1 //
2 // Copyright 2017 The Abseil Authors.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 // https://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 // -----------------------------------------------------------------------------
17 // span.h
18 // -----------------------------------------------------------------------------
19 //
20 // This header file defines a `Span<T>` type for holding a view of an existing
21 // array of data. The `Span` object, much like the `absl::string_view` object,
22 // does not own such data itself. A span provides a lightweight way to pass
23 // around view of such data.
24 //
25 // Additionally, this header file defines `MakeSpan()` and `MakeConstSpan()`
26 // factory functions, for clearly creating spans of type `Span<T>` or read-only
27 // `Span<const T>` when such types may be difficult to identify due to issues
28 // with implicit conversion.
29 //
30 // The C++ standards committee currently has a proposal for a `std::span` type,
31 // (http://wg21.link/p0122), which is not yet part of the standard (though may
32 // become part of C++20). As of August 2017, the differences between
33 // `absl::Span` and this proposal are:
34 // * `absl::Span` uses `size_t` for `size_type`
35 // * `absl::Span` has no `operator()`
36 // * `absl::Span` has no constructors for `std::unique_ptr` or
37 // `std::shared_ptr`
38 // * `absl::Span` has the factory functions `MakeSpan()` and
39 // `MakeConstSpan()`
40 // * `absl::Span` has `front()` and `back()` methods
41 // * bounds-checked access to `absl::Span` is accomplished with `at()`
42 // * `absl::Span` has compiler-provided move and copy constructors and
43 // assignment. This is due to them being specified as `constexpr`, but that
44 // implies const in C++11.
45 // * `absl::Span` has no `element_type` or `index_type` typedefs
46 // * A read-only `absl::Span<const T>` can be implicitly constructed from an
47 // initializer list.
48 // * `absl::Span` has no `bytes()`, `size_bytes()`, `as_bytes()`, or
49 // `as_mutable_bytes()` methods
50 // * `absl::Span` has no static extent template parameter, nor constructors
51 // which exist only because of the static extent parameter.
52 // * `absl::Span` has an explicit mutable-reference constructor
53 //
54 // For more information, see the class comments below.
55 #ifndef ABSL_TYPES_SPAN_H_
56 #define ABSL_TYPES_SPAN_H_
57
58 #include <algorithm>
59 #include <cassert>
60 #include <cstddef>
61 #include <initializer_list>
62 #include <iterator>
63 #include <type_traits>
64 #include <utility>
65
66 #include "absl/base/internal/throw_delegate.h"
67 #include "absl/base/macros.h"
68 #include "absl/base/optimization.h"
69 #include "absl/base/port.h" // TODO(strel): remove this include
70 #include "absl/meta/type_traits.h"
71 #include "absl/types/internal/span.h"
72
73 namespace absl {
74 ABSL_NAMESPACE_BEGIN
75
76 //------------------------------------------------------------------------------
77 // Span
78 //------------------------------------------------------------------------------
79 //
80 // A `Span` is an "array view" type for holding a view of a contiguous data
81 // array; the `Span` object does not and cannot own such data itself. A span
82 // provides an easy way to provide overloads for anything operating on
83 // contiguous sequences without needing to manage pointers and array lengths
84 // manually.
85
86 // A span is conceptually a pointer (ptr) and a length (size) into an already
87 // existing array of contiguous memory; the array it represents references the
88 // elements "ptr[0] .. ptr[size-1]". Passing a properly-constructed `Span`
89 // instead of raw pointers avoids many issues related to index out of bounds
90 // errors.
91 //
92 // Spans may also be constructed from containers holding contiguous sequences.
93 // Such containers must supply `data()` and `size() const` methods (e.g
94 // `std::vector<T>`, `absl::InlinedVector<T, N>`). All implicit conversions to
95 // `absl::Span` from such containers will create spans of type `const T`;
96 // spans which can mutate their values (of type `T`) must use explicit
97 // constructors.
