• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/exponential_distribution.h"
16 
17 #include <algorithm>
18 #include <cmath>
19 #include <cstddef>
20 #include <cstdint>
21 #include <iterator>
22 #include <limits>
23 #include <random>
24 #include <sstream>
25 #include <string>
26 #include <type_traits>
27 #include <vector>
28 
29 #include "gmock/gmock.h"
30 #include "gtest/gtest.h"
31 #include "absl/base/internal/raw_logging.h"
32 #include "absl/base/macros.h"
33 #include "absl/random/internal/chi_square.h"
34 #include "absl/random/internal/distribution_test_util.h"
35 #include "absl/random/internal/sequence_urbg.h"
36 #include "absl/random/random.h"
37 #include "absl/strings/str_cat.h"
38 #include "absl/strings/str_format.h"
39 #include "absl/strings/str_replace.h"
40 #include "absl/strings/strip.h"
41 
42 namespace {
43 
44 using absl::random_internal::kChiSquared;
45 
46 template <typename RealType>
47 class ExponentialDistributionTypedTest : public ::testing::Test {};
48 
49 #if defined(__EMSCRIPTEN__)
50 using RealTypes = ::testing::Types<float, double>;
51 #else
52 using RealTypes = ::testing::Types<float, double, long double>;
53 #endif  // defined(__EMSCRIPTEN__)
54 TYPED_TEST_CASE(ExponentialDistributionTypedTest, RealTypes);
55 
TYPED_TEST(ExponentialDistributionTypedTest,SerializeTest)56 TYPED_TEST(ExponentialDistributionTypedTest, SerializeTest) {
57   using param_type =
58       typename absl::exponential_distribution<TypeParam>::param_type;
59 
60   const TypeParam kParams[] = {
61       // Cases around 1.
62       1,                                           //
63       std::nextafter(TypeParam(1), TypeParam(0)),  // 1 - epsilon
64       std::nextafter(TypeParam(1), TypeParam(2)),  // 1 + epsilon
65       // Typical cases.
66       TypeParam(1e-8), TypeParam(1e-4), TypeParam(1), TypeParam(2),
67       TypeParam(1e4), TypeParam(1e8), TypeParam(1e20), TypeParam(2.5),
68       // Boundary cases.
69       std::numeric_limits<TypeParam>::max(),
70       std::numeric_limits<TypeParam>::epsilon(),
71       std::nextafter(std::numeric_limits<TypeParam>::min(),
72                      TypeParam(1)),           // min + epsilon
73       std::numeric_limits<TypeParam>::min(),  // smallest normal
74       // There are some errors dealing with denorms on apple platforms.
75       std::numeric_limits<TypeParam>::denorm_min(),  // smallest denorm
76       std::numeric_limits<TypeParam>::min() / 2,     // denorm
77       std::nextafter(std::numeric_limits<TypeParam>::min(),
78                      TypeParam(0)),  // denorm_max
79   };
80 
81   constexpr int kCount = 1000;
82   absl::InsecureBitGen gen;
83 
84   for (const TypeParam lambda : kParams) {
85     // Some values may be invalid; skip those.
86     if (!std::isfinite(lambda)) continue;
87     ABSL_ASSERT(lambda > 0);
88 
89     const param_type param(lambda);
90 
91     absl::exponential_distribution<TypeParam> before(lambda);
92     EXPECT_EQ(before.lambda(), param.lambda());
93 
94     {
95       absl::exponential_distribution<TypeParam> via_param(param);
96       EXPECT_EQ(via_param, before);
97       EXPECT_EQ(via_param.param(), before.param());
98     }
99 
100     // Smoke test.
