1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // This file tests string processing functions related to numeric values.
16
17 #include "absl/strings/numbers.h"
18
19 #include <sys/types.h>
20
21 #include <cfenv> // NOLINT(build/c++11)
22 #include <cinttypes>
23 #include <climits>
24 #include <cmath>
25 #include <cstddef>
26 #include <cstdint>
27 #include <cstdio>
28 #include <cstdlib>
29 #include <cstring>
30 #include <limits>
31 #include <numeric>
32 #include <random>
33 #include <set>
34 #include <string>
35 #include <vector>
36
37 #include "gmock/gmock.h"
38 #include "gtest/gtest.h"
39 #include "absl/base/internal/raw_logging.h"
40 #include "absl/random/distributions.h"
41 #include "absl/random/random.h"
42 #include "absl/strings/internal/numbers_test_common.h"
43 #include "absl/strings/internal/pow10_helper.h"
44 #include "absl/strings/str_cat.h"
45
46 namespace {
47
48 using absl::numbers_internal::kSixDigitsToBufferSize;
49 using absl::numbers_internal::safe_strto32_base;
50 using absl::numbers_internal::safe_strto64_base;
51 using absl::numbers_internal::safe_strtou32_base;
52 using absl::numbers_internal::safe_strtou64_base;
53 using absl::numbers_internal::SixDigitsToBuffer;
54 using absl::strings_internal::Itoa;
55 using absl::strings_internal::strtouint32_test_cases;
56 using absl::strings_internal::strtouint64_test_cases;
57 using absl::SimpleAtoi;
58 using testing::Eq;
59 using testing::MatchesRegex;
60
61 // Number of floats to test with.
62 // 5,000,000 is a reasonable default for a test that only takes a few seconds.
63 // 1,000,000,000+ triggers checking for all possible mantissa values for
64 // double-precision tests. 2,000,000,000+ triggers checking for every possible
65 // single-precision float.
66 const int kFloatNumCases = 5000000;
67
68 // This is a slow, brute-force routine to compute the exact base-10
69 // representation of a double-precision floating-point number. It
70 // is useful for debugging only.
PerfectDtoa(double d)71 std::string PerfectDtoa(double d) {
72 if (d == 0) return "0";
73 if (d < 0) return "-" + PerfectDtoa(-d);
74
75 // Basic theory: decompose d into mantissa and exp, where
76 // d = mantissa * 2^exp, and exp is as close to zero as possible.
77 int64_t mantissa, exp = 0;
78 while (d >= 1ULL << 63) ++exp, d *= 0.5;
79 while ((mantissa = d) != d) --exp, d *= 2.0;
80
81 // Then convert mantissa to ASCII, and either double it (if
82 // exp > 0) or halve it (if exp < 0) repeatedly. "halve it"
83 // in this case means multiplying it by five and dividing by 10.
84 constexpr int maxlen = 1100; // worst case is actually 1030 or so.
85 char buf[maxlen + 5];
86 for (int64_t num = mantissa, pos = maxlen; --pos >= 0;) {
87 buf[pos] = '0' + (num % 10);
88 num /= 10;
89 }
90 char* begin = &buf[0];
91 char* end = buf + maxlen;
92 for (int i = 0; i != exp; i += (exp > 0) ? 1 : -1) {
93 int carry = 0;
94 for (char* p = end; --p != begin;) {
95 int dig = *p - '0';
96 dig = dig * (exp > 0 ? 2 : 5) + carry;
97 carry = dig / 10;
98 dig %= 10;
99 *p = '0' + dig;
100 }
101 }
102 if (exp < 0) {
103 // "dividing by 10" above means we have to add the decimal point.
104 memmove(end + 1 + exp, end + exp, 1 - exp);
105 end[exp] = '.';
106 ++end;
107 }
108 while (*begin == '0' && begin[1] != '.') ++begin;
109 return {begin, end};
110 }
111
TEST(ToString,PerfectDtoa)112 TEST(ToString, PerfectDtoa) {
113 EXPECT_THAT(PerfectDtoa(1), Eq("1"));
114 EXPECT_THAT(PerfectDtoa(0.1),
115 Eq("0.1000000000000000055511151231257827021181583404541015625"));
116 EXPECT_THAT(PerfectDtoa(1e24), Eq("999999999999999983222784"));
117 EXPECT_THAT(PerfectDtoa(5e-324), MatchesRegex("0.0000.*625"));
118 for (int i = 0; i < 100; ++i) {
119 for (double multiplier :
120 {1e-300, 1e-200, 1e-100, 0.1, 1.0, 10.0, 1e100, 1e300}) {
121 double d = multiplier * i;
122 std::string s = PerfectDtoa(d);
123 EXPECT_DOUBLE_EQ(d, strtod(s.c_str(), nullptr));
124 }
125 }
126 }
127
128 template <typename integer>
129 struct MyInteger {
130 integer i;
MyInteger__anon132c74010111::MyInteger131 explicit constexpr MyInteger(integer i) : i(i) {}
operator integer__anon132c74010111::MyInteger132 constexpr operator integer() const { return i; }
133
operator +__anon132c74010111::MyInteger134 constexpr MyInteger operator+(MyInteger other) const { return i + other.i; }
operator -__anon132c74010111::MyInteger135 constexpr MyInteger operator-(MyInteger other) const { return i - other.i; }
operator *__anon132c74010111::MyInteger136 constexpr MyInteger operator*(MyInteger other) const { return i * other.i; }
operator /__anon132c74010111::MyInteger137 constexpr MyInteger operator/(MyInteger other) const { return i / other.i; }
138
operator <__anon132c74010111::MyInteger139 constexpr bool operator<(MyInteger other) const { return i < other.i; }
operator <=__anon132c74010111::MyInteger140 constexpr bool operator<=(MyInteger other) const { return i <= other.i; }
operator ==__anon132c74010111::MyInteger141 constexpr bool operator==(MyInteger other) const { return i == other.i; }
operator >=__anon132c74010111::MyInteger142 constexpr bool operator>=(MyInteger other) const { return i >= other.i; }
operator >__anon132c74010111::MyInteger143 constexpr bool operator>(MyInteger other) const { return i > other.i; }
operator !=__anon132c74010111::MyInteger144 constexpr bool operator!=(MyInteger other) const { return i != other.i; }
145
as_integer__anon132c74010111::MyInteger146 integer as_integer() const { return i; }
147 };
148
149 typedef MyInteger<int64_t> MyInt64;
150 typedef MyInteger<uint64_t> MyUInt64;
151
CheckInt32(int32_t x)152 void CheckInt32(int32_t x) {
153 char buffer[absl::numbers_internal::kFastToBufferSize];
154 char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
155 std::string expected = std::to_string(x);
156 EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;
157
158 char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
159 EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
160 }
161
CheckInt64(int64_t x)162 void CheckInt64(int64_t x) {
163 char buffer[absl::numbers_internal::kFastToBufferSize + 3];
