1 /*
2 * OpenEXR (.exr) image decoder
3 * Copyright (c) 2006 Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
4 * Copyright (c) 2009 Jimmy Christensen
5 *
6 * B44/B44A, Tile, UINT32 added by Jokyo Images support by CNC - French National Center for Cinema
7 *
8 * This file is part of FFmpeg.
9 *
10 * FFmpeg is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
14 *
15 * FFmpeg is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with FFmpeg; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
25 /**
26 * @file
27 * OpenEXR decoder
28 * @author Jimmy Christensen
29 *
30 * For more information on the OpenEXR format, visit:
31 * http://openexr.com/
32 *
33 * exr_half2float() is credited to Aaftab Munshi, Dan Ginsburg, Dave Shreiner.
34 */
35
36 #include <float.h>
37 #include <zlib.h>
38
39 #include "libavutil/avassert.h"
40 #include "libavutil/common.h"
41 #include "libavutil/imgutils.h"
42 #include "libavutil/intfloat.h"
43 #include "libavutil/avstring.h"
44 #include "libavutil/opt.h"
45 #include "libavutil/color_utils.h"
46
47 #include "avcodec.h"
48 #include "bytestream.h"
49
50 #if HAVE_BIGENDIAN
51 #include "bswapdsp.h"
52 #endif
53
54 #include "exrdsp.h"
55 #include "get_bits.h"
56 #include "internal.h"
57 #include "mathops.h"
58 #include "thread.h"
59
60 enum ExrCompr {
61 EXR_RAW,
62 EXR_RLE,
63 EXR_ZIP1,
64 EXR_ZIP16,
65 EXR_PIZ,
66 EXR_PXR24,
67 EXR_B44,
68 EXR_B44A,
69 EXR_DWA,
70 EXR_DWB,
71 EXR_UNKN,
72 };
73
74 enum ExrPixelType {
75 EXR_UINT,
76 EXR_HALF,
77 EXR_FLOAT,
78 EXR_UNKNOWN,
79 };
80
81 enum ExrTileLevelMode {
82 EXR_TILE_LEVEL_ONE,
83 EXR_TILE_LEVEL_MIPMAP,
84 EXR_TILE_LEVEL_RIPMAP,
85 EXR_TILE_LEVEL_UNKNOWN,
86 };
87
88 enum ExrTileLevelRound {
89 EXR_TILE_ROUND_UP,
90 EXR_TILE_ROUND_DOWN,
91 EXR_TILE_ROUND_UNKNOWN,
92 };
93
94 typedef struct EXRChannel {
95 int xsub, ysub;
96 enum ExrPixelType pixel_type;
97 } EXRChannel;
98
99 typedef struct EXRTileAttribute {
100 int32_t xSize;
101 int32_t ySize;
102 enum ExrTileLevelMode level_mode;
103 enum ExrTileLevelRound level_round;
104 } EXRTileAttribute;
105
106 typedef struct EXRThreadData {
107 uint8_t *uncompressed_data;
108 int uncompressed_size;
109
110 uint8_t *tmp;
111 int tmp_size;
112
113 uint8_t *bitmap;
114 uint16_t *lut;
115
116 int ysize, xsize;
117
118 int channel_line_size;
119 } EXRThreadData;
120
121 typedef struct EXRContext {
122 AVClass *class;
123 AVFrame *picture;
124 AVCodecContext *avctx;
125 ExrDSPContext dsp;
126
127 #if HAVE_BIGENDIAN
128 BswapDSPContext bbdsp;
129 #endif
130
131 enum ExrCompr compression;
132 enum ExrPixelType pixel_type;
133 int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
134 const AVPixFmtDescriptor *desc;
135
136 int w, h;
137 uint32_t xmax, xmin;
138 uint32_t ymax, ymin;
139 uint32_t xdelta, ydelta;
140
141 int scan_lines_per_block;
142
143 EXRTileAttribute tile_attr; /* header data attribute of tile */
144 int is_tile; /* 0 if scanline, 1 if tile */
145
146 int is_luma;/* 1 if there is an Y plane */
147
148 GetByteContext gb;
149 const uint8_t *buf;
150 int buf_size;
151
152 EXRChannel *channels;
153 int nb_channels;
154 int current_channel_offset;
155
156 EXRThreadData *thread_data;
157
158 const char *layer;
159
160 enum AVColorTransferCharacteristic apply_trc_type;
161 float gamma;
162 union av_intfloat32 gamma_table[65536];
163 } EXRContext;
164
165 /* -15 stored using a single precision bias of 127 */
166 #define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000
167
168 /* max exponent value in single precision that will be converted
169 * to Inf or Nan when stored as a half-float */
170 #define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000
171
172 /* 255 is the max exponent biased value */
173 #define FLOAT_MAX_BIASED_EXP (0xFF << 23)
174
175 #define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10)
176
177 /**
178 * Convert a half float as a uint16_t into a full float.
179 *
180 * @param hf half float as uint16_t
181 *
182 * @return float value
183 */
exr_half2float(uint16_t hf)184 static union av_intfloat32 exr_half2float(uint16_t hf)
185 {
186 unsigned int sign = (unsigned int) (hf >> 15);
187 unsigned int mantissa = (unsigned int) (hf & ((1 << 10) - 1));
188 unsigned int exp = (unsigned int) (hf & HALF_FLOAT_MAX_BIASED_EXP);
189 union av_intfloat32 f;
190
191 if (exp == HALF_FLOAT_MAX_BIASED_EXP) {
192 // we have a half-float NaN or Inf
193 // half-float NaNs will be converted to a single precision NaN
194 // half-float Infs will be converted to a single precision Inf
195 exp = FLOAT_MAX_BIASED_EXP;
196 if (mantissa)
197 mantissa = (1 << 23) - 1; // set all bits to indicate a NaN
198 } else if (exp == 0x0) {
199 // convert half-float zero/denorm to single precision value
200 if (mantissa) {
201 mantissa <<= 1;
202 exp = HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
203 // check for leading 1 in denorm mantissa
204 while ((mantissa & (1 << 10))) {
205 // for every leading 0, decrement single precision exponent by 1
206 // and shift half-float mantissa value to the left
207 mantissa <<= 1;
208 exp -= (1 << 23);
209 }
210 // clamp the mantissa to 10 bits
211 mantissa &= ((1 << 10) - 1);
212 // shift left to generate single-precision mantissa of 23 bits
213 mantissa <<= 13;
214 }
215 } else {
216 // shift left to generate single-precision mantissa of 23 bits
217 mantissa <<= 13;
218 // generate single precision biased exponent value
219 exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
220 }
221
222 f.i = (sign << 31) | exp | mantissa;
223
224 return f;
225 }
226
zip_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)227 static int zip_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
228 int uncompressed_size, EXRThreadData *td)
229 {
230 unsigned long dest_len = uncompressed_size;
231
232 if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
233 dest_len != uncompressed_size)
234 return AVERROR_INVALIDDATA;
235
236 av_assert1(uncompressed_size % 2 == 0);
237
238 s->dsp.predictor(td->tmp, uncompressed_size);
239 s->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
240
241 return 0;
242 }
243
rle_uncompress(EXRContext * ctx,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)244 static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size,
245 int uncompressed_size, EXRThreadData *td)
246 {
247 uint8_t *d = td->tmp;
