1 // Copyright 2016 Google Inc. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // This file implements the TimeZoneIf interface using the "zoneinfo"
16 // data provided by the IANA Time Zone Database (i.e., the only real game
17 // in town).
18 //
19 // TimeZoneInfo represents the history of UTC-offset changes within a time
20 // zone. Most changes are due to daylight-saving rules, but occasionally
21 // shifts are made to the time-zone's base offset. The database only attempts
22 // to be definitive for times since 1970, so be wary of local-time conversions
23 // before that. Also, rule and zone-boundary changes are made at the whim
24 // of governments, so the conversion of future times needs to be taken with
25 // a grain of salt.
26 //
27 // For more information see tzfile(5), http://www.iana.org/time-zones, or
28 // https://en.wikipedia.org/wiki/Zoneinfo.
29 //
30 // Note that we assume the proleptic Gregorian calendar and 60-second
31 // minutes throughout.
32
33 #include "time_zone_info.h"
34
35 #include <algorithm>
36 #include <cassert>
37 #include <chrono>
38 #include <cstdint>
39 #include <cstdio>
40 #include <cstdlib>
41 #include <cstring>
42 #include <functional>
43 #include <iostream>
44 #include <memory>
45 #include <sstream>
46 #include <string>
47
48 #include "absl/base/config.h"
49 #include "absl/time/internal/cctz/include/cctz/civil_time.h"
50 #include "time_zone_fixed.h"
51 #include "time_zone_posix.h"
52
53 namespace absl {
54 ABSL_NAMESPACE_BEGIN
55 namespace time_internal {
56 namespace cctz {
57
58 namespace {
59
IsLeap(year_t year)60 inline bool IsLeap(year_t year) {
61 return (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0);
62 }
63
64 // The number of days in non-leap and leap years respectively.
65 const std::int_least32_t kDaysPerYear[2] = {365, 366};
66
67 // The day offsets of the beginning of each (1-based) month in non-leap and
68 // leap years respectively (e.g., 335 days before December in a leap year).
69 const std::int_least16_t kMonthOffsets[2][1 + 12 + 1] = {
70 {-1, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365},
71 {-1, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366},
72 };
73
74 // We reject leap-second encoded zoneinfo and so assume 60-second minutes.
75 const std::int_least32_t kSecsPerDay = 24 * 60 * 60;
76
77 // 400-year chunks always have 146097 days (20871 weeks).
78 const std::int_least64_t kSecsPer400Years = 146097LL * kSecsPerDay;
79
80 // Like kDaysPerYear[] but scaled up by a factor of kSecsPerDay.
81 const std::int_least32_t kSecsPerYear[2] = {
82 365 * kSecsPerDay,
83 366 * kSecsPerDay,
84 };
85
86 // Single-byte, unsigned numeric values are encoded directly.
Decode8(const char * cp)87 inline std::uint_fast8_t Decode8(const char* cp) {
88 return static_cast<std::uint_fast8_t>(*cp) & 0xff;
89 }
90
91 // Multi-byte, numeric values are encoded using a MSB first,
92 // twos-complement representation. These helpers decode, from
93 // the given address, 4-byte and 8-byte values respectively.
94 // Note: If int_fastXX_t == intXX_t and this machine is not
95 // twos complement, then there will be at least one input value
96 // we cannot represent.
Decode32(const char * cp)97 std::int_fast32_t Decode32(const char* cp) {
98 std::uint_fast32_t v = 0;
99 for (int i = 0; i != (32 / 8); ++i) v = (v << 8) | Decode8(cp++);
100 const std::int_fast32_t s32max = 0x7fffffff;
101 const auto s32maxU = static_cast<std::uint_fast32_t>(s32max);
102 if (v <= s32maxU) return static_cast<std::int_fast32_t>(v);
103 return static_cast<std::int_fast32_t>(v - s32maxU - 1) - s32max - 1;
104 }
105
Decode64(const char * cp)106 std::int_fast64_t Decode64(const char* cp) {
107 std::uint_fast64_t v = 0;
108 for (int i = 0; i != (64 / 8); ++i) v = (v << 8) | Decode8(cp++);
109 const std::int_fast64_t s64max = 0x7fffffffffffffff;
110 const auto s64maxU = static_cast<std::uint_fast64_t>(s64max);
111 if (v <= s64maxU) return static_cast<std::int_fast64_t>(v);
112 return static_cast<std::int_fast64_t>(v - s64maxU - 1) - s64max - 1;
113 }
114
115 // Generate a year-relative offset for a PosixTransition.