101     auto sample_min = before.max();
102     auto sample_max = before.min();
103     for (int i = 0; i < kCount; i++) {
104       auto sample = before(gen);
105       EXPECT_GE(sample, before.min()) << before;
106       EXPECT_LE(sample, before.max()) << before;
107       if (sample > sample_max) sample_max = sample;
108       if (sample < sample_min) sample_min = sample;
109     }
110     if (!std::is_same<TypeParam, long double>::value) {
111       ABSL_INTERNAL_LOG(INFO,
112                         absl::StrFormat("Range {%f}: %f, %f, lambda=%f", lambda,
113                                         sample_min, sample_max, lambda));
114     }
115 
116     std::stringstream ss;
117     ss << before;
118 
119     if (!std::isfinite(lambda)) {
120       // Streams do not deserialize inf/nan correctly.
121       continue;
122     }
123     // Validate stream serialization.
124     absl::exponential_distribution<TypeParam> after(34.56f);
125 
126     EXPECT_NE(before.lambda(), after.lambda());
127     EXPECT_NE(before.param(), after.param());
128     EXPECT_NE(before, after);
129 
130     ss >> after;
131 
132 #if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \
133     defined(__ppc__) || defined(__PPC__)
134     if (std::is_same<TypeParam, long double>::value) {
135       // Roundtripping floating point values requires sufficient precision to
136       // reconstruct the exact value. It turns out that long double has some
137       // errors doing this on ppc, particularly for values
138       // near {1.0 +/- epsilon}.
139       if (lambda <= std::numeric_limits<double>::max() &&
140           lambda >= std::numeric_limits<double>::lowest()) {
141         EXPECT_EQ(static_cast<double>(before.lambda()),
142                   static_cast<double>(after.lambda()))
143             << ss.str();
144       }
145       continue;
146     }
147 #endif
148 
149     EXPECT_EQ(before.lambda(), after.lambda())  //
150         << ss.str() << " "                      //
151         << (ss.good() ? "good " : "")           //
152         << (ss.bad() ? "bad " : "")             //
153         << (ss.eof() ? "eof " : "")             //
154         << (ss.fail() ? "fail " : "");
155   }
156 }
157 
158 // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm
159 
160 class ExponentialModel {
161  public:
ExponentialModel(double lambda)162   explicit ExponentialModel(double lambda)
163       : lambda_(lambda), beta_(1.0 / lambda) {}
164 
lambda() const165   double lambda() const { return lambda_; }
166 
mean() const167   double mean() const { return beta_; }
variance() const168   double variance() const { return beta_ * beta_; }
stddev() const169   double stddev() const { return std::sqrt(variance()); }
skew() const170   double skew() const { return 2; }
kurtosis() const171   double kurtosis() const { return 6.0; }
172 
CDF(double x)173   double CDF(double x) { return 1.0 - std::exp(-lambda_ * x); }
174 
175   // The inverse CDF, or PercentPoint function of the distribution
InverseCDF(double p)176   double InverseCDF(double p) {
177     ABSL_ASSERT(p >= 0.0);
178     ABSL_ASSERT(p < 1.0);
179     return -beta_ * std::log(1.0 - p);
180   }
181 
182  private:
183   const double lambda_;
184   const double beta_;
185 };
186 
187 struct Param {
188   double lambda;
189   double p_fail;
190   int trials;
191 };
192 
193 class ExponentialDistributionTests : public testing::TestWithParam<Param>,
194                                      public ExponentialModel {
195  public:
ExponentialDistributionTests()196   ExponentialDistributionTests() : ExponentialModel(GetParam().lambda) {}
197 
198   // SingleZTest provides a basic z-squared test of the mean vs. expected
199   // mean for data generated by the poisson distribution.
200   template <typename D>
201   bool SingleZTest(const double p, const size_t samples);
202 
203   // SingleChiSquaredTest provides a basic chi-squared test of the normal
204   // distribution.
