• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com).
108  *
109  */
110 /* ====================================================================
111  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112  * ECC cipher suite support in OpenSSL originally developed by
113  * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
114  */
115 /* ====================================================================
116  * Copyright 2005 Nokia. All rights reserved.
117  *
118  * The portions of the attached software ("Contribution") is developed by
119  * Nokia Corporation and is licensed pursuant to the OpenSSL open source
120  * license.
121  *
122  * The Contribution, originally written by Mika Kousa and Pasi Eronen of
123  * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
124  * support (see RFC 4279) to OpenSSL.
125  *
126  * No patent licenses or other rights except those expressly stated in
127  * the OpenSSL open source license shall be deemed granted or received
128  * expressly, by implication, estoppel, or otherwise.
129  *
130  * No assurances are provided by Nokia that the Contribution does not
131  * infringe the patent or other intellectual property rights of any third
132  * party or that the license provides you with all the necessary rights
133  * to make use of the Contribution.
134  *
135  * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
136  * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
137  * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
138  * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
139  * OTHERWISE.
140  */
141 
142 #ifndef OPENSSL_HEADER_SSL_INTERNAL_H
143 #define OPENSSL_HEADER_SSL_INTERNAL_H
144 
145 #include <openssl/base.h>
146 
147 #include <stdlib.h>
148 
149 #include <limits>
150 #include <new>
151 #include <type_traits>
152 #include <utility>
153 
154 #include <openssl/aead.h>
155 #include <openssl/err.h>
156 #include <openssl/lhash.h>
157 #include <openssl/mem.h>
158 #include <openssl/span.h>
159 #include <openssl/ssl.h>
160 #include <openssl/stack.h>
161 
162 #include "../crypto/err/internal.h"
163 #include "../crypto/internal.h"
164 
165 
166 #if defined(OPENSSL_WINDOWS)
167 // Windows defines struct timeval in winsock2.h.
168 OPENSSL_MSVC_PRAGMA(warning(push, 3))
169 #include <winsock2.h>
170 OPENSSL_MSVC_PRAGMA(warning(pop))
171 #else
172 #include <sys/time.h>
173 #endif
174 
175 
176 BSSL_NAMESPACE_BEGIN
177 
178 struct SSL_CONFIG;
179 struct SSL_HANDSHAKE;
180 struct SSL_PROTOCOL_METHOD;
181 struct SSL_X509_METHOD;
182 
183 // C++ utilities.
184 
185 // New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It
186 // returns nullptr on allocation error. It only implements single-object
187 // allocation and not new T[n].
188 //
189 // Note: unlike |new|, this does not support non-public constructors.
190 template <typename T, typename... Args>
New(Args &&...args)191 T *New(Args &&... args) {
192   void *t = OPENSSL_malloc(sizeof(T));
193   if (t == nullptr) {
194     OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
195     return nullptr;
196   }
197   return new (t) T(std::forward<Args>(args)...);
198 }
199 
200 // Delete behaves like |delete| but uses |OPENSSL_free| to release memory.
201 //
202 // Note: unlike |delete| this does not support non-public destructors.
203 template <typename T>
Delete(T * t)204 void Delete(T *t) {
205   if (t != nullptr) {
206     t->~T();
207     OPENSSL_free(t);
208   }
209 }
210 
211 // All types with kAllowUniquePtr set may be used with UniquePtr. Other types
212 // may be C structs which require a |BORINGSSL_MAKE_DELETER| registration.
213 namespace internal {
214 template <typename T>
215 struct DeleterImpl<T, typename std::enable_if<T::kAllowUniquePtr>::type> {
216   static void Free(T *t) { Delete(t); }
217 };
218 }  // namespace internal
219 
220 // MakeUnique behaves like |std::make_unique| but returns nullptr on allocation
221 // error.
222 template <typename T, typename... Args>
223 UniquePtr<T> MakeUnique(Args &&... args) {
224   return UniquePtr<T>(New<T>(std::forward<Args>(args)...));
225 }
226 
227 #if defined(BORINGSSL_ALLOW_CXX_RUNTIME)
228 #define HAS_VIRTUAL_DESTRUCTOR
229 #define PURE_VIRTUAL = 0
230 #else
231 // HAS_VIRTUAL_DESTRUCTOR should be declared in any base class which defines a
232 // virtual destructor. This avoids a dependency on |_ZdlPv| and prevents the
233 // class from being used with |delete|.
234 #define HAS_VIRTUAL_DESTRUCTOR \
235   void operator delete(void *) { abort(); }
236 
237 // PURE_VIRTUAL should be used instead of = 0 when defining pure-virtual
238 // functions. This avoids a dependency on |__cxa_pure_virtual| but loses
239 // compile-time checking.
240 #define PURE_VIRTUAL \
241   { abort(); }
242 #endif
243 
244 // CONSTEXPR_ARRAY works around a VS 2015 bug where ranged for loops don't work
245 // on constexpr arrays.
246 #if defined(_MSC_VER) && !defined(__clang__) && _MSC_VER < 1910
247 #define CONSTEXPR_ARRAY const
248 #else
249 #define CONSTEXPR_ARRAY constexpr
250 #endif
251 
252 // Array<T> is an owning array of elements of |T|.
253 template <typename T>
254 class Array {
255  public:
256   // Array's default constructor creates an empty array.
257   Array() {}
258   Array(const Array &) = delete;
259   Array(Array &&other) { *this = std::move(other); }
260 
261   ~Array() { Reset(); }
262 
263   Array &operator=(const Array &) = delete;
264   Array &operator=(Array &&other) {
265     Reset();
266     other.Release(&data_, &size_);
267     return *this;
268   }
269 
270   const T *data() const { return data_; }
271   T *data() { return data_; }
272   size_t size() const { return size_; }
273   bool empty() const { return size_ == 0; }
274 
275   const T &operator[](size_t i) const { return data_[i]; }
276   T &operator[](size_t i) { return data_[i]; }
277 
278   T *begin() { return data_; }
279   const T *cbegin() const { return data_; }
280   T *end() { return data_ + size_; }
281   const T *cend() const { return data_ + size_; }
282 
283   void Reset() { Reset(nullptr, 0); }
284 
285   // Reset releases the current contents of the array and takes ownership of the
286   // raw pointer supplied by the caller.
287   void Reset(T *new_data, size_t new_size) {
288     for (size_t i = 0; i < size_; i++) {
289       data_[i].~T();
290     }
291     OPENSSL_free(data_);
292     data_ = new_data;
293     size_ = new_size;
294   }
295 
296   // Release releases ownership of the array to a raw pointer supplied by the
297   // caller.
298   void Release(T **out, size_t *out_size) {
299     *out = data_;
300     *out_size = size_;
301     data_ = nullptr;
302     size_ = 0;
303   }
304 
305   // Init replaces the array with a newly-allocated array of |new_size|
306   // default-constructed copies of |T|. It returns true on success and false on
307   // error.
308   //
309   // Note that if |T| is a primitive type like |uint8_t|, it is uninitialized.
310   bool Init(size_t new_size) {
311     Reset();
312     if (new_size == 0) {
313       return true;
314     }
315 
316     if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) {
317       OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
318       return false;
319     }
320     data_ = reinterpret_cast<T *>(OPENSSL_malloc(new_size * sizeof(T)));
321     if (data_ == nullptr) {
322       OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
323       return false;
324     }
325     size_ = new_size;
326     for (size_t i = 0; i < size_; i++) {
327       new (&data_[i]) T;
328     }
329     return true;
330   }
331 
332   // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns
333   // true on success and false on error.
334   bool CopyFrom(Span<const T> in) {
335     if (!Init(in.size())) {
336       return false;
337     }
338     OPENSSL_memcpy(data_, in.data(), sizeof(T) * in.size());
339     return true;
340   }
341 
342   // Shrink shrinks the stored size of the array to |new_size|. It crashes if
343   // the new size is larger. Note this does not shrink the allocation itself.
344   void Shrink(size_t new_size) {
345     if (new_size > size_) {
346       abort();
347     }
348     size_ = new_size;
349   }
350 
351  private:
352   T *data_ = nullptr;
353   size_t size_ = 0;
354 };
355 
356 // GrowableArray<T> is an array that owns elements of |T|, backed by an
357 // Array<T>. When necessary, pushing will automatically trigger a resize.
358 //
359 // Note, for simplicity, this class currently differs from |std::vector| in that
360 // |T| must be efficiently default-constructible. Allocated elements beyond the
361 // end of the array are constructed and destructed.
362 template <typename T>
363 class GrowableArray {
364  public:
365   GrowableArray() = default;
366   GrowableArray(const GrowableArray &) = delete;
367   GrowableArray(GrowableArray &&other) { *this = std::move(other); }
368   ~GrowableArray() {}
369 
370   GrowableArray &operator=(const GrowableArray &) = delete;
371   GrowableArray &operator=(GrowableArray &&other) {
372     size_ = other.size_;
373     other.size_ = 0;
374     array_ = std::move(other.array_);
375     return *this;
376   }
377 
378   size_t size() const { return size_; }
379   bool empty() const { return size_ == 0; }
380 
381   const T &operator[](size_t i) const { return array_[i]; }
382   T &operator[](size_t i) { return array_[i]; }
383 
384   T *begin() { return array_.data(); }
385   const T *cbegin() const { return array_.data(); }
386   T *end() { return array_.data() + size_; }
387   const T *cend() const { return array_.data() + size_; }
388 
389   // Push adds |elem| at the end of the internal array, growing if necessary. It
390   // returns false when allocation fails.
391   bool Push(T elem) {
392     if (!MaybeGrow()) {
393       return false;
394     }
395     array_[size_] = std::move(elem);
396     size_++;
397     return true;
398   }
399 
400   // CopyFrom replaces the contents of the array with a copy of |in|. It returns
401   // true on success and false on allocation error.
402   bool CopyFrom(Span<const T> in) {
403     if (!array_.CopyFrom(in)) {
404       return false;
405     }
406     size_ = in.size();
407     return true;
408   }
409 
410  private:
411   // If there is no room for one more element, creates a new backing array with
412   // double the size of the old one and copies elements over.
413   bool MaybeGrow() {
414     if (array_.size() == 0) {
415       return array_.Init(kDefaultSize);
416     }
417     // No need to grow if we have room for one more T.
418     if (size_ < array_.size()) {
419       return true;
420     }
421     // Double the array's size if it's safe to do so.
422     if (array_.size() > std::numeric_limits<size_t>::max() / 2) {
423       OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
424       return false;
425     }
426     Array<T> new_array;
427     if (!new_array.Init(array_.size() * 2)) {
428       return false;
429     }
430     for (size_t i = 0; i < array_.size(); i++) {
431       new_array[i] = std::move(array_[i]);
432     }
433     array_ = std::move(new_array);
434 
435     return true;
436   }
437 
438   // |size_| is the number of elements stored in this GrowableArray.
439   size_t size_ = 0;
440   // |array_| is the backing array. Note that |array_.size()| is this
441   // GrowableArray's current capacity and that |size_ <= array_.size()|.
442   Array<T> array_;
443   // |kDefaultSize| is the default initial size of the backing array.
444   static constexpr size_t kDefaultSize = 16;
445 };
446 
447 // CBBFinishArray behaves like |CBB_finish| but stores the result in an Array.
448 OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out);
449 
450 
451 // Protocol versions.
452 //
453 // Due to DTLS's historical wire version differences, we maintain two notions of
454 // version.
455 //
456 // The "version" or "wire version" is the actual 16-bit value that appears on
457 // the wire. It uniquely identifies a version and is also used at API
458 // boundaries. The set of supported versions differs between TLS and DTLS. Wire
459 // versions are opaque values and may not be compared numerically.
460 //
461 // The "protocol version" identifies the high-level handshake variant being
462 // used. DTLS versions map to the corresponding TLS versions. Protocol versions
463 // are sequential and may be compared numerically.
464 
465 // ssl_protocol_version_from_wire sets |*out| to the protocol version
466 // corresponding to wire version |version| and returns true. If |version| is not
467 // a valid TLS or DTLS version, it returns false.
468 //
469 // Note this simultaneously handles both DTLS and TLS. Use one of the
470 // higher-level functions below for most operations.
471 bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version);
472 
473 // ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the
474 // minimum and maximum enabled protocol versions, respectively.
475 bool ssl_get_version_range(const SSL_HANDSHAKE *hs, uint16_t *out_min_version,
476                            uint16_t *out_max_version);
477 
478 // ssl_supports_version returns whether |hs| supports |version|.
479 bool ssl_supports_version(SSL_HANDSHAKE *hs, uint16_t version);
480 
481 // ssl_method_supports_version returns whether |method| supports |version|.
482 bool ssl_method_supports_version(const SSL_PROTOCOL_METHOD *method,
483                                  uint16_t version);
484 
485 // ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in
486 // decreasing preference order.
487 bool ssl_add_supported_versions(SSL_HANDSHAKE *hs, CBB *cbb);
488 
489 // ssl_negotiate_version negotiates a common version based on |hs|'s preferences
490 // and the peer preference list in |peer_versions|. On success, it returns true
491 // and sets |*out_version| to the selected version. Otherwise, it returns false
492 // and sets |*out_alert| to an alert to send.
493 bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert,
494                            uint16_t *out_version, const CBS *peer_versions);
495 
496 // ssl_protocol_version returns |ssl|'s protocol version. It is an error to
497 // call this function before the version is determined.
498 uint16_t ssl_protocol_version(const SSL *ssl);
499 
500 // Cipher suites.
501 
502 BSSL_NAMESPACE_END
503 
504 struct ssl_cipher_st {
505   // name is the OpenSSL name for the cipher.
506   const char *name;
507   // standard_name is the IETF name for the cipher.
508   const char *standard_name;
509   // id is the cipher suite value bitwise OR-d with 0x03000000.
510   uint32_t id;
511 
512   // algorithm_* determine the cipher suite. See constants below for the values.
513   uint32_t algorithm_mkey;
514   uint32_t algorithm_auth;
515   uint32_t algorithm_enc;
516   uint32_t algorithm_mac;
517   uint32_t algorithm_prf;
518 };
519 
520 BSSL_NAMESPACE_BEGIN
521 
522 // Bits for |algorithm_mkey| (key exchange algorithm).
523 #define SSL_kRSA 0x00000001u
524 #define SSL_kECDHE 0x00000002u
525 // SSL_kPSK is only set for plain PSK, not ECDHE_PSK.
526 #define SSL_kPSK 0x00000004u
527 #define SSL_kGENERIC 0x00000008u
528 
529 // Bits for |algorithm_auth| (server authentication).
530 #define SSL_aRSA 0x00000001u
531 #define SSL_aECDSA 0x00000002u
532 // SSL_aPSK is set for both PSK and ECDHE_PSK.
533 #define SSL_aPSK 0x00000004u
534 #define SSL_aGENERIC 0x00000008u
535 
536 #define SSL_aCERT (SSL_aRSA | SSL_aECDSA)
537 
538 // Bits for |algorithm_enc| (symmetric encryption).
539 #define SSL_3DES 0x00000001u
540 #define SSL_AES128 0x00000002u
541 #define SSL_AES256 0x00000004u
542 #define SSL_AES128GCM 0x00000008u
543 #define SSL_AES256GCM 0x00000010u
544 #define SSL_eNULL 0x00000020u
545 #define SSL_CHACHA20POLY1305 0x00000040u
546 
547 #define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM)
548 
549 // Bits for |algorithm_mac| (symmetric authentication).
550 #define SSL_SHA1 0x00000001u
551 // SSL_AEAD is set for all AEADs.
552 #define SSL_AEAD 0x00000002u
553 
554 // Bits for |algorithm_prf| (handshake digest).
555 #define SSL_HANDSHAKE_MAC_DEFAULT 0x1
556 #define SSL_HANDSHAKE_MAC_SHA256 0x2
557 #define SSL_HANDSHAKE_MAC_SHA384 0x4
558 
559 // SSL_MAX_MD_SIZE is size of the largest hash function used in TLS, SHA-384.
560 #define SSL_MAX_MD_SIZE 48
561 
562 // An SSLCipherPreferenceList contains a list of SSL_CIPHERs with equal-
563 // preference groups. For TLS clients, the groups are moot because the server
564 // picks the cipher and groups cannot be expressed on the wire. However, for
565 // servers, the equal-preference groups allow the client's preferences to be
566 // partially respected. (This only has an effect with
567 // SSL_OP_CIPHER_SERVER_PREFERENCE).
568 //
569 // The equal-preference groups are expressed by grouping SSL_CIPHERs together.
570 // All elements of a group have the same priority: no ordering is expressed
571 // within a group.
572 //
573 // The values in |ciphers| are in one-to-one correspondence with
574 // |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of
575 // bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to
576 // indicate that the corresponding SSL_CIPHER is not the last element of a
577 // group, or 0 to indicate that it is.
578 //
579 // For example, if |in_group_flags| contains all zeros then that indicates a
580 // traditional, fully-ordered preference. Every SSL_CIPHER is the last element
581 // of the group (i.e. they are all in a one-element group).
582 //
583 // For a more complex example, consider:
584 //   ciphers:        A  B  C  D  E  F
585 //   in_group_flags: 1  1  0  0  1  0
586 //
587 // That would express the following, order:
588 //
589 //    A         E
590 //    B -> D -> F
591 //    C
592 struct SSLCipherPreferenceList {
593   static constexpr bool kAllowUniquePtr = true;
594 
595   SSLCipherPreferenceList() = default;
596   ~SSLCipherPreferenceList();
597 
598   bool Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers,
599             Span<const bool> in_group_flags);
600   bool Init(const SSLCipherPreferenceList &);
601 
602   void Remove(const SSL_CIPHER *cipher);
603 
604   UniquePtr<STACK_OF(SSL_CIPHER)> ciphers;
605   bool *in_group_flags = nullptr;
606 };
607 
608 // AllCiphers returns an array of all supported ciphers, sorted by id.