TransOffset(bool leap_year,int jan1_weekday,const PosixTransition & pt)116 std::int_fast64_t TransOffset(bool leap_year, int jan1_weekday,
117 const PosixTransition& pt) {
118 std::int_fast64_t days = 0;
119 switch (pt.date.fmt) {
120 case PosixTransition::J: {
121 days = pt.date.j.day;
122 if (!leap_year || days < kMonthOffsets[1][3]) days -= 1;
123 break;
124 }
125 case PosixTransition::N: {
126 days = pt.date.n.day;
127 break;
128 }
129 case PosixTransition::M: {
130 const bool last_week = (pt.date.m.week == 5);
131 days = kMonthOffsets[leap_year][pt.date.m.month + last_week];
132 const std::int_fast64_t weekday = (jan1_weekday + days) % 7;
133 if (last_week) {
134 days -= (weekday + 7 - 1 - pt.date.m.weekday) % 7 + 1;
135 } else {
136 days += (pt.date.m.weekday + 7 - weekday) % 7;
137 days += (pt.date.m.week - 1) * 7;
138 }
139 break;
140 }
141 }
142 return (days * kSecsPerDay) + pt.time.offset;
143 }
144
MakeUnique(const time_point<seconds> & tp)145 inline time_zone::civil_lookup MakeUnique(const time_point<seconds>& tp) {
146 time_zone::civil_lookup cl;
147 cl.kind = time_zone::civil_lookup::UNIQUE;
148 cl.pre = cl.trans = cl.post = tp;
149 return cl;
150 }
151
MakeUnique(std::int_fast64_t unix_time)152 inline time_zone::civil_lookup MakeUnique(std::int_fast64_t unix_time) {
153 return MakeUnique(FromUnixSeconds(unix_time));
154 }
155
MakeSkipped(const Transition & tr,const civil_second & cs)156 inline time_zone::civil_lookup MakeSkipped(const Transition& tr,
157 const civil_second& cs) {
158 time_zone::civil_lookup cl;
159 cl.kind = time_zone::civil_lookup::SKIPPED;
160 cl.pre = FromUnixSeconds(tr.unix_time - 1 + (cs - tr.prev_civil_sec));
161 cl.trans = FromUnixSeconds(tr.unix_time);
162 cl.post = FromUnixSeconds(tr.unix_time - (tr.civil_sec - cs));
163 return cl;
164 }
165
MakeRepeated(const Transition & tr,const civil_second & cs)166 inline time_zone::civil_lookup MakeRepeated(const Transition& tr,
167 const civil_second& cs) {
168 time_zone::civil_lookup cl;
169 cl.kind = time_zone::civil_lookup::REPEATED;
170 cl.pre = FromUnixSeconds(tr.unix_time - 1 - (tr.prev_civil_sec - cs));
171 cl.trans = FromUnixSeconds(tr.unix_time);
172 cl.post = FromUnixSeconds(tr.unix_time + (cs - tr.civil_sec));
173 return cl;
174 }
175
YearShift(const civil_second & cs,year_t shift)176 inline civil_second YearShift(const civil_second& cs, year_t shift) {
177 return civil_second(cs.year() + shift, cs.month(), cs.day(), cs.hour(),
178 cs.minute(), cs.second());
179 }
180
181 } // namespace
182
183 // What (no leap-seconds) UTC+seconds zoneinfo would look like.
ResetToBuiltinUTC(const seconds & offset)184 bool TimeZoneInfo::ResetToBuiltinUTC(const seconds& offset) {
185 transition_types_.resize(1);
186 TransitionType& tt(transition_types_.back());
187 tt.utc_offset = static_cast<std::int_least32_t>(offset.count());
188 tt.is_dst = false;
189 tt.abbr_index = 0;
190
191 // We temporarily add some redundant, contemporary (2013 through 2023)
192 // transitions for performance reasons. See TimeZoneInfo::LocalTime().
193 // TODO: Fix the performance issue and remove the extra transitions.
194 transitions_.clear();
195 transitions_.reserve(12);
196 for (const std::int_fast64_t unix_time : {
197 -(1LL << 59), // BIG_BANG
198 1356998400LL, // 2013-01-01T00:00:00+00:00
199 1388534400LL, // 2014-01-01T00:00:00+00:00
200 1420070400LL, // 2015-01-01T00:00:00+00:00
201 1451606400LL, // 2016-01-01T00:00:00+00:00
202 1483228800LL, // 2017-01-01T00:00:00+00:00
203 1514764800LL, // 2018-01-01T00:00:00+00:00
204 1546300800LL, // 2019-01-01T00:00:00+00:00
205 1577836800LL, // 2020-01-01T00:00:00+00:00
206 1609459200LL, // 2021-01-01T00:00:00+00:00
207 1640995200LL, // 2022-01-01T00:00:00+00:00
208 1672531200LL, // 2023-01-01T00:00:00+00:00
209 2147483647LL, // 2^31 - 1
210 }) {
211 Transition& tr(*transitions_.emplace(transitions_.end()));
212 tr.unix_time = unix_time;
213 tr.type_index = 0;
214 tr.civil_sec = LocalTime(tr.unix_time, tt).cs;
215 tr.prev_civil_sec = tr.civil_sec - 1;
216 }
217
218 default_transition_type_ = 0;
219 abbreviations_ = FixedOffsetToAbbr(offset);
220 abbreviations_.append(1, '\0'); // add NUL
221 future_spec_.clear(); // never needed for a fixed-offset zone
222 extended_ = false;
223
224 tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
225 tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
226
227 transitions_.shrink_to_fit();
228 return true;
229 }
230
231 // Builds the in-memory header using the raw bytes from the file.
Build(const tzhead & tzh)232 bool TimeZoneInfo::Header::Build(const tzhead& tzh) {
233 std::int_fast32_t v;
234 if ((v = Decode32(tzh.tzh_timecnt)) < 0) return false;
235 timecnt = static_cast<std::size_t>(v);
236 if ((v = Decode32(tzh.tzh_typecnt)) < 0) return false;
237 typecnt = static_cast<std::size_t>(v);
238 if ((v = Decode32(tzh.tzh_charcnt)) < 0) return false;
239 charcnt = static_cast<std::size_t>(v);
240 if ((v = Decode32(tzh.tzh_leapcnt)) < 0) return false;
241 leapcnt = static_cast<std::size_t>(v);
242 if ((v = Decode32(tzh.tzh_ttisstdcnt)) < 0) return false;
243 ttisstdcnt = static_cast<std::size_t>(v);
244 if ((v = Decode32(tzh.tzh_ttisutcnt)) < 0) return false;
245 ttisutcnt = static_cast<std::size_t>(v);
246 return true;
247 }
248
249 // How many bytes of data are associated with this header. The result
250 // depends upon whether this is a section with 4-byte or 8-byte times.
