• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright 2019 The Abseil Authors.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //      https://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 
16 #ifndef ABSL_FLAGS_INTERNAL_FLAG_H_
17 #define ABSL_FLAGS_INTERNAL_FLAG_H_
18 
19 #include <stdint.h>
20 
21 #include <atomic>
22 #include <cstring>
23 #include <memory>
24 #include <string>
25 #include <type_traits>
26 
27 #include "absl/base/call_once.h"
28 #include "absl/base/config.h"
29 #include "absl/base/thread_annotations.h"
30 #include "absl/flags/config.h"
31 #include "absl/flags/internal/commandlineflag.h"
32 #include "absl/flags/internal/registry.h"
33 #include "absl/memory/memory.h"
34 #include "absl/strings/str_cat.h"
35 #include "absl/strings/string_view.h"
36 #include "absl/synchronization/mutex.h"
37 
38 namespace absl {
39 ABSL_NAMESPACE_BEGIN
40 namespace flags_internal {
41 
42 template <typename T>
43 class Flag;
44 
45 ///////////////////////////////////////////////////////////////////////////////
46 // Flag value type operations, eg., parsing, copying, etc. are provided
47 // by function specific to that type with a signature matching FlagOpFn.
48 
49 enum class FlagOp {
50   kDelete,
51   kClone,
52   kCopy,
53   kCopyConstruct,
54   kSizeof,
55   kStaticTypeId,
56   kParse,
57   kUnparse,
58 };
59 using FlagOpFn = void* (*)(FlagOp, const void*, void*, void*);
60 
61 // Flag value specific operations routine.
62 template <typename T>
FlagOps(FlagOp op,const void * v1,void * v2,void * v3)63 void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3) {
64   switch (op) {
65     case FlagOp::kDelete:
66       delete static_cast<const T*>(v1);
67       return nullptr;
68     case FlagOp::kClone:
69       return new T(*static_cast<const T*>(v1));
70     case FlagOp::kCopy:
71       *static_cast<T*>(v2) = *static_cast<const T*>(v1);
72       return nullptr;
73     case FlagOp::kCopyConstruct:
74       new (v2) T(*static_cast<const T*>(v1));
75       return nullptr;
76     case FlagOp::kSizeof:
77       return reinterpret_cast<void*>(sizeof(T));
78     case FlagOp::kStaticTypeId:
79       return reinterpret_cast<void*>(&FlagStaticTypeIdGen<T>);
80     case FlagOp::kParse: {
81       // Initialize the temporary instance of type T based on current value in
82       // destination (which is going to be flag's default value).
83       T temp(*static_cast<T*>(v2));
84       if (!absl::ParseFlag<T>(*static_cast<const absl::string_view*>(v1), &temp,
85                               static_cast<std::string*>(v3))) {
86         return nullptr;
87       }
88       *static_cast<T*>(v2) = std::move(temp);
89       return v2;
90     }
91     case FlagOp::kUnparse:
92       *static_cast<std::string*>(v2) =
93           absl::UnparseFlag<T>(*static_cast<const T*>(v1));
94       return nullptr;
95     default:
96       return nullptr;
97   }
98 }
99 
100 // Deletes memory interpreting obj as flag value type pointer.
Delete(FlagOpFn op,const void * obj)101 inline void Delete(FlagOpFn op, const void* obj) {
102   op(FlagOp::kDelete, obj, nullptr, nullptr);
103 }
104 // Makes a copy of flag value pointed by obj.
Clone(FlagOpFn op,const void * obj)105 inline void* Clone(FlagOpFn op, const void* obj) {
106   return op(FlagOp::kClone, obj, nullptr, nullptr);
107 }
108 // Copies src to dst interpreting as flag value type pointers.
Copy(FlagOpFn op,const void * src,void * dst)109 inline void Copy(FlagOpFn op, const void* src, void* dst) {
110   op(FlagOp::kCopy, src, dst, nullptr);
111 }
112 // Construct a copy of flag value in a location pointed by dst
113 // based on src - pointer to the flag's value.