164 buffer[0] = '*';
165 buffer[23] = '*';
166 buffer[24] = '*';
167 char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
168 std::string expected = std::to_string(x);
169 EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;
170 EXPECT_EQ(buffer[0], '*');
171 EXPECT_EQ(buffer[23], '*');
172 EXPECT_EQ(buffer[24], '*');
173
174 char* my_actual =
175 absl::numbers_internal::FastIntToBuffer(MyInt64(x), &buffer[1]);
176 EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
177 }
178
CheckUInt32(uint32_t x)179 void CheckUInt32(uint32_t x) {
180 char buffer[absl::numbers_internal::kFastToBufferSize];
181 char* actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
182 std::string expected = std::to_string(x);
183 EXPECT_EQ(expected, std::string(buffer, actual)) << " Input " << x;
184
185 char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, buffer);
186 EXPECT_EQ(expected, std::string(buffer, generic_actual)) << " Input " << x;
187 }
188
CheckUInt64(uint64_t x)189 void CheckUInt64(uint64_t x) {
190 char buffer[absl::numbers_internal::kFastToBufferSize + 1];
191 char* actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
192 std::string expected = std::to_string(x);
193 EXPECT_EQ(expected, std::string(&buffer[1], actual)) << " Input " << x;
194
195 char* generic_actual = absl::numbers_internal::FastIntToBuffer(x, &buffer[1]);
196 EXPECT_EQ(expected, std::string(&buffer[1], generic_actual))
197 << " Input " << x;
198
199 char* my_actual =
200 absl::numbers_internal::FastIntToBuffer(MyUInt64(x), &buffer[1]);
201 EXPECT_EQ(expected, std::string(&buffer[1], my_actual)) << " Input " << x;
202 }
203
CheckHex64(uint64_t v)204 void CheckHex64(uint64_t v) {
205 char expected[16 + 1];
206 std::string actual = absl::StrCat(absl::Hex(v, absl::kZeroPad16));
207 snprintf(expected, sizeof(expected), "%016" PRIx64, static_cast<uint64_t>(v));
208 EXPECT_EQ(expected, actual) << " Input " << v;
209 actual = absl::StrCat(absl::Hex(v, absl::kSpacePad16));
210 snprintf(expected, sizeof(expected), "%16" PRIx64, static_cast<uint64_t>(v));
211 EXPECT_EQ(expected, actual) << " Input " << v;
212 }
213
TEST(Numbers,TestFastPrints)214 TEST(Numbers, TestFastPrints) {
215 for (int i = -100; i <= 100; i++) {
216 CheckInt32(i);
217 CheckInt64(i);
218 }
219 for (int i = 0; i <= 100; i++) {
220 CheckUInt32(i);
221 CheckUInt64(i);
222 }
223 // Test min int to make sure that works
224 CheckInt32(INT_MIN);
225 CheckInt32(INT_MAX);
226 CheckInt64(LONG_MIN);
227 CheckInt64(uint64_t{1000000000});
228 CheckInt64(uint64_t{9999999999});
229 CheckInt64(uint64_t{100000000000000});
230 CheckInt64(uint64_t{999999999999999});
231 CheckInt64(uint64_t{1000000000000000000});
232 CheckInt64(uint64_t{1199999999999999999});
233 CheckInt64(int64_t{-700000000000000000});
234 CheckInt64(LONG_MAX);
235 CheckUInt32(std::numeric_limits<uint32_t>::max());
236 CheckUInt64(uint64_t{1000000000});
237 CheckUInt64(uint64_t{9999999999});
238 CheckUInt64(uint64_t{100000000000000});
239 CheckUInt64(uint64_t{999999999999999});
240 CheckUInt64(uint64_t{1000000000000000000});
241 CheckUInt64(uint64_t{1199999999999999999});
242 CheckUInt64(std::numeric_limits<uint64_t>::max());
243
244 for (int i = 0; i < 10000; i++) {
245 CheckHex64(i);
246 }
247 CheckHex64(uint64_t{0x123456789abcdef0});
248 }
249
250 template <typename int_type, typename in_val_type>
VerifySimpleAtoiGood(in_val_type in_value,int_type exp_value)251 void VerifySimpleAtoiGood(in_val_type in_value, int_type exp_value) {
252 std::string s;
253 // uint128 can be streamed but not StrCat'd
254 absl::strings_internal::OStringStream(&s) << in_value;
255 int_type x = static_cast<int_type>(~exp_value);
256 EXPECT_TRUE(SimpleAtoi(s, &x))
257 << "in_value=" << in_value << " s=" << s << " x=" << x;
258 EXPECT_EQ(exp_value, x);
259 x = static_cast<int_type>(~exp_value);
260 EXPECT_TRUE(SimpleAtoi(s.c_str(), &x));
261 EXPECT_EQ(exp_value, x);
262 }
263
264 template <typename int_type, typename in_val_type>
VerifySimpleAtoiBad(in_val_type in_value)265 void VerifySimpleAtoiBad(in_val_type in_value) {
266 std::string s = absl::StrCat(in_value);
267 int_type x;
268 EXPECT_FALSE(SimpleAtoi(s, &x));
269 EXPECT_FALSE(SimpleAtoi(s.c_str(), &x));
270 }
271
TEST(NumbersTest,Atoi)272 TEST(NumbersTest, Atoi) {
273 // SimpleAtoi(absl::string_view, int32_t)
274 VerifySimpleAtoiGood<int32_t>(0, 0);
275 VerifySimpleAtoiGood<int32_t>(42, 42);
276 VerifySimpleAtoiGood<int32_t>(-42, -42);
277
278 VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(),
279 std::numeric_limits<int32_t>::min());
280 VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(),
281 std::numeric_limits<int32_t>::max());
282
283 // SimpleAtoi(absl::string_view, uint32_t)
284 VerifySimpleAtoiGood<uint32_t>(0, 0);
285 VerifySimpleAtoiGood<uint32_t>(42, 42);
286 VerifySimpleAtoiBad<uint32_t>(-42);
287
288 VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min());
289 VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(),
290 std::numeric_limits<int32_t>::max());
291 VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(),
292 std::numeric_limits<uint32_t>::max());
293 VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min());
294 VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max());
295 VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max());
296
297 // SimpleAtoi(absl::string_view, int64_t)
298 VerifySimpleAtoiGood<int64_t>(0, 0);
299 VerifySimpleAtoiGood<int64_t>(42, 42);
300 VerifySimpleAtoiGood<int64_t>(-42, -42);
301
302 VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(),
303 std::numeric_limits<int32_t>::min());
304 VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(),
305 std::numeric_limits<int32_t>::max());
306 VerifySimpleAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(),
307 std::numeric_limits<uint32_t>::max());
308 VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(),
309 std::numeric_limits<int64_t>::min());
310 VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(),
311 std::numeric_limits<int64_t>::max());
312 VerifySimpleAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max());