98 //
99 // A `Span<T>` is somewhat analogous to an `absl::string_view`, but for an array
100 // of elements of type `T`. A user of `Span` must ensure that the data being
101 // pointed to outlives the `Span` itself.
102 //
103 // You can construct a `Span<T>` in several ways:
104 //
105 // * Explicitly from a reference to a container type
106 // * Explicitly from a pointer and size
107 // * Implicitly from a container type (but only for spans of type `const T`)
108 // * Using the `MakeSpan()` or `MakeConstSpan()` factory functions.
109 //
110 // Examples:
111 //
112 // // Construct a Span explicitly from a container:
113 // std::vector<int> v = {1, 2, 3, 4, 5};
114 // auto span = absl::Span<const int>(v);
115 //
116 // // Construct a Span explicitly from a C-style array:
117 // int a[5] = {1, 2, 3, 4, 5};
118 // auto span = absl::Span<const int>(a);
119 //
120 // // Construct a Span implicitly from a container
121 // void MyRoutine(absl::Span<const int> a) {
122 // ...
123 // }
124 // std::vector v = {1,2,3,4,5};
125 // MyRoutine(v) // convert to Span<const T>
126 //
127 // Note that `Span` objects, in addition to requiring that the memory they
128 // point to remains alive, must also ensure that such memory does not get
129 // reallocated. Therefore, to avoid undefined behavior, containers with
130 // associated span views should not invoke operations that may reallocate memory
131 // (such as resizing) or invalidate iterators into the container.
132 //
133 // One common use for a `Span` is when passing arguments to a routine that can
134 // accept a variety of array types (e.g. a `std::vector`, `absl::InlinedVector`,
135 // a C-style array, etc.). Instead of creating overloads for each case, you
136 // can simply specify a `Span` as the argument to such a routine.
137 //
138 // Example:
139 //
140 // void MyRoutine(absl::Span<const int> a) {
141 // ...
142 // }
143 //
144 // std::vector v = {1,2,3,4,5};
145 // MyRoutine(v);
146 //
147 // absl::InlinedVector<int, 4> my_inline_vector;
148 // MyRoutine(my_inline_vector);
149 //
150 // // Explicit constructor from pointer,size
151 // int* my_array = new int[10];
152 // MyRoutine(absl::Span<const int>(my_array, 10));
153 template <typename T>
154 class Span {
155 private:
156 // Used to determine whether a Span can be constructed from a container of
157 // type C.
158 template <typename C>
159 using EnableIfConvertibleFrom =
160 typename std::enable_if<span_internal::HasData<T, C>::value &&
161 span_internal::HasSize<C>::value>::type;
162
163 // Used to SFINAE-enable a function when the slice elements are const.
164 template <typename U>
165 using EnableIfConstView =
166 typename std::enable_if<std::is_const<T>::value, U>::type;
167
168 // Used to SFINAE-enable a function when the slice elements are mutable.
169 template <typename U>
170 using EnableIfMutableView =
171 typename std::enable_if<!std::is_const<T>::value, U>::type;
172
173 public:
174 using value_type = absl::remove_cv_t<T>;
175 using pointer = T*;
176 using const_pointer = const T*;
177 using reference = T&;
178 using const_reference = const T&;
179 using iterator = pointer;
180 using const_iterator = const_pointer;
181 using reverse_iterator = std::reverse_iterator<iterator>;
182 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
183 using size_type = size_t;
184 using difference_type = ptrdiff_t;
185
186 static const size_type npos = ~(size_type(0));
187
Span()188 constexpr Span() noexcept : Span(nullptr, 0) {}
Span(pointer array,size_type length)189 constexpr Span(pointer array, size_type length) noexcept
190 : ptr_(array), len_(length) {}
191
192 // Implicit conversion constructors
193 template <size_t N>
Span(T (& a)[N])194 constexpr Span(T (&a)[N]) noexcept // NOLINT(runtime/explicit)
195 : Span(a, N) {}
196
197 // Explicit reference constructor for a mutable `Span<T>` type. Can be
198 // replaced with MakeSpan() to infer the type parameter.