609 Span<const SSL_CIPHER> AllCiphers();
610 
611 // ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD
612 // object for |cipher| protocol version |version|. It sets |*out_mac_secret_len|
613 // and |*out_fixed_iv_len| to the MAC key length and fixed IV length,
614 // respectively. The MAC key length is zero except for legacy block and stream
615 // ciphers. It returns true on success and false on error.
616 bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
617                              size_t *out_mac_secret_len,
618                              size_t *out_fixed_iv_len, const SSL_CIPHER *cipher,
619                              uint16_t version, bool is_dtls);
620 
621 // ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and
622 // |cipher|.
623 const EVP_MD *ssl_get_handshake_digest(uint16_t version,
624                                        const SSL_CIPHER *cipher);
625 
626 // ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a
627 // newly-allocated |SSLCipherPreferenceList| containing the result. It returns
628 // true on success and false on failure. If |strict| is true, nonsense will be
629 // rejected. If false, nonsense will be silently ignored. An empty result is
630 // considered an error regardless of |strict|.
631 bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list,
632                             const char *rule_str, bool strict);
633 
634 // ssl_cipher_get_value returns the cipher suite id of |cipher|.
635 uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher);
636 
637 // ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth|
638 // values suitable for use with |key| in TLS 1.2 and below.
639 uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key);
640 
641 // ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the
642 // server and, optionally, the client with a certificate.
643 bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher);
644 
645 // ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a
646 // ServerKeyExchange message.
647 //
648 // This function may return false while still allowing |cipher| an optional
649 // ServerKeyExchange. This is the case for plain PSK ciphers.
650 bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher);
651 
652 // ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the
653 // length of an encrypted 1-byte record, for use in record-splitting. Otherwise
654 // it returns zero.
655 size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher);
656 
657 // ssl_choose_tls13_cipher returns an |SSL_CIPHER| corresponding with the best
658 // available from |cipher_suites| compatible with |version| and |group_id|. It
659 // returns NULL if there isn't a compatible cipher.
660 const SSL_CIPHER *ssl_choose_tls13_cipher(CBS cipher_suites, uint16_t version,
661                                           uint16_t group_id);
662 
663 
664 // Transcript layer.
665 
666 // SSLTranscript maintains the handshake transcript as a combination of a
667 // buffer and running hash.
668 class SSLTranscript {
669  public:
670   SSLTranscript();
671   ~SSLTranscript();
672 
673   // Init initializes the handshake transcript. If called on an existing
674   // transcript, it resets the transcript and hash. It returns true on success
675   // and false on failure.
676   bool Init();
677 
678   // InitHash initializes the handshake hash based on the PRF and contents of
679   // the handshake transcript. Subsequent calls to |Update| will update the
680   // rolling hash. It returns one on success and zero on failure. It is an error
681   // to call this function after the handshake buffer is released.
682   bool InitHash(uint16_t version, const SSL_CIPHER *cipher);
683 
684   // UpdateForHelloRetryRequest resets the rolling hash with the
685   // HelloRetryRequest construction. It returns true on success and false on
686   // failure. It is an error to call this function before the handshake buffer
687   // is released.
688   bool UpdateForHelloRetryRequest();
689 
690   // CopyToHashContext initializes |ctx| with |digest| and the data thus far in
691   // the transcript. It returns true on success and false on failure. If the
692   // handshake buffer is still present, |digest| may be any supported digest.
693   // Otherwise, |digest| must match the transcript hash.
694   bool CopyToHashContext(EVP_MD_CTX *ctx, const EVP_MD *digest);
695 
696   Span<const uint8_t> buffer() {
697     return MakeConstSpan(reinterpret_cast<const uint8_t *>(buffer_->data),
698                          buffer_->length);
699   }
700 
701   // FreeBuffer releases the handshake buffer. Subsequent calls to
702   // |Update| will not update the handshake buffer.
703   void FreeBuffer();
704 
705   // DigestLen returns the length of the PRF hash.
706   size_t DigestLen() const;
707 
708   // Digest returns the PRF hash. For TLS 1.1 and below, this is
709   // |EVP_md5_sha1|.
710   const EVP_MD *Digest() const;
711 
712   // Update adds |in| to the handshake buffer and handshake hash, whichever is
713   // enabled. It returns true on success and false on failure.
714   bool Update(Span<const uint8_t> in);
715 
716   // GetHash writes the handshake hash to |out| which must have room for at
717   // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to
718   // the number of bytes written. Otherwise, it returns false.
719   bool GetHash(uint8_t *out, size_t *out_len);
720 
721   // GetFinishedMAC computes the MAC for the Finished message into the bytes
722   // pointed by |out| and writes the number of bytes to |*out_len|. |out| must
723   // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false
724   // on failure.
725   bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session,
726                       bool from_server);
727 
728  private:
729   // buffer_, if non-null, contains the handshake transcript.
730   UniquePtr<BUF_MEM> buffer_;
731   // hash, if initialized with an |EVP_MD|, maintains the handshake hash.
732   ScopedEVP_MD_CTX hash_;
733 };
734 
735 // tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret|
736 // as the secret and |label| as the label. |seed1| and |seed2| are concatenated
737 // to form the seed parameter. It returns true on success and false on failure.
738 bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out,
739               Span<const uint8_t> secret, Span<const char> label,
740               Span<const uint8_t> seed1, Span<const uint8_t> seed2);
741 
742 
743 // Encryption layer.
744 
745 // SSLAEADContext contains information about an AEAD that is being used to
746 // encrypt an SSL connection.
747 class SSLAEADContext {
748  public:
749   SSLAEADContext(uint16_t version, bool is_dtls, const SSL_CIPHER *cipher);
750   ~SSLAEADContext();
751   static constexpr bool kAllowUniquePtr = true;
752 
753   SSLAEADContext(const SSLAEADContext &&) = delete;
754   SSLAEADContext &operator=(const SSLAEADContext &&) = delete;
755 
756   // CreateNullCipher creates an |SSLAEADContext| for the null cipher.
757   static UniquePtr<SSLAEADContext> CreateNullCipher(bool is_dtls);
758 
759   // Create creates an |SSLAEADContext| using the supplied key material. It
760   // returns nullptr on error. Only one of |Open| or |Seal| may be used with the
761   // resulting object, depending on |direction|. |version| is the normalized
762   // protocol version, so DTLS 1.0 is represented as 0x0301, not 0xffef.
763   static UniquePtr<SSLAEADContext> Create(enum evp_aead_direction_t direction,
764                                           uint16_t version, bool is_dtls,
765                                           const SSL_CIPHER *cipher,
766                                           Span<const uint8_t> enc_key,
767                                           Span<const uint8_t> mac_key,
768                                           Span<const uint8_t> fixed_iv);
769 
770   // CreatePlaceholderForQUIC creates a placeholder |SSLAEADContext| for the
771   // given cipher and version. The resulting object can be queried for various
772   // properties but cannot encrypt or decrypt data.
773   static UniquePtr<SSLAEADContext> CreatePlaceholderForQUIC(
774       uint16_t version, const SSL_CIPHER *cipher);
775 
776   // SetVersionIfNullCipher sets the version the SSLAEADContext for the null
777   // cipher, to make version-specific determinations in the record layer prior
778   // to a cipher being selected.
779   void SetVersionIfNullCipher(uint16_t version);
780 
781   // ProtocolVersion returns the protocol version associated with this
782   // SSLAEADContext. It can only be called once |version_| has been set to a
783   // valid value.
784   uint16_t ProtocolVersion() const;
785 
786   // RecordVersion returns the record version that should be used with this
787   // SSLAEADContext for record construction and crypto.
788   uint16_t RecordVersion() const;
789 
790   const SSL_CIPHER *cipher() const { return cipher_; }
791 
792   // is_null_cipher returns true if this is the null cipher.
793   bool is_null_cipher() const { return !cipher_; }
794 
795   // ExplicitNonceLen returns the length of the explicit nonce.
796   size_t ExplicitNonceLen() const;
797 
798   // MaxOverhead returns the maximum overhead of calling |Seal|.
799   size_t MaxOverhead() const;
800 
801   // SuffixLen calculates the suffix length written by |SealScatter| and writes
802   // it to |*out_suffix_len|. It returns true on success and false on error.
803   // |in_len| and |extra_in_len| should equal the argument of the same names
804   // passed to |SealScatter|.
805   bool SuffixLen(size_t *out_suffix_len, size_t in_len,
806                  size_t extra_in_len) const;
807 
808   // CiphertextLen calculates the total ciphertext length written by
809   // |SealScatter| and writes it to |*out_len|. It returns true on success and
810   // false on error. |in_len| and |extra_in_len| should equal the argument of
811   // the same names passed to |SealScatter|.
812   bool CiphertextLen(size_t *out_len, size_t in_len, size_t extra_in_len) const;
813 
814   // Open authenticates and decrypts |in| in-place. On success, it sets |*out|
815   // to the plaintext in |in| and returns true.  Otherwise, it returns
816   // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|.
817   bool Open(Span<uint8_t> *out, uint8_t type, uint16_t record_version,
818             const uint8_t seqnum[8], Span<const uint8_t> header,
819             Span<uint8_t> in);
820 
821   // Seal encrypts and authenticates |in_len| bytes from |in| and writes the
822   // result to |out|. It returns true on success and false on error.
823   //
824   // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|.
825   bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type,
826             uint16_t record_version, const uint8_t seqnum[8],
827             Span<const uint8_t> header, const uint8_t *in, size_t in_len);
828 
829   // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits
830   // the result between |out_prefix|, |out| and |out_suffix|. It returns one on
831   // success and zero on error.
832   //
833   // On successful return, exactly |ExplicitNonceLen| bytes are written to
834   // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to
835   // |out_suffix|.
836   //
837   // |extra_in| may point to an additional plaintext buffer. If present,
838   // |extra_in_len| additional bytes are encrypted and authenticated, and the
839   // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should
840   // be used to size |out_suffix| accordingly.
841   //
842   // If |in| and |out| alias then |out| must be == |in|. Other arguments may not
843   // alias anything.
844   bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix,
845                    uint8_t type, uint16_t record_version,
846                    const uint8_t seqnum[8], Span<const uint8_t> header,
847                    const uint8_t *in, size_t in_len, const uint8_t *extra_in,
848                    size_t extra_in_len);
849 
850   bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const;
851 
852  private:
853   // GetAdditionalData returns the additional data, writing into |storage| if
854   // necessary.
855   Span<const uint8_t> GetAdditionalData(uint8_t storage[13], uint8_t type,
856                                         uint16_t record_version,
857                                         const uint8_t seqnum[8],
858                                         size_t plaintext_len,
859                                         Span<const uint8_t> header);
860 
861   const SSL_CIPHER *cipher_;
862   ScopedEVP_AEAD_CTX ctx_;
863   // fixed_nonce_ contains any bytes of the nonce that are fixed for all
864   // records.
865   uint8_t fixed_nonce_[12];
866   uint8_t fixed_nonce_len_ = 0, variable_nonce_len_ = 0;
867   // version_ is the wire version that should be used with this AEAD.
868   uint16_t version_;
869   // is_dtls_ is whether DTLS is being used with this AEAD.
870   bool is_dtls_;
871   // variable_nonce_included_in_record_ is true if the variable nonce
872   // for a record is included as a prefix before the ciphertext.
873   bool variable_nonce_included_in_record_ : 1;
874   // random_variable_nonce_ is true if the variable nonce is
875   // randomly generated, rather than derived from the sequence
876   // number.
877   bool random_variable_nonce_ : 1;
878   // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the
879   // variable nonce rather than prepended.
880   bool xor_fixed_nonce_ : 1;
881   // omit_length_in_ad_ is true if the length should be omitted in the
882   // AEAD's ad parameter.
883   bool omit_length_in_ad_ : 1;
884   // ad_is_header_ is true if the AEAD's ad parameter is the record header.
885   bool ad_is_header_ : 1;
886 };
887 
888 
889 // DTLS replay bitmap.
890 
891 // DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect
892 // replayed packets. It should be initialized by zeroing every field.
893 struct DTLS1_BITMAP {
894   // map is a bit mask of the last 64 sequence numbers. Bit
895   // |1<<i| corresponds to |max_seq_num - i|.
896   uint64_t map = 0;
897   // max_seq_num is the largest sequence number seen so far as a 64-bit
898   // integer.
899   uint64_t max_seq_num = 0;
900 };
901 
902 
903 // Record layer.
904 
905 // ssl_record_sequence_update increments the sequence number in |seq|. It
906 // returns true on success and false on wraparound.
907 bool ssl_record_sequence_update(uint8_t *seq, size_t seq_len);
908 
909 // ssl_record_prefix_len returns the length of the prefix before the ciphertext
910 // of a record for |ssl|.
911 //
912 // TODO(davidben): Expose this as part of public API once the high-level
913 // buffer-free APIs are available.
914 size_t ssl_record_prefix_len(const SSL *ssl);
915 
916 enum ssl_open_record_t {
917   ssl_open_record_success,
918   ssl_open_record_discard,
919   ssl_open_record_partial,
920   ssl_open_record_close_notify,
921   ssl_open_record_error,
922 };
923 
924 // tls_open_record decrypts a record from |in| in-place.
925 //
926 // If the input did not contain a complete record, it returns
927 // |ssl_open_record_partial|. It sets |*out_consumed| to the total number of
928 // bytes necessary. It is guaranteed that a successful call to |tls_open_record|
929 // will consume at least that many bytes.
930 //
931 // Otherwise, it sets |*out_consumed| to the number of bytes of input
932 // consumed. Note that input may be consumed on all return codes if a record was
933 // decrypted.
934 //
935 // On success, it returns |ssl_open_record_success|. It sets |*out_type| to the
936 // record type and |*out| to the record body in |in|. Note that |*out| may be
937 // empty.
938 //
939 // If a record was successfully processed but should be discarded, it returns
940 // |ssl_open_record_discard|.
941 //
942 // If a record was successfully processed but is a close_notify, it returns
943 // |ssl_open_record_close_notify|.
944 //
945 // On failure or fatal alert, it returns |ssl_open_record_error| and sets
946 // |*out_alert| to an alert to emit, or zero if no alert should be emitted.
947 enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type,
948                                        Span<uint8_t> *out, size_t *out_consumed,
949                                        uint8_t *out_alert, Span<uint8_t> in);
950 
951 // dtls_open_record implements |tls_open_record| for DTLS. It only returns
952 // |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to
953 // zero. The caller should read one packet and try again.
954 enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type,
955                                         Span<uint8_t> *out,
956                                         size_t *out_consumed,
957                                         uint8_t *out_alert, Span<uint8_t> in);
958 
959 // ssl_seal_align_prefix_len returns the length of the prefix before the start
960 // of the bulk of the ciphertext when sealing a record with |ssl|. Callers may
961 // use this to align buffers.
962 //
963 // Note when TLS 1.0 CBC record-splitting is enabled, this includes the one byte
964 // record and is the offset into second record's ciphertext. Thus sealing a
965 // small record may result in a smaller output than this value.
966 //
967 // TODO(davidben): Is this alignment valuable? Record-splitting makes this a
968 // mess.
969 size_t ssl_seal_align_prefix_len(const SSL *ssl);
970 
971 // tls_seal_record seals a new record of type |type| and body |in| and writes it
972 // to |out|. At most |max_out| bytes will be written. It returns true on success
973 // and false on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC
974 // 1/n-1 record splitting and may write two records concatenated.
975 //
976 // For a large record, the bulk of the ciphertext will begin
977 // |ssl_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may
978 // improve performance. It writes at most |in_len| + |SSL_max_seal_overhead|
979 // bytes to |out|.
980 //
981 // |in| and |out| may not alias.
982 bool tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
983                      uint8_t type, const uint8_t *in, size_t in_len);
984 
985 enum dtls1_use_epoch_t {
986   dtls1_use_previous_epoch,
987   dtls1_use_current_epoch,
988 };
989 
990 // dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a
991 // record.
992 size_t dtls_max_seal_overhead(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
993 
994 // dtls_seal_prefix_len returns the number of bytes of prefix to reserve in
995 // front of the plaintext when sealing a record in-place.
996 size_t dtls_seal_prefix_len(const SSL *ssl, enum dtls1_use_epoch_t use_epoch);
997 
998 // dtls_seal_record implements |tls_seal_record| for DTLS. |use_epoch| selects
999 // which epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out|
1000 // may alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes
1001 // ahead of |out|.
1002 bool dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
1003                       uint8_t type, const uint8_t *in, size_t in_len,
1004                       enum dtls1_use_epoch_t use_epoch);
1005 
1006 // ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown
1007 // state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|,
1008 // |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as
1009 // appropriate.
1010 enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert,
1011                                          Span<const uint8_t> in);
1012 
1013 
1014 // Private key operations.
1015 
1016 // ssl_has_private_key returns whether |hs| has a private key configured.
1017 bool ssl_has_private_key(const SSL_HANDSHAKE *hs);
1018 
1019 // ssl_private_key_* perform the corresponding operation on
1020 // |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they
1021 // call the corresponding function or |complete| depending on whether there is a
1022 // pending operation. Otherwise, they implement the operation with
1023 // |EVP_PKEY|.
1024 
1025 enum ssl_private_key_result_t ssl_private_key_sign(
1026     SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
1027     uint16_t sigalg, Span<const uint8_t> in);
1028 
1029 enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
1030                                                       uint8_t *out,
1031                                                       size_t *out_len,
1032                                                       size_t max_out,
1033                                                       Span<const uint8_t> in);
1034 
1035 // ssl_private_key_supports_signature_algorithm returns whether |hs|'s private
1036 // key supports |sigalg|.
1037 bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs,
1038                                                   uint16_t sigalg);
1039 
1040 // ssl_public_key_verify verifies that the |signature| is valid for the public
1041 // key |pkey| and input |in|, using the signature algorithm |sigalg|.
1042 bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
1043                            uint16_t sigalg, EVP_PKEY *pkey,
1044                            Span<const uint8_t> in);
1045 
1046 
1047 // Key shares.
1048 
1049 // SSLKeyShare abstracts over Diffie-Hellman-like key exchanges.