DataLength(std::size_t time_len) const251 std::size_t TimeZoneInfo::Header::DataLength(std::size_t time_len) const {
252 std::size_t len = 0;
253 len += (time_len + 1) * timecnt; // unix_time + type_index
254 len += (4 + 1 + 1) * typecnt; // utc_offset + is_dst + abbr_index
255 len += 1 * charcnt; // abbreviations
256 len += (time_len + 4) * leapcnt; // leap-time + TAI-UTC
257 len += 1 * ttisstdcnt; // UTC/local indicators
258 len += 1 * ttisutcnt; // standard/wall indicators
259 return len;
260 }
261
262 // Check that the TransitionType has the expected offset/is_dst/abbreviation.
CheckTransition(const std::string & name,const TransitionType & tt,std::int_fast32_t offset,bool is_dst,const std::string & abbr) const263 void TimeZoneInfo::CheckTransition(const std::string& name,
264 const TransitionType& tt,
265 std::int_fast32_t offset, bool is_dst,
266 const std::string& abbr) const {
267 if (tt.utc_offset != offset || tt.is_dst != is_dst ||
268 &abbreviations_[tt.abbr_index] != abbr) {
269 std::clog << name << ": Transition"
270 << " offset=" << tt.utc_offset << "/"
271 << (tt.is_dst ? "DST" : "STD")
272 << "/abbr=" << &abbreviations_[tt.abbr_index]
273 << " does not match POSIX spec '" << future_spec_ << "'\n";
274 }
275 }
276
277 // zic(8) can generate no-op transitions when a zone changes rules at an
278 // instant when there is actually no discontinuity. So we check whether
279 // two transitions have equivalent types (same offset/is_dst/abbr).
EquivTransitions(std::uint_fast8_t tt1_index,std::uint_fast8_t tt2_index) const280 bool TimeZoneInfo::EquivTransitions(std::uint_fast8_t tt1_index,
281 std::uint_fast8_t tt2_index) const {
282 if (tt1_index == tt2_index) return true;
283 const TransitionType& tt1(transition_types_[tt1_index]);
284 const TransitionType& tt2(transition_types_[tt2_index]);
285 if (tt1.is_dst != tt2.is_dst) return false;
286 if (tt1.utc_offset != tt2.utc_offset) return false;
287 if (tt1.abbr_index != tt2.abbr_index) return false;
288 return true;
289 }
290
291 // Use the POSIX-TZ-environment-variable-style string to handle times
292 // in years after the last transition stored in the zoneinfo data.
ExtendTransitions(const std::string & name,const Header & hdr)293 void TimeZoneInfo::ExtendTransitions(const std::string& name,
294 const Header& hdr) {
295 extended_ = false;
296 bool extending = !future_spec_.empty();
297
298 PosixTimeZone posix;
299 if (extending && !ParsePosixSpec(future_spec_, &posix)) {
300 std::clog << name << ": Failed to parse '" << future_spec_ << "'\n";
301 extending = false;
302 }
303
304 if (extending && posix.dst_abbr.empty()) { // std only
305 // The future specification should match the last/default transition,
306 // and that means that handling the future will fall out naturally.
307 std::uint_fast8_t index = default_transition_type_;
308 if (hdr.timecnt != 0) index = transitions_[hdr.timecnt - 1].type_index;
309 const TransitionType& tt(transition_types_[index]);
310 CheckTransition(name, tt, posix.std_offset, false, posix.std_abbr);
311 extending = false;
312 }
313
314 if (extending && hdr.timecnt < 2) {
315 std::clog << name << ": Too few transitions for POSIX spec\n";
316 extending = false;
317 }
318
319 if (!extending) {
320 // Ensure that there is always a transition in the second half of the
321 // time line (the BIG_BANG transition is in the first half) so that the
322 // signed difference between a civil_second and the civil_second of its
323 // previous transition is always representable, without overflow.
324 const Transition& last(transitions_.back());
325 if (last.unix_time < 0) {
326 const std::uint_fast8_t type_index = last.type_index;
327 Transition& tr(*transitions_.emplace(transitions_.end()));
328 tr.unix_time = 2147483647; // 2038-01-19T03:14:07+00:00
329 tr.type_index = type_index;
330 }
331 return; // last transition wins
332 }
333
334 // Extend the transitions for an additional 400 years using the
335 // future specification. Years beyond those can be handled by
336 // mapping back to a cycle-equivalent year within that range.
337 // zic(8) should probably do this so that we don't have to.
338 // TODO: Reduce the extension by the number of compatible
339 // transitions already in place.
340 transitions_.reserve(hdr.timecnt + 400 * 2 + 1);
341 transitions_.resize(hdr.timecnt + 400 * 2);
342 extended_ = true;
343
344 // The future specification should match the last two transitions,
345 // and those transitions should have different is_dst flags. Note
346 // that nothing says the UTC offset used by the is_dst transition
347 // must be greater than that used by the !is_dst transition. (See
348 // Europe/Dublin, for example.)
349 const Transition* tr0 = &transitions_[hdr.timecnt - 1];
350 const Transition* tr1 = &transitions_[hdr.timecnt - 2];
351 const TransitionType* tt0 = &transition_types_[tr0->type_index];
352 const TransitionType* tt1 = &transition_types_[tr1->type_index];
353 const TransitionType& dst(tt0->is_dst ? *tt0 : *tt1);
354 const TransitionType& std(tt0->is_dst ? *tt1 : *tt0);
355 CheckTransition(name, dst, posix.dst_offset, true, posix.dst_abbr);
356 CheckTransition(name, std, posix.std_offset, false, posix.std_abbr);
357
358 // Add the transitions to tr1 and back to tr0 for each extra year.