313
314 // SimpleAtoi(absl::string_view, uint64_t)
315 VerifySimpleAtoiGood<uint64_t>(0, 0);
316 VerifySimpleAtoiGood<uint64_t>(42, 42);
317 VerifySimpleAtoiBad<uint64_t>(-42);
318
319 VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min());
320 VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(),
321 std::numeric_limits<int32_t>::max());
322 VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(),
323 std::numeric_limits<uint32_t>::max());
324 VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min());
325 VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(),
326 std::numeric_limits<int64_t>::max());
327 VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(),
328 std::numeric_limits<uint64_t>::max());
329
330 // SimpleAtoi(absl::string_view, absl::uint128)
331 VerifySimpleAtoiGood<absl::uint128>(0, 0);
332 VerifySimpleAtoiGood<absl::uint128>(42, 42);
333 VerifySimpleAtoiBad<absl::uint128>(-42);
334
335 VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int32_t>::min());
336 VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int32_t>::max(),
337 std::numeric_limits<int32_t>::max());
338 VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint32_t>::max(),
339 std::numeric_limits<uint32_t>::max());
340 VerifySimpleAtoiBad<absl::uint128>(std::numeric_limits<int64_t>::min());
341 VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<int64_t>::max(),
342 std::numeric_limits<int64_t>::max());
343 VerifySimpleAtoiGood<absl::uint128>(std::numeric_limits<uint64_t>::max(),
344 std::numeric_limits<uint64_t>::max());
345 VerifySimpleAtoiGood<absl::uint128>(
346 std::numeric_limits<absl::uint128>::max(),
347 std::numeric_limits<absl::uint128>::max());
348
349 // Some other types
350 VerifySimpleAtoiGood<int>(-42, -42);
351 VerifySimpleAtoiGood<int32_t>(-42, -42);
352 VerifySimpleAtoiGood<uint32_t>(42, 42);
353 VerifySimpleAtoiGood<unsigned int>(42, 42);
354 VerifySimpleAtoiGood<int64_t>(-42, -42);
355 VerifySimpleAtoiGood<long>(-42, -42); // NOLINT(runtime/int)
356 VerifySimpleAtoiGood<uint64_t>(42, 42);
357 VerifySimpleAtoiGood<size_t>(42, 42);
358 VerifySimpleAtoiGood<std::string::size_type>(42, 42);
359 }
360
TEST(NumbersTest,Atoenum)361 TEST(NumbersTest, Atoenum) {
362 enum E01 {
363 E01_zero = 0,
364 E01_one = 1,
365 };
366
367 VerifySimpleAtoiGood<E01>(E01_zero, E01_zero);
368 VerifySimpleAtoiGood<E01>(E01_one, E01_one);
369
370 enum E_101 {
371 E_101_minusone = -1,
372 E_101_zero = 0,
373 E_101_one = 1,
374 };
375
376 VerifySimpleAtoiGood<E_101>(E_101_minusone, E_101_minusone);
377 VerifySimpleAtoiGood<E_101>(E_101_zero, E_101_zero);
378 VerifySimpleAtoiGood<E_101>(E_101_one, E_101_one);
379
380 enum E_bigint {
381 E_bigint_zero = 0,
382 E_bigint_one = 1,
383 E_bigint_max31 = static_cast<int32_t>(0x7FFFFFFF),
384 };
385
386 VerifySimpleAtoiGood<E_bigint>(E_bigint_zero, E_bigint_zero);
387 VerifySimpleAtoiGood<E_bigint>(E_bigint_one, E_bigint_one);
388 VerifySimpleAtoiGood<E_bigint>(E_bigint_max31, E_bigint_max31);
389
390 enum E_fullint {
391 E_fullint_zero = 0,
392 E_fullint_one = 1,
393 E_fullint_max31 = static_cast<int32_t>(0x7FFFFFFF),
394 E_fullint_min32 = INT32_MIN,
395 };
396
397 VerifySimpleAtoiGood<E_fullint>(E_fullint_zero, E_fullint_zero);
398 VerifySimpleAtoiGood<E_fullint>(E_fullint_one, E_fullint_one);
399 VerifySimpleAtoiGood<E_fullint>(E_fullint_max31, E_fullint_max31);
400 VerifySimpleAtoiGood<E_fullint>(E_fullint_min32, E_fullint_min32);
401
402 enum E_biguint {
403 E_biguint_zero = 0,
404 E_biguint_one = 1,
405 E_biguint_max31 = static_cast<uint32_t>(0x7FFFFFFF),
406 E_biguint_max32 = static_cast<uint32_t>(0xFFFFFFFF),
407 };
408
409 VerifySimpleAtoiGood<E_biguint>(E_biguint_zero, E_biguint_zero);
410 VerifySimpleAtoiGood<E_biguint>(E_biguint_one, E_biguint_one);
411 VerifySimpleAtoiGood<E_biguint>(E_biguint_max31, E_biguint_max31);
412 VerifySimpleAtoiGood<E_biguint>(E_biguint_max32, E_biguint_max32);
413 }
414
TEST(stringtest,safe_strto32_base)415 TEST(stringtest, safe_strto32_base) {
416 int32_t value;
417 EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16));
418 EXPECT_EQ(0x34234324, value);
419
420 EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16));
421 EXPECT_EQ(0x34234324, value);
422
423 EXPECT_TRUE(safe_strto32_base("34234324", &value, 16));
424 EXPECT_EQ(0x34234324, value);
425
426 EXPECT_TRUE(safe_strto32_base("0", &value, 16));
427 EXPECT_EQ(0, value);
428
429 EXPECT_TRUE(safe_strto32_base(" \t\n -0x34234324", &value, 16));
430 EXPECT_EQ(-0x34234324, value);
431
432 EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 16));
433 EXPECT_EQ(-0x34234324, value);
434
435 EXPECT_TRUE(safe_strto32_base("7654321", &value, 8));
436 EXPECT_EQ(07654321, value);
437
438 EXPECT_TRUE(safe_strto32_base("-01234", &value, 8));
439 EXPECT_EQ(-01234, value);
440
441 EXPECT_FALSE(safe_strto32_base("1834", &value, 8));
442
443 // Autodetect base.
444 EXPECT_TRUE(safe_strto32_base("0", &value, 0));
445 EXPECT_EQ(0, value);
446
447 EXPECT_TRUE(safe_strto32_base("077", &value, 0));
448 EXPECT_EQ(077, value); // Octal interpretation
449
450 // Leading zero indicates octal, but then followed by invalid digit.
451 EXPECT_FALSE(safe_strto32_base("088", &value, 0));
452
453 // Leading 0x indicated hex, but then followed by invalid digit.
454 EXPECT_FALSE(safe_strto32_base("0xG", &value, 0));
455
456 // Base-10 version.
457 EXPECT_TRUE(safe_strto32_base("34234324", &value, 10));
458 EXPECT_EQ(34234324, value);
459
460 EXPECT_TRUE(safe_strto32_base("0", &value, 10));
461 EXPECT_EQ(0, value);
462
463 EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 10));
464 EXPECT_EQ(-34234324, value);
465
466 EXPECT_TRUE(safe_strto32_base("34234324 \n\t ", &value, 10));
467 EXPECT_EQ(34234324, value);
468
469 // Invalid ints.
470 EXPECT_FALSE(safe_strto32_base("", &value, 10));
471 EXPECT_FALSE(safe_strto32_base(" ", &value, 10));
472 EXPECT_FALSE(safe_strto32_base("abc", &value, 10));
473 EXPECT_FALSE(safe_strto32_base("34234324a", &value, 10));
474 EXPECT_FALSE(safe_strto32_base("34234.3", &value, 10));
475
476 // Out of bounds.