248 const int8_t *s = src;
249 int ssize = compressed_size;
250 int dsize = uncompressed_size;
251 uint8_t *dend = d + dsize;
252 int count;
253
254 while (ssize > 0) {
255 count = *s++;
256
257 if (count < 0) {
258 count = -count;
259
260 if ((dsize -= count) < 0 ||
261 (ssize -= count + 1) < 0)
262 return AVERROR_INVALIDDATA;
263
264 while (count--)
265 *d++ = *s++;
266 } else {
267 count++;
268
269 if ((dsize -= count) < 0 ||
270 (ssize -= 2) < 0)
271 return AVERROR_INVALIDDATA;
272
273 while (count--)
274 *d++ = *s;
275
276 s++;
277 }
278 }
279
280 if (dend != d)
281 return AVERROR_INVALIDDATA;
282
283 av_assert1(uncompressed_size % 2 == 0);
284
285 ctx->dsp.predictor(td->tmp, uncompressed_size);
286 ctx->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
287
288 return 0;
289 }
290
291 #define USHORT_RANGE (1 << 16)
292 #define BITMAP_SIZE (1 << 13)
293
reverse_lut(const uint8_t * bitmap,uint16_t * lut)294 static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
295 {
296 int i, k = 0;
297
298 for (i = 0; i < USHORT_RANGE; i++)
299 if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
300 lut[k++] = i;
301
302 i = k - 1;
303
304 memset(lut + k, 0, (USHORT_RANGE - k) * 2);
305
306 return i;
307 }
308
apply_lut(const uint16_t * lut,uint16_t * dst,int dsize)309 static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
310 {
311 int i;
312
313 for (i = 0; i < dsize; ++i)
314 dst[i] = lut[dst[i]];
315 }
316
317 #define HUF_ENCBITS 16 // literal (value) bit length
318 #define HUF_DECBITS 14 // decoding bit size (>= 8)
319
320 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
321 #define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size
322 #define HUF_DECMASK (HUF_DECSIZE - 1)
323
324 typedef struct HufDec {
325 int len;
326 int lit;
327 int *p;
328 } HufDec;
329
huf_canonical_code_table(uint64_t * hcode)330 static void huf_canonical_code_table(uint64_t *hcode)
331 {
332 uint64_t c, n[59] = { 0 };
333 int i;
334
335 for (i = 0; i < HUF_ENCSIZE; ++i)
336 n[hcode[i]] += 1;
337
338 c = 0;
339 for (i = 58; i > 0; --i) {
340 uint64_t nc = ((c + n[i]) >> 1);
341 n[i] = c;
342 c = nc;
343 }
344
345 for (i = 0; i < HUF_ENCSIZE; ++i) {
346 int l = hcode[i];
347
348 if (l > 0)
349 hcode[i] = l | (n[l]++ << 6);
350 }
351 }
352
353 #define SHORT_ZEROCODE_RUN 59
354 #define LONG_ZEROCODE_RUN 63
355 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
356 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
357
huf_unpack_enc_table(GetByteContext * gb,int32_t im,int32_t iM,uint64_t * hcode)358 static int huf_unpack_enc_table(GetByteContext *gb,
359 int32_t im, int32_t iM, uint64_t *hcode)
360 {
361 GetBitContext gbit;
362 int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
363 if (ret < 0)
364 return ret;
365
366 for (; im <= iM; im++) {
367 uint64_t l = hcode[im] = get_bits(&gbit, 6);
368
369 if (l == LONG_ZEROCODE_RUN) {
370 int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
371
372 if (im + zerun > iM + 1)
373 return AVERROR_INVALIDDATA;
374
375 while (zerun--)
376 hcode[im++] = 0;
377
378 im--;
379 } else if (l >= SHORT_ZEROCODE_RUN) {
380 int zerun = l - SHORT_ZEROCODE_RUN + 2;
381
382 if (im + zerun > iM + 1)
383 return AVERROR_INVALIDDATA;
384
385 while (zerun--)
386 hcode[im++] = 0;
387
388 im--;
389 }
390 }
391
392 bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
393 huf_canonical_code_table(hcode);
394
395 return 0;
396 }
397
huf_build_dec_table(const uint64_t * hcode,int im,int iM,HufDec * hdecod)398 static int huf_build_dec_table(const uint64_t *hcode, int im,
399 int iM, HufDec *hdecod)
400 {
401 for (; im <= iM; im++) {
402 uint64_t c = hcode[im] >> 6;
403 int i, l = hcode[im] & 63;
404
405 if (c >> l)
406 return AVERROR_INVALIDDATA;
407
408 if (l > HUF_DECBITS) {
409 HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
410 if (pl->len)
411 return AVERROR_INVALIDDATA;
412
413 pl->lit++;
414
415 pl->p = av_realloc(pl->p, pl->lit * sizeof(int));
416 if (!pl->p)
417 return AVERROR(ENOMEM);
418
419 pl->p[pl->lit - 1] = im;
420 } else if (l) {
421 HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
422
423 for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
424 if (pl->len || pl->p)
425 return AVERROR_INVALIDDATA;
426 pl->len = l;
427 pl->lit = im;
428 }
429 }
430 }
431
432 return 0;
433 }
434
435 #define get_char(c, lc, gb) \
436 { \
437 c = (c << 8) | bytestream2_get_byte(gb); \
438 lc += 8; \
439 }
440
441 #define get_code(po, rlc, c, lc, gb, out, oe, outb) \
442 { \
443 if (po == rlc) { \
444 if (lc < 8) \
445 get_char(c, lc, gb); \
446 lc -= 8; \
447 \
448 cs = c >> lc; \
449 \
450 if (out + cs > oe || out == outb) \
451 return AVERROR_INVALIDDATA; \
452 \
453 s = out[-1]; \
454 \
455 while (cs-- > 0) \
456 *out++ = s; \
457 } else if (out < oe) { \
458 *out++ = po; \
459 } else { \
460 return AVERROR_INVALIDDATA; \
461 } \
462 }
463
huf_decode(const uint64_t * hcode,const HufDec * hdecod,GetByteContext * gb,int nbits,int rlc,int no,uint16_t * out)464 static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
465 GetByteContext *gb, int nbits,
466 int rlc, int no, uint16_t *out)
467 {
468 uint64_t c = 0;
469 uint16_t *outb = out;
470 uint16_t *oe = out + no;
471 const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
472 uint8_t cs;
473 uint16_t s;
474 int i, lc = 0;
475
476 while (gb->buffer < ie) {
477 get_char(c, lc, gb);
478
479 while (lc >= HUF_DECBITS) {
480 const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
481
482 if (pl.len) {
483 lc -= pl.len;
484 get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
485 } else {
486 int j;
487
488 if (!pl.p)
489 return AVERROR_INVALIDDATA;
490
491 for (j = 0; j < pl.lit; j++) {
492 int l = hcode[pl.p[j]] & 63;
493
494 while (lc < l && bytestream2_get_bytes_left(gb) > 0)
495 get_char(c, lc, gb);
496
497 if (lc >= l) {
498 if ((hcode[pl.p[j]] >> 6) ==
499 ((c >> (lc - l)) & ((1LL << l) - 1))) {
500 lc -= l;
501 get_code(pl.p[j], rlc, c, lc, gb, out, oe, outb);
502 break;
503 }
504 }
505 }
506
507 if (j == pl.lit)
508 return AVERROR_INVALIDDATA;
509 }
510 }
511 }
512
513 i = (8 - nbits) & 7;
514 c >>= i;
515 lc -= i;
516
517 while (lc > 0) {
518 const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
519
520 if (pl.len && lc >= pl.len) {
521 lc -= pl.len;
522 get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