205   template <typename D>
206   double SingleChiSquaredTest();
207 
208   absl::InsecureBitGen rng_;
209 };
210 
211 template <typename D>
SingleZTest(const double p,const size_t samples)212 bool ExponentialDistributionTests::SingleZTest(const double p,
213                                                const size_t samples) {
214   D dis(lambda());
215 
216   std::vector<double> data;
217   data.reserve(samples);
218   for (size_t i = 0; i < samples; i++) {
219     const double x = dis(rng_);
220     data.push_back(x);
221   }
222 
223   const auto m = absl::random_internal::ComputeDistributionMoments(data);
224   const double max_err = absl::random_internal::MaxErrorTolerance(p);
225   const double z = absl::random_internal::ZScore(mean(), m);
226   const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);
227 
228   if (!pass) {
229     ABSL_INTERNAL_LOG(
230         INFO, absl::StrFormat("p=%f max_err=%f\n"
231                               " lambda=%f\n"
232                               " mean=%f vs. %f\n"
233                               " stddev=%f vs. %f\n"
234                               " skewness=%f vs. %f\n"
235                               " kurtosis=%f vs. %f\n"
236                               " z=%f vs. 0",
237                               p, max_err, lambda(), m.mean, mean(),
238                               std::sqrt(m.variance), stddev(), m.skewness,
239                               skew(), m.kurtosis, kurtosis(), z));
240   }
241   return pass;
242 }
243 
244 template <typename D>
SingleChiSquaredTest()245 double ExponentialDistributionTests::SingleChiSquaredTest() {
246   const size_t kSamples = 10000;
247   const int kBuckets = 50;
248 
249   // The InverseCDF is the percent point function of the distribution, and can
250   // be used to assign buckets roughly uniformly.
251   std::vector<double> cutoffs;
252   const double kInc = 1.0 / static_cast<double>(kBuckets);
253   for (double p = kInc; p < 1.0; p += kInc) {
254     cutoffs.push_back(InverseCDF(p));
255   }
256   if (cutoffs.back() != std::numeric_limits<double>::infinity()) {
257     cutoffs.push_back(std::numeric_limits<double>::infinity());
258   }
259 
260   D dis(lambda());
261 
262   std::vector<int32_t> counts(cutoffs.size(), 0);
263   for (int j = 0; j < kSamples; j++) {
264     const double x = dis(rng_);
265     auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x);
266     counts[std::distance(cutoffs.begin(), it)]++;
267   }
268 
269   // Null-hypothesis is that the distribution is exponentially distributed
270   // with the provided lambda (not estimated from the data).
271   const int dof = static_cast<int>(counts.size()) - 1;
272 
273   // Our threshold for logging is 1-in-50.
274   const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
275 
276   const double expected =
277       static_cast<double>(kSamples) / static_cast<double>(counts.size());
278 
279   double chi_square = absl::random_internal::ChiSquareWithExpected(
280       std::begin(counts), std::end(counts), expected);
281   double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
282 
283   if (chi_square > threshold) {
284     for (int i = 0; i < cutoffs.size(); i++) {
285       ABSL_INTERNAL_LOG(
286           INFO, absl::StrFormat("%d : (%f) = %d", i, cutoffs[i], counts[i]));
287     }
288 
289     ABSL_INTERNAL_LOG(INFO,
290                       absl::StrCat("lambda ", lambda(), "\n",     //
291                                    " expected ", expected, "\n",  //
292                                    kChiSquared, " ", chi_square, " (", p, ")\n",
293                                    kChiSquared, " @ 0.98 = ", threshold));
294   }
295   return p;
296 }
297 
TEST_P(ExponentialDistributionTests,ZTest)298 TEST_P(ExponentialDistributionTests, ZTest) {
299   const size_t kSamples = 10000;
300   const auto& param = GetParam();
301   const int expected_failures =
302       std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
303   const double p = absl::random_internal::RequiredSuccessProbability(
304       param.p_fail, param.trials);
305 
306   int failures = 0;
307   for (int i = 0; i < param.trials; i++) {
308     failures += SingleZTest<absl::exponential_distribution<double>>(p, kSamples)
309                     ? 0
310                     : 1;
311   }
312   EXPECT_LE(failures, expected_failures);
313 }
314 
TEST_P(ExponentialDistributionTests,ChiSquaredTest)315 TEST_P(ExponentialDistributionTests, ChiSquaredTest) {
316   const int kTrials = 20;
317   int failures = 0;
318 
319   for (int i = 0; i < kTrials; i++) {
320     double p_value =
321         SingleChiSquaredTest<absl::exponential_distribution<double>>();
322     if (p_value < 0.005) {  // 1/200
323       failures++;
324     }
325   }
326 
327   // There is a 0.10% chance of producing at least one failure, so raise the
328   // failure threshold high enough to allow for a flake rate < 10,000.