359 last_year_ = LocalTime(tr0->unix_time, *tt0).cs.year();
360 bool leap_year = IsLeap(last_year_);
361 const civil_day jan1(last_year_, 1, 1);
362 std::int_fast64_t jan1_time = civil_second(jan1) - civil_second();
363 int jan1_weekday = (static_cast<int>(get_weekday(jan1)) + 1) % 7;
364 Transition* tr = &transitions_[hdr.timecnt]; // next trans to fill
365 if (LocalTime(tr1->unix_time, *tt1).cs.year() != last_year_) {
366 // Add a single extra transition to align to a calendar year.
367 transitions_.resize(transitions_.size() + 1);
368 assert(tr == &transitions_[hdr.timecnt]); // no reallocation
369 const PosixTransition& pt1(tt0->is_dst ? posix.dst_end : posix.dst_start);
370 std::int_fast64_t tr1_offset = TransOffset(leap_year, jan1_weekday, pt1);
371 tr->unix_time = jan1_time + tr1_offset - tt0->utc_offset;
372 tr++->type_index = tr1->type_index;
373 tr0 = &transitions_[hdr.timecnt];
374 tr1 = &transitions_[hdr.timecnt - 1];
375 tt0 = &transition_types_[tr0->type_index];
376 tt1 = &transition_types_[tr1->type_index];
377 }
378 const PosixTransition& pt1(tt0->is_dst ? posix.dst_end : posix.dst_start);
379 const PosixTransition& pt0(tt0->is_dst ? posix.dst_start : posix.dst_end);
380 for (const year_t limit = last_year_ + 400; last_year_ < limit;) {
381 last_year_ += 1; // an additional year of generated transitions
382 jan1_time += kSecsPerYear[leap_year];
383 jan1_weekday = (jan1_weekday + kDaysPerYear[leap_year]) % 7;
384 leap_year = !leap_year && IsLeap(last_year_);
385 std::int_fast64_t tr1_offset = TransOffset(leap_year, jan1_weekday, pt1);
386 tr->unix_time = jan1_time + tr1_offset - tt0->utc_offset;
387 tr++->type_index = tr1->type_index;
388 std::int_fast64_t tr0_offset = TransOffset(leap_year, jan1_weekday, pt0);
389 tr->unix_time = jan1_time + tr0_offset - tt1->utc_offset;
390 tr++->type_index = tr0->type_index;
391 }
392 assert(tr == &transitions_[0] + transitions_.size());
393 }
394
Load(const std::string & name,ZoneInfoSource * zip)395 bool TimeZoneInfo::Load(const std::string& name, ZoneInfoSource* zip) {
396 // Read and validate the header.
397 tzhead tzh;
398 if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) return false;
399 if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0)
400 return false;
401 Header hdr;
402 if (!hdr.Build(tzh)) return false;
403 std::size_t time_len = 4;
404 if (tzh.tzh_version[0] != '\0') {
405 // Skip the 4-byte data.
406 if (zip->Skip(hdr.DataLength(time_len)) != 0) return false;
407 // Read and validate the header for the 8-byte data.
408 if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) return false;
409 if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0)
410 return false;
411 if (tzh.tzh_version[0] == '\0') return false;
412 if (!hdr.Build(tzh)) return false;
413 time_len = 8;
414 }
415 if (hdr.typecnt == 0) return false;
416 if (hdr.leapcnt != 0) {
417 // This code assumes 60-second minutes so we do not want
418 // the leap-second encoded zoneinfo. We could reverse the
419 // compensation, but the "right" encoding is rarely used
420 // so currently we simply reject such data.
421 return false;
422 }
423 if (hdr.ttisstdcnt != 0 && hdr.ttisstdcnt != hdr.typecnt) return false;
424 if (hdr.ttisutcnt != 0 && hdr.ttisutcnt != hdr.typecnt) return false;
425
426 // Read the data into a local buffer.
427 std::size_t len = hdr.DataLength(time_len);
428 std::vector<char> tbuf(len);
429 if (zip->Read(tbuf.data(), len) != len) return false;
430 const char* bp = tbuf.data();
431
432 // Decode and validate the transitions.
433 transitions_.reserve(hdr.timecnt + 2); // We might add a couple.
434 transitions_.resize(hdr.timecnt);
435 for (std::size_t i = 0; i != hdr.timecnt; ++i) {
436 transitions_[i].unix_time = (time_len == 4) ? Decode32(bp) : Decode64(bp);
437 bp += time_len;
438 if (i != 0) {
439 // Check that the transitions are ordered by time (as zic guarantees).
440 if (!Transition::ByUnixTime()(transitions_[i - 1], transitions_[i]))
441 return false; // out of order
442 }
443 }
444 bool seen_type_0 = false;
445 for (std::size_t i = 0; i != hdr.timecnt; ++i) {
446 transitions_[i].type_index = Decode8(bp++);
447 if (transitions_[i].type_index >= hdr.typecnt) return false;
448 if (transitions_[i].type_index == 0) seen_type_0 = true;
449 }
450
451 // Decode and validate the transition types.
452 transition_types_.resize(hdr.typecnt);
453 for (std::size_t i = 0; i != hdr.typecnt; ++i) {
454 transition_types_[i].utc_offset =
455 static_cast<std::int_least32_t>(Decode32(bp));
456 if (transition_types_[i].utc_offset >= kSecsPerDay ||
457 transition_types_[i].utc_offset <= -kSecsPerDay)
458 return false;
459 bp += 4;
460 transition_types_[i].is_dst = (Decode8(bp++) != 0);
461 transition_types_[i].abbr_index = Decode8(bp++);
462 if (transition_types_[i].abbr_index >= hdr.charcnt) return false;
463 }
464
465 // Determine the before-first-transition type.