199 template <typename V, typename = EnableIfConvertibleFrom<V>,
200 typename = EnableIfMutableView<V>>
Span(V & v)201 explicit Span(V& v) noexcept // NOLINT(runtime/references)
202 : Span(span_internal::GetData(v), v.size()) {}
203
204 // Implicit reference constructor for a read-only `Span<const T>` type
205 template <typename V, typename = EnableIfConvertibleFrom<V>,
206 typename = EnableIfConstView<V>>
Span(const V & v)207 constexpr Span(const V& v) noexcept // NOLINT(runtime/explicit)
208 : Span(span_internal::GetData(v), v.size()) {}
209
210 // Implicit constructor from an initializer list, making it possible to pass a
211 // brace-enclosed initializer list to a function expecting a `Span`. Such
212 // spans constructed from an initializer list must be of type `Span<const T>`.
213 //
214 // void Process(absl::Span<const int> x);
215 // Process({1, 2, 3});
216 //
217 // Note that as always the array referenced by the span must outlive the span.
218 // Since an initializer list constructor acts as if it is fed a temporary
219 // array (cf. C++ standard [dcl.init.list]/5), it's safe to use this
220 // constructor only when the `std::initializer_list` itself outlives the span.
221 // In order to meet this requirement it's sufficient to ensure that neither
222 // the span nor a copy of it is used outside of the expression in which it's
223 // created:
224 //
225 // // Assume that this function uses the array directly, not retaining any
226 // // copy of the span or pointer to any of its elements.
227 // void Process(absl::Span<const int> ints);
228 //
229 // // Okay: the std::initializer_list<int> will reference a temporary array
230 // // that isn't destroyed until after the call to Process returns.
231 // Process({ 17, 19 });
232 //
233 // // Not okay: the storage used by the std::initializer_list<int> is not
234 // // allowed to be referenced after the first line.
235 // absl::Span<const int> ints = { 17, 19 };
236 // Process(ints);
237 //
238 // // Not okay for the same reason as above: even when the elements of the
239 // // initializer list expression are not temporaries the underlying array
240 // // is, so the initializer list must still outlive the span.
241 // const int foo = 17;
242 // absl::Span<const int> ints = { foo };
243 // Process(ints);
244 //
245 template <typename LazyT = T,
246 typename = EnableIfConstView<LazyT>>
Span(std::initializer_list<value_type> v)247 Span(
248 std::initializer_list<value_type> v) noexcept // NOLINT(runtime/explicit)
249 : Span(v.begin(), v.size()) {}
250
251 // Accessors
252
253 // Span::data()
254 //
255 // Returns a pointer to the span's underlying array of data (which is held
256 // outside the span).
data()257 constexpr pointer data() const noexcept { return ptr_; }
258
259 // Span::size()
260 //
261 // Returns the size of this span.
size()262 constexpr size_type size() const noexcept { return len_; }
263
264 // Span::length()
265 //
266 // Returns the length (size) of this span.
length()267 constexpr size_type length() const noexcept { return size(); }
268
269 // Span::empty()
270 //
271 // Returns a boolean indicating whether or not this span is considered empty.
empty()272 constexpr bool empty() const noexcept { return size() == 0; }
273
274 // Span::operator[]
275 //
276 // Returns a reference to the i'th element of this span.
