• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2016 Google Inc. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //   https://www.apache.org/licenses/LICENSE-2.0
8 //
9 //   Unless required by applicable law or agreed to in writing, software
10 //   distributed under the License is distributed on an "AS IS" BASIS,
11 //   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 //   See the License for the specific language governing permissions and
13 //   limitations under the License.
14 
15 // This file implements the TimeZoneIf interface using the "zoneinfo"
16 // data provided by the IANA Time Zone Database (i.e., the only real game
17 // in town).
18 //
19 // TimeZoneInfo represents the history of UTC-offset changes within a time
20 // zone. Most changes are due to daylight-saving rules, but occasionally
21 // shifts are made to the time-zone's base offset. The database only attempts
22 // to be definitive for times since 1970, so be wary of local-time conversions
23 // before that. Also, rule and zone-boundary changes are made at the whim
24 // of governments, so the conversion of future times needs to be taken with
25 // a grain of salt.
26 //
27 // For more information see tzfile(5), http://www.iana.org/time-zones, or
28 // https://en.wikipedia.org/wiki/Zoneinfo.
29 //
30 // Note that we assume the proleptic Gregorian calendar and 60-second
31 // minutes throughout.
32 
33 #include "time_zone_info.h"
34 
35 #include <algorithm>
36 #include <cassert>
37 #include <chrono>
38 #include <cstdint>
39 #include <cstdio>
40 #include <cstdlib>
41 #include <cstring>
42 #include <functional>
43 #include <iostream>
44 #include <memory>
45 #include <sstream>
46 #include <string>
47 
48 #include "absl/base/config.h"
49 #include "absl/time/internal/cctz/include/cctz/civil_time.h"
50 #include "time_zone_fixed.h"
51 #include "time_zone_posix.h"
52 
53 namespace absl {
54 ABSL_NAMESPACE_BEGIN
55 namespace time_internal {
56 namespace cctz {
57 
58 namespace {
59 
IsLeap(year_t year)60 inline bool IsLeap(year_t year) {
61   return (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0);
62 }
63 
64 // The number of days in non-leap and leap years respectively.
65 const std::int_least32_t kDaysPerYear[2] = {365, 366};
66 
67 // The day offsets of the beginning of each (1-based) month in non-leap and
68 // leap years respectively (e.g., 335 days before December in a leap year).
69 const std::int_least16_t kMonthOffsets[2][1 + 12 + 1] = {
70     {-1, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365},
71     {-1, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366},
72 };
73 
74 // We reject leap-second encoded zoneinfo and so assume 60-second minutes.
75 const std::int_least32_t kSecsPerDay = 24 * 60 * 60;
76 
77 // 400-year chunks always have 146097 days (20871 weeks).
78 const std::int_least64_t kSecsPer400Years = 146097LL * kSecsPerDay;
79 
80 // Like kDaysPerYear[] but scaled up by a factor of kSecsPerDay.
81 const std::int_least32_t kSecsPerYear[2] = {
82     365 * kSecsPerDay,
83     366 * kSecsPerDay,
84 };
85 
86 // Single-byte, unsigned numeric values are encoded directly.
Decode8(const char * cp)87 inline std::uint_fast8_t Decode8(const char* cp) {
88   return static_cast<std::uint_fast8_t>(*cp) & 0xff;
89 }
90 
91 // Multi-byte, numeric values are encoded using a MSB first,
92 // twos-complement representation. These helpers decode, from
93 // the given address, 4-byte and 8-byte values respectively.
94 // Note: If int_fastXX_t == intXX_t and this machine is not
95 // twos complement, then there will be at least one input value
96 // we cannot represent.
Decode32(const char * cp)97 std::int_fast32_t Decode32(const char* cp) {
98   std::uint_fast32_t v = 0;
99   for (int i = 0; i != (32 / 8); ++i) v = (v << 8) | Decode8(cp++);
100   const std::int_fast32_t s32max = 0x7fffffff;
101   const auto s32maxU = static_cast<std::uint_fast32_t>(s32max);
102   if (v <= s32maxU) return static_cast<std::int_fast32_t>(v);
103   return static_cast<std::int_fast32_t>(v - s32maxU - 1) - s32max - 1;
104 }
105 
Decode64(const char * cp)106 std::int_fast64_t Decode64(const char* cp) {
107   std::uint_fast64_t v = 0;
108   for (int i = 0; i != (64 / 8); ++i) v = (v << 8) | Decode8(cp++);
109   const std::int_fast64_t s64max = 0x7fffffffffffffff;
110   const auto s64maxU = static_cast<std::uint_fast64_t>(s64max);
111   if (v <= s64maxU) return static_cast<std::int_fast64_t>(v);
112   return static_cast<std::int_fast64_t>(v - s64maxU - 1) - s64max - 1;
113 }
114 
115 // Generate a year-relative offset for a PosixTransition.
