert(const value_type &x) { return this->tree_.insert_multi(x); } insert(value_type && x)566 iterator insert(value_type &&x) { 567 return this->tree_.insert_multi(std::move(x)); 568 } insert(const_iterator position,const value_type & x)569 iterator insert(const_iterator position, const value_type &x) { 570 return this->tree_.insert_hint_multi(iterator(position), x); 571 } insert(const_iterator position,value_type && x)572 iterator insert(const_iterator position, value_type &&x) { 573 return this->tree_.insert_hint_multi(iterator(position), std::move(x)); 574 } 575 template <typename InputIterator> insert(InputIterator b,InputIterator e)576 void insert(InputIterator b, InputIterator e) { 577 this->tree_.insert_iterator_multi(b, e); 578 } insert(std::initializer_list<init_type> init)579 void insert(std::initializer_list<init_type> init) { 580 this->tree_.insert_iterator_multi(init.begin(), init.end()); 581 } 582 template <typename... Args> emplace(Args &&...args)583 iterator emplace(Args &&... args) { 584 return this->tree_.insert_multi(init_type(std::forward<Args>(args)...)); 585 } 586 template <typename... Args> emplace_hint(const_iterator position,Args &&...args)587 iterator emplace_hint(const_iterator position, Args &&... args) { 588 return this->tree_.insert_hint_multi( 589 iterator(position), init_type(std::forward<Args>(args)...)); 590 } insert(node_type && node)591 iterator insert(node_type &&node) { 592 if (!node) return this->end(); 593 iterator res = 594 this->tree_.insert_multi(params_type::key(CommonAccess::GetSlot(node)), 595 CommonAccess::GetSlot(node)); 596 CommonAccess::Destroy(&node); 597 return res; 598 } insert(const_iterator hint,node_type && node)599 iterator insert(const_iterator hint, node_type &&node) { 600 if (!node) return this->end(); 601 iterator res = this->tree_.insert_hint_multi( 602 iterator(hint), 603 std::move(params_type::element(CommonAccess::GetSlot(node)))); 604 CommonAccess::Destroy(&node); 605 return res; 606 } 607 608 // Deletion routines. 609 template <typename K = key_type> erase(const key_arg<K> & key)610 size_type erase(const key_arg<K> &key) { 611 return this->tree_.erase_multi(key); 612 } 613 using super_type::erase; 614 615 // Node extraction routines. 616 template <typename K = key_type> extract(const key_arg<K> & key)617 node_type extract(const key_arg<K> &key) { 618 auto it = this->find(key); 619 return it == this->end() ? node_type() : extract(it); 620 } 621 using super_type::extract; 622 623 // Merge routines. 624 // Moves all elements from `src` into `this`. 625 template < 626 typename T, 627 typename absl::enable_if_t< 628 absl::conjunction< 629 std::is_same<value_type, typename T::value_type>, 630 std::is_same<allocator_type, typename T::allocator_type>, 631 std::is_same<typename params_type::is_map_container, 632 typename T::params_type::is_map_container>>::value, 633 int> = 0> merge(btree_container<T> & src)634 void merge(btree_container<T> &src) { // NOLINT 635 insert(std::make_move_iterator(src.begin()), 636 std::make_move_iterator(src.end())); 637 src.clear(); 638 } 639 640 template < 641 typename T, 642 typename absl::enable_if_t< 643 absl::conjunction< 644 std::is_same<value_type, typename T::value_type>, 645 std::is_same<allocator_type, typename T::allocator_type>, 646 std::is_same<typename params_type::is_map_container, 647 typename T::params_type::is_map_container>>::value, 648 int> = 0> merge(btree_container<T> && src)649 void merge(btree_container<T> &&src) { 650 merge(src); 651 } 652 }; 653 654 // A base class for btree_multimap. 655 template <typename Tree> 656 class btree_multimap_container : public btree_multiset_container<Tree> { 657 using super_type = btree_multiset_container<Tree>; 658 using params_type = typename Tree::params_type; 659 660 public: 661 using mapped_type = typename params_type::mapped_type; 662 663 // Inherit constructors. 664 using super_type::super_type; btree_multimap_container()665 btree_multimap_container() {} 666 }; 667 668 } // namespace container_internal 669 ABSL_NAMESPACE_END 670 } // namespace absl 671 672 #endif // ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_ 673