CopyConstruct(FlagOpFn op,const void * src,void * dst)114 inline void CopyConstruct(FlagOpFn op, const void* src, void* dst) {
115   op(FlagOp::kCopyConstruct, src, dst, nullptr);
116 }
117 // Returns true if parsing of input text is successfull.
Parse(FlagOpFn op,absl::string_view text,void * dst,std::string * error)118 inline bool Parse(FlagOpFn op, absl::string_view text, void* dst,
119                   std::string* error) {
120   return op(FlagOp::kParse, &text, dst, error) != nullptr;
121 }
122 // Returns string representing supplied value.
Unparse(FlagOpFn op,const void * val)123 inline std::string Unparse(FlagOpFn op, const void* val) {
124   std::string result;
125   op(FlagOp::kUnparse, val, &result, nullptr);
126   return result;
127 }
128 // Returns size of flag value type.
Sizeof(FlagOpFn op)129 inline size_t Sizeof(FlagOpFn op) {
130   // This sequence of casts reverses the sequence from
131   // `flags_internal::FlagOps()`
132   return static_cast<size_t>(reinterpret_cast<intptr_t>(
133       op(FlagOp::kSizeof, nullptr, nullptr, nullptr)));
134 }
135 // Returns static type id coresponding to the value type.
StaticTypeId(FlagOpFn op)136 inline FlagStaticTypeId StaticTypeId(FlagOpFn op) {
137   return reinterpret_cast<FlagStaticTypeId>(
138       op(FlagOp::kStaticTypeId, nullptr, nullptr, nullptr));
139 }
140 
141 ///////////////////////////////////////////////////////////////////////////////
142 // Persistent state of the flag data.
143 
144 template <typename T>
145 class FlagState : public flags_internal::FlagStateInterface {
146  public:
FlagState(Flag<T> * flag,T && cur,bool modified,bool on_command_line,int64_t counter)147   FlagState(Flag<T>* flag, T&& cur, bool modified, bool on_command_line,
148             int64_t counter)
149       : flag_(flag),
150         cur_value_(std::move(cur)),
151         modified_(modified),
152         on_command_line_(on_command_line),
153         counter_(counter) {}
154 
155   ~FlagState() override = default;
156 
157  private:
158   friend class Flag<T>;
159 
160   // Restores the flag to the saved state.
161   void Restore() const override;
162 
163   // Flag and saved flag data.
164   Flag<T>* flag_;
165   T cur_value_;
166   bool modified_;
167   bool on_command_line_;
168   int64_t counter_;
169 };
170 
171 ///////////////////////////////////////////////////////////////////////////////
172 // Flag help auxiliary structs.
173 
174 // This is help argument for absl::Flag encapsulating the string literal pointer
175 // or pointer to function generating it as well as enum descriminating two
176 // cases.
177 using HelpGenFunc = std::string (*)();
178 
179 union FlagHelpMsg {
FlagHelpMsg(const char * help_msg)180   constexpr explicit FlagHelpMsg(const char* help_msg) : literal(help_msg) {}
FlagHelpMsg(HelpGenFunc help_gen)181   constexpr explicit FlagHelpMsg(HelpGenFunc help_gen) : gen_func(help_gen) {}
182 
183   const char* literal;
184   HelpGenFunc gen_func;
185 };
186 
187 enum class FlagHelpKind : uint8_t { kLiteral = 0, kGenFunc = 1 };
188 
189 struct FlagHelpArg {
190   FlagHelpMsg source;
191   FlagHelpKind kind;
192 };
193 
194 extern const char kStrippedFlagHelp[];
195 
196 // HelpConstexprWrap is used by struct AbslFlagHelpGenFor##name generated by
197 // ABSL_FLAG macro. It is only used to silence the compiler in the case where
198 // help message expression is not constexpr and does not have type const char*.
199 // If help message expression is indeed constexpr const char* HelpConstexprWrap
200 // is just a trivial identity function.