TransOffset(bool leap_year,int jan1_weekday,const PosixTransition & pt)116 std::int_fast64_t TransOffset(bool leap_year, int jan1_weekday,
117                               const PosixTransition& pt) {
118   std::int_fast64_t days = 0;
119   switch (pt.date.fmt) {
120     case PosixTransition::J: {
121       days = pt.date.j.day;
122       if (!leap_year || days < kMonthOffsets[1][3]) days -= 1;
123       break;
124     }
125     case PosixTransition::N: {
126       days = pt.date.n.day;
127       break;
128     }
129     case PosixTransition::M: {
130       const bool last_week = (pt.date.m.week == 5);
131       days = kMonthOffsets[leap_year][pt.date.m.month + last_week];
132       const std::int_fast64_t weekday = (jan1_weekday + days) % 7;
133       if (last_week) {
134         days -= (weekday + 7 - 1 - pt.date.m.weekday) % 7 + 1;
135       } else {
136         days += (pt.date.m.weekday + 7 - weekday) % 7;
137         days += (pt.date.m.week - 1) * 7;
138       }
139       break;
140     }
141   }
142   return (days * kSecsPerDay) + pt.time.offset;
143 }
144 
MakeUnique(const time_point<seconds> & tp)145 inline time_zone::civil_lookup MakeUnique(const time_point<seconds>& tp) {
146   time_zone::civil_lookup cl;
147   cl.kind = time_zone::civil_lookup::UNIQUE;
148   cl.pre = cl.trans = cl.post = tp;
149   return cl;
150 }
151 
MakeUnique(std::int_fast64_t unix_time)152 inline time_zone::civil_lookup MakeUnique(std::int_fast64_t unix_time) {
153   return MakeUnique(FromUnixSeconds(unix_time));
154 }
155 
MakeSkipped(const Transition & tr,const civil_second & cs)156 inline time_zone::civil_lookup MakeSkipped(const Transition& tr,
157                                            const civil_second& cs) {
158   time_zone::civil_lookup cl;
159   cl.kind = time_zone::civil_lookup::SKIPPED;
160   cl.pre = FromUnixSeconds(tr.unix_time - 1 + (cs - tr.prev_civil_sec));
161   cl.trans = FromUnixSeconds(tr.unix_time);
162   cl.post = FromUnixSeconds(tr.unix_time - (tr.civil_sec - cs));
163   return cl;
164 }
165 
MakeRepeated(const Transition & tr,const civil_second & cs)166 inline time_zone::civil_lookup MakeRepeated(const Transition& tr,
167                                             const civil_second& cs) {
168   time_zone::civil_lookup cl;
169   cl.kind = time_zone::civil_lookup::REPEATED;
170   cl.pre = FromUnixSeconds(tr.unix_time - 1 - (tr.prev_civil_sec - cs));
171   cl.trans = FromUnixSeconds(tr.unix_time);
172   cl.post = FromUnixSeconds(tr.unix_time + (cs - tr.civil_sec));
173   return cl;
174 }
175 
YearShift(const civil_second & cs,year_t shift)176 inline civil_second YearShift(const civil_second& cs, year_t shift) {
177   return civil_second(cs.year() + shift, cs.month(), cs.day(), cs.hour(),
178                       cs.minute(), cs.second());
179 }
180 
181 }  // namespace
182 
183 // What (no leap-seconds) UTC+seconds zoneinfo would look like.
ResetToBuiltinUTC(const seconds & offset)184 bool TimeZoneInfo::ResetToBuiltinUTC(const seconds& offset) {
185   transition_types_.resize(1);
186   TransitionType& tt(transition_types_.back());
187   tt.utc_offset = static_cast<std::int_least32_t>(offset.count());
188   tt.is_dst = false;
189   tt.abbr_index = 0;
190 
191   // We temporarily add some redundant, contemporary (2013 through 2023)
192   // transitions for performance reasons.  See TimeZoneInfo::LocalTime().
193   // TODO: Fix the performance issue and remove the extra transitions.
194   transitions_.clear();
195   transitions_.reserve(12);
196   for (const std::int_fast64_t unix_time : {
197            -(1LL << 59),  // BIG_BANG
198            1356998400LL,  // 2013-01-01T00:00:00+00:00
199            1388534400LL,  // 2014-01-01T00:00:00+00:00
200            1420070400LL,  // 2015-01-01T00:00:00+00:00
201            1451606400LL,  // 2016-01-01T00:00:00+00:00
202            1483228800LL,  // 2017-01-01T00:00:00+00:00
203            1514764800LL,  // 2018-01-01T00:00:00+00:00
204            1546300800LL,  // 2019-01-01T00:00:00+00:00
205            1577836800LL,  // 2020-01-01T00:00:00+00:00
206            1609459200LL,  // 2021-01-01T00:00:00+00:00
207            1640995200LL,  // 2022-01-01T00:00:00+00:00
208            1672531200LL,  // 2023-01-01T00:00:00+00:00
209            2147483647LL,  // 2^31 - 1
210        }) {
211     Transition& tr(*transitions_.emplace(transitions_.end()));
212     tr.unix_time = unix_time;
213     tr.type_index = 0;
214     tr.civil_sec = LocalTime(tr.unix_time, tt).cs;
215     tr.prev_civil_sec = tr.civil_sec - 1;
216   }
217 
218   default_transition_type_ = 0;
219   abbreviations_ = FixedOffsetToAbbr(offset);
220   abbreviations_.append(1, '\0');  // add NUL
221   future_spec_.clear();            // never needed for a fixed-offset zone
222   extended_ = false;
223 
224   tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
225   tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
226 
227   transitions_.shrink_to_fit();
228   return true;
229 }
230 
231 // Builds the in-memory header using the raw bytes from the file.
Build(const tzhead & tzh)232 bool TimeZoneInfo::Header::Build(const tzhead& tzh) {
233   std::int_fast32_t v;
234   if ((v = Decode32(tzh.tzh_timecnt)) < 0) return false;
235   timecnt = static_cast<std::size_t>(v);
236   if ((v = Decode32(tzh.tzh_typecnt)) < 0) return false;
237   typecnt = static_cast<std::size_t>(v);
238   if ((v = Decode32(tzh.tzh_charcnt)) < 0) return false;
239   charcnt = static_cast<std::size_t>(v);
240   if ((v = Decode32(tzh.tzh_leapcnt)) < 0) return false;
241   leapcnt = static_cast<std::size_t>(v);
242   if ((v = Decode32(tzh.tzh_ttisstdcnt)) < 0) return false;
243   ttisstdcnt = static_cast<std::size_t>(v);
244   if ((v = Decode32(tzh.tzh_ttisutcnt)) < 0) return false;
245   ttisutcnt = static_cast<std::size_t>(v);
246   return true;
247 }
248 
249 // How many bytes of data are associated with this header. The result
250 // depends upon whether this is a section with 4-byte or 8-byte times.