523 } else {
524 return AVERROR_INVALIDDATA;
525 }
526 }
527
528 if (out - outb != no)
529 return AVERROR_INVALIDDATA;
530 return 0;
531 }
532
huf_uncompress(GetByteContext * gb,uint16_t * dst,int dst_size)533 static int huf_uncompress(GetByteContext *gb,
534 uint16_t *dst, int dst_size)
535 {
536 int32_t src_size, im, iM;
537 uint32_t nBits;
538 uint64_t *freq;
539 HufDec *hdec;
540 int ret, i;
541
542 src_size = bytestream2_get_le32(gb);
543 im = bytestream2_get_le32(gb);
544 iM = bytestream2_get_le32(gb);
545 bytestream2_skip(gb, 4);
546 nBits = bytestream2_get_le32(gb);
547 if (im < 0 || im >= HUF_ENCSIZE ||
548 iM < 0 || iM >= HUF_ENCSIZE ||
549 src_size < 0)
550 return AVERROR_INVALIDDATA;
551
552 bytestream2_skip(gb, 4);
553
554 freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq));
555 hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec));
556 if (!freq || !hdec) {
557 ret = AVERROR(ENOMEM);
558 goto fail;
559 }
560
561 if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
562 goto fail;
563
564 if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
565 ret = AVERROR_INVALIDDATA;
566 goto fail;
567 }
568
569 if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
570 goto fail;
571 ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
572
573 fail:
574 for (i = 0; i < HUF_DECSIZE; i++)
575 if (hdec)
576 av_freep(&hdec[i].p);
577
578 av_free(freq);
579 av_free(hdec);
580
581 return ret;
582 }
583
wdec14(uint16_t l,uint16_t h,uint16_t * a,uint16_t * b)584 static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
585 {
586 int16_t ls = l;
587 int16_t hs = h;
588 int hi = hs;
589 int ai = ls + (hi & 1) + (hi >> 1);
590 int16_t as = ai;
591 int16_t bs = ai - hi;
592
593 *a = as;
594 *b = bs;
595 }
596
597 #define NBITS 16
598 #define A_OFFSET (1 << (NBITS - 1))
599 #define MOD_MASK ((1 << NBITS) - 1)
600
wdec16(uint16_t l,uint16_t h,uint16_t * a,uint16_t * b)601 static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
602 {
603 int m = l;
604 int d = h;
605 int bb = (m - (d >> 1)) & MOD_MASK;
606 int aa = (d + bb - A_OFFSET) & MOD_MASK;
607 *b = bb;
608 *a = aa;
609 }
610
wav_decode(uint16_t * in,int nx,int ox,int ny,int oy,uint16_t mx)611 static void wav_decode(uint16_t *in, int nx, int ox,
612 int ny, int oy, uint16_t mx)
613 {
614 int w14 = (mx < (1 << 14));
615 int n = (nx > ny) ? ny : nx;
616 int p = 1;
617 int p2;
618
619 while (p <= n)
620 p <<= 1;
621
622 p >>= 1;
623 p2 = p;
624 p >>= 1;
625
626 while (p >= 1) {
627 uint16_t *py = in;
628 uint16_t *ey = in + oy * (ny - p2);
629 uint16_t i00, i01, i10, i11;
630 int oy1 = oy * p;
631 int oy2 = oy * p2;
632 int ox1 = ox * p;
633 int ox2 = ox * p2;
634
635 for (; py <= ey; py += oy2) {
636 uint16_t *px = py;
637 uint16_t *ex = py + ox * (nx - p2);
638
639 for (; px <= ex; px += ox2) {
640 uint16_t *p01 = px + ox1;
641 uint16_t *p10 = px + oy1;
642 uint16_t *p11 = p10 + ox1;
643
644 if (w14) {
645 wdec14(*px, *p10, &i00, &i10);
646 wdec14(*p01, *p11, &i01, &i11);
647 wdec14(i00, i01, px, p01);
648 wdec14(i10, i11, p10, p11);
649 } else {
650 wdec16(*px, *p10, &i00, &i10);
651 wdec16(*p01, *p11, &i01, &i11);
652 wdec16(i00, i01, px, p01);
653 wdec16(i10, i11, p10, p11);
654 }
655 }
656
657 if (nx & p) {
658 uint16_t *p10 = px + oy1;
659
660 if (w14)
661 wdec14(*px, *p10, &i00, p10);
662 else
663 wdec16(*px, *p10, &i00, p10);
664
665 *px = i00;
666 }
667 }
668
669 if (ny & p) {
670 uint16_t *px = py;
671 uint16_t *ex = py + ox * (nx - p2);
672
673 for (; px <= ex; px += ox2) {
674 uint16_t *p01 = px + ox1;
675
676 if (w14)
677 wdec14(*px, *p01, &i00, p01);
678 else
679 wdec16(*px, *p01, &i00, p01);
680
681 *px = i00;
682 }
683 }
684
685 p2 = p;
686 p >>= 1;
687 }
688 }
689
piz_uncompress(EXRContext * s,const uint8_t * src,int ssize,int dsize,EXRThreadData * td)690 static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
691 int dsize, EXRThreadData *td)
692 {
693 GetByteContext gb;
694 uint16_t maxval, min_non_zero, max_non_zero;
695 uint16_t *ptr;
696 uint16_t *tmp = (uint16_t *)td->tmp;
697 uint16_t *out;
698 uint16_t *in;
699 int ret, i, j;
700 int pixel_half_size;/* 1 for half, 2 for float and uint32 */
701 EXRChannel *channel;
702 int tmp_offset;
703
704 if (!td->bitmap)
705 td->bitmap = av_malloc(BITMAP_SIZE);
706 if (!td->lut)
707 td->lut = av_malloc(1 << 17);
708 if (!td->bitmap || !td->lut) {
709 av_freep(&td->bitmap);
710 av_freep(&td->lut);
711 return AVERROR(ENOMEM);
712 }
713
714 bytestream2_init(&gb, src, ssize);
715 min_non_zero = bytestream2_get_le16(&gb);
716 max_non_zero = bytestream2_get_le16(&gb);
717
718 if (max_non_zero >= BITMAP_SIZE)
719 return AVERROR_INVALIDDATA;
720
721 memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
722 if (min_non_zero <= max_non_zero)
723 bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
724 max_non_zero - min_non_zero + 1);
725 memset(td->bitmap + max_non_zero + 1, 0, BITMAP_SIZE - max_non_zero - 1);
726
727 maxval = reverse_lut(td->bitmap, td->lut);
728
729 ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t));
730 if (ret)
731 return ret;
732
733 ptr = tmp;
734 for (i = 0; i < s->nb_channels; i++) {
735 channel = &s->channels[i];
736
737 if (channel->pixel_type == EXR_HALF)
738 pixel_half_size = 1;
739 else
740 pixel_half_size = 2;
741
742 for (j = 0; j < pixel_half_size; j++)
743 wav_decode(ptr + j, td->xsize, pixel_half_size, td->ysize,
744 td->xsize * pixel_half_size, maxval);
745 ptr += td->xsize * td->ysize * pixel_half_size;
746 }
747
748 apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
749
750 out = (uint16_t *)td->uncompressed_data;
751 for (i = 0; i < td->ysize; i++) {
752 tmp_offset = 0;
753 for (j = 0; j < s->nb_channels; j++) {
754 channel = &s->channels[j];
755 if (channel->pixel_type == EXR_HALF)
756 pixel_half_size = 1;
757 else
758 pixel_half_size = 2;
759
760 in = tmp + tmp_offset * td->xsize * td->ysize + i * td->xsize * pixel_half_size;
761 tmp_offset += pixel_half_size;
762
763 #if HAVE_BIGENDIAN
764 s->bbdsp.bswap16_buf(out, in, td->xsize * pixel_half_size);
765 #else
766 memcpy(out, in, td->xsize * 2 * pixel_half_size);
767 #endif
768 out += td->xsize * pixel_half_size;
769 }
770 }
771
772 return 0;
773 }
774
pxr24_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)775 static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