466 default_transition_type_ = 0;
467 if (seen_type_0 && hdr.timecnt != 0) {
468 std::uint_fast8_t index = 0;
469 if (transition_types_[0].is_dst) {
470 index = transitions_[0].type_index;
471 while (index != 0 && transition_types_[index].is_dst) --index;
472 }
473 while (index != hdr.typecnt && transition_types_[index].is_dst) ++index;
474 if (index != hdr.typecnt) default_transition_type_ = index;
475 }
476
477 // Copy all the abbreviations.
478 abbreviations_.assign(bp, hdr.charcnt);
479 bp += hdr.charcnt;
480
481 // Skip the unused portions. We've already dispensed with leap-second
482 // encoded zoneinfo. The ttisstd/ttisgmt indicators only apply when
483 // interpreting a POSIX spec that does not include start/end rules, and
484 // that isn't the case here (see "zic -p").
485 bp += (8 + 4) * hdr.leapcnt; // leap-time + TAI-UTC
486 bp += 1 * hdr.ttisstdcnt; // UTC/local indicators
487 bp += 1 * hdr.ttisutcnt; // standard/wall indicators
488 assert(bp == tbuf.data() + tbuf.size());
489
490 future_spec_.clear();
491 if (tzh.tzh_version[0] != '\0') {
492 // Snarf up the NL-enclosed future POSIX spec. Note
493 // that version '3' files utilize an extended format.
494 auto get_char = [](ZoneInfoSource* azip) -> int {
495 unsigned char ch; // all non-EOF results are positive
496 return (azip->Read(&ch, 1) == 1) ? ch : EOF;
497 };
498 if (get_char(zip) != '\n') return false;
499 for (int c = get_char(zip); c != '\n'; c = get_char(zip)) {
500 if (c == EOF) return false;
501 future_spec_.push_back(static_cast<char>(c));
502 }
503 }
504
505 // We don't check for EOF so that we're forwards compatible.
506
507 // If we did not find version information during the standard loading
508 // process (as of tzh_version '3' that is unsupported), then ask the
509 // ZoneInfoSource for any out-of-bound version std::string it may be privy to.
510 if (version_.empty()) {
511 version_ = zip->Version();
512 }
513
514 // Trim redundant transitions. zic may have added these to work around
515 // differences between the glibc and reference implementations (see
516 // zic.c:dontmerge) and the Qt library (see zic.c:WORK_AROUND_QTBUG_53071).
517 // For us, they just get in the way when we do future_spec_ extension.
518 while (hdr.timecnt > 1) {
519 if (!EquivTransitions(transitions_[hdr.timecnt - 1].type_index,
520 transitions_[hdr.timecnt - 2].type_index)) {
521 break;
522 }
523 hdr.timecnt -= 1;
524 }
525 transitions_.resize(hdr.timecnt);
526
527 // Ensure that there is always a transition in the first half of the
528 // time line (the second half is handled in ExtendTransitions()) so that
529 // the signed difference between a civil_second and the civil_second of
530 // its previous transition is always representable, without overflow.
531 // A contemporary zic will usually have already done this for us.
532 if (transitions_.empty() || transitions_.front().unix_time >= 0) {
533 Transition& tr(*transitions_.emplace(transitions_.begin()));
534 tr.unix_time = -(1LL << 59); // see tz/zic.c "BIG_BANG"
535 tr.type_index = default_transition_type_;
536 hdr.timecnt += 1;
537 }
538
539 // Extend the transitions using the future specification.
540 ExtendTransitions(name, hdr);
541
542 // Compute the local civil time for each transition and the preceding
543 // second. These will be used for reverse conversions in MakeTime().
544 const TransitionType* ttp = &transition_types_[default_transition_type_];
545 for (std::size_t i = 0; i != transitions_.size(); ++i) {
546 Transition& tr(transitions_[i]);
547 tr.prev_civil_sec = LocalTime(tr.unix_time, *ttp).cs - 1;
548 ttp = &transition_types_[tr.type_index];
549 tr.civil_sec = LocalTime(tr.unix_time, *ttp).cs;
550 if (i != 0) {
551 // Check that the transitions are ordered by civil time. Essentially
552 // this means that an offset change cannot cross another such change.
553 // No one does this in practice, and we depend on it in MakeTime().
554 if (!Transition::ByCivilTime()(transitions_[i - 1], tr))
555 return false; // out of order
556 }
557 }
558
559 // Compute the maximum/minimum civil times that can be converted to a
560 // time_point<seconds> for each of the zone's transition types.
561 for (auto& tt : transition_types_) {
562 tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
563 tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
564 }
565
566 transitions_.shrink_to_fit();
567 return true;
568 }
569
570 namespace {
571
572 // fopen(3) adaptor.
FOpen(const char * path,const char * mode)573 inline FILE* FOpen(const char* path, const char* mode) {
574 #if defined(_MSC_VER)
575 FILE* fp;
576 if (fopen_s(&fp, path, mode) != 0) fp = nullptr;
577 return fp;
578 #else
579 return fopen(path, mode); // TODO: Enable the close-on-exec flag.
580 #endif
581 }
582
583 // A stdio(3)-backed implementation of ZoneInfoSource.
584 class FileZoneInfoSource : public ZoneInfoSource {
585 public:
586 static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
587
Read(void * ptr,std::size_t size)588 std::size_t Read(void* ptr, std::size_t size) override {
589 size = std::min(size, len_);
590 std::size_t nread = fread(ptr, 1, size, fp_.get());
591 len_ -= nread;
592 return nread;
593 }
Skip(std::size_t offset)594 int Skip(std::size_t offset) override {
595 offset = std::min(offset, len_);
596 int rc = fseek(fp_.get(), static_cast<long>(offset), SEEK_CUR);
597 if (rc == 0) len_ -= offset;
598 return rc;
599 }
Version() const600 std::string Version() const override {
601 // TODO: It would nice if the zoneinfo data included the tzdb version.
