1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15
16 // This file declares INTERNAL parts of the Split API that are inline/templated
17 // or otherwise need to be available at compile time. The main abstractions
18 // defined in here are
19 //
20 // - ConvertibleToStringView
21 // - SplitIterator<>
22 // - Splitter<>
23 //
24 // DO NOT INCLUDE THIS FILE DIRECTLY. Use this file by including
25 // absl/strings/str_split.h.
26 //
27 // IWYU pragma: private, include "absl/strings/str_split.h"
28
29 #ifndef ABSL_STRINGS_INTERNAL_STR_SPLIT_INTERNAL_H_
30 #define ABSL_STRINGS_INTERNAL_STR_SPLIT_INTERNAL_H_
31
32 #include <array>
33 #include <initializer_list>
34 #include <iterator>
35 #include <map>
36 #include <type_traits>
37 #include <utility>
38 #include <vector>
39
40 #include "absl/base/macros.h"
41 #include "absl/base/port.h"
42 #include "absl/meta/type_traits.h"
43 #include "absl/strings/string_view.h"
44
45 #ifdef _GLIBCXX_DEBUG
46 #include "absl/strings/internal/stl_type_traits.h"
47 #endif // _GLIBCXX_DEBUG
48
49 namespace absl {
50 ABSL_NAMESPACE_BEGIN
51 namespace strings_internal {
52
53 // This class is implicitly constructible from everything that absl::string_view
54 // is implicitly constructible from. If it's constructed from a temporary
55 // string, the data is moved into a data member so its lifetime matches that of
56 // the ConvertibleToStringView instance.
57 class ConvertibleToStringView {
58 public:
ConvertibleToStringView(const char * s)59 ConvertibleToStringView(const char* s) // NOLINT(runtime/explicit)
60 : value_(s) {}
ConvertibleToStringView(char * s)61 ConvertibleToStringView(char* s) : value_(s) {} // NOLINT(runtime/explicit)
ConvertibleToStringView(absl::string_view s)62 ConvertibleToStringView(absl::string_view s) // NOLINT(runtime/explicit)
63 : value_(s) {}
ConvertibleToStringView(const std::string & s)64 ConvertibleToStringView(const std::string& s) // NOLINT(runtime/explicit)
65 : value_(s) {}
66
67 // Matches rvalue strings and moves their data to a member.
ConvertibleToStringView(std::string && s)68 ConvertibleToStringView(std::string&& s) // NOLINT(runtime/explicit)
69 : copy_(std::move(s)), value_(copy_) {}
70
ConvertibleToStringView(const ConvertibleToStringView & other)71 ConvertibleToStringView(const ConvertibleToStringView& other)
72 : copy_(other.copy_),
73 value_(other.IsSelfReferential() ? copy_ : other.value_) {}
74
ConvertibleToStringView(ConvertibleToStringView && other)75 ConvertibleToStringView(ConvertibleToStringView&& other) {
76 StealMembers(std::move(other));
77 }
78
79 ConvertibleToStringView& operator=(ConvertibleToStringView other) {
80 StealMembers(std::move(other));
81 return *this;
82 }
83
value()84 absl::string_view value() const { return value_; }
85
86 private:
87 // Returns true if ctsp's value refers to its internal copy_ member.
IsSelfReferential()88 bool IsSelfReferential() const { return value_.data() == copy_.data(); }
89
StealMembers(ConvertibleToStringView && other)90 void StealMembers(ConvertibleToStringView&& other) {
91 if (other.IsSelfReferential()) {
92 copy_ = std::move(other.copy_);
93 value_ = copy_;
94 other.value_ = other.copy_;
95 } else {
96 value_ = other.value_;
97 }
98 }
99
100 // Holds the data moved from temporary std::string arguments. Declared first
101 // so that 'value' can refer to 'copy_'.
102 std::string copy_;
103 absl::string_view value_;
104 };
105
106 // An iterator that enumerates the parts of a string from a Splitter. The text
107 // to be split, the Delimiter, and the Predicate are all taken from the given
108 // Splitter object. Iterators may only be compared if they refer to the same
109 // Splitter instance.
110 //
111 // This class is NOT part of the public splitting API.