DataLength(std::size_t time_len) const251 std::size_t TimeZoneInfo::Header::DataLength(std::size_t time_len) const {
252   std::size_t len = 0;
253   len += (time_len + 1) * timecnt;  // unix_time + type_index
254   len += (4 + 1 + 1) * typecnt;     // utc_offset + is_dst + abbr_index
255   len += 1 * charcnt;               // abbreviations
256   len += (time_len + 4) * leapcnt;  // leap-time + TAI-UTC
257   len += 1 * ttisstdcnt;            // UTC/local indicators
258   len += 1 * ttisutcnt;             // standard/wall indicators
259   return len;
260 }
261 
262 // Check that the TransitionType has the expected offset/is_dst/abbreviation.
CheckTransition(const std::string & name,const TransitionType & tt,std::int_fast32_t offset,bool is_dst,const std::string & abbr) const263 void TimeZoneInfo::CheckTransition(const std::string& name,
264                                    const TransitionType& tt,
265                                    std::int_fast32_t offset, bool is_dst,
266                                    const std::string& abbr) const {
267   if (tt.utc_offset != offset || tt.is_dst != is_dst ||
268       &abbreviations_[tt.abbr_index] != abbr) {
269     std::clog << name << ": Transition"
270               << " offset=" << tt.utc_offset << "/"
271               << (tt.is_dst ? "DST" : "STD")
272               << "/abbr=" << &abbreviations_[tt.abbr_index]
273               << " does not match POSIX spec '" << future_spec_ << "'\n";
274   }
275 }
276 
277 // zic(8) can generate no-op transitions when a zone changes rules at an
278 // instant when there is actually no discontinuity.  So we check whether
279 // two transitions have equivalent types (same offset/is_dst/abbr).
EquivTransitions(std::uint_fast8_t tt1_index,std::uint_fast8_t tt2_index) const280 bool TimeZoneInfo::EquivTransitions(std::uint_fast8_t tt1_index,
281                                     std::uint_fast8_t tt2_index) const {
282   if (tt1_index == tt2_index) return true;
283   const TransitionType& tt1(transition_types_[tt1_index]);
284   const TransitionType& tt2(transition_types_[tt2_index]);
285   if (tt1.is_dst != tt2.is_dst) return false;
286   if (tt1.utc_offset != tt2.utc_offset) return false;
287   if (tt1.abbr_index != tt2.abbr_index) return false;
288   return true;
289 }
290 
291 // Use the POSIX-TZ-environment-variable-style string to handle times
292 // in years after the last transition stored in the zoneinfo data.
ExtendTransitions(const std::string & name,const Header & hdr)293 void TimeZoneInfo::ExtendTransitions(const std::string& name,
294                                      const Header& hdr) {
295   extended_ = false;
296   bool extending = !future_spec_.empty();
297 
298   PosixTimeZone posix;
299   if (extending && !ParsePosixSpec(future_spec_, &posix)) {
300     std::clog << name << ": Failed to parse '" << future_spec_ << "'\n";
301     extending = false;
302   }
303 
304   if (extending && posix.dst_abbr.empty()) {  // std only
305     // The future specification should match the last/default transition,
306     // and that means that handling the future will fall out naturally.
307     std::uint_fast8_t index = default_transition_type_;
308     if (hdr.timecnt != 0) index = transitions_[hdr.timecnt - 1].type_index;
309     const TransitionType& tt(transition_types_[index]);
310     CheckTransition(name, tt, posix.std_offset, false, posix.std_abbr);
311     extending = false;
312   }
313 
314   if (extending && hdr.timecnt < 2) {
315     std::clog << name << ": Too few transitions for POSIX spec\n";
316     extending = false;
317   }
318 
319   if (!extending) {
320     // Ensure that there is always a transition in the second half of the
321     // time line (the BIG_BANG transition is in the first half) so that the
322     // signed difference between a civil_second and the civil_second of its
323     // previous transition is always representable, without overflow.
324     const Transition& last(transitions_.back());
325     if (last.unix_time < 0) {
326       const std::uint_fast8_t type_index = last.type_index;
327       Transition& tr(*transitions_.emplace(transitions_.end()));
328       tr.unix_time = 2147483647;  // 2038-01-19T03:14:07+00:00
329       tr.type_index = type_index;
330     }
331     return;  // last transition wins
332   }
333 
334   // Extend the transitions for an additional 400 years using the
335   // future specification. Years beyond those can be handled by
336   // mapping back to a cycle-equivalent year within that range.
337   // zic(8) should probably do this so that we don't have to.
338   // TODO: Reduce the extension by the number of compatible
339   // transitions already in place.
340   transitions_.reserve(hdr.timecnt + 400 * 2 + 1);
341   transitions_.resize(hdr.timecnt + 400 * 2);
342   extended_ = true;
343 
344   // The future specification should match the last two transitions,
345   // and those transitions should have different is_dst flags.  Note
346   // that nothing says the UTC offset used by the is_dst transition
347   // must be greater than that used by the !is_dst transition.  (See
348   // Europe/Dublin, for example.)
349   const Transition* tr0 = &transitions_[hdr.timecnt - 1];
350   const Transition* tr1 = &transitions_[hdr.timecnt - 2];
351   const TransitionType* tt0 = &transition_types_[tr0->type_index];
352   const TransitionType* tt1 = &transition_types_[tr1->type_index];
353   const TransitionType& dst(tt0->is_dst ? *tt0 : *tt1);
354   const TransitionType& std(tt0->is_dst ? *tt1 : *tt0);
355   CheckTransition(name, dst, posix.dst_offset, true, posix.dst_abbr);
356   CheckTransition(name, std, posix.std_offset, false, posix.std_abbr);
357 
358   // Add the transitions to tr1 and back to tr0 for each extra year.