477 EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));
478 EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));
479
480 // String version.
481 EXPECT_TRUE(safe_strto32_base(std::string("0x1234"), &value, 16));
482 EXPECT_EQ(0x1234, value);
483
484 // Base-10 std::string version.
485 EXPECT_TRUE(safe_strto32_base("1234", &value, 10));
486 EXPECT_EQ(1234, value);
487 }
488
TEST(stringtest,safe_strto32_range)489 TEST(stringtest, safe_strto32_range) {
490 // These tests verify underflow/overflow behaviour.
491 int32_t value;
492 EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10));
493 EXPECT_EQ(std::numeric_limits<int32_t>::max(), value);
494
495 EXPECT_TRUE(safe_strto32_base("-2147483648", &value, 10));
496 EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);
497
498 EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10));
499 EXPECT_EQ(std::numeric_limits<int32_t>::min(), value);
500 }
501
TEST(stringtest,safe_strto64_range)502 TEST(stringtest, safe_strto64_range) {
503 // These tests verify underflow/overflow behaviour.
504 int64_t value;
505 EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));
506 EXPECT_EQ(std::numeric_limits<int64_t>::max(), value);
507
508 EXPECT_TRUE(safe_strto64_base("-9223372036854775808", &value, 10));
509 EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);
510
511 EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));
512 EXPECT_EQ(std::numeric_limits<int64_t>::min(), value);
513 }
514
TEST(stringtest,safe_strto32_leading_substring)515 TEST(stringtest, safe_strto32_leading_substring) {
516 // These tests verify this comment in numbers.h:
517 // On error, returns false, and sets *value to: [...]
518 // conversion of leading substring if available ("123@@@" -> 123)
519 // 0 if no leading substring available
520 int32_t value;
521 EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 10));
522 EXPECT_EQ(4069, value);
523
524 EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 8));
525 EXPECT_EQ(0406, value);
526
527 EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 10));
528 EXPECT_EQ(4069, value);
529
530 EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 16));
531 EXPECT_EQ(0x4069ba, value);
532
533 EXPECT_FALSE(safe_strto32_base("@@@", &value, 10));
534 EXPECT_EQ(0, value); // there was no leading substring
535 }
536
TEST(stringtest,safe_strto64_leading_substring)537 TEST(stringtest, safe_strto64_leading_substring) {
538 // These tests verify this comment in numbers.h:
539 // On error, returns false, and sets *value to: [...]
540 // conversion of leading substring if available ("123@@@" -> 123)
541 // 0 if no leading substring available
542 int64_t value;
543 EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 10));
544 EXPECT_EQ(4069, value);
545
546 EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 8));
547 EXPECT_EQ(0406, value);
548
549 EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 10));
550 EXPECT_EQ(4069, value);
551
552 EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 16));
553 EXPECT_EQ(0x4069ba, value);
554
555 EXPECT_FALSE(safe_strto64_base("@@@", &value, 10));
556 EXPECT_EQ(0, value); // there was no leading substring
557 }
558
TEST(stringtest,safe_strto64_base)559 TEST(stringtest, safe_strto64_base) {
560 int64_t value;
561 EXPECT_TRUE(safe_strto64_base("0x3423432448783446", &value, 16));
562 EXPECT_EQ(int64_t{0x3423432448783446}, value);
563
564 EXPECT_TRUE(safe_strto64_base("3423432448783446", &value, 16));
565 EXPECT_EQ(int64_t{0x3423432448783446}, value);
566
567 EXPECT_TRUE(safe_strto64_base("0", &value, 16));
568 EXPECT_EQ(0, value);
569
570 EXPECT_TRUE(safe_strto64_base(" \t\n -0x3423432448783446", &value, 16));
571 EXPECT_EQ(int64_t{-0x3423432448783446}, value);
572
573 EXPECT_TRUE(safe_strto64_base(" \t\n -3423432448783446", &value, 16));
574 EXPECT_EQ(int64_t{-0x3423432448783446}, value);
575
576 EXPECT_TRUE(safe_strto64_base("123456701234567012", &value, 8));
577 EXPECT_EQ(int64_t{0123456701234567012}, value);
578
579 EXPECT_TRUE(safe_strto64_base("-017777777777777", &value, 8));
580 EXPECT_EQ(int64_t{-017777777777777}, value);
581
582 EXPECT_FALSE(safe_strto64_base("19777777777777", &value, 8));
583
584 // Autodetect base.
585 EXPECT_TRUE(safe_strto64_base("0", &value, 0));
586 EXPECT_EQ(0, value);
587
588 EXPECT_TRUE(safe_strto64_base("077", &value, 0));
589 EXPECT_EQ(077, value); // Octal interpretation
590
591 // Leading zero indicates octal, but then followed by invalid digit.
592 EXPECT_FALSE(safe_strto64_base("088", &value, 0));
593
594 // Leading 0x indicated hex, but then followed by invalid digit.
595 EXPECT_FALSE(safe_strto64_base("0xG", &value, 0));
596
597 // Base-10 version.
598 EXPECT_TRUE(safe_strto64_base("34234324487834466", &value, 10));
599 EXPECT_EQ(int64_t{34234324487834466}, value);
600
601 EXPECT_TRUE(safe_strto64_base("0", &value, 10));
602 EXPECT_EQ(0, value);
603
604 EXPECT_TRUE(safe_strto64_base(" \t\n -34234324487834466", &value, 10));
605 EXPECT_EQ(int64_t{-34234324487834466}, value);
606
607 EXPECT_TRUE(safe_strto64_base("34234324487834466 \n\t ", &value, 10));
608 EXPECT_EQ(int64_t{34234324487834466}, value);
609
610 // Invalid ints.
611 EXPECT_FALSE(safe_strto64_base("", &value, 10));
612 EXPECT_FALSE(safe_strto64_base(" ", &value, 10));
613 EXPECT_FALSE(safe_strto64_base("abc", &value, 10));
614 EXPECT_FALSE(safe_strto64_base("34234324487834466a", &value, 10));
615 EXPECT_FALSE(safe_strto64_base("34234487834466.3", &value, 10));
616
617 // Out of bounds.
618 EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10));
619 EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10));
620
621 // String version.
622 EXPECT_TRUE(safe_strto64_base(std::string("0x1234"), &value, 16));
623 EXPECT_EQ(0x1234, value);
624
625 // Base-10 std::string version.