277 constexpr reference operator[](size_type i) const noexcept {
278 // MSVC 2015 accepts this as constexpr, but not ptr_[i]
279 return *(data() + i);
280 }
281
282 // Span::at()
283 //
284 // Returns a reference to the i'th element of this span.
at(size_type i)285 constexpr reference at(size_type i) const {
286 return ABSL_PREDICT_TRUE(i < size()) //
287 ? *(data() + i)
288 : (base_internal::ThrowStdOutOfRange(
289 "Span::at failed bounds check"),
290 *(data() + i));
291 }
292
293 // Span::front()
294 //
295 // Returns a reference to the first element of this span.
front()296 constexpr reference front() const noexcept {
297 return ABSL_ASSERT(size() > 0), *data();
298 }
299
300 // Span::back()
301 //
302 // Returns a reference to the last element of this span.
back()303 constexpr reference back() const noexcept {
304 return ABSL_ASSERT(size() > 0), *(data() + size() - 1);
305 }
306
307 // Span::begin()
308 //
309 // Returns an iterator to the first element of this span.
begin()310 constexpr iterator begin() const noexcept { return data(); }
311
312 // Span::cbegin()
313 //
314 // Returns a const iterator to the first element of this span.
cbegin()315 constexpr const_iterator cbegin() const noexcept { return begin(); }
316
317 // Span::end()
318 //
319 // Returns an iterator to the last element of this span.
end()320 constexpr iterator end() const noexcept { return data() + size(); }
321
322 // Span::cend()
323 //
324 // Returns a const iterator to the last element of this span.
cend()325 constexpr const_iterator cend() const noexcept { return end(); }
326
327 // Span::rbegin()
328 //
329 // Returns a reverse iterator starting at the last element of this span.
rbegin()330 constexpr reverse_iterator rbegin() const noexcept {
331 return reverse_iterator(end());
332 }
333
334 // Span::crbegin()
335 //
336 // Returns a reverse const iterator starting at the last element of this span.
crbegin()337 constexpr const_reverse_iterator crbegin() const noexcept { return rbegin(); }
338
339 // Span::rend()
340 //
341 // Returns a reverse iterator starting at the first element of this span.
rend()342 constexpr reverse_iterator rend() const noexcept {
343 return reverse_iterator(begin());
344 }
345
346 // Span::crend()
347 //
348 // Returns a reverse iterator starting at the first element of this span.
crend()349 constexpr const_reverse_iterator crend() const noexcept { return rend(); }
350
351 // Span mutations
352
353 // Span::remove_prefix()
354 //
355 // Removes the first `n` elements from the span.
remove_prefix(size_type n)356 void remove_prefix(size_type n) noexcept {
357 assert(size() >= n);
358 ptr_ += n;
359 len_ -= n;
360 }
361
362 // Span::remove_suffix()
363 //
364 // Removes the last `n` elements from the span.
remove_suffix(size_type n)365 void remove_suffix(size_type n) noexcept {
366 assert(size() >= n);
367 len_ -= n;
368 }
369
370 // Span::subspan()
371 //
372 // Returns a `Span` starting at element `pos` and of length `len`. Both `pos`
373 // and `len` are of type `size_type` and thus non-negative. Parameter `pos`
374 // must be <= size(). Any `len` value that points past the end of the span
375 // will be trimmed to at most size() - `pos`. A default `len` value of `npos`
376 // ensures the returned subspan continues until the end of the span.
377 //
378 // Examples:
379 //
380 // std::vector<int> vec = {10, 11, 12, 13};
381 // absl::MakeSpan(vec).subspan(1, 2); // {11, 12}
382 // absl::MakeSpan(vec).subspan(2, 8); // {12, 13}
383 // absl::MakeSpan(vec).subspan(1); // {11, 12, 13}
384 // absl::MakeSpan(vec).subspan(4); // {}
385 // absl::MakeSpan(vec).subspan(5); // throws std::out_of_range
386 constexpr Span subspan(size_type pos = 0, size_type len = npos) const {
387 return (pos <= size())
388 ? Span(data() + pos, span_internal::Min(size() - pos, len))
389 : (base_internal::ThrowStdOutOfRange("pos > size()"), Span());
390 }
391
392 // Span::first()
393 //
394 // Returns a `Span` containing first `len` elements. Parameter `len` is of
395 // type `size_type` and thus non-negative. `len` value must be <= size().