776 int compressed_size, int uncompressed_size,
777 EXRThreadData *td)
778 {
779 unsigned long dest_len, expected_len = 0;
780 const uint8_t *in = td->tmp;
781 uint8_t *out;
782 int c, i, j;
783
784 for (i = 0; i < s->nb_channels; i++) {
785 if (s->channels[i].pixel_type == EXR_FLOAT) {
786 expected_len += (td->xsize * td->ysize * 3);/* PRX 24 store float in 24 bit instead of 32 */
787 } else if (s->channels[i].pixel_type == EXR_HALF) {
788 expected_len += (td->xsize * td->ysize * 2);
789 } else {//UINT 32
790 expected_len += (td->xsize * td->ysize * 4);
791 }
792 }
793
794 dest_len = expected_len;
795
796 if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK) {
797 return AVERROR_INVALIDDATA;
798 } else if (dest_len != expected_len) {
799 return AVERROR_INVALIDDATA;
800 }
801
802 out = td->uncompressed_data;
803 for (i = 0; i < td->ysize; i++)
804 for (c = 0; c < s->nb_channels; c++) {
805 EXRChannel *channel = &s->channels[c];
806 const uint8_t *ptr[4];
807 uint32_t pixel = 0;
808
809 switch (channel->pixel_type) {
810 case EXR_FLOAT:
811 ptr[0] = in;
812 ptr[1] = ptr[0] + td->xsize;
813 ptr[2] = ptr[1] + td->xsize;
814 in = ptr[2] + td->xsize;
815
816 for (j = 0; j < td->xsize; ++j) {
817 uint32_t diff = ((unsigned)*(ptr[0]++) << 24) |
818 (*(ptr[1]++) << 16) |
819 (*(ptr[2]++) << 8);
820 pixel += diff;
821 bytestream_put_le32(&out, pixel);
822 }
823 break;
824 case EXR_HALF:
825 ptr[0] = in;
826 ptr[1] = ptr[0] + td->xsize;
827 in = ptr[1] + td->xsize;
828 for (j = 0; j < td->xsize; j++) {
829 uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
830
831 pixel += diff;
832 bytestream_put_le16(&out, pixel);
833 }
834 break;
835 case EXR_UINT:
836 ptr[0] = in;
837 ptr[1] = ptr[0] + s->xdelta;
838 ptr[2] = ptr[1] + s->xdelta;
839 ptr[3] = ptr[2] + s->xdelta;
840 in = ptr[3] + s->xdelta;
841
842 for (j = 0; j < s->xdelta; ++j) {
843 uint32_t diff = ((uint32_t)*(ptr[0]++) << 24) |
844 (*(ptr[1]++) << 16) |
845 (*(ptr[2]++) << 8 ) |
846 (*(ptr[3]++));
847 pixel += diff;
848 bytestream_put_le32(&out, pixel);
849 }
850 break;
851 default:
852 return AVERROR_INVALIDDATA;
853 }
854 }
855
856 return 0;
857 }
858
unpack_14(const uint8_t b[14],uint16_t s[16])859 static void unpack_14(const uint8_t b[14], uint16_t s[16])
860 {
861 unsigned short shift = (b[ 2] >> 2) & 15;
862 unsigned short bias = (0x20 << shift);
863 int i;
864
865 s[ 0] = (b[0] << 8) | b[1];
866
867 s[ 4] = s[ 0] + ((((b[ 2] << 4) | (b[ 3] >> 4)) & 0x3f) << shift) - bias;
868 s[ 8] = s[ 4] + ((((b[ 3] << 2) | (b[ 4] >> 6)) & 0x3f) << shift) - bias;
869 s[12] = s[ 8] + ((b[ 4] & 0x3f) << shift) - bias;
870
871 s[ 1] = s[ 0] + ((b[ 5] >> 2) << shift) - bias;
872 s[ 5] = s[ 4] + ((((b[ 5] << 4) | (b[ 6] >> 4)) & 0x3f) << shift) - bias;
873 s[ 9] = s[ 8] + ((((b[ 6] << 2) | (b[ 7] >> 6)) & 0x3f) << shift) - bias;
874 s[13] = s[12] + ((b[ 7] & 0x3f) << shift) - bias;
875
876 s[ 2] = s[ 1] + ((b[ 8] >> 2) << shift) - bias;
877 s[ 6] = s[ 5] + ((((b[ 8] << 4) | (b[ 9] >> 4)) & 0x3f) << shift) - bias;
878 s[10] = s[ 9] + ((((b[ 9] << 2) | (b[10] >> 6)) & 0x3f) << shift) - bias;
879 s[14] = s[13] + ((b[10] & 0x3f) << shift) - bias;
880
881 s[ 3] = s[ 2] + ((b[11] >> 2) << shift) - bias;
882 s[ 7] = s[ 6] + ((((b[11] << 4) | (b[12] >> 4)) & 0x3f) << shift) - bias;
883 s[11] = s[10] + ((((b[12] << 2) | (b[13] >> 6)) & 0x3f) << shift) - bias;
884 s[15] = s[14] + ((b[13] & 0x3f) << shift) - bias;
885
886 for (i = 0; i < 16; ++i) {
887 if (s[i] & 0x8000)
888 s[i] &= 0x7fff;
889 else
890 s[i] = ~s[i];
891 }
892 }
893
unpack_3(const uint8_t b[3],uint16_t s[16])894 static void unpack_3(const uint8_t b[3], uint16_t s[16])
895 {
896 int i;
897
898 s[0] = (b[0] << 8) | b[1];
899
900 if (s[0] & 0x8000)
901 s[0] &= 0x7fff;
902 else
903 s[0] = ~s[0];
904
905 for (i = 1; i < 16; i++)
906 s[i] = s[0];
907 }
908
909
b44_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)910 static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
911 int uncompressed_size, EXRThreadData *td) {
912 const int8_t *sr = src;
913 int stay_to_uncompress = compressed_size;
914 int nb_b44_block_w, nb_b44_block_h;
915 int index_tl_x, index_tl_y, index_out, index_tmp;
916 uint16_t tmp_buffer[16]; /* B44 use 4x4 half float pixel */
917 int c, iY, iX, y, x;
918 int target_channel_offset = 0;
919
920 /* calc B44 block count */
921 nb_b44_block_w = td->xsize / 4;
922 if ((td->xsize % 4) != 0)
923 nb_b44_block_w++;
924
925 nb_b44_block_h = td->ysize / 4;
926 if ((td->ysize % 4) != 0)
927 nb_b44_block_h++;
928
929 for (c = 0; c < s->nb_channels; c++) {
930 if (s->channels[c].pixel_type == EXR_HALF) {/* B44 only compress half float data */
931 for (iY = 0; iY < nb_b44_block_h; iY++) {
932 for (iX = 0; iX < nb_b44_block_w; iX++) {/* For each B44 block */
933 if (stay_to_uncompress < 3) {
934 av_log(s, AV_LOG_ERROR, "Not enough data for B44A block: %d", stay_to_uncompress);
935 return AVERROR_INVALIDDATA;
936 }
937
938 if (src[compressed_size - stay_to_uncompress + 2] == 0xfc) { /* B44A block */
939 unpack_3(sr, tmp_buffer);
940 sr += 3;
941 stay_to_uncompress -= 3;
942 } else {/* B44 Block */
943 if (stay_to_uncompress < 14) {
944 av_log(s, AV_LOG_ERROR, "Not enough data for B44 block: %d", stay_to_uncompress);
945 return AVERROR_INVALIDDATA;
946 }
947 unpack_14(sr, tmp_buffer);
948 sr += 14;
949 stay_to_uncompress -= 14;
950 }
951
952 /* copy data to uncompress buffer (B44 block can exceed target resolution)*/
953 index_tl_x = iX * 4;
954 index_tl_y = iY * 4;
955
956 for (y = index_tl_y; y < FFMIN(index_tl_y + 4, td->ysize); y++) {
957 for (x = index_tl_x; x < FFMIN(index_tl_x + 4, td->xsize); x++) {
958 index_out = target_channel_offset * td->xsize + y * td->channel_line_size + 2 * x;
959 index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
960 td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
961 td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
962 }
963 }
964 }
965 }
966 target_channel_offset += 2;
967 } else {/* Float or UINT 32 channel */
968 if (stay_to_uncompress < td->ysize * td->xsize * 4) {
969 av_log(s, AV_LOG_ERROR, "Not enough data for uncompress channel: %d", stay_to_uncompress);
970 return AVERROR_INVALIDDATA;
971 }
972
973 for (y = 0; y < td->ysize; y++) {
974 index_out = target_channel_offset * td->xsize + y * td->channel_line_size;