602 return std::string();
603 }
604
605 protected:
FileZoneInfoSource(FILE * fp,std::size_t len=std::numeric_limits<std::size_t>::max ())606 explicit FileZoneInfoSource(
607 FILE* fp, std::size_t len = std::numeric_limits<std::size_t>::max())
608 : fp_(fp, fclose), len_(len) {}
609
610 private:
611 std::unique_ptr<FILE, int (*)(FILE*)> fp_;
612 std::size_t len_;
613 };
614
Open(const std::string & name)615 std::unique_ptr<ZoneInfoSource> FileZoneInfoSource::Open(
616 const std::string& name) {
617 // Use of the "file:" prefix is intended for testing purposes only.
618 const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0;
619
620 // Map the time-zone name to a path name.
621 std::string path;
622 if (pos == name.size() || name[pos] != '/') {
623 const char* tzdir = "/usr/share/zoneinfo";
624 char* tzdir_env = nullptr;
625 #if defined(_MSC_VER)
626 _dupenv_s(&tzdir_env, nullptr, "TZDIR");
627 #else
628 tzdir_env = std::getenv("TZDIR");
629 #endif
630 if (tzdir_env && *tzdir_env) tzdir = tzdir_env;
631 path += tzdir;
632 path += '/';
633 #if defined(_MSC_VER)
634 free(tzdir_env);
635 #endif
636 }
637 path.append(name, pos, std::string::npos);
638
639 // Open the zoneinfo file.
640 FILE* fp = FOpen(path.c_str(), "rb");
641 if (fp == nullptr) return nullptr;
642 std::size_t length = 0;
643 if (fseek(fp, 0, SEEK_END) == 0) {
644 long offset = ftell(fp);
645 if (offset >= 0) {
646 length = static_cast<std::size_t>(offset);
647 }
648 rewind(fp);
649 }
650 return std::unique_ptr<ZoneInfoSource>(new FileZoneInfoSource(fp, length));
651 }
652
653 class AndroidZoneInfoSource : public FileZoneInfoSource {
654 public:
655 static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
Version() const656 std::string Version() const override { return version_; }
657
658 private:
AndroidZoneInfoSource(FILE * fp,std::size_t len,const char * vers)659 explicit AndroidZoneInfoSource(FILE* fp, std::size_t len, const char* vers)
660 : FileZoneInfoSource(fp, len), version_(vers) {}
661 std::string version_;
662 };
663
Open(const std::string & name)664 std::unique_ptr<ZoneInfoSource> AndroidZoneInfoSource::Open(
665 const std::string& name) {
666 // Use of the "file:" prefix is intended for testing purposes only.
667 const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0;
668
669 // See Android's libc/tzcode/bionic.cpp for additional information.
670 for (const char* tzdata : {"/data/misc/zoneinfo/current/tzdata",
671 "/system/usr/share/zoneinfo/tzdata"}) {
672 std::unique_ptr<FILE, int (*)(FILE*)> fp(FOpen(tzdata, "rb"), fclose);
673 if (fp.get() == nullptr) continue;
674
675 char hbuf[24]; // covers header.zonetab_offset too
676 if (fread(hbuf, 1, sizeof(hbuf), fp.get()) != sizeof(hbuf)) continue;
677 if (strncmp(hbuf, "tzdata", 6) != 0) continue;
678 const char* vers = (hbuf[11] == '\0') ? hbuf + 6 : "";
679 const std::int_fast32_t index_offset = Decode32(hbuf + 12);
680 const std::int_fast32_t data_offset = Decode32(hbuf + 16);
681 if (index_offset < 0 || data_offset < index_offset) continue;
682 if (fseek(fp.get(), static_cast<long>(index_offset), SEEK_SET) != 0)
683 continue;
684
685 char ebuf[52]; // covers entry.unused too
686 const std::size_t index_size =
687 static_cast<std::size_t>(data_offset - index_offset);
688 const std::size_t zonecnt = index_size / sizeof(ebuf);
689 if (zonecnt * sizeof(ebuf) != index_size) continue;
690 for (std::size_t i = 0; i != zonecnt; ++i) {
691 if (fread(ebuf, 1, sizeof(ebuf), fp.get()) != sizeof(ebuf)) break;
692 const std::int_fast32_t start = data_offset + Decode32(ebuf + 40);
693 const std::int_fast32_t length = Decode32(ebuf + 44);
694 if (start < 0 || length < 0) break;
695 ebuf[40] = '\0'; // ensure zone name is NUL terminated
696 if (strcmp(name.c_str() + pos, ebuf) == 0) {
697 if (fseek(fp.get(), static_cast<long>(start), SEEK_SET) != 0) break;
698 return std::unique_ptr<ZoneInfoSource>(new AndroidZoneInfoSource(
699 fp.release(), static_cast<std::size_t>(length), vers));
700 }
701 }
702 }
703
704 return nullptr;
705 }
706
707 } // namespace
708
Load(const std::string & name)709 bool TimeZoneInfo::Load(const std::string& name) {
710 // We can ensure that the loading of UTC or any other fixed-offset
711 // zone never fails because the simple, fixed-offset state can be
712 // internally generated. Note that this depends on our choice to not
713 // accept leap-second encoded ("right") zoneinfo.
714 auto offset = seconds::zero();
715 if (FixedOffsetFromName(name, &offset)) {
716 return ResetToBuiltinUTC(offset);
717 }
718
719 // Find and use a ZoneInfoSource to load the named zone.