329   EXPECT_LE(failures, 4);
330 }
331 
GenParams()332 std::vector<Param> GenParams() {
333   return {
334       Param{1.0, 0.02, 100},
335       Param{2.5, 0.02, 100},
336       Param{10, 0.02, 100},
337       // large
338       Param{1e4, 0.02, 100},
339       Param{1e9, 0.02, 100},
340       // small
341       Param{0.1, 0.02, 100},
342       Param{1e-3, 0.02, 100},
343       Param{1e-5, 0.02, 100},
344   };
345 }
346 
ParamName(const::testing::TestParamInfo<Param> & info)347 std::string ParamName(const ::testing::TestParamInfo<Param>& info) {
348   const auto& p = info.param;
349   std::string name = absl::StrCat("lambda_", absl::SixDigits(p.lambda));
350   return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
351 }
352 
353 INSTANTIATE_TEST_CASE_P(All, ExponentialDistributionTests,
354                         ::testing::ValuesIn(GenParams()), ParamName);
355 
356 // NOTE: absl::exponential_distribution is not guaranteed to be stable.
TEST(ExponentialDistributionTest,StabilityTest)357 TEST(ExponentialDistributionTest, StabilityTest) {
358   // absl::exponential_distribution stability relies on std::log1p and
359   // absl::uniform_real_distribution.
360   absl::random_internal::sequence_urbg urbg(
361       {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
362        0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
363        0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
364        0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
365 
366   std::vector<int> output(14);
367 
368   {
369     absl::exponential_distribution<double> dist;
370     std::generate(std::begin(output), std::end(output),
371                   [&] { return static_cast<int>(10000.0 * dist(urbg)); });
372 
373     EXPECT_EQ(14, urbg.invocations());
374     EXPECT_THAT(output,
375                 testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
376                                      804, 126, 12337, 17984, 27002, 0, 71913));
377   }
378 
379   urbg.reset();
380   {
381     absl::exponential_distribution<float> dist;
382     std::generate(std::begin(output), std::end(output),
383                   [&] { return static_cast<int>(10000.0f * dist(urbg)); });
384 
385     EXPECT_EQ(14, urbg.invocations());
386     EXPECT_THAT(output,
387                 testing::ElementsAre(0, 71913, 14375, 5039, 1835, 861, 25936,
388                                      804, 126, 12337, 17984, 27002, 0, 71913));
389   }
390 }
391 
TEST(ExponentialDistributionTest,AlgorithmBounds)392 TEST(ExponentialDistributionTest, AlgorithmBounds) {
393   // Relies on absl::uniform_real_distribution, so some of these comments
394   // reference that.
395   absl::exponential_distribution<double> dist;
396 
397   {
398     // This returns the smallest value >0 from absl::uniform_real_distribution.
399     absl::random_internal::sequence_urbg urbg({0x0000000000000001ull});
400     double a = dist(urbg);
401     EXPECT_EQ(a, 5.42101086242752217004e-20);
402   }
403 
404   {
405     // This returns a value very near 0.5 from absl::uniform_real_distribution.
406     absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull});
407     double a = dist(urbg);
408     EXPECT_EQ(a, 0.693147180559945175204);
409   }
410 
411   {
412     // This returns the largest value <1 from absl::uniform_real_distribution.
413     // WolframAlpha: ~39.1439465808987766283058547296341915292187253
414     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFeFull});
415     double a = dist(urbg);
416     EXPECT_EQ(a, 36.7368005696771007251);
417   }
418   {
419     // This *ALSO* returns the largest value <1.
420     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull});
421     double a = dist(urbg);
422     EXPECT_EQ(a, 36.7368005696771007251);
423   }
424 }
425 
426 }  // namespace
427