975 memcpy(&td->uncompressed_data[index_out], sr, td->xsize * 4);
976 sr += td->xsize * 4;
977 }
978 target_channel_offset += 4;
979
980 stay_to_uncompress -= td->ysize * td->xsize * 4;
981 }
982 }
983
984 return 0;
985 }
986
decode_block(AVCodecContext * avctx,void * tdata,int jobnr,int threadnr)987 static int decode_block(AVCodecContext *avctx, void *tdata,
988 int jobnr, int threadnr)
989 {
990 EXRContext *s = avctx->priv_data;
991 AVFrame *const p = s->picture;
992 EXRThreadData *td = &s->thread_data[threadnr];
993 const uint8_t *channel_buffer[4] = { 0 };
994 const uint8_t *buf = s->buf;
995 uint64_t line_offset, uncompressed_size;
996 uint8_t *ptr;
997 uint32_t data_size;
998 uint64_t line, col = 0;
999 uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1000 const uint8_t *src;
1001 int step = s->desc->flags & AV_PIX_FMT_FLAG_FLOAT ? 4 : 2 * s->desc->nb_components;
1002 int axmax = (avctx->width - (s->xmax + 1)) * step; /* nb pixel to add at the right of the datawindow */
1003 int bxmin = s->xmin * step; /* nb pixel to add at the left of the datawindow */
1004 int i, x, buf_size = s->buf_size;
1005 int c, rgb_channel_count;
1006 float one_gamma = 1.0f / s->gamma;
1007 avpriv_trc_function trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
1008 int ret;
1009
1010 line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
1011
1012 if (s->is_tile) {
1013 if (buf_size < 20 || line_offset > buf_size - 20)
1014 return AVERROR_INVALIDDATA;
1015
1016 src = buf + line_offset + 20;
1017
1018 tile_x = AV_RL32(src - 20);
1019 tile_y = AV_RL32(src - 16);
1020 tile_level_x = AV_RL32(src - 12);
1021 tile_level_y = AV_RL32(src - 8);
1022
1023 data_size = AV_RL32(src - 4);
1024 if (data_size <= 0 || data_size > buf_size - line_offset - 20)
1025 return AVERROR_INVALIDDATA;
1026
1027 if (tile_level_x || tile_level_y) { /* tile level, is not the full res level */
1028 avpriv_report_missing_feature(s->avctx, "Subres tile before full res tile");
1029 return AVERROR_PATCHWELCOME;
1030 }
1031
1032 if (s->xmin || s->ymin) {
1033 avpriv_report_missing_feature(s->avctx, "Tiles with xmin/ymin");
1034 return AVERROR_PATCHWELCOME;
1035 }
1036
1037 line = s->tile_attr.ySize * tile_y;
1038 col = s->tile_attr.xSize * tile_x;
1039
1040 if (line < s->ymin || line > s->ymax ||
1041 col < s->xmin || col > s->xmax)
1042 return AVERROR_INVALIDDATA;
1043
1044 td->ysize = FFMIN(s->tile_attr.ySize, s->ydelta - tile_y * s->tile_attr.ySize);
1045 td->xsize = FFMIN(s->tile_attr.xSize, s->xdelta - tile_x * s->tile_attr.xSize);
1046
1047 if (col) { /* not the first tile of the line */
1048 bxmin = 0; /* doesn't add pixel at the left of the datawindow */
1049 }
1050
1051 if ((col + td->xsize) != s->xdelta)/* not the last tile of the line */
1052 axmax = 0; /* doesn't add pixel at the right of the datawindow */
1053
1054 td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1055 uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1056 } else {
1057 if (buf_size < 8 || line_offset > buf_size - 8)
1058 return AVERROR_INVALIDDATA;
1059
1060 src = buf + line_offset + 8;
1061 line = AV_RL32(src - 8);
1062
1063 if (line < s->ymin || line > s->ymax)
1064 return AVERROR_INVALIDDATA;
1065
1066 data_size = AV_RL32(src - 4);
1067 if (data_size <= 0 || data_size > buf_size - line_offset - 8)
1068 return AVERROR_INVALIDDATA;
1069
1070 td->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); /* s->ydelta - line ?? */
1071 td->xsize = s->xdelta;
1072
1073 td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1074 uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1075
1076 if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
1077 line_offset > buf_size - uncompressed_size)) ||
1078 (s->compression != EXR_RAW && (data_size > uncompressed_size ||
1079 line_offset > buf_size - data_size))) {
1080 return AVERROR_INVALIDDATA;
1081 }
1082 }
1083
1084 if (data_size < uncompressed_size || s->is_tile) { /* td->tmp is use for tile reorganization */
1085 av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
1086 if (!td->tmp)
1087 return AVERROR(ENOMEM);
1088 }
1089
1090 if (data_size < uncompressed_size) {
1091 av_fast_padded_malloc(&td->uncompressed_data,
1092 &td->uncompressed_size, uncompressed_size + 64);/* Force 64 padding for AVX2 reorder_pixels dst */
1093
1094 if (!td->uncompressed_data)
1095 return AVERROR(ENOMEM);
1096
1097 ret = AVERROR_INVALIDDATA;
1098 switch (s->compression) {
1099 case EXR_ZIP1:
1100 case EXR_ZIP16:
1101 ret = zip_uncompress(s, src, data_size, uncompressed_size, td);
1102 break;
1103 case EXR_PIZ:
1104 ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
1105 break;
1106 case EXR_PXR24:
1107 ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
1108 break;
1109 case EXR_RLE:
1110 ret = rle_uncompress(s, src, data_size, uncompressed_size, td);
1111 break;
1112 case EXR_B44:
1113 case EXR_B44A:
1114 ret = b44_uncompress(s, src, data_size, uncompressed_size, td);
1115 break;
1116 }
1117 if (ret < 0) {
1118 av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
1119 return ret;
1120 }
1121 src = td->uncompressed_data;
1122 }
1123
1124 if (!s->is_luma) {
1125 channel_buffer[0] = src + td->xsize * s->channel_offsets[0];
1126 channel_buffer[1] = src + td->xsize * s->channel_offsets[1];
1127 channel_buffer[2] = src + td->xsize * s->channel_offsets[2];
1128 rgb_channel_count = 3;
1129 } else { /* put y data in the first channel_buffer */
1130 channel_buffer[0] = src + td->xsize * s->channel_offsets[1];
1131 rgb_channel_count = 1;
1132 }
1133 if (s->channel_offsets[3] >= 0)
1134 channel_buffer[3] = src + td->xsize * s->channel_offsets[3];
1135
1136 if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
1137
1138 /* todo: change this when a floating point pixel format with luma with alpha is implemented */
1139 int channel_count = s->channel_offsets[3] >= 0 ? 4 : rgb_channel_count;
1140 if (s->is_luma) {
1141 channel_buffer[1] = channel_buffer[0];
1142 channel_buffer[2] = channel_buffer[0];
1143 }
1144
1145 for (c = 0; c < channel_count; c++) {
1146 int plane = s->desc->comp[c].plane;
1147 ptr = p->data[plane] + line * p->linesize[plane] + (col * 4);
1148
1149 for (i = 0; i < td->ysize; i++, ptr += p->linesize[plane]) {
1150 const uint8_t *src;
1151 union av_intfloat32 *ptr_x;
1152
1153 src = channel_buffer[c];