720 auto zip = cctz_extension::zone_info_source_factory(
721 name, [](const std::string& name) -> std::unique_ptr<ZoneInfoSource> {
722 if (auto zip = FileZoneInfoSource::Open(name)) return zip;
723 if (auto zip = AndroidZoneInfoSource::Open(name)) return zip;
724 return nullptr;
725 });
726 return zip != nullptr && Load(name, zip.get());
727 }
728
729 // BreakTime() translation for a particular transition type.
LocalTime(std::int_fast64_t unix_time,const TransitionType & tt) const730 time_zone::absolute_lookup TimeZoneInfo::LocalTime(
731 std::int_fast64_t unix_time, const TransitionType& tt) const {
732 // A civil time in "+offset" looks like (time+offset) in UTC.
733 // Note: We perform two additions in the civil_second domain to
734 // sidestep the chance of overflow in (unix_time + tt.utc_offset).
735 return {(civil_second() + unix_time) + tt.utc_offset, tt.utc_offset,
736 tt.is_dst, &abbreviations_[tt.abbr_index]};
737 }
738
739 // BreakTime() translation for a particular transition.
LocalTime(std::int_fast64_t unix_time,const Transition & tr) const740 time_zone::absolute_lookup TimeZoneInfo::LocalTime(std::int_fast64_t unix_time,
741 const Transition& tr) const {
742 const TransitionType& tt = transition_types_[tr.type_index];
743 // Note: (unix_time - tr.unix_time) will never overflow as we
744 // have ensured that there is always a "nearby" transition.
745 return {tr.civil_sec + (unix_time - tr.unix_time), // TODO: Optimize.
746 tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]};
747 }
748
749 // MakeTime() translation with a conversion-preserving +N * 400-year shift.
TimeLocal(const civil_second & cs,year_t c4_shift) const750 time_zone::civil_lookup TimeZoneInfo::TimeLocal(const civil_second& cs,
751 year_t c4_shift) const {
752 assert(last_year_ - 400 < cs.year() && cs.year() <= last_year_);
753 time_zone::civil_lookup cl = MakeTime(cs);
754 if (c4_shift > seconds::max().count() / kSecsPer400Years) {
755 cl.pre = cl.trans = cl.post = time_point<seconds>::max();
756 } else {
757 const auto offset = seconds(c4_shift * kSecsPer400Years);
758 const auto limit = time_point<seconds>::max() - offset;
759 for (auto* tp : {&cl.pre, &cl.trans, &cl.post}) {
760 if (*tp > limit) {
761 *tp = time_point<seconds>::max();
762 } else {
763 *tp += offset;
764 }
765 }
766 }
767 return cl;
768 }
769
BreakTime(const time_point<seconds> & tp) const770 time_zone::absolute_lookup TimeZoneInfo::BreakTime(
771 const time_point<seconds>& tp) const {
772 std::int_fast64_t unix_time = ToUnixSeconds(tp);
773 const std::size_t timecnt = transitions_.size();
774 assert(timecnt != 0); // We always add a transition.
775
776 if (unix_time < transitions_[0].unix_time) {
777 return LocalTime(unix_time, transition_types_[default_transition_type_]);
778 }
779 if (unix_time >= transitions_[timecnt - 1].unix_time) {
780 // After the last transition. If we extended the transitions using
781 // future_spec_, shift back to a supported year using the 400-year
782 // cycle of calendaric equivalence and then compensate accordingly.
783 if (extended_) {
784 const std::int_fast64_t diff =
785 unix_time - transitions_[timecnt - 1].unix_time;
786 const year_t shift = diff / kSecsPer400Years + 1;
787 const auto d = seconds(shift * kSecsPer400Years);
788 time_zone::absolute_lookup al = BreakTime(tp - d);
789 al.cs = YearShift(al.cs, shift * 400);
790 return al;
791 }
792 return LocalTime(unix_time, transitions_[timecnt - 1]);
793 }
794
795 const std::size_t hint = local_time_hint_.load(std::memory_order_relaxed);
796 if (0 < hint && hint < timecnt) {
797 if (transitions_[hint - 1].unix_time <= unix_time) {
798 if (unix_time < transitions_[hint].unix_time) {
799 return LocalTime(unix_time, transitions_[hint - 1]);
800 }
801 }
802 }
803
804 const Transition target = {unix_time, 0, civil_second(), civil_second()};
805 const Transition* begin = &transitions_[0];
806 const Transition* tr = std::upper_bound(begin, begin + timecnt, target,
807 Transition::ByUnixTime());
808 local_time_hint_.store(static_cast<std::size_t>(tr - begin),
809 std::memory_order_relaxed);
810 return LocalTime(unix_time, *--tr);
811 }
812
MakeTime(const civil_second & cs) const813 time_zone::civil_lookup TimeZoneInfo::MakeTime(const civil_second& cs) const {
814 const std::size_t timecnt = transitions_.size();
815 assert(timecnt != 0); // We always add a transition.
816
817 // Find the first transition after our target civil time.
818 const Transition* tr = nullptr;
819 const Transition* begin = &transitions_[0];
820 const Transition* end = begin + timecnt;
821 if (cs < begin->civil_sec) {
822 tr = begin;
823 } else if (cs >= transitions_[timecnt - 1].civil_sec) {
824 tr = end;
825 } else {
826 const std::size_t hint = time_local_hint_.load(std::memory_order_relaxed);
827 if (0 < hint && hint < timecnt) {
828 if (transitions_[hint - 1].civil_sec <= cs) {
829 if (cs < transitions_[hint].civil_sec) {
830 tr = begin + hint;
831 }
832 }
833 }
834 if (tr == nullptr) {
835 const Transition target = {0, 0, cs, civil_second()};
836 tr = std::upper_bound(begin, end, target, Transition::ByCivilTime());
837 time_local_hint_.store(static_cast<std::size_t>(tr - begin),
838 std::memory_order_relaxed);
839 }
840 }
841
842 if (tr == begin) {
843 if (tr->prev_civil_sec >= cs) {
844 // Before first transition, so use the default offset.