396 //
397 // Examples:
398 //
399 // std::vector<int> vec = {10, 11, 12, 13};
400 // absl::MakeSpan(vec).first(1); // {10}
401 // absl::MakeSpan(vec).first(3); // {10, 11, 12}
402 // absl::MakeSpan(vec).first(5); // throws std::out_of_range
first(size_type len)403 constexpr Span first(size_type len) const {
404 return (len <= size())
405 ? Span(data(), len)
406 : (base_internal::ThrowStdOutOfRange("len > size()"), Span());
407 }
408
409 // Span::last()
410 //
411 // Returns a `Span` containing last `len` elements. Parameter `len` is of
412 // type `size_type` and thus non-negative. `len` value must be <= size().
413 //
414 // Examples:
415 //
416 // std::vector<int> vec = {10, 11, 12, 13};
417 // absl::MakeSpan(vec).last(1); // {13}
418 // absl::MakeSpan(vec).last(3); // {11, 12, 13}
419 // absl::MakeSpan(vec).last(5); // throws std::out_of_range
last(size_type len)420 constexpr Span last(size_type len) const {
421 return (len <= size())
422 ? Span(size() - len + data(), len)
423 : (base_internal::ThrowStdOutOfRange("len > size()"), Span());
424 }
425
426 // Support for absl::Hash.
427 template <typename H>
AbslHashValue(H h,Span v)428 friend H AbslHashValue(H h, Span v) {
429 return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()),
430 v.size());
431 }
432
433 private:
434 pointer ptr_;
435 size_type len_;
436 };
437
438 template <typename T>
439 const typename Span<T>::size_type Span<T>::npos;
440
441 // Span relationals
442
443 // Equality is compared element-by-element, while ordering is lexicographical.
444 // We provide three overloads for each operator to cover any combination on the
445 // left or right hand side of mutable Span<T>, read-only Span<const T>, and
446 // convertible-to-read-only Span<T>.
447 // TODO(zhangxy): Due to MSVC overload resolution bug with partial ordering
448 // template functions, 5 overloads per operator is needed as a workaround. We
449 // should update them to 3 overloads per operator using non-deduced context like
450 // string_view, i.e.
451 // - (Span<T>, Span<T>)
452 // - (Span<T>, non_deduced<Span<const T>>)
453 // - (non_deduced<Span<const T>>, Span<T>)
454
455 // operator==
456 template <typename T>
457 bool operator==(Span<T> a, Span<T> b) {
458 return span_internal::EqualImpl<Span, const T>(a, b);
459 }
460 template <typename T>
461 bool operator==(Span<const T> a, Span<T> b) {
462 return span_internal::EqualImpl<Span, const T>(a, b);
463 }
464 template <typename T>
465 bool operator==(Span<T> a, Span<const T> b) {
466 return span_internal::EqualImpl<Span, const T>(a, b);
467 }
468 template <
469 typename T, typename U,
470 typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
471 bool operator==(const U& a, Span<T> b) {
472 return span_internal::EqualImpl<Span, const T>(a, b);
473 }
474 template <
475 typename T, typename U,
476 typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
477 bool operator==(Span<T> a, const U& b) {
478 return span_internal::EqualImpl<Span, const T>(a, b);
479 }
480
481 // operator!=
482 template <typename T>
483 bool operator!=(Span<T> a, Span<T> b) {
484 return !(a == b);
485 }
486 template <typename T>
487 bool operator!=(Span<const T> a, Span<T> b) {
488 return !(a == b);
489 }
490 template <typename T>
491 bool operator!=(Span<T> a, Span<const T> b) {
492 return !(a == b);
493 }
494 template <
495 typename T, typename U,
496 typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
497 bool operator!=(const U& a, Span<T> b) {
498 return !(a == b);
499 }
500 template <
501 typename T, typename U,
502 typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
503 bool operator!=(Span<T> a, const U& b) {
504 return !(a == b);
505 }
506