626 EXPECT_TRUE(safe_strto64_base("1234", &value, 10));
627 EXPECT_EQ(1234, value);
628 }
629
630 const size_t kNumRandomTests = 10000;
631
632 template <typename IntType>
test_random_integer_parse_base(bool (* parse_func)(absl::string_view,IntType * value,int base))633 void test_random_integer_parse_base(bool (*parse_func)(absl::string_view,
634 IntType* value,
635 int base)) {
636 using RandomEngine = std::minstd_rand0;
637 std::random_device rd;
638 RandomEngine rng(rd());
639 std::uniform_int_distribution<IntType> random_int(
640 std::numeric_limits<IntType>::min());
641 std::uniform_int_distribution<int> random_base(2, 35);
642 for (size_t i = 0; i < kNumRandomTests; i++) {
643 IntType value = random_int(rng);
644 int base = random_base(rng);
645 std::string str_value;
646 EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
647 IntType parsed_value;
648
649 // Test successful parse
650 EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
651 EXPECT_EQ(parsed_value, value);
652
653 // Test overflow
654 EXPECT_FALSE(
655 parse_func(absl::StrCat(std::numeric_limits<IntType>::max(), value),
656 &parsed_value, base));
657
658 // Test underflow
659 if (std::numeric_limits<IntType>::min() < 0) {
660 EXPECT_FALSE(
661 parse_func(absl::StrCat(std::numeric_limits<IntType>::min(), value),
662 &parsed_value, base));
663 } else {
664 EXPECT_FALSE(parse_func(absl::StrCat("-", value), &parsed_value, base));
665 }
666 }
667 }
668
TEST(stringtest,safe_strto32_random)669 TEST(stringtest, safe_strto32_random) {
670 test_random_integer_parse_base<int32_t>(&safe_strto32_base);
671 }
TEST(stringtest,safe_strto64_random)672 TEST(stringtest, safe_strto64_random) {
673 test_random_integer_parse_base<int64_t>(&safe_strto64_base);
674 }
TEST(stringtest,safe_strtou32_random)675 TEST(stringtest, safe_strtou32_random) {
676 test_random_integer_parse_base<uint32_t>(&safe_strtou32_base);
677 }
TEST(stringtest,safe_strtou64_random)678 TEST(stringtest, safe_strtou64_random) {
679 test_random_integer_parse_base<uint64_t>(&safe_strtou64_base);
680 }
TEST(stringtest,safe_strtou128_random)681 TEST(stringtest, safe_strtou128_random) {
682 // random number generators don't work for uint128, and
683 // uint128 can be streamed but not StrCat'd, so this code must be custom
684 // implemented for uint128, but is generally the same as what's above.
685 // test_random_integer_parse_base<absl::uint128>(
686 // &absl::numbers_internal::safe_strtou128_base);
687 using RandomEngine = std::minstd_rand0;
688 using IntType = absl::uint128;
689 constexpr auto parse_func = &absl::numbers_internal::safe_strtou128_base;
690
691 std::random_device rd;
692 RandomEngine rng(rd());
693 std::uniform_int_distribution<uint64_t> random_uint64(
694 std::numeric_limits<uint64_t>::min());
695 std::uniform_int_distribution<int> random_base(2, 35);
696
697 for (size_t i = 0; i < kNumRandomTests; i++) {
698 IntType value = random_uint64(rng);
699 value = (value << 64) + random_uint64(rng);
700 int base = random_base(rng);
701 std::string str_value;
702 EXPECT_TRUE(Itoa<IntType>(value, base, &str_value));
703 IntType parsed_value;
704
705 // Test successful parse
706 EXPECT_TRUE(parse_func(str_value, &parsed_value, base));
707 EXPECT_EQ(parsed_value, value);
708
709 // Test overflow
710 std::string s;
711 absl::strings_internal::OStringStream(&s)
712 << std::numeric_limits<IntType>::max() << value;
713 EXPECT_FALSE(parse_func(s, &parsed_value, base));
714
715 // Test underflow
716 s.clear();
717 absl::strings_internal::OStringStream(&s) << "-" << value;
718 EXPECT_FALSE(parse_func(s, &parsed_value, base));
719 }
720 }
721
TEST(stringtest,safe_strtou32_base)722 TEST(stringtest, safe_strtou32_base) {
723 for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) {
724 const auto& e = strtouint32_test_cases()[i];
725 uint32_t value;
726 EXPECT_EQ(e.expect_ok, safe_strtou32_base(e.str, &value, e.base))
727 << "str=\"" << e.str << "\" base=" << e.base;
728 if (e.expect_ok) {
729 EXPECT_EQ(e.expected, value) << "i=" << i << " str=\"" << e.str
730 << "\" base=" << e.base;
731 }
732 }
733 }
734
TEST(stringtest,safe_strtou32_base_length_delimited)735 TEST(stringtest, safe_strtou32_base_length_delimited) {
736 for (int i = 0; strtouint32_test_cases()[i].str != nullptr; ++i) {
737 const auto& e = strtouint32_test_cases()[i];
738 std::string tmp(e.str);
739 tmp.append("12"); // Adds garbage at the end.
740
741 uint32_t value;
742 EXPECT_EQ(e.expect_ok,
743 safe_strtou32_base(absl::string_view(tmp.data(), strlen(e.str)),
744 &value, e.base))
745 << "str=\"" << e.str << "\" base=" << e.base;
746 if (e.expect_ok) {
747 EXPECT_EQ(e.expected, value) << "i=" << i << " str=" << e.str
748 << " base=" << e.base;
749 }
750 }
751 }
752
TEST(stringtest,safe_strtou64_base)753 TEST(stringtest, safe_strtou64_base) {
754 for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) {
755 const auto& e = strtouint64_test_cases()[i];
756 uint64_t value;
757 EXPECT_EQ(e.expect_ok, safe_strtou64_base(e.str, &value, e.base))
758 << "str=\"" << e.str << "\" base=" << e.base;
759 if (e.expect_ok) {
760 EXPECT_EQ(e.expected, value) << "str=" << e.str << " base=" << e.base;
761 }
762 }
763 }
764
TEST(stringtest,safe_strtou64_base_length_delimited)765 TEST(stringtest, safe_strtou64_base_length_delimited) {
766 for (int i = 0; strtouint64_test_cases()[i].str != nullptr; ++i) {
767 const auto& e = strtouint64_test_cases()[i];
768 std::string tmp(e.str);
769 tmp.append("12"); // Adds garbage at the end.
770
771 uint64_t value;
772 EXPECT_EQ(e.expect_ok,
773 safe_strtou64_base(absl::string_view(tmp.data(), strlen(e.str)),
774 &value, e.base))
775 << "str=\"" << e.str << "\" base=" << e.base;
776 if (e.expect_ok) {
777 EXPECT_EQ(e.expected, value) << "str=\"" << e.str << "\" base=" << e.base;
778 }
779 }
780 }
781
782 // feenableexcept() and fedisableexcept() are extensions supported by some libc
783 // implementations.
784 #if defined(__GLIBC__) || defined(__BIONIC__)
785 #define ABSL_HAVE_FEENABLEEXCEPT 1
786 #define ABSL_HAVE_FEDISABLEEXCEPT 1
787 #endif
788
789 class SimpleDtoaTest : public testing::Test {
790 protected:
SetUp()791 void SetUp() override {
792 // Store the current floating point env & clear away any pending exceptions.
793 feholdexcept(&fp_env_);
794 #ifdef ABSL_HAVE_FEENABLEEXCEPT
795 // Turn on floating point exceptions.
796 feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
797 #endif
798 }
799
TearDown()800 void TearDown() override {
801 // Restore the floating point environment to the original state.