112 template <typename Splitter>
113 class SplitIterator {
114 public:
115 using iterator_category = std::input_iterator_tag;
116 using value_type = absl::string_view;
117 using difference_type = ptrdiff_t;
118 using pointer = const value_type*;
119 using reference = const value_type&;
120
121 enum State { kInitState, kLastState, kEndState };
SplitIterator(State state,const Splitter * splitter)122 SplitIterator(State state, const Splitter* splitter)
123 : pos_(0),
124 state_(state),
125 splitter_(splitter),
126 delimiter_(splitter->delimiter()),
127 predicate_(splitter->predicate()) {
128 // Hack to maintain backward compatibility. This one block makes it so an
129 // empty absl::string_view whose .data() happens to be nullptr behaves
130 // *differently* from an otherwise empty absl::string_view whose .data() is
131 // not nullptr. This is an undesirable difference in general, but this
132 // behavior is maintained to avoid breaking existing code that happens to
133 // depend on this old behavior/bug. Perhaps it will be fixed one day. The
134 // difference in behavior is as follows:
135 // Split(absl::string_view(""), '-'); // {""}
136 // Split(absl::string_view(), '-'); // {}
137 if (splitter_->text().data() == nullptr) {
138 state_ = kEndState;
139 pos_ = splitter_->text().size();
140 return;
141 }
142
143 if (state_ == kEndState) {
144 pos_ = splitter_->text().size();
145 } else {
146 ++(*this);
147 }
148 }
149
at_end()150 bool at_end() const { return state_ == kEndState; }
151
152 reference operator*() const { return curr_; }
153 pointer operator->() const { return &curr_; }
154
155 SplitIterator& operator++() {
156 do {
157 if (state_ == kLastState) {
158 state_ = kEndState;
159 return *this;
160 }
161 const absl::string_view text = splitter_->text();
162 const absl::string_view d = delimiter_.Find(text, pos_);
163 if (d.data() == text.data() + text.size()) state_ = kLastState;
164 curr_ = text.substr(pos_, d.data() - (text.data() + pos_));
165 pos_ += curr_.size() + d.size();
166 } while (!predicate_(curr_));
167 return *this;
168 }
169
170 SplitIterator operator++(int) {
171 SplitIterator old(*this);
172 ++(*this);
173 return old;
174 }
175
176 friend bool operator==(const SplitIterator& a, const SplitIterator& b) {
177 return a.state_ == b.state_ && a.pos_ == b.pos_;
178 }
179
180 friend bool operator!=(const SplitIterator& a, const SplitIterator& b) {
181 return !(a == b);
182 }
183
184 private:
185 size_t pos_;
186 State state_;
187 absl::string_view curr_;
188 const Splitter* splitter_;
189 typename Splitter::DelimiterType delimiter_;
190 typename Splitter::PredicateType predicate_;
191 };
192
193 // HasMappedType<T>::value is true iff there exists a type T::mapped_type.
194 template <typename T, typename = void>
195 struct HasMappedType : std::false_type {};
196 template <typename T>
197 struct HasMappedType<T, absl::void_t<typename T::mapped_type>>
198 : std::true_type {};
199
200 // HasValueType<T>::value is true iff there exists a type T::value_type.
201 template <typename T, typename = void>
202 struct HasValueType : std::false_type {};
203 template <typename T>
204 struct HasValueType<T, absl::void_t<typename T::value_type>> : std::true_type {
205 };
206
207 // HasConstIterator<T>::value is true iff there exists a type T::const_iterator.
208 template <typename T, typename = void>
209 struct HasConstIterator : std::false_type {};
210 template <typename T>
211 struct HasConstIterator<T, absl::void_t<typename T::const_iterator>>
212 : std::true_type {};
213
214 // IsInitializerList<T>::value is true iff T is an std::initializer_list. More
215 // details below in Splitter<> where this is used.
216 std::false_type IsInitializerListDispatch(...); // default: No
217 template <typename T>
218 std::true_type IsInitializerListDispatch(std::initializer_list<T>*);
219 template <typename T>
220 struct IsInitializerList
221 : decltype(IsInitializerListDispatch(static_cast<T*>(nullptr))) {};
222
223 // A SplitterIsConvertibleTo<C>::type alias exists iff the specified condition
224 // is true for type 'C'.
225 //
226 // Restricts conversion to container-like types (by testing for the presence of
227 // a const_iterator member type) and also to disable conversion to an
228 // std::initializer_list (which also has a const_iterator). Otherwise, code
229 // compiled in C++11 will get an error due to ambiguous conversion paths (in
230 // C++11 std::vector<T>::operator= is overloaded to take either a std::vector<T>
231 // or an std::initializer_list<T>).