359   last_year_ = LocalTime(tr0->unix_time, *tt0).cs.year();
360   bool leap_year = IsLeap(last_year_);
361   const civil_day jan1(last_year_, 1, 1);
362   std::int_fast64_t jan1_time = civil_second(jan1) - civil_second();
363   int jan1_weekday = (static_cast<int>(get_weekday(jan1)) + 1) % 7;
364   Transition* tr = &transitions_[hdr.timecnt];  // next trans to fill
365   if (LocalTime(tr1->unix_time, *tt1).cs.year() != last_year_) {
366     // Add a single extra transition to align to a calendar year.
367     transitions_.resize(transitions_.size() + 1);
368     assert(tr == &transitions_[hdr.timecnt]);  // no reallocation
369     const PosixTransition& pt1(tt0->is_dst ? posix.dst_end : posix.dst_start);
370     std::int_fast64_t tr1_offset = TransOffset(leap_year, jan1_weekday, pt1);
371     tr->unix_time = jan1_time + tr1_offset - tt0->utc_offset;
372     tr++->type_index = tr1->type_index;
373     tr0 = &transitions_[hdr.timecnt];
374     tr1 = &transitions_[hdr.timecnt - 1];
375     tt0 = &transition_types_[tr0->type_index];
376     tt1 = &transition_types_[tr1->type_index];
377   }
378   const PosixTransition& pt1(tt0->is_dst ? posix.dst_end : posix.dst_start);
379   const PosixTransition& pt0(tt0->is_dst ? posix.dst_start : posix.dst_end);
380   for (const year_t limit = last_year_ + 400; last_year_ < limit;) {
381     last_year_ += 1;  // an additional year of generated transitions
382     jan1_time += kSecsPerYear[leap_year];
383     jan1_weekday = (jan1_weekday + kDaysPerYear[leap_year]) % 7;
384     leap_year = !leap_year && IsLeap(last_year_);
385     std::int_fast64_t tr1_offset = TransOffset(leap_year, jan1_weekday, pt1);
386     tr->unix_time = jan1_time + tr1_offset - tt0->utc_offset;
387     tr++->type_index = tr1->type_index;
388     std::int_fast64_t tr0_offset = TransOffset(leap_year, jan1_weekday, pt0);
389     tr->unix_time = jan1_time + tr0_offset - tt1->utc_offset;
390     tr++->type_index = tr0->type_index;
391   }
392   assert(tr == &transitions_[0] + transitions_.size());
393 }
394 
Load(const std::string & name,ZoneInfoSource * zip)395 bool TimeZoneInfo::Load(const std::string& name, ZoneInfoSource* zip) {
396   // Read and validate the header.
397   tzhead tzh;
398   if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) return false;
399   if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0)
400     return false;
401   Header hdr;
402   if (!hdr.Build(tzh)) return false;
403   std::size_t time_len = 4;
404   if (tzh.tzh_version[0] != '\0') {
405     // Skip the 4-byte data.
406     if (zip->Skip(hdr.DataLength(time_len)) != 0) return false;
407     // Read and validate the header for the 8-byte data.
408     if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) return false;
409     if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0)
410       return false;
411     if (tzh.tzh_version[0] == '\0') return false;
412     if (!hdr.Build(tzh)) return false;
413     time_len = 8;
414   }
415   if (hdr.typecnt == 0) return false;
416   if (hdr.leapcnt != 0) {
417     // This code assumes 60-second minutes so we do not want
418     // the leap-second encoded zoneinfo. We could reverse the
419     // compensation, but the "right" encoding is rarely used
420     // so currently we simply reject such data.
421     return false;
422   }
423   if (hdr.ttisstdcnt != 0 && hdr.ttisstdcnt != hdr.typecnt) return false;
424   if (hdr.ttisutcnt != 0 && hdr.ttisutcnt != hdr.typecnt) return false;
425 
426   // Read the data into a local buffer.
427   std::size_t len = hdr.DataLength(time_len);
428   std::vector<char> tbuf(len);
429   if (zip->Read(tbuf.data(), len) != len) return false;
430   const char* bp = tbuf.data();
431 
432   // Decode and validate the transitions.
433   transitions_.reserve(hdr.timecnt + 2);  // We might add a couple.
434   transitions_.resize(hdr.timecnt);
435   for (std::size_t i = 0; i != hdr.timecnt; ++i) {
436     transitions_[i].unix_time = (time_len == 4) ? Decode32(bp) : Decode64(bp);
437     bp += time_len;
438     if (i != 0) {
439       // Check that the transitions are ordered by time (as zic guarantees).
440       if (!Transition::ByUnixTime()(transitions_[i - 1], transitions_[i]))
441         return false;  // out of order
442     }
443   }
444   bool seen_type_0 = false;
445   for (std::size_t i = 0; i != hdr.timecnt; ++i) {
446     transitions_[i].type_index = Decode8(bp++);
447     if (transitions_[i].type_index >= hdr.typecnt) return false;
448     if (transitions_[i].type_index == 0) seen_type_0 = true;
449   }
450 
451   // Decode and validate the transition types.
452   transition_types_.resize(hdr.typecnt);
453   for (std::size_t i = 0; i != hdr.typecnt; ++i) {
454     transition_types_[i].utc_offset =
455         static_cast<std::int_least32_t>(Decode32(bp));
456     if (transition_types_[i].utc_offset >= kSecsPerDay ||
457         transition_types_[i].utc_offset <= -kSecsPerDay)
458       return false;
459     bp += 4;
460     transition_types_[i].is_dst = (Decode8(bp++) != 0);
461     transition_types_[i].abbr_index = Decode8(bp++);
462     if (transition_types_[i].abbr_index >= hdr.charcnt) return false;
463   }
464 
465   // Determine the before-first-transition type.