201 template <typename T>
HelpConstexprWrap(const T &)202 const char* HelpConstexprWrap(const T&) {
203   return nullptr;
204 }
HelpConstexprWrap(const char * p)205 constexpr const char* HelpConstexprWrap(const char* p) { return p; }
HelpConstexprWrap(char * p)206 constexpr const char* HelpConstexprWrap(char* p) { return p; }
207 
208 // These two HelpArg overloads allows us to select at compile time one of two
209 // way to pass Help argument to absl::Flag. We'll be passing
210 // AbslFlagHelpGenFor##name as T and integer 0 as a single argument to prefer
211 // first overload if possible. If T::Const is evaluatable on constexpr
212 // context (see non template int parameter below) we'll choose first overload.
213 // In this case the help message expression is immediately evaluated and is used
214 // to construct the absl::Flag. No additionl code is generated by ABSL_FLAG.
215 // Otherwise SFINAE kicks in and first overload is dropped from the
216 // consideration, in which case the second overload will be used. The second
217 // overload does not attempt to evaluate the help message expression
218 // immediately and instead delays the evaluation by returing the function
219 // pointer (&T::NonConst) genering the help message when necessary. This is
220 // evaluatable in constexpr context, but the cost is an extra function being
221 // generated in the ABSL_FLAG code.
222 template <typename T, int = (T::Const(), 1)>
HelpArg(int)223 constexpr FlagHelpArg HelpArg(int) {
224   return {FlagHelpMsg(T::Const()), FlagHelpKind::kLiteral};
225 }
226 
227 template <typename T>
HelpArg(char)228 constexpr FlagHelpArg HelpArg(char) {
229   return {FlagHelpMsg(&T::NonConst), FlagHelpKind::kGenFunc};
230 }
231 
232 ///////////////////////////////////////////////////////////////////////////////
233 // Flag default value auxiliary structs.
234 
235 // Signature for the function generating the initial flag value (usually
236 // based on default value supplied in flag's definition)
237 using FlagDfltGenFunc = void* (*)();
238 
239 union FlagDefaultSrc {
FlagDefaultSrc(FlagDfltGenFunc gen_func_arg)240   constexpr explicit FlagDefaultSrc(FlagDfltGenFunc gen_func_arg)
241       : gen_func(gen_func_arg) {}
242 
243   void* dynamic_value;
244   FlagDfltGenFunc gen_func;
245 };
246 
247 enum class FlagDefaultKind : uint8_t { kDynamicValue = 0, kGenFunc = 1 };
248 
249 ///////////////////////////////////////////////////////////////////////////////
250 // Flag current value auxiliary structs.
251 
252 // The minimum atomic size we believe to generate lock free code, i.e. all
253 // trivially copyable types not bigger this size generate lock free code.
254 static constexpr int kMinLockFreeAtomicSize = 8;
255 
256 // The same as kMinLockFreeAtomicSize but maximum atomic size. As double words
257 // might use two registers, we want to dispatch the logic for them.
258 #if defined(ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD)
259 static constexpr int kMaxLockFreeAtomicSize = 16;
260 #else
261 static constexpr int kMaxLockFreeAtomicSize = 8;
262 #endif
263 
264 // We can use atomic in cases when it fits in the register, trivially copyable
265 // in order to make memcpy operations.
266 template <typename T>
267 struct IsAtomicFlagTypeTrait {
268   static constexpr bool value =
269       (sizeof(T) <= kMaxLockFreeAtomicSize &&
270        type_traits_internal::is_trivially_copyable<T>::value);
271 };
272 
273 // Clang does not always produce cmpxchg16b instruction when alignment of a 16
274 // bytes type is not 16.