1050 class SSLKeyShare {
1051  public:
1052   virtual ~SSLKeyShare() {}
1053   static constexpr bool kAllowUniquePtr = true;
1054   HAS_VIRTUAL_DESTRUCTOR
1055 
1056   // Create returns a SSLKeyShare instance for use with group |group_id| or
1057   // nullptr on error.
1058   static UniquePtr<SSLKeyShare> Create(uint16_t group_id);
1059 
1060   // Create deserializes an SSLKeyShare instance previously serialized by
1061   // |Serialize|.
1062   static UniquePtr<SSLKeyShare> Create(CBS *in);
1063 
1064   // GroupID returns the group ID.
1065   virtual uint16_t GroupID() const PURE_VIRTUAL;
1066 
1067   // Offer generates a keypair and writes the public value to
1068   // |out_public_key|. It returns true on success and false on error.
1069   virtual bool Offer(CBB *out_public_key) PURE_VIRTUAL;
1070 
1071   // Accept performs a key exchange against the |peer_key| generated by |Offer|.
1072   // On success, it returns true, writes the public value to |out_public_key|,
1073   // and sets |*out_secret| to the shared secret. On failure, it returns false
1074   // and sets |*out_alert| to an alert to send to the peer.
1075   //
1076   // The default implementation calls |Offer| and then |Finish|, assuming a key
1077   // exchange protocol where the peers are symmetric.
1078   virtual bool Accept(CBB *out_public_key, Array<uint8_t> *out_secret,
1079                       uint8_t *out_alert, Span<const uint8_t> peer_key);
1080 
1081   // Finish performs a key exchange against the |peer_key| generated by
1082   // |Accept|. On success, it returns true and sets |*out_secret| to the shared
1083   // secret. On failure, it returns false and sets |*out_alert| to an alert to
1084   // send to the peer.
1085   virtual bool Finish(Array<uint8_t> *out_secret, uint8_t *out_alert,
1086                       Span<const uint8_t> peer_key) PURE_VIRTUAL;
1087 
1088   // Serialize writes the state of the key exchange to |out|, returning true if
1089   // successful and false otherwise.
1090   virtual bool Serialize(CBB *out) { return false; }
1091 
1092   // Deserialize initializes the state of the key exchange from |in|, returning
1093   // true if successful and false otherwise.  It is called by |Create|.
1094   virtual bool Deserialize(CBS *in) { return false; }
1095 };
1096 
1097 struct NamedGroup {
1098   int nid;
1099   uint16_t group_id;
1100   const char name[8], alias[11];
1101 };
1102 
1103 // NamedGroups returns all supported groups.
1104 Span<const NamedGroup> NamedGroups();
1105 
1106 // ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it
1107 // sets |*out_group_id| to the group ID and returns true. Otherwise, it returns
1108 // false.
1109 bool ssl_nid_to_group_id(uint16_t *out_group_id, int nid);
1110 
1111 // ssl_name_to_group_id looks up the group corresponding to the |name| string of
1112 // length |len|. On success, it sets |*out_group_id| to the group ID and returns
1113 // true. Otherwise, it returns false.
1114 bool ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len);
1115 
1116 
1117 // Handshake messages.
1118 
1119 struct SSLMessage {
1120   bool is_v2_hello;
1121   uint8_t type;
1122   CBS body;
1123   // raw is the entire serialized handshake message, including the TLS or DTLS
1124   // message header.
1125   CBS raw;
1126 };
1127 
1128 // SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including
1129 // ChangeCipherSpec, in the longest handshake flight. Currently this is the
1130 // client's second leg in a full handshake when client certificates, NPN, and
1131 // Channel ID, are all enabled.
1132 #define SSL_MAX_HANDSHAKE_FLIGHT 7
1133 
1134 extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE];
1135 extern const uint8_t kTLS12DowngradeRandom[8];
1136 extern const uint8_t kTLS13DowngradeRandom[8];
1137 extern const uint8_t kJDK11DowngradeRandom[8];
1138 
1139 // ssl_max_handshake_message_len returns the maximum number of bytes permitted
1140 // in a handshake message for |ssl|.
1141 size_t ssl_max_handshake_message_len(const SSL *ssl);
1142 
1143 // tls_can_accept_handshake_data returns whether |ssl| is able to accept more
1144 // data into handshake buffer.
1145 bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert);
1146 
1147 // tls_has_unprocessed_handshake_data returns whether there is buffered
1148 // handshake data that has not been consumed by |get_message|.
1149 bool tls_has_unprocessed_handshake_data(const SSL *ssl);
1150 
1151 // tls_append_handshake_data appends |data| to the handshake buffer. It returns
1152 // true on success and false on allocation failure.
1153 bool tls_append_handshake_data(SSL *ssl, Span<const uint8_t> data);
1154 
1155 // dtls_has_unprocessed_handshake_data behaves like
1156 // |tls_has_unprocessed_handshake_data| for DTLS.
1157 bool dtls_has_unprocessed_handshake_data(const SSL *ssl);
1158 
1159 // tls_flush_pending_hs_data flushes any handshake plaintext data.
1160 bool tls_flush_pending_hs_data(SSL *ssl);
1161 
1162 struct DTLS_OUTGOING_MESSAGE {
1163   DTLS_OUTGOING_MESSAGE() {}
1164   DTLS_OUTGOING_MESSAGE(const DTLS_OUTGOING_MESSAGE &) = delete;
1165   DTLS_OUTGOING_MESSAGE &operator=(const DTLS_OUTGOING_MESSAGE &) = delete;
1166   ~DTLS_OUTGOING_MESSAGE() { Clear(); }
1167 
1168   void Clear();
1169 
1170   uint8_t *data = nullptr;
1171   uint32_t len = 0;
1172   uint16_t epoch = 0;
1173   bool is_ccs = false;
1174 };
1175 
1176 // dtls_clear_outgoing_messages releases all buffered outgoing messages.
1177 void dtls_clear_outgoing_messages(SSL *ssl);
1178 
1179 
1180 // Callbacks.
1181 
1182 // ssl_do_info_callback calls |ssl|'s info callback, if set.
1183 void ssl_do_info_callback(const SSL *ssl, int type, int value);
1184 
1185 // ssl_do_msg_callback calls |ssl|'s message callback, if set.
1186 void ssl_do_msg_callback(const SSL *ssl, int is_write, int content_type,
1187                          Span<const uint8_t> in);
1188 
1189 
1190 // Transport buffers.
1191 
1192 class SSLBuffer {
1193  public:
1194   SSLBuffer() {}
1195   ~SSLBuffer() { Clear(); }
1196 
1197   SSLBuffer(const SSLBuffer &) = delete;
1198   SSLBuffer &operator=(const SSLBuffer &) = delete;
1199 
1200   uint8_t *data() { return buf_ + offset_; }
1201   size_t size() const { return size_; }
1202   bool empty() const { return size_ == 0; }
1203   size_t cap() const { return cap_; }
1204 
1205   Span<uint8_t> span() { return MakeSpan(data(), size()); }
1206 
1207   Span<uint8_t> remaining() {
1208     return MakeSpan(data() + size(), cap() - size());
1209   }
1210 
1211   // Clear releases the buffer.
1212   void Clear();
1213 
1214   // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such
1215   // that data written after |header_len| is aligned to a
1216   // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false
1217   // on error.
1218   bool EnsureCap(size_t header_len, size_t new_cap);
1219 
1220   // DidWrite extends the buffer by |len|. The caller must have filled in to
1221   // this point.
1222   void DidWrite(size_t len);
1223 
1224   // Consume consumes |len| bytes from the front of the buffer.  The memory
1225   // consumed will remain valid until the next call to |DiscardConsumed| or
1226   // |Clear|.
1227   void Consume(size_t len);
1228 
1229   // DiscardConsumed discards the consumed bytes from the buffer. If the buffer
1230   // is now empty, it releases memory used by it.
1231   void DiscardConsumed();
1232 
1233  private:
1234   // buf_ is the memory allocated for this buffer.
1235   uint8_t *buf_ = nullptr;
1236   // offset_ is the offset into |buf_| which the buffer contents start at.
1237   uint16_t offset_ = 0;
1238   // size_ is the size of the buffer contents from |buf_| + |offset_|.
1239   uint16_t size_ = 0;
1240   // cap_ is how much memory beyond |buf_| + |offset_| is available.
1241   uint16_t cap_ = 0;
1242 };
1243 
1244 // ssl_read_buffer_extend_to extends the read buffer to the desired length. For
1245 // TLS, it reads to the end of the buffer until the buffer is |len| bytes
1246 // long. For DTLS, it reads a new packet and ignores |len|. It returns one on
1247 // success, zero on EOF, and a negative number on error.
1248 //
1249 // It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is
1250 // non-empty.
1251 int ssl_read_buffer_extend_to(SSL *ssl, size_t len);
1252 
1253 // ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer|
1254 // to a record-processing function. If |ret| is a success or if the caller
1255 // should retry, it returns one and sets |*out_retry|. Otherwise, it returns <=
1256 // 0.
1257 int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret,
1258                            size_t consumed, uint8_t alert);
1259 
1260 // ssl_write_buffer_flush flushes the write buffer to the transport. It returns
1261 // one on success and <= 0 on error. For DTLS, whether or not the write
1262 // succeeds, the write buffer will be cleared.
1263 int ssl_write_buffer_flush(SSL *ssl);
1264 
1265 
1266 // Certificate functions.
1267 
1268 // ssl_has_certificate returns whether a certificate and private key are
1269 // configured.
1270 bool ssl_has_certificate(const SSL_HANDSHAKE *hs);
1271 
1272 // ssl_parse_cert_chain parses a certificate list from |cbs| in the format used
1273 // by a TLS Certificate message. On success, it advances |cbs| and returns
1274 // true. Otherwise, it returns false and sets |*out_alert| to an alert to send
1275 // to the peer.
1276 //
1277 // If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to
1278 // the certificate chain and the leaf certificate's public key
1279 // respectively. Otherwise, both will be set to nullptr.
1280 //
1281 // If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the
1282 // SHA-256 hash of the leaf to |out_leaf_sha256|.
1283 bool ssl_parse_cert_chain(uint8_t *out_alert,
1284                           UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain,
1285                           UniquePtr<EVP_PKEY> *out_pubkey,
1286                           uint8_t *out_leaf_sha256, CBS *cbs,
1287                           CRYPTO_BUFFER_POOL *pool);
1288 
1289 // ssl_add_cert_chain adds |hs->ssl|'s certificate chain to |cbb| in the format
1290 // used by a TLS Certificate message. If there is no certificate chain, it emits
1291 // an empty certificate list. It returns true on success and false on error.
1292 bool ssl_add_cert_chain(SSL_HANDSHAKE *hs, CBB *cbb);
1293 
1294 enum ssl_key_usage_t {
1295   key_usage_digital_signature = 0,
1296   key_usage_encipherment = 2,
1297 };
1298 
1299 // ssl_cert_check_key_usage parses the DER-encoded, X.509 certificate in |in|
1300 // and returns true if doesn't specify a key usage or, if it does, if it
1301 // includes |bit|. Otherwise it pushes to the error queue and returns false.
1302 bool ssl_cert_check_key_usage(const CBS *in, enum ssl_key_usage_t bit);
1303 
1304 // ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509
1305 // certificate in |in|. It returns an allocated |EVP_PKEY| or else returns
1306 // nullptr and pushes to the error queue.
1307 UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in);
1308 
1309 // ssl_parse_client_CA_list parses a CA list from |cbs| in the format used by a
1310 // TLS CertificateRequest message. On success, it returns a newly-allocated
1311 // |CRYPTO_BUFFER| list and advances |cbs|. Otherwise, it returns nullptr and
1312 // sets |*out_alert| to an alert to send to the peer.
1313 UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl,
1314                                                             uint8_t *out_alert,
1315                                                             CBS *cbs);
1316 
1317 // ssl_has_client_CAs returns there are configured CAs.
1318 bool ssl_has_client_CAs(const SSL_CONFIG *cfg);
1319 
1320 // ssl_add_client_CA_list adds the configured CA list to |cbb| in the format
1321 // used by a TLS CertificateRequest message. It returns true on success and
1322 // false on error.
1323 bool ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb);
1324 
1325 // ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as
1326 // a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes
1327 // an error on the error queue.
1328 bool ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey,
1329                                const CRYPTO_BUFFER *leaf);
1330 
1331 // ssl_on_certificate_selected is called once the certificate has been selected.
1332 // It finalizes the certificate and initializes |hs->local_pubkey|. It returns
1333 // true on success and false on error.
1334 bool ssl_on_certificate_selected(SSL_HANDSHAKE *hs);
1335 
1336 
1337 // TLS 1.3 key derivation.
1338 
1339 // tls13_init_key_schedule initializes the handshake hash and key derivation
1340 // state, and incorporates the PSK. The cipher suite and PRF hash must have been
1341 // selected at this point. It returns true on success and false on error.
1342 bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk);
1343 
1344 // tls13_init_early_key_schedule initializes the handshake hash and key
1345 // derivation state from the resumption secret and incorporates the PSK to
1346 // derive the early secrets. It returns one on success and zero on error.
1347 bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk);
1348 
1349 // tls13_advance_key_schedule incorporates |in| into the key schedule with
1350 // HKDF-Extract. It returns true on success and false on error.
1351 bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> in);
1352 
1353 // tls13_set_traffic_key sets the read or write traffic keys to
1354 // |traffic_secret|. It returns true on success and false on error.
1355 bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level,
1356                            enum evp_aead_direction_t direction,
1357                            Span<const uint8_t> traffic_secret);
1358 
1359 // tls13_derive_early_secret derives the early traffic secret. It returns true
1360 // on success and false on error. Unlike with other traffic secrets, this
1361 // function does not pass the keys to QUIC. Call
1362 // |tls13_set_early_secret_for_quic| to do so. This is done to due to an
1363 // ordering complication around resolving HelloRetryRequest on the server.
1364 bool tls13_derive_early_secret(SSL_HANDSHAKE *hs);
1365 
1366 // tls13_set_early_secret_for_quic passes the early traffic secrets, as
1367 // derived by |tls13_derive_early_secret|, to QUIC. It returns true on success
1368 // and false on error.
1369 bool tls13_set_early_secret_for_quic(SSL_HANDSHAKE *hs);
1370 
1371 // tls13_derive_handshake_secrets derives the handshake traffic secret. It
1372 // returns true on success and false on error.
1373 bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs);
1374 
1375 // tls13_rotate_traffic_key derives the next read or write traffic secret. It
1376 // returns true on success and false on error.
1377 bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction);
1378 
1379 // tls13_derive_application_secrets derives the initial application data traffic
1380 // and exporter secrets based on the handshake transcripts and |master_secret|.
1381 // It returns true on success and false on error.
1382 bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs);
1383 
1384 // tls13_derive_resumption_secret derives the |resumption_secret|.
1385 bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs);
1386 
1387 // tls13_export_keying_material provides an exporter interface to use the
1388 // |exporter_secret|.
1389 bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out,
1390                                   Span<const uint8_t> secret,
1391                                   Span<const char> label,
1392                                   Span<const uint8_t> context);
1393 
1394 // tls13_finished_mac calculates the MAC of the handshake transcript to verify
1395 // the integrity of the Finished message, and stores the result in |out| and
1396 // length in |out_len|. |is_server| is true if this is for the Server Finished
1397 // and false for the Client Finished.
1398 bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len,
1399                         bool is_server);
1400 
1401 // tls13_derive_session_psk calculates the PSK for this session based on the
1402 // resumption master secret and |nonce|. It returns true on success, and false
1403 // on failure.
1404 bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce);
1405 
1406 // tls13_write_psk_binder calculates the PSK binder value and replaces the last
1407 // bytes of |msg| with the resulting value. It returns true on success, and
1408 // false on failure.
1409 bool tls13_write_psk_binder(SSL_HANDSHAKE *hs, Span<uint8_t> msg);
1410 
1411 // tls13_verify_psk_binder verifies that the handshake transcript, truncated up
1412 // to the binders has a valid signature using the value of |session|'s
1413 // resumption secret. It returns true on success, and false on failure.
1414 bool tls13_verify_psk_binder(SSL_HANDSHAKE *hs, SSL_SESSION *session,
1415                              const SSLMessage &msg, CBS *binders);
1416 
1417 
1418 // Handshake functions.
1419 
1420 enum ssl_hs_wait_t {
1421   ssl_hs_error,
1422   ssl_hs_ok,
1423   ssl_hs_read_server_hello,
1424   ssl_hs_read_message,
1425   ssl_hs_flush,
1426   ssl_hs_certificate_selection_pending,
1427   ssl_hs_handoff,
1428   ssl_hs_handback,
1429   ssl_hs_x509_lookup,
1430   ssl_hs_channel_id_lookup,
1431   ssl_hs_private_key_operation,
1432   ssl_hs_pending_session,
1433   ssl_hs_pending_ticket,
1434   ssl_hs_early_return,
1435   ssl_hs_early_data_rejected,
1436   ssl_hs_read_end_of_early_data,
1437   ssl_hs_read_change_cipher_spec,
1438   ssl_hs_certificate_verify,
1439 };
1440 
1441 enum ssl_grease_index_t {
1442   ssl_grease_cipher = 0,
1443   ssl_grease_group,
1444   ssl_grease_extension1,
1445   ssl_grease_extension2,
1446   ssl_grease_version,
1447   ssl_grease_ticket_extension,
1448   ssl_grease_last_index = ssl_grease_ticket_extension,
1449 };
1450 
1451 enum tls12_server_hs_state_t {
1452   state12_start_accept = 0,
1453   state12_read_client_hello,
1454   state12_select_certificate,
1455   state12_tls13,
1456   state12_select_parameters,
1457   state12_send_server_hello,
1458   state12_send_server_certificate,
1459   state12_send_server_key_exchange,
1460   state12_send_server_hello_done,
1461   state12_read_client_certificate,
1462   state12_verify_client_certificate,
1463   state12_read_client_key_exchange,
1464   state12_read_client_certificate_verify,
1465   state12_read_change_cipher_spec,
1466   state12_process_change_cipher_spec,
1467   state12_read_next_proto,
1468   state12_read_channel_id,
1469   state12_read_client_finished,
1470   state12_send_server_finished,
1471   state12_finish_server_handshake,
1472   state12_done,
1473 };
1474 
1475 // handback_t lists the points in the state machine where a handback can occur.