466   default_transition_type_ = 0;
467   if (seen_type_0 && hdr.timecnt != 0) {
468     std::uint_fast8_t index = 0;
469     if (transition_types_[0].is_dst) {
470       index = transitions_[0].type_index;
471       while (index != 0 && transition_types_[index].is_dst) --index;
472     }
473     while (index != hdr.typecnt && transition_types_[index].is_dst) ++index;
474     if (index != hdr.typecnt) default_transition_type_ = index;
475   }
476 
477   // Copy all the abbreviations.
478   abbreviations_.assign(bp, hdr.charcnt);
479   bp += hdr.charcnt;
480 
481   // Skip the unused portions. We've already dispensed with leap-second
482   // encoded zoneinfo. The ttisstd/ttisgmt indicators only apply when
483   // interpreting a POSIX spec that does not include start/end rules, and
484   // that isn't the case here (see "zic -p").
485   bp += (8 + 4) * hdr.leapcnt;  // leap-time + TAI-UTC
486   bp += 1 * hdr.ttisstdcnt;     // UTC/local indicators
487   bp += 1 * hdr.ttisutcnt;      // standard/wall indicators
488   assert(bp == tbuf.data() + tbuf.size());
489 
490   future_spec_.clear();
491   if (tzh.tzh_version[0] != '\0') {
492     // Snarf up the NL-enclosed future POSIX spec. Note
493     // that version '3' files utilize an extended format.
494     auto get_char = [](ZoneInfoSource* azip) -> int {
495       unsigned char ch;  // all non-EOF results are positive
496       return (azip->Read(&ch, 1) == 1) ? ch : EOF;
497     };
498     if (get_char(zip) != '\n') return false;
499     for (int c = get_char(zip); c != '\n'; c = get_char(zip)) {
500       if (c == EOF) return false;
501       future_spec_.push_back(static_cast<char>(c));
502     }
503   }
504 
505   // We don't check for EOF so that we're forwards compatible.
506 
507   // If we did not find version information during the standard loading
508   // process (as of tzh_version '3' that is unsupported), then ask the
509   // ZoneInfoSource for any out-of-bound version std::string it may be privy to.
510   if (version_.empty()) {
511     version_ = zip->Version();
512   }
513 
514   // Trim redundant transitions. zic may have added these to work around
515   // differences between the glibc and reference implementations (see
516   // zic.c:dontmerge) and the Qt library (see zic.c:WORK_AROUND_QTBUG_53071).
517   // For us, they just get in the way when we do future_spec_ extension.
518   while (hdr.timecnt > 1) {
519     if (!EquivTransitions(transitions_[hdr.timecnt - 1].type_index,
520                           transitions_[hdr.timecnt - 2].type_index)) {
521       break;
522     }
523     hdr.timecnt -= 1;
524   }
525   transitions_.resize(hdr.timecnt);
526 
527   // Ensure that there is always a transition in the first half of the
528   // time line (the second half is handled in ExtendTransitions()) so that
529   // the signed difference between a civil_second and the civil_second of
530   // its previous transition is always representable, without overflow.
531   // A contemporary zic will usually have already done this for us.
532   if (transitions_.empty() || transitions_.front().unix_time >= 0) {
533     Transition& tr(*transitions_.emplace(transitions_.begin()));
534     tr.unix_time = -(1LL << 59);  // see tz/zic.c "BIG_BANG"
535     tr.type_index = default_transition_type_;
536     hdr.timecnt += 1;
537   }
538 
539   // Extend the transitions using the future specification.
540   ExtendTransitions(name, hdr);
541 
542   // Compute the local civil time for each transition and the preceding
543   // second. These will be used for reverse conversions in MakeTime().
544   const TransitionType* ttp = &transition_types_[default_transition_type_];
545   for (std::size_t i = 0; i != transitions_.size(); ++i) {
546     Transition& tr(transitions_[i]);
547     tr.prev_civil_sec = LocalTime(tr.unix_time, *ttp).cs - 1;
548     ttp = &transition_types_[tr.type_index];
549     tr.civil_sec = LocalTime(tr.unix_time, *ttp).cs;
550     if (i != 0) {
551       // Check that the transitions are ordered by civil time. Essentially
552       // this means that an offset change cannot cross another such change.
553       // No one does this in practice, and we depend on it in MakeTime().
554       if (!Transition::ByCivilTime()(transitions_[i - 1], tr))
555         return false;  // out of order
556     }
557   }
558 
559   // Compute the maximum/minimum civil times that can be converted to a
560   // time_point<seconds> for each of the zone's transition types.
561   for (auto& tt : transition_types_) {
562     tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
563     tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
564   }
565 
566   transitions_.shrink_to_fit();
567   return true;
568 }
569 
570 namespace {
571 
572 // fopen(3) adaptor.
FOpen(const char * path,const char * mode)573 inline FILE* FOpen(const char* path, const char* mode) {
574 #if defined(_MSC_VER)
575   FILE* fp;
576   if (fopen_s(&fp, path, mode) != 0) fp = nullptr;
577   return fp;
578 #else
579   return fopen(path, mode);  // TODO: Enable the close-on-exec flag.
580 #endif
581 }
582 
583 // A stdio(3)-backed implementation of ZoneInfoSource.
584 class FileZoneInfoSource : public ZoneInfoSource {
585  public:
586   static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
587 
Read(void * ptr,std::size_t size)588   std::size_t Read(void* ptr, std::size_t size) override {
589     size = std::min(size, len_);
590     std::size_t nread = fread(ptr, 1, size, fp_.get());
591     len_ -= nread;
592     return nread;
593   }
Skip(std::size_t offset)594   int Skip(std::size_t offset) override {
595     offset = std::min(offset, len_);
596     int rc = fseek(fp_.get(), static_cast<long>(offset), SEEK_CUR);
597     if (rc == 0) len_ -= offset;
598     return rc;
599   }
Version() const600   std::string Version() const override {
601     // TODO: It would nice if the zoneinfo data included the tzdb version.