1154 ptr_x = (union av_intfloat32 *)ptr;
1155
1156 // Zero out the start if xmin is not 0
1157 memset(ptr_x, 0, bxmin);
1158 ptr_x += s->xmin;
1159
1160 if (s->pixel_type == EXR_FLOAT) {
1161 // 32-bit
1162 union av_intfloat32 t;
1163 if (trc_func && c < 3) {
1164 for (x = 0; x < td->xsize; x++) {
1165 t.i = bytestream_get_le32(&src);
1166 t.f = trc_func(t.f);
1167 *ptr_x++ = t;
1168 }
1169 } else {
1170 for (x = 0; x < td->xsize; x++) {
1171 t.i = bytestream_get_le32(&src);
1172 if (t.f > 0.0f && c < 3) /* avoid negative values */
1173 t.f = powf(t.f, one_gamma);
1174 *ptr_x++ = t;
1175 }
1176 }
1177 } else if (s->pixel_type == EXR_HALF) {
1178 // 16-bit
1179 if (c < 3) {
1180 for (x = 0; x < td->xsize; x++) {
1181 *ptr_x++ = s->gamma_table[bytestream_get_le16(&src)];
1182 }
1183 } else {
1184 for (x = 0; x < td->xsize; x++) {
1185 *ptr_x++ = exr_half2float(bytestream_get_le16(&src));;
1186 }
1187 }
1188 }
1189
1190 // Zero out the end if xmax+1 is not w
1191 memset(ptr_x, 0, axmax);
1192 channel_buffer[c] += td->channel_line_size;
1193 }
1194 }
1195 } else {
1196
1197 av_assert1(s->pixel_type == EXR_UINT);
1198 ptr = p->data[0] + line * p->linesize[0] + (col * s->desc->nb_components * 2);
1199
1200 for (i = 0; i < td->ysize; i++, ptr += p->linesize[0]) {
1201
1202 const uint8_t * a;
1203 const uint8_t *rgb[3];
1204 uint16_t *ptr_x;
1205
1206 for (c = 0; c < rgb_channel_count; c++) {
1207 rgb[c] = channel_buffer[c];
1208 }
1209
1210 if (channel_buffer[3])
1211 a = channel_buffer[3];
1212
1213 ptr_x = (uint16_t *) ptr;
1214
1215 // Zero out the start if xmin is not 0
1216 memset(ptr_x, 0, bxmin);
1217 ptr_x += s->xmin * s->desc->nb_components;
1218
1219 for (x = 0; x < td->xsize; x++) {
1220 for (c = 0; c < rgb_channel_count; c++) {
1221 *ptr_x++ = bytestream_get_le32(&rgb[c]) >> 16;
1222 }
1223
1224 if (channel_buffer[3])
1225 *ptr_x++ = bytestream_get_le32(&a) >> 16;
1226 }
1227
1228 // Zero out the end if xmax+1 is not w
1229 memset(ptr_x, 0, axmax);
1230
1231 channel_buffer[0] += td->channel_line_size;
1232 channel_buffer[1] += td->channel_line_size;
1233 channel_buffer[2] += td->channel_line_size;
1234 if (channel_buffer[3])
1235 channel_buffer[3] += td->channel_line_size;
1236 }
1237 }
1238
1239 return 0;
1240 }
1241
1242 /**
1243 * Check if the variable name corresponds to its data type.
1244 *
1245 * @param s the EXRContext
1246 * @param value_name name of the variable to check
1247 * @param value_type type of the variable to check
1248 * @param minimum_length minimum length of the variable data
1249 *
1250 * @return bytes to read containing variable data
1251 * -1 if variable is not found
1252 * 0 if buffer ended prematurely
1253 */
check_header_variable(EXRContext * s,const char * value_name,const char * value_type,unsigned int minimum_length)1254 static int check_header_variable(EXRContext *s,
1255 const char *value_name,
1256 const char *value_type,
1257 unsigned int minimum_length)
1258 {
1259 int var_size = -1;
1260
1261 if (bytestream2_get_bytes_left(&s->gb) >= minimum_length &&
1262 !strcmp(s->gb.buffer, value_name)) {
1263 // found value_name, jump to value_type (null terminated strings)
1264 s->gb.buffer += strlen(value_name) + 1;
1265 if (!strcmp(s->gb.buffer, value_type)) {
1266 s->gb.buffer += strlen(value_type) + 1;
1267 var_size = bytestream2_get_le32(&s->gb);
1268 // don't go read past boundaries
1269 if (var_size > bytestream2_get_bytes_left(&s->gb))
1270 var_size = 0;
1271 } else {
1272 // value_type not found, reset the buffer
1273 s->gb.buffer -= strlen(value_name) + 1;
1274 av_log(s->avctx, AV_LOG_WARNING,
1275 "Unknown data type %s for header variable %s.\n",
1276 value_type, value_name);
1277 }
1278 }
1279
1280 return var_size;
1281 }
1282
decode_header(EXRContext * s,AVFrame * frame)1283 static int decode_header(EXRContext *s, AVFrame *frame)
1284 {
1285 AVDictionary *metadata = NULL;
1286 int magic_number, version, i, flags, sar = 0;
1287 int layer_match = 0;
1288 int ret;
1289 int dup_channels = 0;
1290
1291 s->current_channel_offset = 0;
1292 s->xmin = ~0;
1293 s->xmax = ~0;
1294 s->ymin = ~0;
1295 s->ymax = ~0;
1296 s->xdelta = ~0;
1297 s->ydelta = ~0;
1298 s->channel_offsets[0] = -1;
1299 s->channel_offsets[1] = -1;
1300 s->channel_offsets[2] = -1;
1301 s->channel_offsets[3] = -1;
1302 s->pixel_type = EXR_UNKNOWN;
1303 s->compression = EXR_UNKN;
1304 s->nb_channels = 0;
1305 s->w = 0;
1306 s->h = 0;
1307 s->tile_attr.xSize = -1;
1308 s->tile_attr.ySize = -1;
1309 s->is_tile = 0;
1310 s->is_luma = 0;
1311
1312 if (bytestream2_get_bytes_left(&s->gb) < 10) {
1313 av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1314 return AVERROR_INVALIDDATA;
1315 }
1316
1317 magic_number = bytestream2_get_le32(&s->gb);
1318 if (magic_number != 20000630) {
1319 /* As per documentation of OpenEXR, it is supposed to be
1320 * int 20000630 little-endian */
1321 av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1322 return AVERROR_INVALIDDATA;
1323 }
1324
1325 version = bytestream2_get_byte(&s->gb);
1326 if (version != 2) {
1327 avpriv_report_missing_feature(s->avctx, "Version %d", version);
1328 return AVERROR_PATCHWELCOME;
1329 }
1330
1331 flags = bytestream2_get_le24(&s->gb);
1332
1333 if (flags & 0x02)
1334 s->is_tile = 1;
1335 if (flags & 0x08) {
1336 avpriv_report_missing_feature(s->avctx, "deep data");
1337 return AVERROR_PATCHWELCOME;
1338 }
1339 if (flags & 0x10) {
1340 avpriv_report_missing_feature(s->avctx, "multipart");
1341 return AVERROR_PATCHWELCOME;
1342 }
1343
1344 // Parse the header
1345 while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) {
1346 int var_size;
1347 if ((var_size = check_header_variable(s, "channels",
1348 "chlist", 38)) >= 0) {
1349 GetByteContext ch_gb;
1350 if (!var_size) {
1351 ret = AVERROR_INVALIDDATA;
1352 goto fail;
1353 }
1354
1355 bytestream2_init(&ch_gb, s->gb.buffer, var_size);
1356
1357 while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1358 EXRChannel *channel;
1359 enum ExrPixelType current_pixel_type;
1360 int channel_index = -1;
1361 int xsub, ysub;
1362
1363 if (strcmp(s->layer, "") != 0) {
1364 if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1365 layer_match = 1;
1366 av_log(s->avctx, AV_LOG_INFO,
1367 "Channel match layer : %s.\n", ch_gb.buffer);
1368 ch_gb.buffer += strlen(s->layer);
1369 if (*ch_gb.buffer == '.')