275 struct alignas(16) FlagsInternalTwoWordsType {
276   int64_t first;
277   int64_t second;
278 };
279 
280 constexpr bool operator==(const FlagsInternalTwoWordsType& that,
281                           const FlagsInternalTwoWordsType& other) {
282   return that.first == other.first && that.second == other.second;
283 }
284 constexpr bool operator!=(const FlagsInternalTwoWordsType& that,
285                           const FlagsInternalTwoWordsType& other) {
286   return !(that == other);
287 }
288 
SmallAtomicInit()289 constexpr int64_t SmallAtomicInit() { return 0xababababababababll; }
290 
291 template <typename T, typename S = void>
292 struct BestAtomicType {
293   using type = int64_t;
AtomicInitBestAtomicType294   static constexpr int64_t AtomicInit() { return SmallAtomicInit(); }
295 };
296 
297 template <typename T>
298 struct BestAtomicType<
299     T, typename std::enable_if<(kMinLockFreeAtomicSize < sizeof(T) &&
300                                 sizeof(T) <= kMaxLockFreeAtomicSize),
301                                void>::type> {
302   using type = FlagsInternalTwoWordsType;
303   static constexpr FlagsInternalTwoWordsType AtomicInit() {
304     return {SmallAtomicInit(), SmallAtomicInit()};
305   }
306 };
307 
308 struct FlagValue {
309   // Heap allocated value.
310   void* dynamic = nullptr;
311   // For some types, a copy of the current value is kept in an atomically
312   // accessible field.
313   union Atomics {
314     // Using small atomic for small types.
315     std::atomic<int64_t> small_atomic;
316     template <typename T,
317               typename K = typename std::enable_if<
318                   (sizeof(T) <= kMinLockFreeAtomicSize), void>::type>
319     int64_t load() const {
320       return small_atomic.load(std::memory_order_acquire);
321     }
322 
323 #if defined(ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD)
324     // Using big atomics for big types.
325     std::atomic<FlagsInternalTwoWordsType> big_atomic;
326     template <typename T, typename K = typename std::enable_if<
327                               (kMinLockFreeAtomicSize < sizeof(T) &&
328                                sizeof(T) <= kMaxLockFreeAtomicSize),
329                               void>::type>
330     FlagsInternalTwoWordsType load() const {
331       return big_atomic.load(std::memory_order_acquire);
332     }
333     constexpr Atomics()
334         : big_atomic{FlagsInternalTwoWordsType{SmallAtomicInit(),
335                                                SmallAtomicInit()}} {}
336 #else
337     constexpr Atomics() : small_atomic{SmallAtomicInit()} {}
338 #endif
339   };
340   Atomics atomics{};
341 };
342 
343 ///////////////////////////////////////////////////////////////////////////////
344 // Flag callback auxiliary structs.
345 
346 // Signature for the mutation callback used by watched Flags
347 // The callback is noexcept.
348 // TODO(rogeeff): add noexcept after C++17 support is added.
349 using FlagCallbackFunc = void (*)();
350 
351 struct FlagCallback {
352   FlagCallbackFunc func;
353   absl::Mutex guard;  // Guard for concurrent callback invocations.
354 };
355 
356 ///////////////////////////////////////////////////////////////////////////////
357 // Flag implementation, which does not depend on flag value type.
358 // The class encapsulates the Flag's data and access to it.
359 
360 struct DynValueDeleter {
361   explicit DynValueDeleter(FlagOpFn op_arg = nullptr) : op(op_arg) {}
362   void operator()(void* ptr) const {
363     if (op != nullptr) Delete(op, ptr);
364   }
365 
366   FlagOpFn op;
367 };
368 
369 class FlagImpl {
370  public:
371   constexpr FlagImpl(const char* name, const char* filename, FlagOpFn op,
372                      FlagHelpArg help, FlagDfltGenFunc default_value_gen)
373       : name_(name),
374         filename_(filename),
375         op_(op),
376         help_(help.source),
377         help_source_kind_(static_cast<uint8_t>(help.kind)),
378         def_kind_(static_cast<uint8_t>(FlagDefaultKind::kGenFunc)),
379         modified_(false),
380         on_command_line_(false),
381         counter_(0),
382         callback_(nullptr),
383         default_value_(default_value_gen),
384         data_guard_{} {}
385 
386   // Constant access methods
387   absl::string_view Name() const;
388   std::string Filename() const;
389   std::string Help() const;
390   bool IsModified() const ABSL_LOCKS_EXCLUDED(*DataGuard());
391   bool IsSpecifiedOnCommandLine() const ABSL_LOCKS_EXCLUDED(*DataGuard());
392   std::string DefaultValue() const ABSL_LOCKS_EXCLUDED(*DataGuard());
393   std::string CurrentValue() const ABSL_LOCKS_EXCLUDED(*DataGuard());
394   void Read(void* dst) const ABSL_LOCKS_EXCLUDED(*DataGuard());
395 
396   template <typename T, typename std::enable_if<
397                             !IsAtomicFlagTypeTrait<T>::value, int>::type = 0>
398   void Get(T* dst) const {
399     AssertValidType(&flags_internal::FlagStaticTypeIdGen<T>);
400     Read(dst);
401   }
402   // Overload for `GetFlag()` for types that support lock-free reads.