507 // operator<
508 template <typename T>
509 bool operator<(Span<T> a, Span<T> b) {
510 return span_internal::LessThanImpl<Span, const T>(a, b);
511 }
512 template <typename T>
513 bool operator<(Span<const T> a, Span<T> b) {
514 return span_internal::LessThanImpl<Span, const T>(a, b);
515 }
516 template <typename T>
517 bool operator<(Span<T> a, Span<const T> b) {
518 return span_internal::LessThanImpl<Span, const T>(a, b);
519 }
520 template <
521 typename T, typename U,
522 typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
523 bool operator<(const U& a, Span<T> b) {
524 return span_internal::LessThanImpl<Span, const T>(a, b);
525 }
526 template <
527 typename T, typename U,
528 typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
529 bool operator<(Span<T> a, const U& b) {
530 return span_internal::LessThanImpl<Span, const T>(a, b);
531 }
532
533 // operator>
534 template <typename T>
535 bool operator>(Span<T> a, Span<T> b) {
536 return b < a;
537 }
538 template <typename T>
539 bool operator>(Span<const T> a, Span<T> b) {
540 return b < a;
541 }
542 template <typename T>
543 bool operator>(Span<T> a, Span<const T> b) {
544 return b < a;
545 }
546 template <
547 typename T, typename U,
548 typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
549 bool operator>(const U& a, Span<T> b) {
550 return b < a;
551 }
552 template <
553 typename T, typename U,
554 typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
555 bool operator>(Span<T> a, const U& b) {
556 return b < a;
557 }
558
559 // operator<=
560 template <typename T>
561 bool operator<=(Span<T> a, Span<T> b) {
562 return !(b < a);
563 }
564 template <typename T>
565 bool operator<=(Span<const T> a, Span<T> b) {
566 return !(b < a);
567 }
568 template <typename T>
569 bool operator<=(Span<T> a, Span<const T> b) {
570 return !(b < a);
571 }
572 template <
573 typename T, typename U,
574 typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
575 bool operator<=(const U& a, Span<T> b) {
576 return !(b < a);
577 }
578 template <
579 typename T, typename U,
580 typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
581 bool operator<=(Span<T> a, const U& b) {
582 return !(b < a);
583 }
584
585 // operator>=
586 template <typename T>
587 bool operator>=(Span<T> a, Span<T> b) {
588 return !(a < b);
589 }
590 template <typename T>
591 bool operator>=(Span<const T> a, Span<T> b) {
592 return !(a < b);
593 }
594 template <typename T>
595 bool operator>=(Span<T> a, Span<const T> b) {
596 return !(a < b);
597 }
598 template <
599 typename T, typename U,
600 typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
601 bool operator>=(const U& a, Span<T> b) {
602 return !(a < b);
603 }
604 template <
605 typename T, typename U,
606 typename = span_internal::EnableIfConvertibleTo<U, absl::Span<const T>>>
607 bool operator>=(Span<T> a, const U& b) {
608 return !(a < b);
609 }
610
611 // MakeSpan()
612 //
613 // Constructs a mutable `Span<T>`, deducing `T` automatically from either a
614 // container or pointer+size.
615 //
616 // Because a read-only `Span<const T>` is implicitly constructed from container
617 // types regardless of whether the container itself is a const container,
618 // constructing mutable spans of type `Span<T>` from containers requires
619 // explicit constructors. The container-accepting version of `MakeSpan()`
620 // deduces the type of `T` by the constness of the pointer received from the
621 // container's `data()` member. Similarly, the pointer-accepting version returns
622 // a `Span<const T>` if `T` is `const`, and a `Span<T>` otherwise.
623 //
624 // Examples:
625 //
626 // void MyRoutine(absl::Span<MyComplicatedType> a) {
627 // ...