1476 // These are the different points at which key material is no longer needed.
1477 enum handback_t {
1478   handback_after_session_resumption,
1479   handback_after_ecdhe,
1480   handback_after_handshake,
1481 };
1482 
1483 
1484 // Delegated credentials.
1485 
1486 // This structure stores a delegated credential (DC) as defined by
1487 // draft-ietf-tls-subcerts-03.
1488 struct DC {
1489   static constexpr bool kAllowUniquePtr = true;
1490   ~DC();
1491 
1492   // Dup returns a copy of this DC and takes references to |raw| and |pkey|.
1493   UniquePtr<DC> Dup();
1494 
1495   // Parse parses the delegated credential stored in |in|. If successful it
1496   // returns the parsed structure, otherwise it returns |nullptr| and sets
1497   // |*out_alert|.
1498   static UniquePtr<DC> Parse(CRYPTO_BUFFER *in, uint8_t *out_alert);
1499 
1500   // raw is the delegated credential encoded as specified in draft-ietf-tls-
1501   // subcerts-03.
1502   UniquePtr<CRYPTO_BUFFER> raw;
1503 
1504   // expected_cert_verify_algorithm is the signature scheme of the DC public
1505   // key.
1506   uint16_t expected_cert_verify_algorithm = 0;
1507 
1508   // pkey is the public key parsed from |public_key|.
1509   UniquePtr<EVP_PKEY> pkey;
1510 
1511  private:
1512   friend DC* New<DC>();
1513   DC();
1514 };
1515 
1516 // ssl_signing_with_dc returns true if the peer has indicated support for
1517 // delegated credentials and this host has sent a delegated credential in
1518 // response. If this is true then we've committed to using the DC in the
1519 // handshake.
1520 bool ssl_signing_with_dc(const SSL_HANDSHAKE *hs);
1521 
1522 
1523 struct SSL_HANDSHAKE {
1524   explicit SSL_HANDSHAKE(SSL *ssl);
1525   ~SSL_HANDSHAKE();
1526   static constexpr bool kAllowUniquePtr = true;
1527 
1528   // ssl is a non-owning pointer to the parent |SSL| object.
1529   SSL *ssl;
1530 
1531   // config is a non-owning pointer to the handshake configuration.
1532   SSL_CONFIG *config;
1533 
1534   // wait contains the operation the handshake is currently blocking on or
1535   // |ssl_hs_ok| if none.
1536   enum ssl_hs_wait_t wait = ssl_hs_ok;
1537 
1538   // state is the internal state for the TLS 1.2 and below handshake. Its
1539   // values depend on |do_handshake| but the starting state is always zero.
1540   int state = 0;
1541 
1542   // tls13_state is the internal state for the TLS 1.3 handshake. Its values
1543   // depend on |do_handshake| but the starting state is always zero.
1544   int tls13_state = 0;
1545 
1546   // min_version is the minimum accepted protocol version, taking account both
1547   // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs.
1548   uint16_t min_version = 0;
1549 
1550   // max_version is the maximum accepted protocol version, taking account both
1551   // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs.
1552   uint16_t max_version = 0;
1553 
1554  private:
1555   size_t hash_len_ = 0;
1556   uint8_t secret_[SSL_MAX_MD_SIZE] = {0};
1557   uint8_t early_traffic_secret_[SSL_MAX_MD_SIZE] = {0};
1558   uint8_t client_handshake_secret_[SSL_MAX_MD_SIZE] = {0};
1559   uint8_t server_handshake_secret_[SSL_MAX_MD_SIZE] = {0};
1560   uint8_t client_traffic_secret_0_[SSL_MAX_MD_SIZE] = {0};
1561   uint8_t server_traffic_secret_0_[SSL_MAX_MD_SIZE] = {0};
1562   uint8_t expected_client_finished_[SSL_MAX_MD_SIZE] = {0};
1563 
1564  public:
1565   void ResizeSecrets(size_t hash_len);
1566 
1567   Span<uint8_t> secret() { return MakeSpan(secret_, hash_len_); }
1568   Span<uint8_t> early_traffic_secret() {
1569     return MakeSpan(early_traffic_secret_, hash_len_);
1570   }
1571   Span<uint8_t> client_handshake_secret() {
1572     return MakeSpan(client_handshake_secret_, hash_len_);
1573   }
1574   Span<uint8_t> server_handshake_secret() {
1575     return MakeSpan(server_handshake_secret_, hash_len_);
1576   }
1577   Span<uint8_t> client_traffic_secret_0() {
1578     return MakeSpan(client_traffic_secret_0_, hash_len_);
1579   }
1580   Span<uint8_t> server_traffic_secret_0() {
1581     return MakeSpan(server_traffic_secret_0_, hash_len_);
1582   }
1583   Span<uint8_t> expected_client_finished() {
1584     return MakeSpan(expected_client_finished_, hash_len_);
1585   }
1586 
1587   union {
1588     // sent is a bitset where the bits correspond to elements of kExtensions
1589     // in t1_lib.c. Each bit is set if that extension was sent in a
1590     // ClientHello. It's not used by servers.
1591     uint32_t sent = 0;
1592     // received is a bitset, like |sent|, but is used by servers to record
1593     // which extensions were received from a client.
1594     uint32_t received;
1595   } extensions;
1596 
1597   // retry_group is the group ID selected by the server in HelloRetryRequest in
1598   // TLS 1.3.
1599   uint16_t retry_group = 0;
1600 
1601   // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on.
1602   UniquePtr<ERR_SAVE_STATE> error;
1603 
1604   // key_shares are the current key exchange instances. The second is only used
1605   // as a client if we believe that we should offer two key shares in a
1606   // ClientHello.
1607   UniquePtr<SSLKeyShare> key_shares[2];
1608 
1609   // transcript is the current handshake transcript.
1610   SSLTranscript transcript;
1611 
1612   // cookie is the value of the cookie received from the server, if any.
1613   Array<uint8_t> cookie;
1614 
1615   // key_share_bytes is the value of the previously sent KeyShare extension by
1616   // the client in TLS 1.3.
1617   Array<uint8_t> key_share_bytes;
1618 
1619   // ecdh_public_key, for servers, is the key share to be sent to the client in
1620   // TLS 1.3.
1621   Array<uint8_t> ecdh_public_key;
1622 
1623   // peer_sigalgs are the signature algorithms that the peer supports. These are
1624   // taken from the contents of the signature algorithms extension for a server
1625   // or from the CertificateRequest for a client.
1626   Array<uint16_t> peer_sigalgs;
1627 
1628   // peer_supported_group_list contains the supported group IDs advertised by
1629   // the peer. This is only set on the server's end. The server does not
1630   // advertise this extension to the client.
1631   Array<uint16_t> peer_supported_group_list;
1632 
1633   // peer_key is the peer's ECDH key for a TLS 1.2 client.
1634   Array<uint8_t> peer_key;
1635 
1636   // negotiated_token_binding_version is used by a server to store the
1637   // on-the-wire encoding of the Token Binding protocol version to advertise in
1638   // the ServerHello/EncryptedExtensions if the Token Binding extension is to be
1639   // sent.
1640   uint16_t negotiated_token_binding_version;
1641 
1642   // cert_compression_alg_id, for a server, contains the negotiated certificate
1643   // compression algorithm for this client. It is only valid if
1644   // |cert_compression_negotiated| is true.
1645   uint16_t cert_compression_alg_id;
1646 
1647   // server_params, in a TLS 1.2 server, stores the ServerKeyExchange
1648   // parameters. It has client and server randoms prepended for signing
1649   // convenience.
1650   Array<uint8_t> server_params;
1651 
1652   // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the
1653   // server when using a TLS 1.2 PSK key exchange.
1654   UniquePtr<char> peer_psk_identity_hint;
1655 
1656   // ca_names, on the client, contains the list of CAs received in a
1657   // CertificateRequest message.
1658   UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names;
1659 
1660   // cached_x509_ca_names contains a cache of parsed versions of the elements of
1661   // |ca_names|. This pointer is left non-owning so only
1662   // |ssl_crypto_x509_method| needs to link against crypto/x509.
1663   STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr;
1664 
1665   // certificate_types, on the client, contains the set of certificate types
1666   // received in a CertificateRequest message.
1667   Array<uint8_t> certificate_types;
1668 
1669   // local_pubkey is the public key we are authenticating as.
1670   UniquePtr<EVP_PKEY> local_pubkey;
1671 
1672   // peer_pubkey is the public key parsed from the peer's leaf certificate.
1673   UniquePtr<EVP_PKEY> peer_pubkey;
1674 
1675   // new_session is the new mutable session being established by the current
1676   // handshake. It should not be cached.
1677   UniquePtr<SSL_SESSION> new_session;
1678 
1679   // early_session is the session corresponding to the current 0-RTT state on
1680   // the client if |in_early_data| is true.
1681   UniquePtr<SSL_SESSION> early_session;
1682 
1683   // new_cipher is the cipher being negotiated in this handshake.
1684   const SSL_CIPHER *new_cipher = nullptr;
1685 
1686   // key_block is the record-layer key block for TLS 1.2 and earlier.
1687   Array<uint8_t> key_block;
1688 
1689   // scts_requested is true if the SCT extension is in the ClientHello.
1690   bool scts_requested : 1;
1691 
1692   // needs_psk_binder is true if the ClientHello has a placeholder PSK binder to
1693   // be filled in.
1694   bool needs_psk_binder : 1;
1695 
1696   bool received_hello_retry_request : 1;
1697   bool sent_hello_retry_request : 1;
1698 
1699   // handshake_finalized is true once the handshake has completed, at which
1700   // point accessors should use the established state.
1701   bool handshake_finalized : 1;
1702 
1703   // accept_psk_mode stores whether the client's PSK mode is compatible with our
1704   // preferences.
1705   bool accept_psk_mode : 1;
1706 
1707   // cert_request is true if a client certificate was requested.
1708   bool cert_request : 1;
1709 
1710   // certificate_status_expected is true if OCSP stapling was negotiated and the
1711   // server is expected to send a CertificateStatus message. (This is used on
1712   // both the client and server sides.)
1713   bool certificate_status_expected : 1;
1714 
1715   // ocsp_stapling_requested is true if a client requested OCSP stapling.
1716   bool ocsp_stapling_requested : 1;
1717 
1718   // delegated_credential_requested is true if the peer indicated support for
1719   // the delegated credential extension.
1720   bool delegated_credential_requested : 1;
1721 
1722   // should_ack_sni is used by a server and indicates that the SNI extension
1723   // should be echoed in the ServerHello.
1724   bool should_ack_sni : 1;
1725 
1726   // in_false_start is true if there is a pending client handshake in False
1727   // Start. The client may write data at this point.
1728   bool in_false_start : 1;
1729 
1730   // in_early_data is true if there is a pending handshake that has progressed
1731   // enough to send and receive early data.
1732   bool in_early_data : 1;
1733 
1734   // early_data_offered is true if the client sent the early_data extension.
1735   bool early_data_offered : 1;
1736 
1737   // can_early_read is true if application data may be read at this point in the
1738   // handshake.
1739   bool can_early_read : 1;
1740 
1741   // can_early_write is true if application data may be written at this point in
1742   // the handshake.
1743   bool can_early_write : 1;
1744 
1745   // next_proto_neg_seen is one of NPN was negotiated.
1746   bool next_proto_neg_seen : 1;
1747 
1748   // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent
1749   // or received.
1750   bool ticket_expected : 1;
1751 
1752   // extended_master_secret is true if the extended master secret extension is
1753   // negotiated in this handshake.
1754   bool extended_master_secret : 1;
1755 
1756   // pending_private_key_op is true if there is a pending private key operation
1757   // in progress.
1758   bool pending_private_key_op : 1;
1759 
1760   // grease_seeded is true if |grease_seed| has been initialized.
1761   bool grease_seeded : 1;
1762 
1763   // handback indicates that a server should pause the handshake after
1764   // finishing operations that require private key material, in such a way that
1765   // |SSL_get_error| returns |SSL_ERROR_HANDBACK|.  It is set by
1766   // |SSL_apply_handoff|.
1767   bool handback : 1;
1768 
1769   // cert_compression_negotiated is true iff |cert_compression_alg_id| is valid.
1770   bool cert_compression_negotiated : 1;
1771 
1772   // apply_jdk11_workaround is true if the peer is probably a JDK 11 client
1773   // which implemented TLS 1.3 incorrectly.
1774   bool apply_jdk11_workaround : 1;
1775 
1776   // client_version is the value sent or received in the ClientHello version.
1777   uint16_t client_version = 0;
1778 
1779   // early_data_read is the amount of early data that has been read by the
1780   // record layer.
1781   uint16_t early_data_read = 0;
1782 
1783   // early_data_written is the amount of early data that has been written by the
1784   // record layer.
1785   uint16_t early_data_written = 0;
1786 
1787   // session_id is the session ID in the ClientHello.
1788   uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
1789   uint8_t session_id_len = 0;
1790 
1791   // grease_seed is the entropy for GREASE values. It is valid if
1792   // |grease_seeded| is true.
1793   uint8_t grease_seed[ssl_grease_last_index + 1] = {0};
1794 };
1795 
1796 UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl);
1797 
1798 // ssl_check_message_type checks if |msg| has type |type|. If so it returns
1799 // one. Otherwise, it sends an alert and returns zero.
1800 bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type);
1801 
1802 // ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0
1803 // on error. It sets |out_early_return| to one if we've completed the handshake
1804 // early.
1805 int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return);
1806 
1807 // The following are implementations of |do_handshake| for the client and
1808 // server.
1809 enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs);
1810 enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs);
1811 enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs);
1812 enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs);
1813 
1814 // The following functions return human-readable representations of the TLS
1815 // handshake states for debugging.
1816 const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs);
1817 const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs);
1818 const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs);
1819 const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs);
1820 
1821 // tls13_add_key_update queues a KeyUpdate message on |ssl|. The
1822 // |update_requested| argument must be one of |SSL_KEY_UPDATE_REQUESTED| or
1823 // |SSL_KEY_UPDATE_NOT_REQUESTED|.
1824 bool tls13_add_key_update(SSL *ssl, int update_requested);
1825 
1826 // tls13_post_handshake processes a post-handshake message. It returns true on
1827 // success and false on failure.
1828 bool tls13_post_handshake(SSL *ssl, const SSLMessage &msg);
1829 
1830 bool tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg,
1831                                bool allow_anonymous);
1832 bool tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg);
1833 
1834 // tls13_process_finished processes |msg| as a Finished message from the
1835 // peer. If |use_saved_value| is true, the verify_data is compared against
1836 // |hs->expected_client_finished| rather than computed fresh.
1837 bool tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg,
1838                             bool use_saved_value);
1839 
1840 bool tls13_add_certificate(SSL_HANDSHAKE *hs);
1841 
1842 // tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the
1843 // handshake. If it returns |ssl_private_key_retry|, it should be called again
1844 // to retry when the signing operation is completed.
1845 enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs);
1846 
1847 bool tls13_add_finished(SSL_HANDSHAKE *hs);
1848 bool tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg);
1849 
1850 bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs,
1851                                          Array<uint8_t> *out_secret,
1852                                          uint8_t *out_alert, CBS *contents);
1853 bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found,
1854                                          Array<uint8_t> *out_secret,
1855                                          uint8_t *out_alert, CBS *contents);
1856 bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
1857 
1858 bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs,
1859                                               uint8_t *out_alert,
1860                                               CBS *contents);
1861 bool ssl_ext_pre_shared_key_parse_clienthello(
1862     SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders,
1863     uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert,
1864     const SSL_CLIENT_HELLO *client_hello, CBS *contents);
1865 bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out);
1866 
1867 // ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and
1868 // returns whether it's valid.
1869 bool ssl_is_sct_list_valid(const CBS *contents);
1870 
1871 bool ssl_write_client_hello(SSL_HANDSHAKE *hs);
1872 
1873 enum ssl_cert_verify_context_t {
1874   ssl_cert_verify_server,
1875   ssl_cert_verify_client,
1876   ssl_cert_verify_channel_id,
1877 };
1878 
1879 // tls13_get_cert_verify_signature_input generates the message to be signed for
1880 // TLS 1.3's CertificateVerify message. |cert_verify_context| determines the
1881 // type of signature. It sets |*out| to a newly allocated buffer containing the
1882 // result. This function returns true on success and false on failure.
1883 bool tls13_get_cert_verify_signature_input(
1884     SSL_HANDSHAKE *hs, Array<uint8_t> *out,
1885     enum ssl_cert_verify_context_t cert_verify_context);
1886 
1887 // ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server
1888 // selection for |hs->ssl|'s client preferences.
1889 bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs,
1890                                   Span<const uint8_t> protocol);
1891 
1892 // ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns
1893 // true on successful negotiation or if nothing was negotiated. It returns false
1894 // and sets |*out_alert| to an alert on error.
1895 bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert,
1896                         const SSL_CLIENT_HELLO *client_hello);
1897 
1898 struct SSL_EXTENSION_TYPE {
1899   uint16_t type;
1900   bool *out_present;
1901   CBS *out_data;
1902 };
1903 
1904 // ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances
1905 // it. It writes the parsed extensions to pointers denoted by |ext_types|. On
1906 // success, it fills in the |out_present| and |out_data| fields and returns one.
1907 // Otherwise, it sets |*out_alert| to an alert to send and returns zero. Unknown
1908 // extensions are rejected unless |ignore_unknown| is 1.
1909 int ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert,
1910                          const SSL_EXTENSION_TYPE *ext_types,
1911                          size_t num_ext_types, int ignore_unknown);
1912 
1913 // ssl_verify_peer_cert verifies the peer certificate for |hs|.