602     return std::string();
603   }
604 
605  protected:
FileZoneInfoSource(FILE * fp,std::size_t len=std::numeric_limits<std::size_t>::max ())606   explicit FileZoneInfoSource(
607       FILE* fp, std::size_t len = std::numeric_limits<std::size_t>::max())
608       : fp_(fp, fclose), len_(len) {}
609 
610  private:
611   std::unique_ptr<FILE, int (*)(FILE*)> fp_;
612   std::size_t len_;
613 };
614 
Open(const std::string & name)615 std::unique_ptr<ZoneInfoSource> FileZoneInfoSource::Open(
616     const std::string& name) {
617   // Use of the "file:" prefix is intended for testing purposes only.
618   const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0;
619 
620   // Map the time-zone name to a path name.
621   std::string path;
622   if (pos == name.size() || name[pos] != '/') {
623     const char* tzdir = "/usr/share/zoneinfo";
624     char* tzdir_env = nullptr;
625 #if defined(_MSC_VER)
626     _dupenv_s(&tzdir_env, nullptr, "TZDIR");
627 #else
628     tzdir_env = std::getenv("TZDIR");
629 #endif
630     if (tzdir_env && *tzdir_env) tzdir = tzdir_env;
631     path += tzdir;
632     path += '/';
633 #if defined(_MSC_VER)
634     free(tzdir_env);
635 #endif
636   }
637   path.append(name, pos, std::string::npos);
638 
639   // Open the zoneinfo file.
640   FILE* fp = FOpen(path.c_str(), "rb");
641   if (fp == nullptr) return nullptr;
642   std::size_t length = 0;
643   if (fseek(fp, 0, SEEK_END) == 0) {
644     long offset = ftell(fp);
645     if (offset >= 0) {
646       length = static_cast<std::size_t>(offset);
647     }
648     rewind(fp);
649   }
650   return std::unique_ptr<ZoneInfoSource>(new FileZoneInfoSource(fp, length));
651 }
652 
653 class AndroidZoneInfoSource : public FileZoneInfoSource {
654  public:
655   static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
Version() const656   std::string Version() const override { return version_; }
657 
658  private:
AndroidZoneInfoSource(FILE * fp,std::size_t len,const char * vers)659   explicit AndroidZoneInfoSource(FILE* fp, std::size_t len, const char* vers)
660       : FileZoneInfoSource(fp, len), version_(vers) {}
661   std::string version_;
662 };
663 
Open(const std::string & name)664 std::unique_ptr<ZoneInfoSource> AndroidZoneInfoSource::Open(
665     const std::string& name) {
666   // Use of the "file:" prefix is intended for testing purposes only.
667   const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0;
668 
669   // See Android's libc/tzcode/bionic.cpp for additional information.
670   for (const char* tzdata : {"/data/misc/zoneinfo/current/tzdata",
671                              "/system/usr/share/zoneinfo/tzdata"}) {
672     std::unique_ptr<FILE, int (*)(FILE*)> fp(FOpen(tzdata, "rb"), fclose);
673     if (fp.get() == nullptr) continue;
674 
675     char hbuf[24];  // covers header.zonetab_offset too
676     if (fread(hbuf, 1, sizeof(hbuf), fp.get()) != sizeof(hbuf)) continue;
677     if (strncmp(hbuf, "tzdata", 6) != 0) continue;
678     const char* vers = (hbuf[11] == '\0') ? hbuf + 6 : "";
679     const std::int_fast32_t index_offset = Decode32(hbuf + 12);
680     const std::int_fast32_t data_offset = Decode32(hbuf + 16);
681     if (index_offset < 0 || data_offset < index_offset) continue;
682     if (fseek(fp.get(), static_cast<long>(index_offset), SEEK_SET) != 0)
683       continue;
684 
685     char ebuf[52];  // covers entry.unused too
686     const std::size_t index_size =
687         static_cast<std::size_t>(data_offset - index_offset);
688     const std::size_t zonecnt = index_size / sizeof(ebuf);
689     if (zonecnt * sizeof(ebuf) != index_size) continue;
690     for (std::size_t i = 0; i != zonecnt; ++i) {
691       if (fread(ebuf, 1, sizeof(ebuf), fp.get()) != sizeof(ebuf)) break;
692       const std::int_fast32_t start = data_offset + Decode32(ebuf + 40);
693       const std::int_fast32_t length = Decode32(ebuf + 44);
694       if (start < 0 || length < 0) break;
695       ebuf[40] = '\0';  // ensure zone name is NUL terminated
696       if (strcmp(name.c_str() + pos, ebuf) == 0) {
697         if (fseek(fp.get(), static_cast<long>(start), SEEK_SET) != 0) break;
698         return std::unique_ptr<ZoneInfoSource>(new AndroidZoneInfoSource(
699             fp.release(), static_cast<std::size_t>(length), vers));
700       }
701     }
702   }
703 
704   return nullptr;
705 }
706 
707 }  // namespace
708 
Load(const std::string & name)709 bool TimeZoneInfo::Load(const std::string& name) {
710   // We can ensure that the loading of UTC or any other fixed-offset
711   // zone never fails because the simple, fixed-offset state can be
712   // internally generated. Note that this depends on our choice to not
713   // accept leap-second encoded ("right") zoneinfo.
714   auto offset = seconds::zero();
715   if (FixedOffsetFromName(name, &offset)) {
716     return ResetToBuiltinUTC(offset);
717   }
718 
719   // Find and use a ZoneInfoSource to load the named zone.