802 // In theory fedisableexcept is unnecessary; fesetenv will also do it.
803 // In practice, our toolchains have subtle bugs.
804 #ifdef ABSL_HAVE_FEDISABLEEXCEPT
805 fedisableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
806 #endif
807 fesetenv(&fp_env_);
808 }
809
ToNineDigits(double value)810 std::string ToNineDigits(double value) {
811 char buffer[16]; // more than enough for %.9g
812 snprintf(buffer, sizeof(buffer), "%.9g", value);
813 return buffer;
814 }
815
816 fenv_t fp_env_;
817 };
818
819 // Run the given runnable functor for "cases" test cases, chosen over the
820 // available range of float. pi and e and 1/e are seeded, and then all
821 // available integer powers of 2 and 10 are multiplied against them. In
822 // addition to trying all those values, we try the next higher and next lower
823 // float, and then we add additional test cases evenly distributed between them.
824 // Each test case is passed to runnable as both a positive and negative value.
825 template <typename R>
ExhaustiveFloat(uint32_t cases,R && runnable)826 void ExhaustiveFloat(uint32_t cases, R&& runnable) {
827 runnable(0.0f);
828 runnable(-0.0f);
829 if (cases >= 2e9) { // more than 2 billion? Might as well run them all.
830 for (float f = 0; f < std::numeric_limits<float>::max(); ) {
831 f = nextafterf(f, std::numeric_limits<float>::max());
832 runnable(-f);
833 runnable(f);
834 }
835 return;
836 }
837 std::set<float> floats = {3.4028234e38f};
838 for (float f : {1.0, 3.14159265, 2.718281828, 1 / 2.718281828}) {
839 for (float testf = f; testf != 0; testf *= 0.1f) floats.insert(testf);
840 for (float testf = f; testf != 0; testf *= 0.5f) floats.insert(testf);
841 for (float testf = f; testf < 3e38f / 2; testf *= 2.0f)
842 floats.insert(testf);
843 for (float testf = f; testf < 3e38f / 10; testf *= 10) floats.insert(testf);
844 }
845
846 float last = *floats.begin();
847
848 runnable(last);
849 runnable(-last);
850 int iters_per_float = cases / floats.size();
851 if (iters_per_float == 0) iters_per_float = 1;
852 for (float f : floats) {
853 if (f == last) continue;
854 float testf = std::nextafter(last, std::numeric_limits<float>::max());
855 runnable(testf);
856 runnable(-testf);
857 last = testf;
858 if (f == last) continue;
859 double step = (double{f} - last) / iters_per_float;
860 for (double d = last + step; d < f; d += step) {
861 testf = d;
862 if (testf != last) {
863 runnable(testf);
864 runnable(-testf);
865 last = testf;
866 }
867 }
868 testf = std::nextafter(f, 0.0f);
869 if (testf > last) {
870 runnable(testf);
871 runnable(-testf);
872 last = testf;
873 }
874 if (f != last) {
875 runnable(f);
876 runnable(-f);
877 last = f;
878 }
879 }
880 }
881
TEST_F(SimpleDtoaTest,ExhaustiveDoubleToSixDigits)882 TEST_F(SimpleDtoaTest, ExhaustiveDoubleToSixDigits) {
883 uint64_t test_count = 0;
884 std::vector<double> mismatches;
885 auto checker = [&](double d) {
886 if (d != d) return; // rule out NaNs
887 ++test_count;
888 char sixdigitsbuf[kSixDigitsToBufferSize] = {0};
889 SixDigitsToBuffer(d, sixdigitsbuf);
890 char snprintfbuf[kSixDigitsToBufferSize] = {0};
891 snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);
892 if (strcmp(sixdigitsbuf, snprintfbuf) != 0) {
893 mismatches.push_back(d);
894 if (mismatches.size() < 10) {
895 ABSL_RAW_LOG(ERROR, "%s",
896 absl::StrCat("Six-digit failure with double. ", "d=", d,
897 "=", d, " sixdigits=", sixdigitsbuf,
898 " printf(%g)=", snprintfbuf)
899 .c_str());
900 }
901 }
902 };
903 // Some quick sanity checks...
904 checker(5e-324);
905 checker(1e-308);
906 checker(1.0);
907 checker(1.000005);
908 checker(1.7976931348623157e308);
909 checker(0.00390625);
910 #ifndef _MSC_VER
911 // on MSVC, snprintf() rounds it to 0.00195313. SixDigitsToBuffer() rounds it
912 // to 0.00195312 (round half to even).
913 checker(0.001953125);
914 #endif
915 checker(0.005859375);
916 // Some cases where the rounding is very very close
917 checker(1.089095e-15);
918 checker(3.274195e-55);
919 checker(6.534355e-146);
920 checker(2.920845e+234);
921
922 if (mismatches.empty()) {
923 test_count = 0;
924 ExhaustiveFloat(kFloatNumCases, checker);
925
926 test_count = 0;
927 std::vector<int> digit_testcases{
928 100000, 100001, 100002, 100005, 100010, 100020, 100050, 100100, // misc
929 195312, 195313, // 1.953125 is a case where we round down, just barely.
930 200000, 500000, 800000, // misc mid-range cases
931 585937, 585938, // 5.859375 is a case where we round up, just barely.
932 900000, 990000, 999000, 999900, 999990, 999996, 999997, 999998, 999999};
933 if (kFloatNumCases >= 1e9) {
934 // If at least 1 billion test cases were requested, user wants an
935 // exhaustive test. So let's test all mantissas, too.
936 constexpr int min_mantissa = 100000, max_mantissa = 999999;
937 digit_testcases.resize(max_mantissa - min_mantissa + 1);
938 std::iota(digit_testcases.begin(), digit_testcases.end(), min_mantissa);
939 }
940
941 for (int exponent = -324; exponent <= 308; ++exponent) {
942 double powten = absl::strings_internal::Pow10(exponent);
943 if (powten == 0) powten = 5e-324;
944 if (kFloatNumCases >= 1e9) {
945 // The exhaustive test takes a very long time, so log progress.
946 char buf[kSixDigitsToBufferSize];
947 ABSL_RAW_LOG(
948 INFO, "%s",
949 absl::StrCat("Exp ", exponent, " powten=", powten, "(", powten,
950 ") (",
951 std::string(buf, SixDigitsToBuffer(powten, buf)), ")")
952 .c_str());
953 }
954 for (int digits : digit_testcases) {
955 if (exponent == 308 && digits >= 179769) break; // don't overflow!