1914 enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs);
1915 // ssl_reverify_peer_cert verifies the peer certificate for |hs| when resuming a
1916 // session.
1917 enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs);
1918 
1919 enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs);
1920 bool ssl_send_finished(SSL_HANDSHAKE *hs);
1921 bool ssl_output_cert_chain(SSL_HANDSHAKE *hs);
1922 
1923 // SSLKEYLOGFILE functions.
1924 
1925 // ssl_log_secret logs |secret| with label |label|, if logging is enabled for
1926 // |ssl|. It returns true on success and false on failure.
1927 bool ssl_log_secret(const SSL *ssl, const char *label,
1928                     Span<const uint8_t> secret);
1929 
1930 
1931 // ClientHello functions.
1932 
1933 bool ssl_client_hello_init(const SSL *ssl, SSL_CLIENT_HELLO *out,
1934                            const SSLMessage &msg);
1935 
1936 bool ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello,
1937                                     CBS *out, uint16_t extension_type);
1938 
1939 bool ssl_client_cipher_list_contains_cipher(
1940     const SSL_CLIENT_HELLO *client_hello, uint16_t id);
1941 
1942 
1943 // GREASE.
1944 
1945 // ssl_get_grease_value returns a GREASE value for |hs|. For a given
1946 // connection, the values for each index will be deterministic. This allows the
1947 // same ClientHello be sent twice for a HelloRetryRequest or the same group be
1948 // advertised in both supported_groups and key_shares.
1949 uint16_t ssl_get_grease_value(SSL_HANDSHAKE *hs, enum ssl_grease_index_t index);
1950 
1951 
1952 // Signature algorithms.
1953 
1954 // tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature
1955 // algorithms and saves them on |hs|. It returns true on success and false on
1956 // error.
1957 bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs);
1958 
1959 // tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm
1960 // that should be used with |pkey| in TLS 1.1 and earlier. It returns true on
1961 // success and false if |pkey| may not be used at those versions.
1962 bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey);
1963 
1964 // tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use
1965 // with |hs|'s private key based on the peer's preferences and the algorithms
1966 // supported. It returns true on success and false on error.
1967 bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t *out);
1968 
1969 // tls1_get_peer_verify_algorithms returns the signature schemes for which the
1970 // peer indicated support.
1971 //
1972 // NOTE: The related function |SSL_get0_peer_verify_algorithms| only has
1973 // well-defined behavior during the callbacks set by |SSL_CTX_set_cert_cb| and
1974 // |SSL_CTX_set_client_cert_cb|, or when the handshake is paused because of
1975 // them.
1976 Span<const uint16_t> tls1_get_peer_verify_algorithms(const SSL_HANDSHAKE *hs);
1977 
1978 // tls12_add_verify_sigalgs adds the signature algorithms acceptable for the
1979 // peer signature to |out|. It returns true on success and false on error. If
1980 // |for_certs| is true, the potentially more restrictive list of algorithms for
1981 // certificates is used. Otherwise, the online signature one is used.
1982 bool tls12_add_verify_sigalgs(const SSL *ssl, CBB *out, bool for_certs);
1983 
1984 // tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer
1985 // signature. It returns true on success and false on error, setting
1986 // |*out_alert| to an alert to send.
1987 bool tls12_check_peer_sigalg(const SSL *ssl, uint8_t *out_alert,
1988                              uint16_t sigalg);
1989 
1990 // tls12_has_different_verify_sigalgs_for_certs returns whether |ssl| has a
1991 // different, more restrictive, list of signature algorithms acceptable for the
1992 // certificate than the online signature.
1993 bool tls12_has_different_verify_sigalgs_for_certs(const SSL *ssl);
1994 
1995 
1996 // Underdocumented functions.
1997 //
1998 // Functions below here haven't been touched up and may be underdocumented.
1999 
2000 #define TLSEXT_CHANNEL_ID_SIZE 128
2001 
2002 // From RFC4492, used in encoding the curve type in ECParameters
2003 #define NAMED_CURVE_TYPE 3
2004 
2005 struct CERT {
2006   static constexpr bool kAllowUniquePtr = true;
2007 
2008   explicit CERT(const SSL_X509_METHOD *x509_method);
2009   ~CERT();
2010 
2011   UniquePtr<EVP_PKEY> privatekey;
2012 
2013   // chain contains the certificate chain, with the leaf at the beginning. The
2014   // first element of |chain| may be NULL to indicate that the leaf certificate
2015   // has not yet been set.
2016   //   If |chain| != NULL -> len(chain) >= 1
2017   //   If |chain[0]| == NULL -> len(chain) >= 2.
2018   //   |chain[1..]| != NULL
2019   UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain;
2020 
2021   // x509_chain may contain a parsed copy of |chain[1..]|. This is only used as
2022   // a cache in order to implement “get0” functions that return a non-owning
2023   // pointer to the certificate chain.
2024   STACK_OF(X509) *x509_chain = nullptr;
2025 
2026   // x509_leaf may contain a parsed copy of the first element of |chain|. This
2027   // is only used as a cache in order to implement “get0” functions that return
2028   // a non-owning pointer to the certificate chain.
2029   X509 *x509_leaf = nullptr;
2030 
2031   // x509_stash contains the last |X509| object append to the chain. This is a
2032   // workaround for some third-party code that continue to use an |X509| object
2033   // even after passing ownership with an “add0” function.
2034   X509 *x509_stash = nullptr;
2035 
2036   // key_method, if non-NULL, is a set of callbacks to call for private key
2037   // operations.
2038   const SSL_PRIVATE_KEY_METHOD *key_method = nullptr;
2039 
2040   // x509_method contains pointers to functions that might deal with |X509|
2041   // compatibility, or might be a no-op, depending on the application.
2042   const SSL_X509_METHOD *x509_method = nullptr;
2043 
2044   // sigalgs, if non-empty, is the set of signature algorithms supported by
2045   // |privatekey| in decreasing order of preference.
2046   Array<uint16_t> sigalgs;
2047 
2048   // Certificate setup callback: if set is called whenever a
2049   // certificate may be required (client or server). the callback
2050   // can then examine any appropriate parameters and setup any
2051   // certificates required. This allows advanced applications
2052   // to select certificates on the fly: for example based on
2053   // supported signature algorithms or curves.
2054   int (*cert_cb)(SSL *ssl, void *arg) = nullptr;
2055   void *cert_cb_arg = nullptr;
2056 
2057   // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX
2058   // store is used instead.
2059   X509_STORE *verify_store = nullptr;
2060 
2061   // Signed certificate timestamp list to be sent to the client, if requested
2062   UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
2063 
2064   // OCSP response to be sent to the client, if requested.
2065   UniquePtr<CRYPTO_BUFFER> ocsp_response;
2066 
2067   // sid_ctx partitions the session space within a shared session cache or
2068   // ticket key. Only sessions with a matching value will be accepted.
2069   uint8_t sid_ctx_length = 0;
2070   uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
2071 
2072   // Delegated credentials.
2073 
2074   // dc is the delegated credential to send to the peer (if requested).
2075   UniquePtr<DC> dc = nullptr;
2076 
2077   // dc_privatekey is used instead of |privatekey| or |key_method| to
2078   // authenticate the host if a delegated credential is used in the handshake.
2079   UniquePtr<EVP_PKEY> dc_privatekey = nullptr;
2080 
2081   // dc_key_method, if not NULL, is used instead of |dc_privatekey| to
2082   // authenticate the host.
2083   const SSL_PRIVATE_KEY_METHOD *dc_key_method = nullptr;
2084 };
2085 
2086 // |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS.
2087 struct SSL_PROTOCOL_METHOD {
2088   bool is_dtls;
2089   bool (*ssl_new)(SSL *ssl);
2090   void (*ssl_free)(SSL *ssl);
2091   // get_message sets |*out| to the current handshake message and returns true
2092   // if one has been received. It returns false if more input is needed.
2093   bool (*get_message)(const SSL *ssl, SSLMessage *out);
2094   // next_message is called to release the current handshake message.
2095   void (*next_message)(SSL *ssl);
2096   // Use the |ssl_open_handshake| wrapper.
2097   ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed,
2098                                       uint8_t *out_alert, Span<uint8_t> in);
2099   // Use the |ssl_open_change_cipher_spec| wrapper.
2100   ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed,
2101                                                uint8_t *out_alert,
2102                                                Span<uint8_t> in);
2103   // Use the |ssl_open_app_data| wrapper.
2104   ssl_open_record_t (*open_app_data)(SSL *ssl, Span<uint8_t> *out,
2105                                      size_t *out_consumed, uint8_t *out_alert,
2106                                      Span<uint8_t> in);
2107   int (*write_app_data)(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf,
2108                         int len);
2109   int (*dispatch_alert)(SSL *ssl);
2110   // init_message begins a new handshake message of type |type|. |cbb| is the
2111   // root CBB to be passed into |finish_message|. |*body| is set to a child CBB
2112   // the caller should write to. It returns true on success and false on error.
2113   bool (*init_message)(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
2114   // finish_message finishes a handshake message. It sets |*out_msg| to the
2115   // serialized message. It returns true on success and false on error.
2116   bool (*finish_message)(SSL *ssl, CBB *cbb, bssl::Array<uint8_t> *out_msg);
2117   // add_message adds a handshake message to the pending flight. It returns
2118   // true on success and false on error.
2119   bool (*add_message)(SSL *ssl, bssl::Array<uint8_t> msg);
2120   // add_change_cipher_spec adds a ChangeCipherSpec record to the pending
2121   // flight. It returns true on success and false on error.
2122   bool (*add_change_cipher_spec)(SSL *ssl);
2123   // flush_flight flushes the pending flight to the transport. It returns one on
2124   // success and <= 0 on error.
2125   int (*flush_flight)(SSL *ssl);
2126   // on_handshake_complete is called when the handshake is complete.
2127   void (*on_handshake_complete)(SSL *ssl);
2128   // set_read_state sets |ssl|'s read cipher state to |aead_ctx|. It returns
2129   // true on success and false if changing the read state is forbidden at this
2130   // point.
2131   bool (*set_read_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx);
2132   // set_write_state sets |ssl|'s write cipher state to |aead_ctx|. It returns
2133   // true on success and false if changing the write state is forbidden at this
2134   // point.
2135   bool (*set_write_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx);
2136 };
2137 
2138 // The following wrappers call |open_*| but handle |read_shutdown| correctly.
2139 
2140 // ssl_open_handshake processes a record from |in| for reading a handshake
2141 // message.
2142 ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed,
2143                                      uint8_t *out_alert, Span<uint8_t> in);
2144 
2145 // ssl_open_change_cipher_spec processes a record from |in| for reading a
2146 // ChangeCipherSpec.
2147 ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
2148                                               uint8_t *out_alert,
2149                                               Span<uint8_t> in);
2150 
2151 // ssl_open_app_data processes a record from |in| for reading application data.
2152 // On success, it returns |ssl_open_record_success| and sets |*out| to the
2153 // input. If it encounters a post-handshake message, it returns
2154 // |ssl_open_record_discard|. The caller should then retry, after processing any
2155 // messages received with |get_message|.
2156 ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out,
2157                                     size_t *out_consumed, uint8_t *out_alert,
2158                                     Span<uint8_t> in);
2159 
2160 struct SSL_X509_METHOD {
2161   // check_client_CA_list returns one if |names| is a good list of X.509
2162   // distinguished names and zero otherwise. This is used to ensure that we can
2163   // reject unparsable values at handshake time when using crypto/x509.
2164   bool (*check_client_CA_list)(STACK_OF(CRYPTO_BUFFER) *names);
2165 
2166   // cert_clear frees and NULLs all X509 certificate-related state.
2167   void (*cert_clear)(CERT *cert);
2168   // cert_free frees all X509-related state.
2169   void (*cert_free)(CERT *cert);
2170   // cert_flush_cached_chain drops any cached |X509|-based certificate chain
2171   // from |cert|.
2172   // cert_dup duplicates any needed fields from |cert| to |new_cert|.
2173   void (*cert_dup)(CERT *new_cert, const CERT *cert);
2174   void (*cert_flush_cached_chain)(CERT *cert);
2175   // cert_flush_cached_chain drops any cached |X509|-based leaf certificate
2176   // from |cert|.
2177   void (*cert_flush_cached_leaf)(CERT *cert);
2178 
2179   // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain|
2180   // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns
2181   // true on success or false on error.
2182   bool (*session_cache_objects)(SSL_SESSION *session);
2183   // session_dup duplicates any needed fields from |session| to |new_session|.
2184   // It returns true on success or false on error.
2185   bool (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session);
2186   // session_clear frees any X509-related state from |session|.
2187   void (*session_clear)(SSL_SESSION *session);
2188   // session_verify_cert_chain verifies the certificate chain in |session|,
2189   // sets |session->verify_result| and returns true on success or false on
2190   // error.
2191   bool (*session_verify_cert_chain)(SSL_SESSION *session, SSL_HANDSHAKE *ssl,
2192                                     uint8_t *out_alert);
2193 
2194   // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|.
2195   void (*hs_flush_cached_ca_names)(SSL_HANDSHAKE *hs);
2196   // ssl_new does any necessary initialisation of |hs|. It returns true on
2197   // success or false on error.
2198   bool (*ssl_new)(SSL_HANDSHAKE *hs);
2199   // ssl_free frees anything created by |ssl_new|.
2200   void (*ssl_config_free)(SSL_CONFIG *cfg);
2201   // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|.
2202   void (*ssl_flush_cached_client_CA)(SSL_CONFIG *cfg);
2203   // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if
2204   // necessary. On success, it updates |ssl|'s certificate configuration as
2205   // needed and returns true. Otherwise, it returns false.
2206   bool (*ssl_auto_chain_if_needed)(SSL_HANDSHAKE *hs);
2207   // ssl_ctx_new does any necessary initialisation of |ctx|. It returns true on
2208   // success or false on error.
2209   bool (*ssl_ctx_new)(SSL_CTX *ctx);
2210   // ssl_ctx_free frees anything created by |ssl_ctx_new|.
2211   void (*ssl_ctx_free)(SSL_CTX *ctx);
2212   // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|.
2213   void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl);
2214 };
2215 
2216 // ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using
2217 // crypto/x509.
2218 extern const SSL_X509_METHOD ssl_crypto_x509_method;
2219 
2220 // ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid
2221 // crypto/x509.
2222 extern const SSL_X509_METHOD ssl_noop_x509_method;
2223 
2224 struct TicketKey {
2225   static constexpr bool kAllowUniquePtr = true;
2226 
2227   uint8_t name[SSL_TICKET_KEY_NAME_LEN] = {0};
2228   uint8_t hmac_key[16] = {0};
2229   uint8_t aes_key[16] = {0};
2230   // next_rotation_tv_sec is the time (in seconds from the epoch) when the
2231   // current key should be superseded by a new key, or the time when a previous
2232   // key should be dropped. If zero, then the key should not be automatically
2233   // rotated.
2234   uint64_t next_rotation_tv_sec = 0;
2235 };
2236 
2237 struct CertCompressionAlg {
2238   static constexpr bool kAllowUniquePtr = true;
2239 
2240   ssl_cert_compression_func_t compress = nullptr;
2241   ssl_cert_decompression_func_t decompress = nullptr;
2242   uint16_t alg_id = 0;
2243 };
2244 
2245 BSSL_NAMESPACE_END
2246 
2247 DEFINE_LHASH_OF(SSL_SESSION)
2248 
2249 BSSL_NAMESPACE_BEGIN
2250 
2251 // An ssl_shutdown_t describes the shutdown state of one end of the connection,
2252 // whether it is alive or has been shutdown via close_notify or fatal alert.
2253 enum ssl_shutdown_t {
2254   ssl_shutdown_none = 0,
2255   ssl_shutdown_close_notify = 1,
2256   ssl_shutdown_error = 2,
2257 };
2258 
2259 struct SSL3_STATE {
2260   static constexpr bool kAllowUniquePtr = true;
2261 
2262   SSL3_STATE();
2263   ~SSL3_STATE();
2264 
2265   uint8_t read_sequence[8] = {0};
2266   uint8_t write_sequence[8] = {0};
2267 
2268   uint8_t server_random[SSL3_RANDOM_SIZE] = {0};
2269   uint8_t client_random[SSL3_RANDOM_SIZE] = {0};
2270 
2271   // read_buffer holds data from the transport to be processed.
2272   SSLBuffer read_buffer;
2273   // write_buffer holds data to be written to the transport.
2274   SSLBuffer write_buffer;
2275 
2276   // pending_app_data is the unconsumed application data. It points into
2277   // |read_buffer|.
2278   Span<uint8_t> pending_app_data;
2279 
2280   // partial write - check the numbers match
2281   unsigned int wnum = 0;  // number of bytes sent so far
2282   int wpend_tot = 0;      // number bytes written
2283   int wpend_type = 0;
2284   int wpend_ret = 0;  // number of bytes submitted
2285   const uint8_t *wpend_buf = nullptr;
2286 
2287   // read_shutdown is the shutdown state for the read half of the connection.
2288   enum ssl_shutdown_t read_shutdown = ssl_shutdown_none;
2289 
2290   // write_shutdown is the shutdown state for the write half of the connection.
2291   enum ssl_shutdown_t write_shutdown = ssl_shutdown_none;
2292 
2293   // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for
2294   // the receive half of the connection.
2295   UniquePtr<ERR_SAVE_STATE> read_error;
2296 
2297   int total_renegotiations = 0;
2298 
2299   // This holds a variable that indicates what we were doing when a 0 or -1 is
2300   // returned.  This is needed for non-blocking IO so we know what request
2301   // needs re-doing when in SSL_accept or SSL_connect
2302   int rwstate = SSL_ERROR_NONE;
2303 
2304   enum ssl_encryption_level_t read_level = ssl_encryption_initial;
2305   enum ssl_encryption_level_t write_level = ssl_encryption_initial;
2306 
2307   // early_data_skipped is the amount of early data that has been skipped by the
2308   // record layer.