720   auto zip = cctz_extension::zone_info_source_factory(
721       name, [](const std::string& name) -> std::unique_ptr<ZoneInfoSource> {
722         if (auto zip = FileZoneInfoSource::Open(name)) return zip;
723         if (auto zip = AndroidZoneInfoSource::Open(name)) return zip;
724         return nullptr;
725       });
726   return zip != nullptr && Load(name, zip.get());
727 }
728 
729 // BreakTime() translation for a particular transition type.
LocalTime(std::int_fast64_t unix_time,const TransitionType & tt) const730 time_zone::absolute_lookup TimeZoneInfo::LocalTime(
731     std::int_fast64_t unix_time, const TransitionType& tt) const {
732   // A civil time in "+offset" looks like (time+offset) in UTC.
733   // Note: We perform two additions in the civil_second domain to
734   // sidestep the chance of overflow in (unix_time + tt.utc_offset).
735   return {(civil_second() + unix_time) + tt.utc_offset, tt.utc_offset,
736           tt.is_dst, &abbreviations_[tt.abbr_index]};
737 }
738 
739 // BreakTime() translation for a particular transition.
LocalTime(std::int_fast64_t unix_time,const Transition & tr) const740 time_zone::absolute_lookup TimeZoneInfo::LocalTime(std::int_fast64_t unix_time,
741                                                    const Transition& tr) const {
742   const TransitionType& tt = transition_types_[tr.type_index];
743   // Note: (unix_time - tr.unix_time) will never overflow as we
744   // have ensured that there is always a "nearby" transition.
745   return {tr.civil_sec + (unix_time - tr.unix_time),  // TODO: Optimize.
746           tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]};
747 }
748 
749 // MakeTime() translation with a conversion-preserving +N * 400-year shift.
TimeLocal(const civil_second & cs,year_t c4_shift) const750 time_zone::civil_lookup TimeZoneInfo::TimeLocal(const civil_second& cs,
751                                                 year_t c4_shift) const {
752   assert(last_year_ - 400 < cs.year() && cs.year() <= last_year_);
753   time_zone::civil_lookup cl = MakeTime(cs);
754   if (c4_shift > seconds::max().count() / kSecsPer400Years) {
755     cl.pre = cl.trans = cl.post = time_point<seconds>::max();
756   } else {
757     const auto offset = seconds(c4_shift * kSecsPer400Years);
758     const auto limit = time_point<seconds>::max() - offset;
759     for (auto* tp : {&cl.pre, &cl.trans, &cl.post}) {
760       if (*tp > limit) {
761         *tp = time_point<seconds>::max();
762       } else {
763         *tp += offset;
764       }
765     }
766   }
767   return cl;
768 }
769 
BreakTime(const time_point<seconds> & tp) const770 time_zone::absolute_lookup TimeZoneInfo::BreakTime(
771     const time_point<seconds>& tp) const {
772   std::int_fast64_t unix_time = ToUnixSeconds(tp);
773   const std::size_t timecnt = transitions_.size();
774   assert(timecnt != 0);  // We always add a transition.
775 
776   if (unix_time < transitions_[0].unix_time) {
777     return LocalTime(unix_time, transition_types_[default_transition_type_]);
778   }
779   if (unix_time >= transitions_[timecnt - 1].unix_time) {
780     // After the last transition. If we extended the transitions using
781     // future_spec_, shift back to a supported year using the 400-year
782     // cycle of calendaric equivalence and then compensate accordingly.
783     if (extended_) {
784       const std::int_fast64_t diff =
785           unix_time - transitions_[timecnt - 1].unix_time;
786       const year_t shift = diff / kSecsPer400Years + 1;
787       const auto d = seconds(shift * kSecsPer400Years);
788       time_zone::absolute_lookup al = BreakTime(tp - d);
789       al.cs = YearShift(al.cs, shift * 400);
790       return al;
791     }
792     return LocalTime(unix_time, transitions_[timecnt - 1]);
793   }
794 
795   const std::size_t hint = local_time_hint_.load(std::memory_order_relaxed);
796   if (0 < hint && hint < timecnt) {
797     if (transitions_[hint - 1].unix_time <= unix_time) {
798       if (unix_time < transitions_[hint].unix_time) {
799         return LocalTime(unix_time, transitions_[hint - 1]);
800       }
801     }
802   }
803 
804   const Transition target = {unix_time, 0, civil_second(), civil_second()};
805   const Transition* begin = &transitions_[0];
806   const Transition* tr = std::upper_bound(begin, begin + timecnt, target,
807                                           Transition::ByUnixTime());
808   local_time_hint_.store(static_cast<std::size_t>(tr - begin),
809                          std::memory_order_relaxed);
810   return LocalTime(unix_time, *--tr);
811 }
812 
MakeTime(const civil_second & cs) const813 time_zone::civil_lookup TimeZoneInfo::MakeTime(const civil_second& cs) const {
814   const std::size_t timecnt = transitions_.size();
815   assert(timecnt != 0);  // We always add a transition.
816 
817   // Find the first transition after our target civil time.
818   const Transition* tr = nullptr;
819   const Transition* begin = &transitions_[0];
820   const Transition* end = begin + timecnt;
821   if (cs < begin->civil_sec) {
822     tr = begin;
823   } else if (cs >= transitions_[timecnt - 1].civil_sec) {
824     tr = end;
825   } else {
826     const std::size_t hint = time_local_hint_.load(std::memory_order_relaxed);
827     if (0 < hint && hint < timecnt) {
828       if (transitions_[hint - 1].civil_sec <= cs) {
829         if (cs < transitions_[hint].civil_sec) {
830           tr = begin + hint;
831         }
832       }
833     }
834     if (tr == nullptr) {
835       const Transition target = {0, 0, cs, civil_second()};
836       tr = std::upper_bound(begin, end, target, Transition::ByCivilTime());
837       time_local_hint_.store(static_cast<std::size_t>(tr - begin),
838                              std::memory_order_relaxed);
839     }
840   }
841 
842   if (tr == begin) {
843     if (tr->prev_civil_sec >= cs) {
844       // Before first transition, so use the default offset.