956 double digiform = (digits + 0.5) * 0.00001;
957 double testval = digiform * powten;
958 double pretestval = nextafter(testval, 0);
959 double posttestval = nextafter(testval, 1.7976931348623157e308);
960 checker(testval);
961 checker(pretestval);
962 checker(posttestval);
963 }
964 }
965 } else {
966 EXPECT_EQ(mismatches.size(), 0);
967 for (size_t i = 0; i < mismatches.size(); ++i) {
968 if (i > 100) i = mismatches.size() - 1;
969 double d = mismatches[i];
970 char sixdigitsbuf[kSixDigitsToBufferSize] = {0};
971 SixDigitsToBuffer(d, sixdigitsbuf);
972 char snprintfbuf[kSixDigitsToBufferSize] = {0};
973 snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d);
974 double before = nextafter(d, 0.0);
975 double after = nextafter(d, 1.7976931348623157e308);
976 char b1[32], b2[kSixDigitsToBufferSize];
977 ABSL_RAW_LOG(
978 ERROR, "%s",
979 absl::StrCat(
980 "Mismatch #", i, " d=", d, " (", ToNineDigits(d), ")",
981 " sixdigits='", sixdigitsbuf, "'", " snprintf='", snprintfbuf,
982 "'", " Before.=", PerfectDtoa(before), " ",
983 (SixDigitsToBuffer(before, b2), b2),
984 " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", before), b1),
985 " Perfect=", PerfectDtoa(d), " ", (SixDigitsToBuffer(d, b2), b2),
986 " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", d), b1),
987 " After.=.", PerfectDtoa(after), " ",
988 (SixDigitsToBuffer(after, b2), b2),
989 " vs snprintf=", (snprintf(b1, sizeof(b1), "%g", after), b1))
990 .c_str());
991 }
992 }
993 }
994
TEST(StrToInt32,Partial)995 TEST(StrToInt32, Partial) {
996 struct Int32TestLine {
997 std::string input;
998 bool status;
999 int32_t value;
1000 };
1001 const int32_t int32_min = std::numeric_limits<int32_t>::min();
1002 const int32_t int32_max = std::numeric_limits<int32_t>::max();
1003 Int32TestLine int32_test_line[] = {
1004 {"", false, 0},
1005 {" ", false, 0},
1006 {"-", false, 0},
1007 {"123@@@", false, 123},
1008 {absl::StrCat(int32_min, int32_max), false, int32_min},
1009 {absl::StrCat(int32_max, int32_max), false, int32_max},
1010 };
1011
1012 for (const Int32TestLine& test_line : int32_test_line) {
1013 int32_t value = -2;
1014 bool status = safe_strto32_base(test_line.input, &value, 10);
1015 EXPECT_EQ(test_line.status, status) << test_line.input;
1016 EXPECT_EQ(test_line.value, value) << test_line.input;
1017 value = -2;
1018 status = safe_strto32_base(test_line.input, &value, 10);
1019 EXPECT_EQ(test_line.status, status) << test_line.input;
1020 EXPECT_EQ(test_line.value, value) << test_line.input;
1021 value = -2;
1022 status = safe_strto32_base(absl::string_view(test_line.input), &value, 10);
1023 EXPECT_EQ(test_line.status, status) << test_line.input;
1024 EXPECT_EQ(test_line.value, value) << test_line.input;
1025 }
1026 }
1027
TEST(StrToUint32,Partial)1028 TEST(StrToUint32, Partial) {
1029 struct Uint32TestLine {
1030 std::string input;
1031 bool status;
1032 uint32_t value;
1033 };
1034 const uint32_t uint32_max = std::numeric_limits<uint32_t>::max();
1035 Uint32TestLine uint32_test_line[] = {
1036 {"", false, 0},
1037 {" ", false, 0},
1038 {"-", false, 0},
1039 {"123@@@", false, 123},
1040 {absl::StrCat(uint32_max, uint32_max), false, uint32_max},
1041 };
1042
1043 for (const Uint32TestLine& test_line : uint32_test_line) {
1044 uint32_t value = 2;
1045 bool status = safe_strtou32_base(test_line.input, &value, 10);
1046 EXPECT_EQ(test_line.status, status) << test_line.input;
1047 EXPECT_EQ(test_line.value, value) << test_line.input;
1048 value = 2;
1049 status = safe_strtou32_base(test_line.input, &value, 10);
1050 EXPECT_EQ(test_line.status, status) << test_line.input;
1051 EXPECT_EQ(test_line.value, value) << test_line.input;
1052 value = 2;
1053 status = safe_strtou32_base(absl::string_view(test_line.input), &value, 10);
1054 EXPECT_EQ(test_line.status, status) << test_line.input;
1055 EXPECT_EQ(test_line.value, value) << test_line.input;
1056 }
1057 }
1058
TEST(StrToInt64,Partial)1059 TEST(StrToInt64, Partial) {
1060 struct Int64TestLine {
1061 std::string input;
1062 bool status;
1063 int64_t value;
1064 };
1065 const int64_t int64_min = std::numeric_limits<int64_t>::min();
1066 const int64_t int64_max = std::numeric_limits<int64_t>::max();
1067 Int64TestLine int64_test_line[] = {
1068 {"", false, 0},
1069 {" ", false, 0},
1070 {"-", false, 0},
1071 {"123@@@", false, 123},
1072 {absl::StrCat(int64_min, int64_max), false, int64_min},
1073 {absl::StrCat(int64_max, int64_max), false, int64_max},
1074 };
1075
1076 for (const Int64TestLine& test_line : int64_test_line) {
1077 int64_t value = -2;
1078 bool status = safe_strto64_base(test_line.input, &value, 10);
1079 EXPECT_EQ(test_line.status, status) << test_line.input;
1080 EXPECT_EQ(test_line.value, value) << test_line.input;
1081 value = -2;
1082 status = safe_strto64_base(test_line.input, &value, 10);
1083 EXPECT_EQ(test_line.status, status) << test_line.input;
1084 EXPECT_EQ(test_line.value, value) << test_line.input;
1085 value = -2;
1086 status = safe_strto64_base(absl::string_view(test_line.input), &value, 10);
1087 EXPECT_EQ(test_line.status, status) << test_line.input;
1088 EXPECT_EQ(test_line.value, value) << test_line.input;
1089 }
1090 }
1091
TEST(StrToUint64,Partial)1092 TEST(StrToUint64, Partial) {
1093 struct Uint64TestLine {
1094 std::string input;
1095 bool status;
1096 uint64_t value;
1097 };
1098 const uint64_t uint64_max = std::numeric_limits<uint64_t>::max();
1099 Uint64TestLine uint64_test_line[] = {
1100 {"", false, 0},
1101 {" ", false, 0},
1102 {"-", false, 0},
1103 {"123@@@", false, 123},
1104 {absl::StrCat(uint64_max, uint64_max), false, uint64_max},
1105 };
1106
1107 for (const Uint64TestLine& test_line : uint64_test_line) {
1108 uint64_t value = 2;
1109 bool status = safe_strtou64_base(test_line.input, &value, 10);
1110 EXPECT_EQ(test_line.status, status) << test_line.input;
1111 EXPECT_EQ(test_line.value, value) << test_line.input;
1112 value = 2;
1113 status = safe_strtou64_base(test_line.input, &value, 10);
1114 EXPECT_EQ(test_line.status, status) << test_line.input;