2309   uint16_t early_data_skipped = 0;
2310 
2311   // empty_record_count is the number of consecutive empty records received.
2312   uint8_t empty_record_count = 0;
2313 
2314   // warning_alert_count is the number of consecutive warning alerts
2315   // received.
2316   uint8_t warning_alert_count = 0;
2317 
2318   // key_update_count is the number of consecutive KeyUpdates received.
2319   uint8_t key_update_count = 0;
2320 
2321   // The negotiated Token Binding key parameter. Only valid if
2322   // |token_binding_negotiated| is set.
2323   uint8_t negotiated_token_binding_param = 0;
2324 
2325   // skip_early_data instructs the record layer to skip unexpected early data
2326   // messages when 0RTT is rejected.
2327   bool skip_early_data : 1;
2328 
2329   // have_version is true if the connection's final version is known. Otherwise
2330   // the version has not been negotiated yet.
2331   bool have_version : 1;
2332 
2333   // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled
2334   // and future messages should use the record layer.
2335   bool v2_hello_done : 1;
2336 
2337   // is_v2_hello is true if the current handshake message was derived from a
2338   // V2ClientHello rather than received from the peer directly.
2339   bool is_v2_hello : 1;
2340 
2341   // has_message is true if the current handshake message has been returned
2342   // at least once by |get_message| and false otherwise.
2343   bool has_message : 1;
2344 
2345   // initial_handshake_complete is true if the initial handshake has
2346   // completed.
2347   bool initial_handshake_complete : 1;
2348 
2349   // session_reused indicates whether a session was resumed.
2350   bool session_reused : 1;
2351 
2352   // delegated_credential_used is whether we presented a delegated credential to
2353   // the peer.
2354   bool delegated_credential_used : 1;
2355 
2356   bool send_connection_binding : 1;
2357 
2358   // In a client, this means that the server supported Channel ID and that a
2359   // Channel ID was sent. In a server it means that we echoed support for
2360   // Channel IDs and that |channel_id| will be valid after the handshake.
2361   bool channel_id_valid : 1;
2362 
2363   // key_update_pending is true if we have a KeyUpdate acknowledgment
2364   // outstanding.
2365   bool key_update_pending : 1;
2366 
2367   // wpend_pending is true if we have a pending write outstanding.
2368   bool wpend_pending : 1;
2369 
2370   // early_data_accepted is true if early data was accepted by the server.
2371   bool early_data_accepted : 1;
2372 
2373   // tls13_downgrade is whether the TLS 1.3 anti-downgrade logic fired.
2374   bool tls13_downgrade : 1;
2375 
2376   // token_binding_negotiated is set if Token Binding was negotiated.
2377   bool token_binding_negotiated : 1;
2378 
2379   // pq_experimental_signal_seen is true if the peer was observed
2380   // sending/echoing the post-quantum experiment signal.
2381   bool pq_experiment_signal_seen : 1;
2382 
2383   // alert_dispatch is true there is an alert in |send_alert| to be sent.
2384   bool alert_dispatch : 1;
2385 
2386   // renegotiate_pending is whether the read half of the channel is blocked on a
2387   // HelloRequest.
2388   bool renegotiate_pending : 1;
2389 
2390   // hs_buf is the buffer of handshake data to process.
2391   UniquePtr<BUF_MEM> hs_buf;
2392 
2393   // pending_hs_data contains the pending handshake data that has not yet
2394   // been encrypted to |pending_flight|. This allows packing the handshake into
2395   // fewer records.
2396   UniquePtr<BUF_MEM> pending_hs_data;
2397 
2398   // pending_flight is the pending outgoing flight. This is used to flush each
2399   // handshake flight in a single write. |write_buffer| must be written out
2400   // before this data.
2401   UniquePtr<BUF_MEM> pending_flight;
2402 
2403   // pending_flight_offset is the number of bytes of |pending_flight| which have
2404   // been successfully written.
2405   uint32_t pending_flight_offset = 0;
2406 
2407   // ticket_age_skew is the difference, in seconds, between the client-sent
2408   // ticket age and the server-computed value in TLS 1.3 server connections
2409   // which resumed a session.
2410   int32_t ticket_age_skew = 0;
2411 
2412   // ssl_early_data_reason stores details on why 0-RTT was accepted or rejected.
2413   enum ssl_early_data_reason_t early_data_reason = ssl_early_data_unknown;
2414 
2415   // aead_read_ctx is the current read cipher state.
2416   UniquePtr<SSLAEADContext> aead_read_ctx;
2417 
2418   // aead_write_ctx is the current write cipher state.
2419   UniquePtr<SSLAEADContext> aead_write_ctx;
2420 
2421   // hs is the handshake state for the current handshake or NULL if there isn't
2422   // one.
2423   UniquePtr<SSL_HANDSHAKE> hs;
2424 
2425   uint8_t write_traffic_secret[SSL_MAX_MD_SIZE] = {0};
2426   uint8_t read_traffic_secret[SSL_MAX_MD_SIZE] = {0};
2427   uint8_t exporter_secret[SSL_MAX_MD_SIZE] = {0};
2428   uint8_t write_traffic_secret_len = 0;
2429   uint8_t read_traffic_secret_len = 0;
2430   uint8_t exporter_secret_len = 0;
2431 
2432   // Connection binding to prevent renegotiation attacks
2433   uint8_t previous_client_finished[12] = {0};
2434   uint8_t previous_client_finished_len = 0;
2435   uint8_t previous_server_finished_len = 0;
2436   uint8_t previous_server_finished[12] = {0};
2437 
2438   uint8_t send_alert[2] = {0};
2439 
2440   // established_session is the session established by the connection. This
2441   // session is only filled upon the completion of the handshake and is
2442   // immutable.
2443   UniquePtr<SSL_SESSION> established_session;
2444 
2445   // Next protocol negotiation. For the client, this is the protocol that we
2446   // sent in NextProtocol and is set when handling ServerHello extensions.
2447   //
2448   // For a server, this is the client's selected_protocol from NextProtocol and
2449   // is set when handling the NextProtocol message, before the Finished
2450   // message.
2451   Array<uint8_t> next_proto_negotiated;
2452 
2453   // ALPN information
2454   // (we are in the process of transitioning from NPN to ALPN.)
2455 
2456   // In a server these point to the selected ALPN protocol after the
2457   // ClientHello has been processed. In a client these contain the protocol
2458   // that the server selected once the ServerHello has been processed.
2459   Array<uint8_t> alpn_selected;
2460 
2461   // hostname, on the server, is the value of the SNI extension.
2462   UniquePtr<char> hostname;
2463 
2464   // For a server:
2465   //     If |channel_id_valid| is true, then this contains the
2466   //     verified Channel ID from the client: a P256 point, (x,y), where
2467   //     each are big-endian values.
2468   uint8_t channel_id[64] = {0};
2469 
2470   // Contains the QUIC transport params received by the peer.
2471   Array<uint8_t> peer_quic_transport_params;
2472 
2473   // srtp_profile is the selected SRTP protection profile for
2474   // DTLS-SRTP.
2475   const SRTP_PROTECTION_PROFILE *srtp_profile = nullptr;
2476 };
2477 
2478 // lengths of messages
2479 #define DTLS1_COOKIE_LENGTH 256
2480 
2481 #define DTLS1_RT_HEADER_LENGTH 13
2482 
2483 #define DTLS1_HM_HEADER_LENGTH 12
2484 
2485 #define DTLS1_CCS_HEADER_LENGTH 1
2486 
2487 #define DTLS1_AL_HEADER_LENGTH 2
2488 
2489 struct hm_header_st {
2490   uint8_t type;
2491   uint32_t msg_len;
2492   uint16_t seq;
2493   uint32_t frag_off;
2494   uint32_t frag_len;
2495 };
2496 
2497 // An hm_fragment is an incoming DTLS message, possibly not yet assembled.
2498 struct hm_fragment {
2499   static constexpr bool kAllowUniquePtr = true;
2500 
2501   hm_fragment() {}
2502   hm_fragment(const hm_fragment &) = delete;
2503   hm_fragment &operator=(const hm_fragment &) = delete;
2504 
2505   ~hm_fragment();
2506 
2507   // type is the type of the message.
2508   uint8_t type = 0;
2509   // seq is the sequence number of this message.
2510   uint16_t seq = 0;
2511   // msg_len is the length of the message body.
2512   uint32_t msg_len = 0;
2513   // data is a pointer to the message, including message header. It has length
2514   // |DTLS1_HM_HEADER_LENGTH| + |msg_len|.
2515   uint8_t *data = nullptr;
2516   // reassembly is a bitmask of |msg_len| bits corresponding to which parts of
2517   // the message have been received. It is NULL if the message is complete.
2518   uint8_t *reassembly = nullptr;
2519 };
2520 
2521 struct OPENSSL_timeval {
2522   uint64_t tv_sec;
2523   uint32_t tv_usec;
2524 };
2525 
2526 struct DTLS1_STATE {
2527   static constexpr bool kAllowUniquePtr = true;
2528 
2529   DTLS1_STATE();
2530   ~DTLS1_STATE();
2531 
2532   // has_change_cipher_spec is true if we have received a ChangeCipherSpec from
2533   // the peer in this epoch.
2534   bool has_change_cipher_spec : 1;
2535 
2536   // outgoing_messages_complete is true if |outgoing_messages| has been
2537   // completed by an attempt to flush it. Future calls to |add_message| and
2538   // |add_change_cipher_spec| will start a new flight.
2539   bool outgoing_messages_complete : 1;
2540 
2541   // flight_has_reply is true if the current outgoing flight is complete and has
2542   // processed at least one message. This is used to detect whether we or the
2543   // peer sent the final flight.
2544   bool flight_has_reply : 1;
2545 
2546   uint8_t cookie[DTLS1_COOKIE_LENGTH] = {0};
2547   size_t cookie_len = 0;
2548 
2549   // The current data and handshake epoch.  This is initially undefined, and
2550   // starts at zero once the initial handshake is completed.
2551   uint16_t r_epoch = 0;
2552   uint16_t w_epoch = 0;
2553 
2554   // records being received in the current epoch
2555   DTLS1_BITMAP bitmap;
2556 
2557   uint16_t handshake_write_seq = 0;
2558   uint16_t handshake_read_seq = 0;
2559 
2560   // save last sequence number for retransmissions
2561   uint8_t last_write_sequence[8] = {0};
2562   UniquePtr<SSLAEADContext> last_aead_write_ctx;
2563 
2564   // incoming_messages is a ring buffer of incoming handshake messages that have
2565   // yet to be processed. The front of the ring buffer is message number
2566   // |handshake_read_seq|, at position |handshake_read_seq| %
2567   // |SSL_MAX_HANDSHAKE_FLIGHT|.
2568   UniquePtr<hm_fragment> incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT];
2569 
2570   // outgoing_messages is the queue of outgoing messages from the last handshake
2571   // flight.
2572   DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT];
2573   uint8_t outgoing_messages_len = 0;
2574 
2575   // outgoing_written is the number of outgoing messages that have been
2576   // written.
2577   uint8_t outgoing_written = 0;
2578   // outgoing_offset is the number of bytes of the next outgoing message have
2579   // been written.
2580   uint32_t outgoing_offset = 0;
2581 
2582   unsigned mtu = 0;  // max DTLS packet size
2583 
2584   // num_timeouts is the number of times the retransmit timer has fired since
2585   // the last time it was reset.
2586   unsigned num_timeouts = 0;
2587 
2588   // Indicates when the last handshake msg or heartbeat sent will
2589   // timeout.
2590   struct OPENSSL_timeval next_timeout = {0, 0};
2591 
2592   // timeout_duration_ms is the timeout duration in milliseconds.
2593   unsigned timeout_duration_ms = 0;
2594 };
2595 
2596 // SSL_CONFIG contains configuration bits that can be shed after the handshake
2597 // completes.  Objects of this type are not shared; they are unique to a
2598 // particular |SSL|.
2599 //
2600 // See SSL_shed_handshake_config() for more about the conditions under which
2601 // configuration can be shed.
2602 struct SSL_CONFIG {
2603   static constexpr bool kAllowUniquePtr = true;
2604 
2605   explicit SSL_CONFIG(SSL *ssl_arg);
2606   ~SSL_CONFIG();
2607 
2608   // ssl is a non-owning pointer to the parent |SSL| object.
2609   SSL *const ssl = nullptr;
2610 
2611   // conf_max_version is the maximum acceptable version configured by
2612   // |SSL_set_max_proto_version|. Note this version is not normalized in DTLS
2613   // and is further constrained by |SSL_OP_NO_*|.
2614   uint16_t conf_max_version = 0;
2615 
2616   // conf_min_version is the minimum acceptable version configured by
2617   // |SSL_set_min_proto_version|. Note this version is not normalized in DTLS
2618   // and is further constrained by |SSL_OP_NO_*|.
2619   uint16_t conf_min_version = 0;
2620 
2621   X509_VERIFY_PARAM *param = nullptr;
2622 
2623   // crypto
2624   UniquePtr<SSLCipherPreferenceList> cipher_list;
2625 
2626   // This is used to hold the local certificate used (i.e. the server
2627   // certificate for a server or the client certificate for a client).
2628   UniquePtr<CERT> cert;
2629 
2630   int (*verify_callback)(int ok,
2631                          X509_STORE_CTX *ctx) =
2632       nullptr;  // fail if callback returns 0
2633 
2634   enum ssl_verify_result_t (*custom_verify_callback)(
2635       SSL *ssl, uint8_t *out_alert) = nullptr;
2636   // Server-only: psk_identity_hint is the identity hint to send in
2637   // PSK-based key exchanges.
2638   UniquePtr<char> psk_identity_hint;
2639 
2640   unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
2641                                   unsigned max_identity_len, uint8_t *psk,
2642                                   unsigned max_psk_len) = nullptr;
2643   unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
2644                                   unsigned max_psk_len) = nullptr;
2645 
2646   // for server side, keep the list of CA_dn we can use
2647   UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
2648 
2649   // cached_x509_client_CA is a cache of parsed versions of the elements of
2650   // |client_CA|.
2651   STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
2652 
2653   Array<uint16_t> supported_group_list;  // our list
2654 
2655   // The client's Channel ID private key.
2656   UniquePtr<EVP_PKEY> channel_id_private;
2657 
2658   // For a client, this contains the list of supported protocols in wire
2659   // format.
2660   Array<uint8_t> alpn_client_proto_list;
2661 
2662   // Contains a list of supported Token Binding key parameters.
2663   Array<uint8_t> token_binding_params;
2664 
2665   // Contains the QUIC transport params that this endpoint will send.
2666   Array<uint8_t> quic_transport_params;
2667 
2668   // verify_sigalgs, if not empty, is the set of signature algorithms
2669   // accepted from the peer in decreasing order of preference.
2670   Array<uint16_t> verify_sigalgs;
2671 
2672   // srtp_profiles is the list of configured SRTP protection profiles for
2673   // DTLS-SRTP.
2674   UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
2675 
2676   // verify_mode is a bitmask of |SSL_VERIFY_*| values.
2677   uint8_t verify_mode = SSL_VERIFY_NONE;
2678 
2679   // Enable signed certificate time stamps. Currently client only.
2680   bool signed_cert_timestamps_enabled : 1;
2681 
2682   // ocsp_stapling_enabled is only used by client connections and indicates
2683   // whether OCSP stapling will be requested.
2684   bool ocsp_stapling_enabled : 1;
2685 
2686   // channel_id_enabled is copied from the |SSL_CTX|. For a server, means that
2687   // we'll accept Channel IDs from clients. For a client, means that we'll
2688   // advertise support.
2689   bool channel_id_enabled : 1;
2690 
2691   // If enforce_rsa_key_usage is true, the handshake will fail if the
2692   // keyUsage extension is present and incompatible with the TLS usage.
2693   // This field is not read until after certificate verification.
2694   bool enforce_rsa_key_usage : 1;
2695 
2696   // retain_only_sha256_of_client_certs is true if we should compute the SHA256
2697   // hash of the peer's certificate and then discard it to save memory and
2698   // session space. Only effective on the server side.
2699   bool retain_only_sha256_of_client_certs : 1;
2700 
2701   // handoff indicates that a server should stop after receiving the
2702   // ClientHello and pause the handshake in such a way that |SSL_get_error|
2703   // returns |SSL_ERROR_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX|
2704   // element of the same name and may be cleared if the handoff is declined.
2705   bool handoff : 1;
2706 
2707   // shed_handshake_config indicates that the handshake config (this object!)
2708   // should be freed after the handshake completes.
2709   bool shed_handshake_config : 1;
2710 
2711   // ignore_tls13_downgrade is whether the connection should continue when the
2712   // server random signals a downgrade.
2713   bool ignore_tls13_downgrade : 1;
2714 
2715   // jdk11_workaround is whether to disable TLS 1.3 for JDK 11 clients, as a
2716   // workaround for https://bugs.openjdk.java.net/browse/JDK-8211806.
2717   bool jdk11_workaround : 1;
2718 };
2719 
2720 // From RFC 8446, used in determining PSK modes.
2721 #define SSL_PSK_DHE_KE 0x1
2722 
2723 // kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early
2724 // data that will be accepted. This value should be slightly below
2725 // kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext.
2726 static const size_t kMaxEarlyDataAccepted = 14336;
2727 
2728 UniquePtr<CERT> ssl_cert_dup(CERT *cert);
2729 void ssl_cert_clear_certs(CERT *cert);
2730 bool ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer);
2731 bool ssl_is_key_type_supported(int key_type);
2732 // ssl_compare_public_and_private_key returns true if |pubkey| is the public
2733 // counterpart to |privkey|. Otherwise it returns false and pushes a helpful
2734 // message on the error queue.
2735 bool ssl_compare_public_and_private_key(const EVP_PKEY *pubkey,
2736                                        const EVP_PKEY *privkey);
2737 bool ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey);
2738 int ssl_get_new_session(SSL_HANDSHAKE *hs, int is_server);
2739 int ssl_encrypt_ticket(SSL_HANDSHAKE *hs, CBB *out, const SSL_SESSION *session);
2740 int ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx);
2741 
2742 // ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on
2743 // error.