845       const TransitionType& tt(transition_types_[default_transition_type_]);
846       if (cs < tt.civil_min) return MakeUnique(time_point<seconds>::min());
847       return MakeUnique(cs - (civil_second() + tt.utc_offset));
848     }
849     // tr->prev_civil_sec < cs < tr->civil_sec
850     return MakeSkipped(*tr, cs);
851   }
852 
853   if (tr == end) {
854     if (cs > (--tr)->prev_civil_sec) {
855       // After the last transition. If we extended the transitions using
856       // future_spec_, shift back to a supported year using the 400-year
857       // cycle of calendaric equivalence and then compensate accordingly.
858       if (extended_ && cs.year() > last_year_) {
859         const year_t shift = (cs.year() - last_year_ - 1) / 400 + 1;
860         return TimeLocal(YearShift(cs, shift * -400), shift);
861       }
862       const TransitionType& tt(transition_types_[tr->type_index]);
863       if (cs > tt.civil_max) return MakeUnique(time_point<seconds>::max());
864       return MakeUnique(tr->unix_time + (cs - tr->civil_sec));
865     }
866     // tr->civil_sec <= cs <= tr->prev_civil_sec
867     return MakeRepeated(*tr, cs);
868   }
869 
870   if (tr->prev_civil_sec < cs) {
871     // tr->prev_civil_sec < cs < tr->civil_sec
872     return MakeSkipped(*tr, cs);
873   }
874 
875   if (cs <= (--tr)->prev_civil_sec) {
876     // tr->civil_sec <= cs <= tr->prev_civil_sec
877     return MakeRepeated(*tr, cs);
878   }
879 
880   // In between transitions.
881   return MakeUnique(tr->unix_time + (cs - tr->civil_sec));
882 }
883 
Version() const884 std::string TimeZoneInfo::Version() const { return version_; }
885 
Description() const886 std::string TimeZoneInfo::Description() const {
887   std::ostringstream oss;
888   oss << "#trans=" << transitions_.size();
889   oss << " #types=" << transition_types_.size();
890   oss << " spec='" << future_spec_ << "'";
891   return oss.str();
892 }
893 
NextTransition(const time_point<seconds> & tp,time_zone::civil_transition * trans) const894 bool TimeZoneInfo::NextTransition(const time_point<seconds>& tp,
895                                   time_zone::civil_transition* trans) const {
896   if (transitions_.empty()) return false;
897   const Transition* begin = &transitions_[0];
898   const Transition* end = begin + transitions_.size();
899   if (begin->unix_time <= -(1LL << 59)) {
900     // Do not report the BIG_BANG found in recent zoneinfo data as it is
901     // really a sentinel, not a transition.  See tz/zic.c.
902     ++begin;
903   }
904   std::int_fast64_t unix_time = ToUnixSeconds(tp);
905   const Transition target = {unix_time, 0, civil_second(), civil_second()};
906   const Transition* tr =
907       std::upper_bound(begin, end, target, Transition::ByUnixTime());
908   for (; tr != end; ++tr) {  // skip no-op transitions
909     std::uint_fast8_t prev_type_index =
910         (tr == begin) ? default_transition_type_ : tr[-1].type_index;
911     if (!EquivTransitions(prev_type_index, tr[0].type_index)) break;
912   }
913   // When tr == end we return false, ignoring future_spec_.
914   if (tr == end) return false;
915   trans->from = tr->prev_civil_sec + 1;
916   trans->to = tr->civil_sec;
917   return true;
918 }
919 
PrevTransition(const time_point<seconds> & tp,time_zone::civil_transition * trans) const920 bool TimeZoneInfo::PrevTransition(const time_point<seconds>& tp,
921                                   time_zone::civil_transition* trans) const {
922   if (transitions_.empty()) return false;
923   const Transition* begin = &transitions_[0];
924   const Transition* end = begin + transitions_.size();
925   if (begin->unix_time <= -(1LL << 59)) {
926     // Do not report the BIG_BANG found in recent zoneinfo data as it is
927     // really a sentinel, not a transition.  See tz/zic.c.
928     ++begin;
929   }
930   std::int_fast64_t unix_time = ToUnixSeconds(tp);
931   if (FromUnixSeconds(unix_time) != tp) {
932     if (unix_time == std::numeric_limits<std::int_fast64_t>::max()) {
933       if (end == begin) return false;  // Ignore future_spec_.
934       trans->from = (--end)->prev_civil_sec + 1;
935       trans->to = end->civil_sec;
936       return true;
937     }
938     unix_time += 1;  // ceils
939   }
940   const Transition target = {unix_time, 0, civil_second(), civil_second()};
941   const Transition* tr =
942       std::lower_bound(begin, end, target, Transition::ByUnixTime());
943   for (; tr != begin; --tr) {  // skip no-op transitions
944     std::uint_fast8_t prev_type_index =
945         (tr - 1 == begin) ? default_transition_type_ : tr[-2].type_index;
946     if (!EquivTransitions(prev_type_index, tr[-1].type_index)) break;
947   }
948   // When tr == end we return the "last" transition, ignoring future_spec_.
949   if (tr == begin) return false;
950   trans->from = (--tr)->prev_civil_sec + 1;
951   trans->to = tr->civil_sec;
952   return true;
953 }
954 
955 }  // namespace cctz
956 }  // namespace time_internal
957 ABSL_NAMESPACE_END
958 }  // namespace absl
959