628 // };
629 // // my_vector is a container of non-const types
630 // std::vector<MyComplicatedType> my_vector;
631 //
632 // // Constructing a Span implicitly attempts to create a Span of type
633 // // `Span<const T>`
634 // MyRoutine(my_vector); // error, type mismatch
635 //
636 // // Explicitly constructing the Span is verbose
637 // MyRoutine(absl::Span<MyComplicatedType>(my_vector));
638 //
639 // // Use MakeSpan() to make an absl::Span<T>
640 // MyRoutine(absl::MakeSpan(my_vector));
641 //
642 // // Construct a span from an array ptr+size
643 // absl::Span<T> my_span() {
644 // return absl::MakeSpan(&array[0], num_elements_);
645 // }
646 //
647 template <int&... ExplicitArgumentBarrier, typename T>
MakeSpan(T * ptr,size_t size)648 constexpr Span<T> MakeSpan(T* ptr, size_t size) noexcept {
649 return Span<T>(ptr, size);
650 }
651
652 template <int&... ExplicitArgumentBarrier, typename T>
MakeSpan(T * begin,T * end)653 Span<T> MakeSpan(T* begin, T* end) noexcept {
654 return ABSL_ASSERT(begin <= end), Span<T>(begin, end - begin);
655 }
656
657 template <int&... ExplicitArgumentBarrier, typename C>
658 constexpr auto MakeSpan(C& c) noexcept // NOLINT(runtime/references)
659 -> decltype(absl::MakeSpan(span_internal::GetData(c), c.size())) {
660 return MakeSpan(span_internal::GetData(c), c.size());
661 }
662
663 template <int&... ExplicitArgumentBarrier, typename T, size_t N>
MakeSpan(T (& array)[N])664 constexpr Span<T> MakeSpan(T (&array)[N]) noexcept {
665 return Span<T>(array, N);
666 }
667
668 // MakeConstSpan()
669 //
670 // Constructs a `Span<const T>` as with `MakeSpan`, deducing `T` automatically,
671 // but always returning a `Span<const T>`.
672 //
673 // Examples:
674 //
675 // void ProcessInts(absl::Span<const int> some_ints);
676 //
677 // // Call with a pointer and size.
678 // int array[3] = { 0, 0, 0 };
679 // ProcessInts(absl::MakeConstSpan(&array[0], 3));
680 //
681 // // Call with a [begin, end) pair.
682 // ProcessInts(absl::MakeConstSpan(&array[0], &array[3]));
683 //
684 // // Call directly with an array.
685 // ProcessInts(absl::MakeConstSpan(array));
686 //
687 // // Call with a contiguous container.
688 // std::vector<int> some_ints = ...;
689 // ProcessInts(absl::MakeConstSpan(some_ints));
690 // ProcessInts(absl::MakeConstSpan(std::vector<int>{ 0, 0, 0 }));
691 //
692 template <int&... ExplicitArgumentBarrier, typename T>
MakeConstSpan(T * ptr,size_t size)693 constexpr Span<const T> MakeConstSpan(T* ptr, size_t size) noexcept {
694 return Span<const T>(ptr, size);
695 }
696
697 template <int&... ExplicitArgumentBarrier, typename T>
MakeConstSpan(T * begin,T * end)698 Span<const T> MakeConstSpan(T* begin, T* end) noexcept {
699 return ABSL_ASSERT(begin <= end), Span<const T>(begin, end - begin);
700 }
701
702 template <int&... ExplicitArgumentBarrier, typename C>
703 constexpr auto MakeConstSpan(const C& c) noexcept -> decltype(MakeSpan(c)) {
704 return MakeSpan(c);
705 }
706
707 template <int&... ExplicitArgumentBarrier, typename T, size_t N>
MakeConstSpan(const T (& array)[N])708 constexpr Span<const T> MakeConstSpan(const T (&array)[N]) noexcept {
709 return Span<const T>(array, N);
710 }
711 ABSL_NAMESPACE_END
712 } // namespace absl
713 #endif // ABSL_TYPES_SPAN_H_
714