232
233 template <typename C, bool has_value_type, bool has_mapped_type>
234 struct SplitterIsConvertibleToImpl : std::false_type {};
235
236 template <typename C>
237 struct SplitterIsConvertibleToImpl<C, true, false>
238 : std::is_constructible<typename C::value_type, absl::string_view> {};
239
240 template <typename C>
241 struct SplitterIsConvertibleToImpl<C, true, true>
242 : absl::conjunction<
243 std::is_constructible<typename C::key_type, absl::string_view>,
244 std::is_constructible<typename C::mapped_type, absl::string_view>> {};
245
246 template <typename C>
247 struct SplitterIsConvertibleTo
248 : SplitterIsConvertibleToImpl<
249 C,
250 #ifdef _GLIBCXX_DEBUG
251 !IsStrictlyBaseOfAndConvertibleToSTLContainer<C>::value &&
252 #endif // _GLIBCXX_DEBUG
253 !IsInitializerList<
254 typename std::remove_reference<C>::type>::value &&
255 HasValueType<C>::value && HasConstIterator<C>::value,
256 HasMappedType<C>::value> {
257 };
258
259 // This class implements the range that is returned by absl::StrSplit(). This
260 // class has templated conversion operators that allow it to be implicitly
261 // converted to a variety of types that the caller may have specified on the
262 // left-hand side of an assignment.
263 //
264 // The main interface for interacting with this class is through its implicit
265 // conversion operators. However, this class may also be used like a container
266 // in that it has .begin() and .end() member functions. It may also be used
267 // within a range-for loop.
268 //
269 // Output containers can be collections of any type that is constructible from
270 // an absl::string_view.
271 //
272 // An Predicate functor may be supplied. This predicate will be used to filter
273 // the split strings: only strings for which the predicate returns true will be
274 // kept. A Predicate object is any unary functor that takes an absl::string_view
275 // and returns bool.
276 template <typename Delimiter, typename Predicate>
277 class Splitter {
278 public:
279 using DelimiterType = Delimiter;
280 using PredicateType = Predicate;
281 using const_iterator = strings_internal::SplitIterator<Splitter>;
282 using value_type = typename std::iterator_traits<const_iterator>::value_type;
283
284 Splitter(ConvertibleToStringView input_text, Delimiter d, Predicate p)
285 : text_(std::move(input_text)),
286 delimiter_(std::move(d)),
287 predicate_(std::move(p)) {}
288
289 absl::string_view text() const { return text_.value(); }
290 const Delimiter& delimiter() const { return delimiter_; }
291 const Predicate& predicate() const { return predicate_; }
292
293 // Range functions that iterate the split substrings as absl::string_view
294 // objects. These methods enable a Splitter to be used in a range-based for
295 // loop.
296 const_iterator begin() const { return {const_iterator::kInitState, this}; }
297 const_iterator end() const { return {const_iterator::kEndState, this}; }
298
299 // An implicit conversion operator that is restricted to only those containers
300 // that the splitter is convertible to.
301 template <typename Container,
302 typename = typename std::enable_if<
303 SplitterIsConvertibleTo<Container>::value>::type>
304 operator Container() const { // NOLINT(runtime/explicit)
305 return ConvertToContainer<Container, typename Container::value_type,
306 HasMappedType<Container>::value>()(*this);
307 }
308
309 // Returns a pair with its .first and .second members set to the first two
310 // strings returned by the begin() iterator. Either/both of .first and .second
311 // will be constructed with empty strings if the iterator doesn't have a
312 // corresponding value.
313 template <typename First, typename Second>
314 operator std::pair<First, Second>() const { // NOLINT(runtime/explicit)
315 absl::string_view first, second;
316 auto it = begin();
317 if (it != end()) {
318 first = *it;
319 if (++it != end()) {
320 second = *it;
321 }
322 }
323 return {First(first), Second(second)};
324 }
325
326 private:
327 // ConvertToContainer is a functor converting a Splitter to the requested
328 // Container of ValueType. It is specialized below to optimize splitting to
329 // certain combinations of Container and ValueType.
330 //
331 // This base template handles the generic case of storing the split results in
332 // the requested non-map-like container and converting the split substrings to
333 // the requested type.