845 const TransitionType& tt(transition_types_[default_transition_type_]);
846 if (cs < tt.civil_min) return MakeUnique(time_point<seconds>::min());
847 return MakeUnique(cs - (civil_second() + tt.utc_offset));
848 }
849 // tr->prev_civil_sec < cs < tr->civil_sec
850 return MakeSkipped(*tr, cs);
851 }
852
853 if (tr == end) {
854 if (cs > (--tr)->prev_civil_sec) {
855 // After the last transition. If we extended the transitions using
856 // future_spec_, shift back to a supported year using the 400-year
857 // cycle of calendaric equivalence and then compensate accordingly.
858 if (extended_ && cs.year() > last_year_) {
859 const year_t shift = (cs.year() - last_year_ - 1) / 400 + 1;
860 return TimeLocal(YearShift(cs, shift * -400), shift);
861 }
862 const TransitionType& tt(transition_types_[tr->type_index]);
863 if (cs > tt.civil_max) return MakeUnique(time_point<seconds>::max());
864 return MakeUnique(tr->unix_time + (cs - tr->civil_sec));
865 }
866 // tr->civil_sec <= cs <= tr->prev_civil_sec
867 return MakeRepeated(*tr, cs);
868 }
869
870 if (tr->prev_civil_sec < cs) {
871 // tr->prev_civil_sec < cs < tr->civil_sec
872 return MakeSkipped(*tr, cs);
873 }
874
875 if (cs <= (--tr)->prev_civil_sec) {
876 // tr->civil_sec <= cs <= tr->prev_civil_sec
877 return MakeRepeated(*tr, cs);
878 }
879
880 // In between transitions.
881 return MakeUnique(tr->unix_time + (cs - tr->civil_sec));
882 }
883
Version() const884 std::string TimeZoneInfo::Version() const { return version_; }
885
Description() const886 std::string TimeZoneInfo::Description() const {
887 std::ostringstream oss;
888 oss << "#trans=" << transitions_.size();
889 oss << " #types=" << transition_types_.size();
890 oss << " spec='" << future_spec_ << "'";
891 return oss.str();
892 }
893
NextTransition(const time_point<seconds> & tp,time_zone::civil_transition * trans) const894 bool TimeZoneInfo::NextTransition(const time_point<seconds>& tp,
895 time_zone::civil_transition* trans) const {
896 if (transitions_.empty()) return false;
897 const Transition* begin = &transitions_[0];
898 const Transition* end = begin + transitions_.size();
899 if (begin->unix_time <= -(1LL << 59)) {
900 // Do not report the BIG_BANG found in recent zoneinfo data as it is
901 // really a sentinel, not a transition. See tz/zic.c.
902 ++begin;
903 }
904 std::int_fast64_t unix_time = ToUnixSeconds(tp);
905 const Transition target = {unix_time, 0, civil_second(), civil_second()};
906 const Transition* tr =
907 std::upper_bound(begin, end, target, Transition::ByUnixTime());
908 for (; tr != end; ++tr) { // skip no-op transitions
909 std::uint_fast8_t prev_type_index =
910 (tr == begin) ? default_transition_type_ : tr[-1].type_index;
911 if (!EquivTransitions(prev_type_index, tr[0].type_index)) break;
912 }
913 // When tr == end we return false, ignoring future_spec_.
914 if (tr == end) return false;
915 trans->from = tr->prev_civil_sec + 1;
916 trans->to = tr->civil_sec;
917 return true;
918 }
919
PrevTransition(const time_point<seconds> & tp,time_zone::civil_transition * trans) const920 bool TimeZoneInfo::PrevTransition(const time_point<seconds>& tp,
921 time_zone::civil_transition* trans) const {
922 if (transitions_.empty()) return false;
923 const Transition* begin = &transitions_[0];
924 const Transition* end = begin + transitions_.size();
925 if (begin->unix_time <= -(1LL << 59)) {
926 // Do not report the BIG_BANG found in recent zoneinfo data as it is
927 // really a sentinel, not a transition. See tz/zic.c.
928 ++begin;
929 }
930 std::int_fast64_t unix_time = ToUnixSeconds(tp);
931 if (FromUnixSeconds(unix_time) != tp) {
932 if (unix_time == std::numeric_limits<std::int_fast64_t>::max()) {
933 if (end == begin) return false; // Ignore future_spec_.
934 trans->from = (--end)->prev_civil_sec + 1;
935 trans->to = end->civil_sec;
936 return true;
937 }
938 unix_time += 1; // ceils
939 }
940 const Transition target = {unix_time, 0, civil_second(), civil_second()};
941 const Transition* tr =
942 std::lower_bound(begin, end, target, Transition::ByUnixTime());
943 for (; tr != begin; --tr) { // skip no-op transitions
944 std::uint_fast8_t prev_type_index =
945 (tr - 1 == begin) ? default_transition_type_ : tr[-2].type_index;
946 if (!EquivTransitions(prev_type_index, tr[-1].type_index)) break;
947 }
948 // When tr == end we return the "last" transition, ignoring future_spec_.
949 if (tr == begin) return false;
950 trans->from = (--tr)->prev_civil_sec + 1;
951 trans->to = tr->civil_sec;
952 return true;
953 }
954
955 } // namespace cctz
956 } // namespace time_internal
957 ABSL_NAMESPACE_END
958 } // namespace absl
959