2744 UniquePtr<SSL_SESSION> ssl_session_new(const SSL_X509_METHOD *x509_method);
2745 
2746 // ssl_hash_session_id returns a hash of |session_id|, suitable for a hash table
2747 // keyed on session IDs.
2748 uint32_t ssl_hash_session_id(Span<const uint8_t> session_id);
2749 
2750 // SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over
2751 // the parsed data.
2752 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_parse(
2753     CBS *cbs, const SSL_X509_METHOD *x509_method, CRYPTO_BUFFER_POOL *pool);
2754 
2755 // ssl_session_serialize writes |in| to |cbb| as if it were serialising a
2756 // session for Session-ID resumption. It returns one on success and zero on
2757 // error.
2758 OPENSSL_EXPORT int ssl_session_serialize(const SSL_SESSION *in, CBB *cbb);
2759 
2760 // ssl_session_is_context_valid returns one if |session|'s session ID context
2761 // matches the one set on |hs| and zero otherwise.
2762 int ssl_session_is_context_valid(const SSL_HANDSHAKE *hs,
2763                                  const SSL_SESSION *session);
2764 
2765 // ssl_session_is_time_valid returns one if |session| is still valid and zero if
2766 // it has expired.
2767 int ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session);
2768 
2769 // ssl_session_is_resumable returns one if |session| is resumable for |hs| and
2770 // zero otherwise.
2771 int ssl_session_is_resumable(const SSL_HANDSHAKE *hs,
2772                              const SSL_SESSION *session);
2773 
2774 // ssl_session_protocol_version returns the protocol version associated with
2775 // |session|. Note that despite the name, this is not the same as
2776 // |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name.
2777 uint16_t ssl_session_protocol_version(const SSL_SESSION *session);
2778 
2779 // ssl_session_get_digest returns the digest used in |session|.
2780 const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session);
2781 
2782 void ssl_set_session(SSL *ssl, SSL_SESSION *session);
2783 
2784 // ssl_get_prev_session looks up the previous session based on |client_hello|.
2785 // On success, it sets |*out_session| to the session or nullptr if none was
2786 // found. If the session could not be looked up synchronously, it returns
2787 // |ssl_hs_pending_session| and should be called again. If a ticket could not be
2788 // decrypted immediately it returns |ssl_hs_pending_ticket| and should also
2789 // be called again. Otherwise, it returns |ssl_hs_error|.
2790 enum ssl_hs_wait_t ssl_get_prev_session(SSL_HANDSHAKE *hs,
2791                                         UniquePtr<SSL_SESSION> *out_session,
2792                                         bool *out_tickets_supported,
2793                                         bool *out_renew_ticket,
2794                                         const SSL_CLIENT_HELLO *client_hello);
2795 
2796 // The following flags determine which parts of the session are duplicated.
2797 #define SSL_SESSION_DUP_AUTH_ONLY 0x0
2798 #define SSL_SESSION_INCLUDE_TICKET 0x1
2799 #define SSL_SESSION_INCLUDE_NONAUTH 0x2
2800 #define SSL_SESSION_DUP_ALL \
2801   (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH)
2802 
2803 // SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the
2804 // fields in |session| or nullptr on error. The new session is non-resumable and
2805 // must be explicitly marked resumable once it has been filled in.
2806 OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_dup(SSL_SESSION *session,
2807                                                       int dup_flags);
2808 
2809 // ssl_session_rebase_time updates |session|'s start time to the current time,
2810 // adjusting the timeout so the expiration time is unchanged.
2811 void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session);
2812 
2813 // ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews
2814 // |session|'s timeout to |timeout| (measured from the current time). The
2815 // renewal is clamped to the session's auth_timeout.
2816 void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session,
2817                                uint32_t timeout);
2818 
2819 void ssl_update_cache(SSL_HANDSHAKE *hs, int mode);
2820 
2821 void ssl_send_alert(SSL *ssl, int level, int desc);
2822 int ssl_send_alert_impl(SSL *ssl, int level, int desc);
2823 bool ssl3_get_message(const SSL *ssl, SSLMessage *out);
2824 ssl_open_record_t ssl3_open_handshake(SSL *ssl, size_t *out_consumed,
2825                                       uint8_t *out_alert, Span<uint8_t> in);
2826 void ssl3_next_message(SSL *ssl);
2827 
2828 int ssl3_dispatch_alert(SSL *ssl);
2829 ssl_open_record_t ssl3_open_app_data(SSL *ssl, Span<uint8_t> *out,
2830                                      size_t *out_consumed, uint8_t *out_alert,
2831                                      Span<uint8_t> in);
2832 ssl_open_record_t ssl3_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
2833                                                uint8_t *out_alert,
2834                                                Span<uint8_t> in);
2835 int ssl3_write_app_data(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf,
2836                         int len);
2837 
2838 bool ssl3_new(SSL *ssl);
2839 void ssl3_free(SSL *ssl);
2840 
2841 bool ssl3_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
2842 bool ssl3_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
2843 bool ssl3_add_message(SSL *ssl, Array<uint8_t> msg);
2844 bool ssl3_add_change_cipher_spec(SSL *ssl);
2845 int ssl3_flush_flight(SSL *ssl);
2846 
2847 bool dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type);
2848 bool dtls1_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg);
2849 bool dtls1_add_message(SSL *ssl, Array<uint8_t> msg);
2850 bool dtls1_add_change_cipher_spec(SSL *ssl);
2851 int dtls1_flush_flight(SSL *ssl);
2852 
2853 // ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to
2854 // the pending flight. It returns true on success and false on error.
2855 bool ssl_add_message_cbb(SSL *ssl, CBB *cbb);
2856 
2857 // ssl_hash_message incorporates |msg| into the handshake hash. It returns true
2858 // on success and false on allocation failure.
2859 bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg);
2860 
2861 ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span<uint8_t> *out,
2862                                       size_t *out_consumed, uint8_t *out_alert,
2863                                       Span<uint8_t> in);
2864 ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed,
2865                                                 uint8_t *out_alert,
2866                                                 Span<uint8_t> in);
2867 
2868 int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake,
2869                          const uint8_t *buf, int len);
2870 
2871 // dtls1_write_record sends a record. It returns one on success and <= 0 on
2872 // error.
2873 int dtls1_write_record(SSL *ssl, int type, const uint8_t *buf, size_t len,
2874                        enum dtls1_use_epoch_t use_epoch);
2875 
2876 int dtls1_retransmit_outgoing_messages(SSL *ssl);
2877 bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr,
2878                           CBS *out_body);
2879 bool dtls1_check_timeout_num(SSL *ssl);
2880 
2881 void dtls1_start_timer(SSL *ssl);
2882 void dtls1_stop_timer(SSL *ssl);
2883 bool dtls1_is_timer_expired(SSL *ssl);
2884 unsigned int dtls1_min_mtu(void);
2885 
2886 bool dtls1_new(SSL *ssl);
2887 void dtls1_free(SSL *ssl);
2888 
2889 bool dtls1_get_message(const SSL *ssl, SSLMessage *out);
2890 ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed,
2891                                        uint8_t *out_alert, Span<uint8_t> in);
2892 void dtls1_next_message(SSL *ssl);
2893 int dtls1_dispatch_alert(SSL *ssl);
2894 
2895 // tls1_configure_aead configures either the read or write direction AEAD (as
2896 // determined by |direction|) using the keys generated by the TLS KDF. The
2897 // |key_block_cache| argument is used to store the generated key block, if
2898 // empty. Otherwise it's assumed that the key block is already contained within
2899 // it. Returns one on success or zero on error.
2900 int tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction,
2901                         Array<uint8_t> *key_block_cache,
2902                         const SSL_CIPHER *cipher,
2903                         Span<const uint8_t> iv_override);
2904 
2905 int tls1_change_cipher_state(SSL_HANDSHAKE *hs, evp_aead_direction_t direction);
2906 int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out,
2907                                 Span<const uint8_t> premaster);
2908 
2909 // tls1_get_grouplist returns the locally-configured group preference list.
2910 Span<const uint16_t> tls1_get_grouplist(const SSL_HANDSHAKE *ssl);
2911 
2912 // tls1_check_group_id returns whether |group_id| is consistent with locally-
2913 // configured group preferences.
2914 bool tls1_check_group_id(const SSL_HANDSHAKE *ssl, uint16_t group_id);
2915 
2916 // tls1_get_shared_group sets |*out_group_id| to the first preferred shared
2917 // group between client and server preferences and returns true. If none may be
2918 // found, it returns false.
2919 bool tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id);
2920 
2921 // tls1_set_curves converts the array of NIDs in |curves| into a newly allocated
2922 // array of TLS group IDs. On success, the function returns true and writes the
2923 // array to |*out_group_ids|. Otherwise, it returns false.
2924 bool tls1_set_curves(Array<uint16_t> *out_group_ids, Span<const int> curves);
2925 
2926 // tls1_set_curves_list converts the string of curves pointed to by |curves|
2927 // into a newly allocated array of TLS group IDs. On success, the function
2928 // returns true and writes the array to |*out_group_ids|. Otherwise, it returns
2929 // false.
2930 bool tls1_set_curves_list(Array<uint16_t> *out_group_ids, const char *curves);
2931 
2932 // ssl_add_clienthello_tlsext writes ClientHello extensions to |out|. It returns
2933 // true on success and false on failure. The |header_len| argument is the length
2934 // of the ClientHello written so far and is used to compute the padding length.
2935 // (It does not include the record header.)
2936 bool ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, size_t header_len);
2937 
2938 bool ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out);
2939 bool ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs,
2940                                   const SSL_CLIENT_HELLO *client_hello);
2941 bool ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, CBS *cbs);
2942 
2943 #define tlsext_tick_md EVP_sha256
2944 
2945 // ssl_process_ticket processes a session ticket from the client. It returns
2946 // one of:
2947 //   |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and
2948 //       |*out_renew_ticket| is set to whether the ticket should be renewed.
2949 //   |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a
2950 //       fresh ticket should be sent, but the given ticket cannot be used.
2951 //   |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted.
2952 //       Retry later.
2953 //   |ssl_ticket_aead_error|: an error occured that is fatal to the connection.
2954 enum ssl_ticket_aead_result_t ssl_process_ticket(
2955     SSL_HANDSHAKE *hs, UniquePtr<SSL_SESSION> *out_session,
2956     bool *out_renew_ticket, Span<const uint8_t> ticket,
2957     Span<const uint8_t> session_id);
2958 
2959 // tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies
2960 // the signature. If the key is valid, it saves the Channel ID and returns true.
2961 // Otherwise, it returns false.
2962 bool tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg);
2963 
2964 // tls1_write_channel_id generates a Channel ID message and puts the output in
2965 // |cbb|. |ssl->channel_id_private| must already be set before calling.  This
2966 // function returns true on success and false on error.
2967 bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb);
2968 
2969 // tls1_channel_id_hash computes the hash to be signed by Channel ID and writes
2970 // it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns
2971 // true on success and false on failure.
2972 bool tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len);
2973 
2974 // tls1_record_handshake_hashes_for_channel_id records the current handshake
2975 // hashes in |hs->new_session| so that Channel ID resumptions can sign that
2976 // data.
2977 bool tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs);
2978 
2979 // ssl_do_channel_id_callback checks runs |hs->ssl->ctx->channel_id_cb| if
2980 // necessary. It returns true on success and false on fatal error. Note that, on
2981 // success, |hs->ssl->channel_id_private| may be unset, in which case the
2982 // operation should be retried later.
2983 bool ssl_do_channel_id_callback(SSL_HANDSHAKE *hs);
2984 
2985 // ssl_can_write returns whether |ssl| is allowed to write.
2986 bool ssl_can_write(const SSL *ssl);
2987 
2988 // ssl_can_read returns wheter |ssl| is allowed to read.
2989 bool ssl_can_read(const SSL *ssl);
2990 
2991 void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock);
2992 void ssl_ctx_get_current_time(const SSL_CTX *ctx,
2993                               struct OPENSSL_timeval *out_clock);
2994 
2995 // ssl_reset_error_state resets state for |SSL_get_error|.
2996 void ssl_reset_error_state(SSL *ssl);
2997 
2998 // ssl_set_read_error sets |ssl|'s read half into an error state, saving the
2999 // current state of the error queue.
3000 void ssl_set_read_error(SSL *ssl);
3001 
3002 BSSL_NAMESPACE_END
3003 
3004 
3005 // Opaque C types.
3006 //
3007 // The following types are exported to C code as public typedefs, so they must
3008 // be defined outside of the namespace.
3009 
3010 // ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility
3011 // structure to support the legacy version-locked methods.
3012 struct ssl_method_st {
3013   // version, if non-zero, is the only protocol version acceptable to an
3014   // SSL_CTX initialized from this method.
3015   uint16_t version;
3016   // method is the underlying SSL_PROTOCOL_METHOD that initializes the
3017   // SSL_CTX.
3018   const bssl::SSL_PROTOCOL_METHOD *method;
3019   // x509_method contains pointers to functions that might deal with |X509|
3020   // compatibility, or might be a no-op, depending on the application.
3021   const bssl::SSL_X509_METHOD *x509_method;
3022 };
3023 
3024 struct ssl_ctx_st {
3025   explicit ssl_ctx_st(const SSL_METHOD *ssl_method);
3026   ssl_ctx_st(const ssl_ctx_st &) = delete;
3027   ssl_ctx_st &operator=(const ssl_ctx_st &) = delete;
3028 
3029   const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
3030   const bssl::SSL_X509_METHOD *x509_method = nullptr;
3031 
3032   // lock is used to protect various operations on this object.
3033   CRYPTO_MUTEX lock;
3034 
3035   // conf_max_version is the maximum acceptable protocol version configured by
3036   // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS
3037   // and is further constrainted by |SSL_OP_NO_*|.
3038   uint16_t conf_max_version = 0;
3039 
3040   // conf_min_version is the minimum acceptable protocol version configured by
3041   // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS
3042   // and is further constrainted by |SSL_OP_NO_*|.
3043   uint16_t conf_min_version = 0;
3044 
3045   // quic_method is the method table corresponding to the QUIC hooks.
3046   const SSL_QUIC_METHOD *quic_method = nullptr;
3047 
3048   bssl::UniquePtr<bssl::SSLCipherPreferenceList> cipher_list;
3049 
3050   X509_STORE *cert_store = nullptr;
3051   LHASH_OF(SSL_SESSION) *sessions = nullptr;
3052   // Most session-ids that will be cached, default is
3053   // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited.
3054   unsigned long session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT;
3055   SSL_SESSION *session_cache_head = nullptr;
3056   SSL_SESSION *session_cache_tail = nullptr;
3057 
3058   // handshakes_since_cache_flush is the number of successful handshakes since
3059   // the last cache flush.
3060   int handshakes_since_cache_flush = 0;
3061 
3062   // This can have one of 2 values, ored together,
3063   // SSL_SESS_CACHE_CLIENT,
3064   // SSL_SESS_CACHE_SERVER,
3065   // Default is SSL_SESSION_CACHE_SERVER, which means only
3066   // SSL_accept which cache SSL_SESSIONS.
3067   int session_cache_mode = SSL_SESS_CACHE_SERVER;
3068 
3069   // session_timeout is the default lifetime for new sessions in TLS 1.2 and
3070   // earlier, in seconds.
3071   uint32_t session_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3072 
3073   // session_psk_dhe_timeout is the default lifetime for new sessions in TLS
3074   // 1.3, in seconds.
3075   uint32_t session_psk_dhe_timeout = SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT;
3076 
3077   // If this callback is not null, it will be called each time a session id is
3078   // added to the cache.  If this function returns 1, it means that the
3079   // callback will do a SSL_SESSION_free() when it has finished using it.
3080   // Otherwise, on 0, it means the callback has finished with it. If
3081   // remove_session_cb is not null, it will be called when a session-id is
3082   // removed from the cache.  After the call, OpenSSL will SSL_SESSION_free()
3083   // it.
3084   int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess) = nullptr;
3085   void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess) = nullptr;
3086   SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len,
3087                                  int *copy) = nullptr;
3088 
3089   CRYPTO_refcount_t references = 1;
3090 
3091   // if defined, these override the X509_verify_cert() calls
3092   int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg) = nullptr;
3093   void *app_verify_arg = nullptr;
3094 
3095   ssl_verify_result_t (*custom_verify_callback)(SSL *ssl,
3096                                                 uint8_t *out_alert) = nullptr;
3097 
3098   // Default password callback.
3099   pem_password_cb *default_passwd_callback = nullptr;
3100 
3101   // Default password callback user data.
3102   void *default_passwd_callback_userdata = nullptr;
3103 
3104   // get client cert callback
3105   int (*client_cert_cb)(SSL *ssl, X509 **out_x509,
3106                         EVP_PKEY **out_pkey) = nullptr;
3107 
3108   // get channel id callback
3109   void (*channel_id_cb)(SSL *ssl, EVP_PKEY **out_pkey) = nullptr;
3110 
3111   CRYPTO_EX_DATA ex_data;
3112 
3113   // Default values used when no per-SSL value is defined follow
3114 
3115   void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
3116 
3117   // what we put in client cert requests
3118   bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA;
3119 
3120   // cached_x509_client_CA is a cache of parsed versions of the elements of
3121   // |client_CA|.
3122   STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr;
3123 
3124 
3125   // Default values to use in SSL structures follow (these are copied by
3126   // SSL_new)
3127 
3128   uint32_t options = 0;
3129   // Disable the auto-chaining feature by default. wpa_supplicant relies on this
3130   // feature, but require callers opt into it.