334 template <typename Container, typename ValueType, bool is_map = false>
335 struct ConvertToContainer {
336 Container operator()(const Splitter& splitter) const {
337 Container c;
338 auto it = std::inserter(c, c.end());
339 for (const auto sp : splitter) {
340 *it++ = ValueType(sp);
341 }
342 return c;
343 }
344 };
345
346 // Partial specialization for a std::vector<absl::string_view>.
347 //
348 // Optimized for the common case of splitting to a
349 // std::vector<absl::string_view>. In this case we first split the results to
350 // a small array of absl::string_view on the stack, to reduce reallocations.
351 template <typename A>
352 struct ConvertToContainer<std::vector<absl::string_view, A>,
353 absl::string_view, false> {
354 std::vector<absl::string_view, A> operator()(
355 const Splitter& splitter) const {
356 struct raw_view {
357 const char* data;
358 size_t size;
359 operator absl::string_view() const { // NOLINT(runtime/explicit)
360 return {data, size};
361 }
362 };
363 std::vector<absl::string_view, A> v;
364 std::array<raw_view, 16> ar;
365 for (auto it = splitter.begin(); !it.at_end();) {
366 size_t index = 0;
367 do {
368 ar[index].data = it->data();
369 ar[index].size = it->size();
370 ++it;
371 } while (++index != ar.size() && !it.at_end());
372 v.insert(v.end(), ar.begin(), ar.begin() + index);
373 }
374 return v;
375 }
376 };
377
378 // Partial specialization for a std::vector<std::string>.
379 //
380 // Optimized for the common case of splitting to a std::vector<std::string>.
381 // In this case we first split the results to a std::vector<absl::string_view>
382 // so the returned std::vector<std::string> can have space reserved to avoid
383 // std::string moves.
384 template <typename A>
385 struct ConvertToContainer<std::vector<std::string, A>, std::string, false> {
386 std::vector<std::string, A> operator()(const Splitter& splitter) const {
387 const std::vector<absl::string_view> v = splitter;
388 return std::vector<std::string, A>(v.begin(), v.end());
389 }
390 };
391
392 // Partial specialization for containers of pairs (e.g., maps).
393 //
394 // The algorithm is to insert a new pair into the map for each even-numbered
395 // item, with the even-numbered item as the key with a default-constructed
396 // value. Each odd-numbered item will then be assigned to the last pair's
397 // value.
398 template <typename Container, typename First, typename Second>
399 struct ConvertToContainer<Container, std::pair<const First, Second>, true> {
400 Container operator()(const Splitter& splitter) const {
401 Container m;
402 typename Container::iterator it;
403 bool insert = true;
404 for (const auto sp : splitter) {
405 if (insert) {
406 it = Inserter<Container>::Insert(&m, First(sp), Second());
407 } else {
408 it->second = Second(sp);
409 }
410 insert = !insert;
411 }
412 return m;
413 }
414
415 // Inserts the key and value into the given map, returning an iterator to
416 // the inserted item. Specialized for std::map and std::multimap to use
417 // emplace() and adapt emplace()'s return value.
418 template <typename Map>
419 struct Inserter {
420 using M = Map;
421 template <typename... Args>
422 static typename M::iterator Insert(M* m, Args&&... args) {
423 return m->insert(std::make_pair(std::forward<Args>(args)...)).first;
424 }
425 };
426
427 template <typename... Ts>
428 struct Inserter<std::map<Ts...>> {
429 using M = std::map<Ts...>;
430 template <typename... Args>
431 static typename M::iterator Insert(M* m, Args&&... args) {
432 return m->emplace(std::make_pair(std::forward<Args>(args)...)).first;
433 }
434 };
435
436 template <typename... Ts>
437 struct Inserter<std::multimap<Ts...>> {
438 using M = std::multimap<Ts...>;
439 template <typename... Args>
440 static typename M::iterator Insert(M* m, Args&&... args) {
441 return m->emplace(std::make_pair(std::forward<Args>(args)...));
442 }
443 };
444 };
445
446 ConvertibleToStringView text_;
447 Delimiter delimiter_;
448 Predicate predicate_;
449 };
450
451 } // namespace strings_internal
452 ABSL_NAMESPACE_END
453 } // namespace absl
454
455 #endif // ABSL_STRINGS_INTERNAL_STR_SPLIT_INTERNAL_H_
456