403   template <typename T, typename std::enable_if<IsAtomicFlagTypeTrait<T>::value,
404                                                 int>::type = 0>
405   void Get(T* dst) const {
406     // For flags of types which can be accessed "atomically" we want to avoid
407     // slowing down flag value access due to type validation. That's why
408     // this validation is hidden behind !NDEBUG
409 #ifndef NDEBUG
410     AssertValidType(&flags_internal::FlagStaticTypeIdGen<T>);
411 #endif
412     using U = flags_internal::BestAtomicType<T>;
413     typename U::type r = value_.atomics.template load<T>();
414     if (r != U::AtomicInit()) {
415       std::memcpy(static_cast<void*>(dst), &r, sizeof(T));
416     } else {
417       Read(dst);
418     }
419   }
420   template <typename T>
421   void Set(const T& src) {
422     AssertValidType(&flags_internal::FlagStaticTypeIdGen<T>);
423     Write(&src);
424   }
425 
426   // Mutating access methods
427   void Write(const void* src) ABSL_LOCKS_EXCLUDED(*DataGuard());
428   bool SetFromString(absl::string_view value, FlagSettingMode set_mode,
429                      ValueSource source, std::string* err)
430       ABSL_LOCKS_EXCLUDED(*DataGuard());
431   // If possible, updates copy of the Flag's value that is stored in an
432   // atomic word.
433   void StoreAtomic() ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
434 
435   // Interfaces to operate on callbacks.
436   void SetCallback(const FlagCallbackFunc mutation_callback)
437       ABSL_LOCKS_EXCLUDED(*DataGuard());
438   void InvokeCallback() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
439 
440   // Interfaces to save/restore mutable flag data
441   template <typename T>
442   std::unique_ptr<FlagStateInterface> SaveState(Flag<T>* flag) const
443       ABSL_LOCKS_EXCLUDED(*DataGuard()) {
444     T&& cur_value = flag->Get();
445     absl::MutexLock l(DataGuard());
446 
447     return absl::make_unique<FlagState<T>>(
448         flag, std::move(cur_value), modified_, on_command_line_, counter_);
449   }
450   bool RestoreState(const void* value, bool modified, bool on_command_line,
451                     int64_t counter) ABSL_LOCKS_EXCLUDED(*DataGuard());
452 
453   // Value validation interfaces.
454   void CheckDefaultValueParsingRoundtrip() const
455       ABSL_LOCKS_EXCLUDED(*DataGuard());
456   bool ValidateInputValue(absl::string_view value) const
457       ABSL_LOCKS_EXCLUDED(*DataGuard());
458 
459  private:
460   // Ensures that `data_guard_` is initialized and returns it.
461   absl::Mutex* DataGuard() const ABSL_LOCK_RETURNED((absl::Mutex*)&data_guard_);
462   // Returns heap allocated value of type T initialized with default value.
463   std::unique_ptr<void, DynValueDeleter> MakeInitValue() const
464       ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
465   // Flag initialization called via absl::call_once.
466   void Init();
467   // Attempts to parse supplied `value` std::string. If parsing is successful,
468   // returns new value. Otherwise returns nullptr.
469   std::unique_ptr<void, DynValueDeleter> TryParse(absl::string_view value,
470                                                   std::string* err) const
471       ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
472   // Stores the flag value based on the pointer to the source.
473   void StoreValue(const void* src) ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
474 
475   FlagHelpKind HelpSourceKind() const {
476     return static_cast<FlagHelpKind>(help_source_kind_);
477   }
478   FlagDefaultKind DefaultKind() const
479       ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()) {
480     return static_cast<FlagDefaultKind>(def_kind_);
481   }
482   // Used in read/write operations to validate source/target has correct type.