3131   uint32_t mode = SSL_MODE_NO_AUTO_CHAIN;
3132   uint32_t max_cert_list = SSL_MAX_CERT_LIST_DEFAULT;
3133 
3134   bssl::UniquePtr<bssl::CERT> cert;
3135 
3136   // callback that allows applications to peek at protocol messages
3137   void (*msg_callback)(int write_p, int version, int content_type,
3138                        const void *buf, size_t len, SSL *ssl,
3139                        void *arg) = nullptr;
3140   void *msg_callback_arg = nullptr;
3141 
3142   int verify_mode = SSL_VERIFY_NONE;
3143   int (*default_verify_callback)(int ok, X509_STORE_CTX *ctx) =
3144       nullptr;  // called 'verify_callback' in the SSL
3145 
3146   X509_VERIFY_PARAM *param = nullptr;
3147 
3148   // select_certificate_cb is called before most ClientHello processing and
3149   // before the decision whether to resume a session is made. See
3150   // |ssl_select_cert_result_t| for details of the return values.
3151   ssl_select_cert_result_t (*select_certificate_cb)(const SSL_CLIENT_HELLO *) =
3152       nullptr;
3153 
3154   // dos_protection_cb is called once the resumption decision for a ClientHello
3155   // has been made. It returns one to continue the handshake or zero to
3156   // abort.
3157   int (*dos_protection_cb)(const SSL_CLIENT_HELLO *) = nullptr;
3158 
3159   // Controls whether to verify certificates when resuming connections. They
3160   // were already verified when the connection was first made, so the default is
3161   // false. For now, this is only respected on clients, not servers.
3162   bool reverify_on_resume = false;
3163 
3164   // Maximum amount of data to send in one fragment. actual record size can be
3165   // more than this due to padding and MAC overheads.
3166   uint16_t max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH;
3167 
3168   // TLS extensions servername callback
3169   int (*servername_callback)(SSL *, int *, void *) = nullptr;
3170   void *servername_arg = nullptr;
3171 
3172   // RFC 4507 session ticket keys. |ticket_key_current| may be NULL before the
3173   // first handshake and |ticket_key_prev| may be NULL at any time.
3174   // Automatically generated ticket keys are rotated as needed at handshake
3175   // time. Hence, all access must be synchronized through |lock|.
3176   bssl::UniquePtr<bssl::TicketKey> ticket_key_current;
3177   bssl::UniquePtr<bssl::TicketKey> ticket_key_prev;
3178 
3179   // Callback to support customisation of ticket key setting
3180   int (*ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv,
3181                        EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) = nullptr;
3182 
3183   // Server-only: psk_identity_hint is the default identity hint to send in
3184   // PSK-based key exchanges.
3185   bssl::UniquePtr<char> psk_identity_hint;
3186 
3187   unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity,
3188                                   unsigned max_identity_len, uint8_t *psk,
3189                                   unsigned max_psk_len) = nullptr;
3190   unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk,
3191                                   unsigned max_psk_len) = nullptr;
3192 
3193 
3194   // Next protocol negotiation information
3195   // (for experimental NPN extension).
3196 
3197   // For a server, this contains a callback function by which the set of
3198   // advertised protocols can be provided.
3199   int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out,
3200                                    unsigned *out_len, void *arg) = nullptr;
3201   void *next_protos_advertised_cb_arg = nullptr;
3202   // For a client, this contains a callback function that selects the
3203   // next protocol from the list provided by the server.
3204   int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len,
3205                               const uint8_t *in, unsigned in_len,
3206                               void *arg) = nullptr;
3207   void *next_proto_select_cb_arg = nullptr;
3208 
3209   // ALPN information
3210   // (we are in the process of transitioning from NPN to ALPN.)
3211 
3212   // For a server, this contains a callback function that allows the
3213   // server to select the protocol for the connection.
3214   //   out: on successful return, this must point to the raw protocol
3215   //        name (without the length prefix).
3216   //   outlen: on successful return, this contains the length of |*out|.
3217   //   in: points to the client's list of supported protocols in
3218   //       wire-format.
3219   //   inlen: the length of |in|.
3220   int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len,
3221                         const uint8_t *in, unsigned in_len,
3222                         void *arg) = nullptr;
3223   void *alpn_select_cb_arg = nullptr;
3224 
3225   // For a client, this contains the list of supported protocols in wire
3226   // format.
3227   bssl::Array<uint8_t> alpn_client_proto_list;
3228 
3229   // SRTP profiles we are willing to do from RFC 5764
3230   bssl::UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles;
3231 
3232   // Defined compression algorithms for certificates.
3233   bssl::GrowableArray<bssl::CertCompressionAlg> cert_compression_algs;
3234 
3235   // Supported group values inherited by SSL structure
3236   bssl::Array<uint16_t> supported_group_list;
3237 
3238   // The client's Channel ID private key.
3239   bssl::UniquePtr<EVP_PKEY> channel_id_private;
3240 
3241   // keylog_callback, if not NULL, is the key logging callback. See
3242   // |SSL_CTX_set_keylog_callback|.
3243   void (*keylog_callback)(const SSL *ssl, const char *line) = nullptr;
3244 
3245   // current_time_cb, if not NULL, is the function to use to get the current
3246   // time. It sets |*out_clock| to the current time. The |ssl| argument is
3247   // always NULL. See |SSL_CTX_set_current_time_cb|.
3248   void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock) = nullptr;
3249 
3250   // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate
3251   // memory.
3252   CRYPTO_BUFFER_POOL *pool = nullptr;
3253 
3254   // ticket_aead_method contains function pointers for opening and sealing
3255   // session tickets.
3256   const SSL_TICKET_AEAD_METHOD *ticket_aead_method = nullptr;
3257 
3258   // legacy_ocsp_callback implements an OCSP-related callback for OpenSSL
3259   // compatibility.
3260   int (*legacy_ocsp_callback)(SSL *ssl, void *arg) = nullptr;
3261   void *legacy_ocsp_callback_arg = nullptr;
3262 
3263   // verify_sigalgs, if not empty, is the set of signature algorithms
3264   // accepted from the peer in decreasing order of preference.
3265   bssl::Array<uint16_t> verify_sigalgs;
3266 
3267   // retain_only_sha256_of_client_certs is true if we should compute the SHA256
3268   // hash of the peer's certificate and then discard it to save memory and
3269   // session space. Only effective on the server side.
3270   bool retain_only_sha256_of_client_certs : 1;
3271 
3272   // quiet_shutdown is true if the connection should not send a close_notify on
3273   // shutdown.
3274   bool quiet_shutdown : 1;
3275 
3276   // ocsp_stapling_enabled is only used by client connections and indicates
3277   // whether OCSP stapling will be requested.
3278   bool ocsp_stapling_enabled : 1;
3279 
3280   // If true, a client will request certificate timestamps.
3281   bool signed_cert_timestamps_enabled : 1;
3282 
3283   // channel_id_enabled is whether Channel ID is enabled. For a server, means
3284   // that we'll accept Channel IDs from clients.  For a client, means that we'll
3285   // advertise support.
3286   bool channel_id_enabled : 1;
3287 
3288   // grease_enabled is whether draft-davidben-tls-grease-01 is enabled.
3289   bool grease_enabled : 1;
3290 
3291   // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN
3292   // protocols from the peer.
3293   bool allow_unknown_alpn_protos : 1;
3294 
3295   // ed25519_enabled is whether Ed25519 is advertised in the handshake.
3296   bool ed25519_enabled : 1;
3297 
3298   // rsa_pss_rsae_certs_enabled is whether rsa_pss_rsae_* are supported by the
3299   // certificate verifier.
3300   bool rsa_pss_rsae_certs_enabled : 1;
3301 
3302   // false_start_allowed_without_alpn is whether False Start (if
3303   // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN.
3304   bool false_start_allowed_without_alpn : 1;
3305 
3306   // ignore_tls13_downgrade is whether a connection should continue when the
3307   // server random signals a downgrade.
3308   bool ignore_tls13_downgrade:1;
3309 
3310   // handoff indicates that a server should stop after receiving the
3311   // ClientHello and pause the handshake in such a way that |SSL_get_error|
3312   // returns |SSL_ERROR_HANDOFF|.
3313   bool handoff : 1;
3314 
3315   // If enable_early_data is true, early data can be sent and accepted.
3316   bool enable_early_data : 1;
3317 
3318   // pq_experiment_signal indicates that an empty extension should be sent
3319   // (for clients) or echoed (for servers) to indicate participation in an
3320   // experiment of post-quantum key exchanges.
3321   bool pq_experiment_signal : 1;
3322 
3323  private:
3324   ~ssl_ctx_st();
3325   friend void SSL_CTX_free(SSL_CTX *);
3326 };
3327 
3328 struct ssl_st {
3329   explicit ssl_st(SSL_CTX *ctx_arg);
3330   ssl_st(const ssl_st &) = delete;
3331   ssl_st &operator=(const ssl_st &) = delete;
3332   ~ssl_st();
3333 
3334   // method is the method table corresponding to the current protocol (DTLS or
3335   // TLS).
3336   const bssl::SSL_PROTOCOL_METHOD *method = nullptr;
3337 
3338   // config is a container for handshake configuration.  Accesses to this field
3339   // should check for nullptr, since configuration may be shed after the
3340   // handshake completes.  (If you have the |SSL_HANDSHAKE| object at hand, use
3341   // that instead, and skip the null check.)
3342   bssl::UniquePtr<bssl::SSL_CONFIG> config;
3343 
3344   // version is the protocol version.
3345   uint16_t version = 0;
3346 
3347   uint16_t max_send_fragment = 0;
3348 
3349   // There are 2 BIO's even though they are normally both the same. This is so
3350   // data can be read and written to different handlers
3351 
3352   bssl::UniquePtr<BIO> rbio;  // used by SSL_read
3353   bssl::UniquePtr<BIO> wbio;  // used by SSL_write
3354 
3355   // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|.
3356   // Otherwise, it returns a value corresponding to what operation is needed to
3357   // progress.
3358   bssl::ssl_hs_wait_t (*do_handshake)(bssl::SSL_HANDSHAKE *hs) = nullptr;
3359 
3360   bssl::SSL3_STATE *s3 = nullptr;   // TLS variables
3361   bssl::DTLS1_STATE *d1 = nullptr;  // DTLS variables
3362 
3363   // callback that allows applications to peek at protocol messages
3364   void (*msg_callback)(int write_p, int version, int content_type,
3365                        const void *buf, size_t len, SSL *ssl,
3366                        void *arg) = nullptr;
3367   void *msg_callback_arg = nullptr;
3368 
3369   // session info
3370 
3371   // initial_timeout_duration_ms is the default DTLS timeout duration in
3372   // milliseconds. It's used to initialize the timer any time it's restarted.
3373   //
3374   // RFC 6347 states that implementations SHOULD use an initial timer value of 1
3375   // second.
3376   unsigned initial_timeout_duration_ms = 1000;
3377 
3378   // session is the configured session to be offered by the client. This session
3379   // is immutable.
3380   bssl::UniquePtr<SSL_SESSION> session;
3381 
3382   void (*info_callback)(const SSL *ssl, int type, int value) = nullptr;
3383 
3384   bssl::UniquePtr<SSL_CTX> ctx;
3385 
3386   // session_ctx is the |SSL_CTX| used for the session cache and related
3387   // settings.
3388   bssl::UniquePtr<SSL_CTX> session_ctx;
3389 
3390   // extra application data
3391   CRYPTO_EX_DATA ex_data;
3392 
3393   uint32_t options = 0;  // protocol behaviour
3394   uint32_t mode = 0;     // API behaviour
3395   uint32_t max_cert_list = 0;
3396   bssl::UniquePtr<char> hostname;
3397 
3398   // quic_method is the method table corresponding to the QUIC hooks.
3399   const SSL_QUIC_METHOD *quic_method = nullptr;
3400 
3401   // renegotiate_mode controls how peer renegotiation attempts are handled.
3402   ssl_renegotiate_mode_t renegotiate_mode = ssl_renegotiate_never;
3403 
3404   // server is true iff the this SSL* is the server half. Note: before the SSL*
3405   // is initialized by either SSL_set_accept_state or SSL_set_connect_state,
3406   // the side is not determined. In this state, server is always false.
3407   bool server : 1;
3408 
3409   // quiet_shutdown is true if the connection should not send a close_notify on
3410   // shutdown.
3411   bool quiet_shutdown : 1;
3412 
3413   // If enable_early_data is true, early data can be sent and accepted.
3414   bool enable_early_data : 1;
3415 };
3416 
3417 struct ssl_session_st {
3418   explicit ssl_session_st(const bssl::SSL_X509_METHOD *method);
3419   ssl_session_st(const ssl_session_st &) = delete;
3420   ssl_session_st &operator=(const ssl_session_st &) = delete;
3421 
3422   CRYPTO_refcount_t references = 1;
3423 
3424   // ssl_version is the (D)TLS version that established the session.
3425   uint16_t ssl_version = 0;
3426 
3427   // group_id is the ID of the ECDH group used to establish this session or zero
3428   // if not applicable or unknown.
3429   uint16_t group_id = 0;
3430 
3431   // peer_signature_algorithm is the signature algorithm used to authenticate
3432   // the peer, or zero if not applicable or unknown.
3433   uint16_t peer_signature_algorithm = 0;
3434 
3435   // master_key, in TLS 1.2 and below, is the master secret associated with the
3436   // session. In TLS 1.3 and up, it is the resumption secret.
3437   int master_key_length = 0;
3438   uint8_t master_key[SSL_MAX_MASTER_KEY_LENGTH] = {0};
3439 
3440   // session_id - valid?
3441   unsigned session_id_length = 0;
3442   uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0};
3443   // this is used to determine whether the session is being reused in
3444   // the appropriate context. It is up to the application to set this,
3445   // via SSL_new
3446   uint8_t sid_ctx_length = 0;
3447   uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0};
3448 
3449   bssl::UniquePtr<char> psk_identity;
3450 
3451   // certs contains the certificate chain from the peer, starting with the leaf
3452   // certificate.
3453   bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs;
3454 
3455   const bssl::SSL_X509_METHOD *x509_method = nullptr;
3456 
3457   // x509_peer is the peer's certificate.
3458   X509 *x509_peer = nullptr;
3459 
3460   // x509_chain is the certificate chain sent by the peer. NOTE: for historical
3461   // reasons, when a client (so the peer is a server), the chain includes
3462   // |peer|, but when a server it does not.
3463   STACK_OF(X509) *x509_chain = nullptr;
3464 
3465   // x509_chain_without_leaf is a lazily constructed copy of |x509_chain| that
3466   // omits the leaf certificate. This exists because OpenSSL, historically,
3467   // didn't include the leaf certificate in the chain for a server, but did for
3468   // a client. The |x509_chain| always includes it and, if an API call requires
3469   // a chain without, it is stored here.
3470   STACK_OF(X509) *x509_chain_without_leaf = nullptr;
3471 
3472   // verify_result is the result of certificate verification in the case of
3473   // non-fatal certificate errors.
3474   long verify_result = X509_V_ERR_INVALID_CALL;
3475 
3476   // timeout is the lifetime of the session in seconds, measured from |time|.
3477   // This is renewable up to |auth_timeout|.
3478   uint32_t timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3479 
3480   // auth_timeout is the non-renewable lifetime of the session in seconds,
3481   // measured from |time|.
3482   uint32_t auth_timeout = SSL_DEFAULT_SESSION_TIMEOUT;
3483 
3484   // time is the time the session was issued, measured in seconds from the UNIX
3485   // epoch.
3486   uint64_t time = 0;
3487 
3488   const SSL_CIPHER *cipher = nullptr;
3489 
3490   CRYPTO_EX_DATA ex_data;  // application specific data
3491 
3492   // These are used to make removal of session-ids more efficient and to
3493   // implement a maximum cache size.
3494   SSL_SESSION *prev = nullptr, *next = nullptr;
3495 
3496   bssl::Array<uint8_t> ticket;
3497 
3498   bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list;
3499 
3500   // The OCSP response that came with the session.
3501   bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response;
3502 
3503   // peer_sha256 contains the SHA-256 hash of the peer's certificate if
3504   // |peer_sha256_valid| is true.
3505   uint8_t peer_sha256[SHA256_DIGEST_LENGTH] = {0};
3506 
3507   // original_handshake_hash contains the handshake hash (either SHA-1+MD5 or
3508   // SHA-2, depending on TLS version) for the original, full handshake that
3509   // created a session. This is used by Channel IDs during resumption.
3510   uint8_t original_handshake_hash[EVP_MAX_MD_SIZE] = {0};
3511   uint8_t original_handshake_hash_len = 0;
3512 
3513   uint32_t ticket_lifetime_hint = 0;  // Session lifetime hint in seconds
3514 
3515   uint32_t ticket_age_add = 0;
3516 
3517   // ticket_max_early_data is the maximum amount of data allowed to be sent as
3518   // early data. If zero, 0-RTT is disallowed.
3519   uint32_t ticket_max_early_data = 0;
3520 
3521   // early_alpn is the ALPN protocol from the initial handshake. This is only
3522   // stored for TLS 1.3 and above in order to enforce ALPN matching for 0-RTT
3523   // resumptions.
3524   bssl::Array<uint8_t> early_alpn;
3525 
3526   // extended_master_secret is whether the master secret in this session was
3527   // generated using EMS and thus isn't vulnerable to the Triple Handshake
3528   // attack.
3529   bool extended_master_secret : 1;
3530 
3531   // peer_sha256_valid is whether |peer_sha256| is valid.
3532   bool peer_sha256_valid : 1;  // Non-zero if peer_sha256 is valid
3533 
3534   // not_resumable is used to indicate that session resumption is disallowed.
3535   bool not_resumable : 1;
3536 
3537   // ticket_age_add_valid is whether |ticket_age_add| is valid.
3538   bool ticket_age_add_valid : 1;
3539 
3540   // is_server is whether this session was created by a server.
3541   bool is_server : 1;
3542 
3543  private:
3544   ~ssl_session_st();
3545   friend void SSL_SESSION_free(SSL_SESSION *);
3546 };
3547 
3548 
3549 #endif  // OPENSSL_HEADER_SSL_INTERNAL_H
3550