1115 EXPECT_EQ(test_line.value, value) << test_line.input;
1116 value = 2;
1117 status = safe_strtou64_base(absl::string_view(test_line.input), &value, 10);
1118 EXPECT_EQ(test_line.status, status) << test_line.input;
1119 EXPECT_EQ(test_line.value, value) << test_line.input;
1120 }
1121 }
1122
TEST(StrToInt32Base,PrefixOnly)1123 TEST(StrToInt32Base, PrefixOnly) {
1124 struct Int32TestLine {
1125 std::string input;
1126 bool status;
1127 int32_t value;
1128 };
1129 Int32TestLine int32_test_line[] = {
1130 { "", false, 0 },
1131 { "-", false, 0 },
1132 { "-0", true, 0 },
1133 { "0", true, 0 },
1134 { "0x", false, 0 },
1135 { "-0x", false, 0 },
1136 };
1137 const int base_array[] = { 0, 2, 8, 10, 16 };
1138
1139 for (const Int32TestLine& line : int32_test_line) {
1140 for (const int base : base_array) {
1141 int32_t value = 2;
1142 bool status = safe_strto32_base(line.input.c_str(), &value, base);
1143 EXPECT_EQ(line.status, status) << line.input << " " << base;
1144 EXPECT_EQ(line.value, value) << line.input << " " << base;
1145 value = 2;
1146 status = safe_strto32_base(line.input, &value, base);
1147 EXPECT_EQ(line.status, status) << line.input << " " << base;
1148 EXPECT_EQ(line.value, value) << line.input << " " << base;
1149 value = 2;
1150 status = safe_strto32_base(absl::string_view(line.input), &value, base);
1151 EXPECT_EQ(line.status, status) << line.input << " " << base;
1152 EXPECT_EQ(line.value, value) << line.input << " " << base;
1153 }
1154 }
1155 }
1156
TEST(StrToUint32Base,PrefixOnly)1157 TEST(StrToUint32Base, PrefixOnly) {
1158 struct Uint32TestLine {
1159 std::string input;
1160 bool status;
1161 uint32_t value;
1162 };
1163 Uint32TestLine uint32_test_line[] = {
1164 { "", false, 0 },
1165 { "0", true, 0 },
1166 { "0x", false, 0 },
1167 };
1168 const int base_array[] = { 0, 2, 8, 10, 16 };
1169
1170 for (const Uint32TestLine& line : uint32_test_line) {
1171 for (const int base : base_array) {
1172 uint32_t value = 2;
1173 bool status = safe_strtou32_base(line.input.c_str(), &value, base);
1174 EXPECT_EQ(line.status, status) << line.input << " " << base;
1175 EXPECT_EQ(line.value, value) << line.input << " " << base;
1176 value = 2;
1177 status = safe_strtou32_base(line.input, &value, base);
1178 EXPECT_EQ(line.status, status) << line.input << " " << base;
1179 EXPECT_EQ(line.value, value) << line.input << " " << base;
1180 value = 2;
1181 status = safe_strtou32_base(absl::string_view(line.input), &value, base);
1182 EXPECT_EQ(line.status, status) << line.input << " " << base;
1183 EXPECT_EQ(line.value, value) << line.input << " " << base;
1184 }
1185 }
1186 }
1187
TEST(StrToInt64Base,PrefixOnly)1188 TEST(StrToInt64Base, PrefixOnly) {
1189 struct Int64TestLine {
1190 std::string input;
1191 bool status;
1192 int64_t value;
1193 };
1194 Int64TestLine int64_test_line[] = {
1195 { "", false, 0 },
1196 { "-", false, 0 },
1197 { "-0", true, 0 },
1198 { "0", true, 0 },
1199 { "0x", false, 0 },
1200 { "-0x", false, 0 },
1201 };
1202 const int base_array[] = { 0, 2, 8, 10, 16 };
1203
1204 for (const Int64TestLine& line : int64_test_line) {
1205 for (const int base : base_array) {
1206 int64_t value = 2;
1207 bool status = safe_strto64_base(line.input.c_str(), &value, base);
1208 EXPECT_EQ(line.status, status) << line.input << " " << base;
1209 EXPECT_EQ(line.value, value) << line.input << " " << base;
1210 value = 2;
1211 status = safe_strto64_base(line.input, &value, base);
1212 EXPECT_EQ(line.status, status) << line.input << " " << base;
1213 EXPECT_EQ(line.value, value) << line.input << " " << base;
1214 value = 2;
1215 status = safe_strto64_base(absl::string_view(line.input), &value, base);
1216 EXPECT_EQ(line.status, status) << line.input << " " << base;
1217 EXPECT_EQ(line.value, value) << line.input << " " << base;
1218 }
1219 }
1220 }
1221
TEST(StrToUint64Base,PrefixOnly)1222 TEST(StrToUint64Base, PrefixOnly) {
1223 struct Uint64TestLine {
1224 std::string input;
1225 bool status;
1226 uint64_t value;
1227 };
1228 Uint64TestLine uint64_test_line[] = {
1229 { "", false, 0 },
1230 { "0", true, 0 },
1231 { "0x", false, 0 },
1232 };
1233 const int base_array[] = { 0, 2, 8, 10, 16 };
1234
1235 for (const Uint64TestLine& line : uint64_test_line) {
1236 for (const int base : base_array) {
1237 uint64_t value = 2;
1238 bool status = safe_strtou64_base(line.input.c_str(), &value, base);
1239 EXPECT_EQ(line.status, status) << line.input << " " << base;
1240 EXPECT_EQ(line.value, value) << line.input << " " << base;
1241 value = 2;
1242 status = safe_strtou64_base(line.input, &value, base);
1243 EXPECT_EQ(line.status, status) << line.input << " " << base;
1244 EXPECT_EQ(line.value, value) << line.input << " " << base;
1245 value = 2;
1246 status = safe_strtou64_base(absl::string_view(line.input), &value, base);
1247 EXPECT_EQ(line.status, status) << line.input << " " << base;
1248 EXPECT_EQ(line.value, value) << line.input << " " << base;
1249 }
1250 }
1251 }
1252
TestFastHexToBufferZeroPad16(uint64_t v)1253 void TestFastHexToBufferZeroPad16(uint64_t v) {
1254 char buf[16];
1255 auto digits = absl::numbers_internal::FastHexToBufferZeroPad16(v, buf);
1256 absl::string_view res(buf, 16);
1257 char buf2[17];
1258 snprintf(buf2, sizeof(buf2), "%016" PRIx64, v);
1259 EXPECT_EQ(res, buf2) << v;
1260 size_t expected_digits = snprintf(buf2, sizeof(buf2), "%" PRIx64, v);
1261 EXPECT_EQ(digits, expected_digits) << v;
1262 }
1263
TEST(FastHexToBufferZeroPad16,Smoke)1264 TEST(FastHexToBufferZeroPad16, Smoke) {
1265 TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::min());
1266 TestFastHexToBufferZeroPad16(std::numeric_limits<uint64_t>::max());
1267 TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::min());
1268 TestFastHexToBufferZeroPad16(std::numeric_limits<int64_t>::max());
1269 absl::BitGen rng;
1270 for (int i = 0; i < 100000; ++i) {
1271 TestFastHexToBufferZeroPad16(
1272 absl::LogUniform(rng, std::numeric_limits<uint64_t>::min(),
1273 std::numeric_limits<uint64_t>::max()));
1274 }
1275 }
1276
1277 } // namespace
1278