483   // For example if flag is declared as absl::Flag<int> FLAGS_foo, a call to
484   // absl::GetFlag(FLAGS_foo) validates that the type of FLAGS_foo is indeed
485   // int. To do that we pass the "assumed" type id (which is deduced from type
486   // int) as an argument `op`, which is in turn is validated against the type id
487   // stored in flag object by flag definition statement.
488   void AssertValidType(FlagStaticTypeId type_id) const;
489 
490   // Immutable flag's state.
491 
492   // Flags name passed to ABSL_FLAG as second arg.
493   const char* const name_;
494   // The file name where ABSL_FLAG resides.
495   const char* const filename_;
496   // Type-specific operations "vtable".
497   const FlagOpFn op_;
498   // Help message literal or function to generate it.
499   const FlagHelpMsg help_;
500   // Indicates if help message was supplied as literal or generator func.
501   const uint8_t help_source_kind_ : 1;
502 
503   // ------------------------------------------------------------------------
504   // The bytes containing the const bitfields must not be shared with bytes
505   // containing the mutable bitfields.
506   // ------------------------------------------------------------------------
507 
508   // Unique tag for absl::call_once call to initialize this flag.
509   //
510   // The placement of this variable between the immutable and mutable bitfields
511   // is important as prevents them from occupying the same byte. If you remove
512   // this variable, make sure to maintain this property.
513   absl::once_flag init_control_;
514 
515   // Mutable flag's state (guarded by `data_guard_`).
516 
517   // If def_kind_ == kDynamicValue, default_value_ holds a dynamically allocated
518   // value.
519   uint8_t def_kind_ : 1 ABSL_GUARDED_BY(*DataGuard());
520   // Has this flag's value been modified?
521   bool modified_ : 1 ABSL_GUARDED_BY(*DataGuard());
522   // Has this flag been specified on command line.
523   bool on_command_line_ : 1 ABSL_GUARDED_BY(*DataGuard());
524 
525   // Mutation counter
526   int64_t counter_ ABSL_GUARDED_BY(*DataGuard());
527   // Optional flag's callback and absl::Mutex to guard the invocations.
528   FlagCallback* callback_ ABSL_GUARDED_BY(*DataGuard());
529   // Either a pointer to the function generating the default value based on the
530   // value specified in ABSL_FLAG or pointer to the dynamically set default
531   // value via SetCommandLineOptionWithMode. def_kind_ is used to distinguish
532   // these two cases.
533   FlagDefaultSrc default_value_ ABSL_GUARDED_BY(*DataGuard());
534   // Current Flag Value
535   FlagValue value_;
536 
537   // This is reserved space for an absl::Mutex to guard flag data. It will be
538   // initialized in FlagImpl::Init via placement new.
539   // We can't use "absl::Mutex data_guard_", since this class is not literal.
540   // We do not want to use "absl::Mutex* data_guard_", since this would require
541   // heap allocation during initialization, which is both slows program startup
542   // and can fail. Using reserved space + placement new allows us to avoid both
543   // problems.
544   alignas(absl::Mutex) mutable char data_guard_[sizeof(absl::Mutex)];
545 };
546 
547 ///////////////////////////////////////////////////////////////////////////////
548 // The Flag object parameterized by the flag's value type. This class implements
549 // flag reflection handle interface.
550 
551 template <typename T>
552 class Flag final : public flags_internal::CommandLineFlag {
553  public:
554   constexpr Flag(const char* name, const char* filename, const FlagHelpArg help,
555                  const FlagDfltGenFunc default_value_gen)
556       : impl_(name, filename, &FlagOps<T>, help, default_value_gen) {}
557 
558   T Get() const {
559     // See implementation notes in CommandLineFlag::Get().