1370 ch_gb.buffer++; /* skip dot if not given */
1371 } else {
1372 layer_match = 0;
1373 av_log(s->avctx, AV_LOG_INFO,
1374 "Channel doesn't match layer : %s.\n", ch_gb.buffer);
1375 }
1376 } else {
1377 layer_match = 1;
1378 }
1379
1380 if (layer_match) { /* only search channel if the layer match is valid */
1381 if (!av_strcasecmp(ch_gb.buffer, "R") ||
1382 !av_strcasecmp(ch_gb.buffer, "X") ||
1383 !av_strcasecmp(ch_gb.buffer, "U")) {
1384 channel_index = 0;
1385 s->is_luma = 0;
1386 } else if (!av_strcasecmp(ch_gb.buffer, "G") ||
1387 !av_strcasecmp(ch_gb.buffer, "V")) {
1388 channel_index = 1;
1389 s->is_luma = 0;
1390 } else if (!av_strcasecmp(ch_gb.buffer, "Y")) {
1391 channel_index = 1;
1392 s->is_luma = 1;
1393 } else if (!av_strcasecmp(ch_gb.buffer, "B") ||
1394 !av_strcasecmp(ch_gb.buffer, "Z") ||
1395 !av_strcasecmp(ch_gb.buffer, "W")) {
1396 channel_index = 2;
1397 s->is_luma = 0;
1398 } else if (!av_strcasecmp(ch_gb.buffer, "A")) {
1399 channel_index = 3;
1400 } else {
1401 av_log(s->avctx, AV_LOG_WARNING,
1402 "Unsupported channel %.256s.\n", ch_gb.buffer);
1403 }
1404 }
1405
1406 /* skip until you get a 0 */
1407 while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1408 bytestream2_get_byte(&ch_gb))
1409 continue;
1410
1411 if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1412 av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1413 ret = AVERROR_INVALIDDATA;
1414 goto fail;
1415 }
1416
1417 current_pixel_type = bytestream2_get_le32(&ch_gb);
1418 if (current_pixel_type >= EXR_UNKNOWN) {
1419 avpriv_report_missing_feature(s->avctx, "Pixel type %d",
1420 current_pixel_type);
1421 ret = AVERROR_PATCHWELCOME;
1422 goto fail;
1423 }
1424
1425 bytestream2_skip(&ch_gb, 4);
1426 xsub = bytestream2_get_le32(&ch_gb);
1427 ysub = bytestream2_get_le32(&ch_gb);
1428
1429 if (xsub != 1 || ysub != 1) {
1430 avpriv_report_missing_feature(s->avctx,
1431 "Subsampling %dx%d",
1432 xsub, ysub);
1433 ret = AVERROR_PATCHWELCOME;
1434 goto fail;
1435 }
1436
1437 if (channel_index >= 0 && s->channel_offsets[channel_index] == -1) { /* channel has not been previously assigned */
1438 if (s->pixel_type != EXR_UNKNOWN &&
1439 s->pixel_type != current_pixel_type) {
1440 av_log(s->avctx, AV_LOG_ERROR,
1441 "RGB channels not of the same depth.\n");
1442 ret = AVERROR_INVALIDDATA;
1443 goto fail;
1444 }
1445 s->pixel_type = current_pixel_type;
1446 s->channel_offsets[channel_index] = s->current_channel_offset;
1447 } else if (channel_index >= 0) {
1448 av_log(s->avctx, AV_LOG_WARNING,
1449 "Multiple channels with index %d.\n", channel_index);
1450 if (++dup_channels > 10) {
1451 ret = AVERROR_INVALIDDATA;
1452 goto fail;
1453 }
1454 }
1455
1456 s->channels = av_realloc(s->channels,
1457 ++s->nb_channels * sizeof(EXRChannel));
1458 if (!s->channels) {
1459 ret = AVERROR(ENOMEM);
1460 goto fail;
1461 }
1462 channel = &s->channels[s->nb_channels - 1];
1463 channel->pixel_type = current_pixel_type;
1464 channel->xsub = xsub;
1465 channel->ysub = ysub;
1466
1467 if (current_pixel_type == EXR_HALF) {
1468 s->current_channel_offset += 2;
1469 } else {/* Float or UINT32 */
1470 s->current_channel_offset += 4;
1471 }
1472 }
1473
1474 /* Check if all channels are set with an offset or if the channels
1475 * are causing an overflow */
1476 if (!s->is_luma) {/* if we expected to have at least 3 channels */
1477 if (FFMIN3(s->channel_offsets[0],
1478 s->channel_offsets[1],
1479 s->channel_offsets[2]) < 0) {
1480 if (s->channel_offsets[0] < 0)
1481 av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1482 if (s->channel_offsets[1] < 0)
1483 av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1484 if (s->channel_offsets[2] < 0)
1485 av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1486 ret = AVERROR_INVALIDDATA;
1487 goto fail;
1488 }
1489 }
1490
1491 // skip one last byte and update main gb
1492 s->gb.buffer = ch_gb.buffer + 1;
1493 continue;
1494 } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1495 31)) >= 0) {
1496 if (!var_size) {
1497 ret = AVERROR_INVALIDDATA;
1498 goto fail;
1499 }
1500
1501 s->xmin = bytestream2_get_le32(&s->gb);
1502 s->ymin = bytestream2_get_le32(&s->gb);
1503 s->xmax = bytestream2_get_le32(&s->gb);
1504 s->ymax = bytestream2_get_le32(&s->gb);
1505 s->xdelta = (s->xmax - s->xmin) + 1;
1506 s->ydelta = (s->ymax - s->ymin) + 1;
1507
1508 continue;
1509 } else if ((var_size = check_header_variable(s, "displayWindow",
1510 "box2i", 34)) >= 0) {
1511 if (!var_size) {
1512 ret = AVERROR_INVALIDDATA;
1513 goto fail;
1514 }
1515
1516 bytestream2_skip(&s->gb, 8);
1517 s->w = bytestream2_get_le32(&s->gb) + 1;
1518 s->h = bytestream2_get_le32(&s->gb) + 1;
1519
1520 continue;
1521 } else if ((var_size = check_header_variable(s, "lineOrder",
1522 "lineOrder", 25)) >= 0) {
1523 int line_order;
1524 if (!var_size) {
1525 ret = AVERROR_INVALIDDATA;
1526 goto fail;
1527 }
1528
1529 line_order = bytestream2_get_byte(&s->gb);
1530 av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1531 if (line_order > 2) {
1532 av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1533 ret = AVERROR_INVALIDDATA;
1534 goto fail;
1535 }
1536
1537 continue;
1538 } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1539 "float", 31)) >= 0) {
1540 if (!var_size) {
1541 ret = AVERROR_INVALIDDATA;
1542 goto fail;
1543 }
1544
1545 sar = bytestream2_get_le32(&s->gb);
1546
1547 continue;
1548 } else if ((var_size = check_header_variable(s, "compression",
1549 "compression", 29)) >= 0) {
1550 if (!var_size) {
1551 ret = AVERROR_INVALIDDATA;
1552 goto fail;
1553 }
1554
1555 if (s->compression == EXR_UNKN)
1556 s->compression = bytestream2_get_byte(&s->gb);
1557 else
1558 av_log(s->avctx, AV_LOG_WARNING,
1559 "Found more than one compression attribute.\n");
1560
1561 continue;
1562 } else if ((var_size = check_header_variable(s, "tiles",
1563 "tiledesc", 22)) >= 0) {
1564 char tileLevel;
1565
1566 if (!s->is_tile)
1567 av_log(s->avctx, AV_LOG_WARNING,
1568 "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1569
1570 s->tile_attr.xSize = bytestream2_get_le32(&s->gb);
1571 s->tile_attr.ySize = bytestream2_get_le32(&s->gb);
1572
1573 tileLevel = bytestream2_get_byte(&s->gb);
1574 s->tile_attr.level_mode = tileLevel & 0x0f;
1575 s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1576