560     union U {
561       T value;
562       U() {}
563       ~U() { value.~T(); }
564     };
565     U u;
566 
567     impl_.Get(&u.value);
568     return std::move(u.value);
569   }
570   void Set(const T& v) { impl_.Set(v); }
571   void SetCallback(const FlagCallbackFunc mutation_callback) {
572     impl_.SetCallback(mutation_callback);
573   }
574 
575   // CommandLineFlag interface
576   absl::string_view Name() const override { return impl_.Name(); }
577   std::string Filename() const override { return impl_.Filename(); }
578   absl::string_view Typename() const override { return ""; }
579   std::string Help() const override { return impl_.Help(); }
580   bool IsModified() const override { return impl_.IsModified(); }
581   bool IsSpecifiedOnCommandLine() const override {
582     return impl_.IsSpecifiedOnCommandLine();
583   }
584   std::string DefaultValue() const override { return impl_.DefaultValue(); }
585   std::string CurrentValue() const override { return impl_.CurrentValue(); }
586   bool ValidateInputValue(absl::string_view value) const override {
587     return impl_.ValidateInputValue(value);
588   }
589 
590   // Interfaces to save and restore flags to/from persistent state.
591   // Returns current flag state or nullptr if flag does not support
592   // saving and restoring a state.
593   std::unique_ptr<FlagStateInterface> SaveState() override {
594     return impl_.SaveState(this);
595   }
596 
597   // Restores the flag state to the supplied state object. If there is
598   // nothing to restore returns false. Otherwise returns true.
599   bool RestoreState(const FlagState<T>& flag_state) {
600     return impl_.RestoreState(&flag_state.cur_value_, flag_state.modified_,
601                               flag_state.on_command_line_, flag_state.counter_);
602   }
603   bool SetFromString(absl::string_view value, FlagSettingMode set_mode,
604                      ValueSource source, std::string* error) override {
605     return impl_.SetFromString(value, set_mode, source, error);
606   }
607   void CheckDefaultValueParsingRoundtrip() const override {
608     impl_.CheckDefaultValueParsingRoundtrip();
609   }
610 
611  private:
612   friend class FlagState<T>;
613 
614   void Read(void* dst) const override { impl_.Read(dst); }
615   FlagStaticTypeId TypeId() const override { return &FlagStaticTypeIdGen<T>; }
616 
617   // Flag's data
618   FlagImpl impl_;
619 };
620 
621 template <typename T>
622 inline void FlagState<T>::Restore() const {
623   if (flag_->RestoreState(*this)) {
624     ABSL_INTERNAL_LOG(INFO,
625                       absl::StrCat("Restore saved value of ", flag_->Name(),
626                                    " to: ", flag_->CurrentValue()));
627   }
628 }
629 
630 // This class facilitates Flag object registration and tail expression-based
631 // flag definition, for example:
632 // ABSL_FLAG(int, foo, 42, "Foo help").OnUpdate(NotifyFooWatcher);
633 template <typename T, bool do_register>
634 class FlagRegistrar {
635  public:
636   explicit FlagRegistrar(Flag<T>* flag) : flag_(flag) {
637     if (do_register) flags_internal::RegisterCommandLineFlag(flag_);
638   }
639 
640   FlagRegistrar& OnUpdate(FlagCallbackFunc cb) && {
641     flag_->SetCallback(cb);
642     return *this;
643   }
644 
645   // Make the registrar "die" gracefully as a bool on a line where registration
646   // happens. Registrar objects are intended to live only as temporary.
647   operator bool() const { return true; }  // NOLINT
648 
649  private:
650   Flag<T>* flag_;  // Flag being registered (not owned).
651 };
652 
653 // This struct and corresponding overload to MakeDefaultValue are used to
654 // facilitate usage of {} as default value in ABSL_FLAG macro.
655 struct EmptyBraces {};
656 
657 template <typename T>
658 T* MakeFromDefaultValue(T t) {
659   return new T(std::move(t));
660 }
661 
662 template <typename T>
663 T* MakeFromDefaultValue(EmptyBraces) {
664   return new T;
665 }
666 
667 }  // namespace flags_internal
668 ABSL_NAMESPACE_END
669 }  // namespace absl
670 
671 #endif  // ABSL_FLAGS_INTERNAL_FLAG_H_
672