1577 if (s->tile_attr.level_mode >= EXR_TILE_LEVEL_UNKNOWN) {
1578 avpriv_report_missing_feature(s->avctx, "Tile level mode %d",
1579 s->tile_attr.level_mode);
1580 ret = AVERROR_PATCHWELCOME;
1581 goto fail;
1582 }
1583
1584 if (s->tile_attr.level_round >= EXR_TILE_ROUND_UNKNOWN) {
1585 avpriv_report_missing_feature(s->avctx, "Tile level round %d",
1586 s->tile_attr.level_round);
1587 ret = AVERROR_PATCHWELCOME;
1588 goto fail;
1589 }
1590
1591 continue;
1592 } else if ((var_size = check_header_variable(s, "writer",
1593 "string", 1)) >= 0) {
1594 uint8_t key[256] = { 0 };
1595
1596 bytestream2_get_buffer(&s->gb, key, FFMIN(sizeof(key) - 1, var_size));
1597 av_dict_set(&metadata, "writer", key, 0);
1598
1599 continue;
1600 }
1601
1602 // Check if there are enough bytes for a header
1603 if (bytestream2_get_bytes_left(&s->gb) <= 9) {
1604 av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1605 ret = AVERROR_INVALIDDATA;
1606 goto fail;
1607 }
1608
1609 // Process unknown variables
1610 for (i = 0; i < 2; i++) // value_name and value_type
1611 while (bytestream2_get_byte(&s->gb) != 0);
1612
1613 // Skip variable length
1614 bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb));
1615 }
1616
1617 ff_set_sar(s->avctx, av_d2q(av_int2float(sar), 255));
1618
1619 if (s->compression == EXR_UNKN) {
1620 av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1621 ret = AVERROR_INVALIDDATA;
1622 goto fail;
1623 }
1624
1625 if (s->is_tile) {
1626 if (s->tile_attr.xSize < 1 || s->tile_attr.ySize < 1) {
1627 av_log(s->avctx, AV_LOG_ERROR, "Invalid tile attribute.\n");
1628 ret = AVERROR_INVALIDDATA;
1629 goto fail;
1630 }
1631 }
1632
1633 if (bytestream2_get_bytes_left(&s->gb) <= 0) {
1634 av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
1635 ret = AVERROR_INVALIDDATA;
1636 goto fail;
1637 }
1638
1639 frame->metadata = metadata;
1640
1641 // aaand we are done
1642 bytestream2_skip(&s->gb, 1);
1643 return 0;
1644 fail:
1645 av_dict_free(&metadata);
1646 return ret;
1647 }
1648
decode_frame(AVCodecContext * avctx,void * data,int * got_frame,AVPacket * avpkt)1649 static int decode_frame(AVCodecContext *avctx, void *data,
1650 int *got_frame, AVPacket *avpkt)
1651 {
1652 EXRContext *s = avctx->priv_data;
1653 ThreadFrame frame = { .f = data };
1654 AVFrame *picture = data;
1655 uint8_t *ptr;
1656
1657 int i, y, ret;
1658 int planes;
1659 int out_line_size;
1660 int nb_blocks; /* nb scanline or nb tile */
1661 uint64_t start_offset_table;
1662 uint64_t start_next_scanline;
1663 PutByteContext offset_table_writer;
1664
1665 bytestream2_init(&s->gb, avpkt->data, avpkt->size);
1666
1667 if ((ret = decode_header(s, picture)) < 0)
1668 return ret;
1669
1670 switch (s->pixel_type) {
1671 case EXR_FLOAT:
1672 case EXR_HALF:
1673 if (s->channel_offsets[3] >= 0) {
1674 if (!s->is_luma) {
1675 avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
1676 } else {
1677 /* todo: change this when a floating point pixel format with luma with alpha is implemented */
1678 avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
1679 }
1680 } else {
1681 if (!s->is_luma) {
1682 avctx->pix_fmt = AV_PIX_FMT_GBRPF32;
1683 } else {
1684 avctx->pix_fmt = AV_PIX_FMT_GRAYF32;
1685 }
1686 }
1687 break;
1688 case EXR_UINT:
1689 if (s->channel_offsets[3] >= 0) {
1690 if (!s->is_luma) {
1691 avctx->pix_fmt = AV_PIX_FMT_RGBA64;
1692 } else {
1693 avctx->pix_fmt = AV_PIX_FMT_YA16;
1694 }
1695 } else {
1696 if (!s->is_luma) {
1697 avctx->pix_fmt = AV_PIX_FMT_RGB48;
1698 } else {
1699 avctx->pix_fmt = AV_PIX_FMT_GRAY16;
1700 }
1701 }
1702 break;
1703 default:
1704 av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
1705 return AVERROR_INVALIDDATA;
1706 }
1707
1708 if (s->apply_trc_type != AVCOL_TRC_UNSPECIFIED)
1709 avctx->color_trc = s->apply_trc_type;
1710
1711 switch (s->compression) {
1712 case EXR_RAW:
1713 case EXR_RLE:
1714 case EXR_ZIP1:
1715 s->scan_lines_per_block = 1;
1716 break;
1717 case EXR_PXR24:
1718 case EXR_ZIP16:
1719 s->scan_lines_per_block = 16;
1720 break;
1721 case EXR_PIZ:
1722 case EXR_B44:
1723 case EXR_B44A:
1724 s->scan_lines_per_block = 32;
1725 break;
1726 default:
1727 avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
1728 return AVERROR_PATCHWELCOME;
1729 }
1730
1731 /* Verify the xmin, xmax, ymin, ymax and xdelta before setting
1732 * the actual image size. */
1733 if (s->xmin > s->xmax ||
1734 s->ymin > s->ymax ||
1735 s->xdelta != s->xmax - s->xmin + 1 ||
1736 s->xmax >= s->w ||
1737 s->ymax >= s->h) {
1738 av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
1739 return AVERROR_INVALIDDATA;
1740 }
1741
1742 if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
1743 return ret;
1744
1745 s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
1746 if (!s->desc)
1747 return AVERROR_INVALIDDATA;
1748
1749 if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
1750 planes = s->desc->nb_components;
1751 out_line_size = avctx->width * 4;
1752 } else {
1753 planes = 1;
1754 out_line_size = avctx->width * 2 * s->desc->nb_components;
1755 }
1756
1757 if (s->is_tile) {
1758 nb_blocks = ((s->xdelta + s->tile_attr.xSize - 1) / s->tile_attr.xSize) *
1759 ((s->ydelta + s->tile_attr.ySize - 1) / s->tile_attr.ySize);
1760 } else { /* scanline */
1761 nb_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
1762 s->scan_lines_per_block;
1763 }
1764
1765 if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
1766 return ret;
1767
1768 if (bytestream2_get_bytes_left(&s->gb) < nb_blocks * 8)
1769 return AVERROR_INVALIDDATA;
1770
1771 // check offset table and recreate it if need
1772 if (!s->is_tile && bytestream2_peek_le64(&s->gb) == 0) {
1773 av_log(s->avctx, AV_LOG_DEBUG, "recreating invalid scanline offset table\n");
1774
1775 start_offset_table = bytestream2_tell(&s->gb);
1776 start_next_scanline = start_offset_table + nb_blocks * 8;
1777 bytestream2_init_writer(&offset_table_writer, &avpkt->data[start_offset_table], nb_blocks * 8);
1778
1779 for (y = 0; y < nb_blocks; y++) {
1780 /* write offset of prev scanline in offset table */
1781 bytestream2_put_le64(&offset_table_writer, start_next_scanline);
1782
1783 /* get len of next scanline */
1784 bytestream2_seek(&s->gb, start_next_scanline + 4, SEEK_SET);/* skip line number */
1785 start_next_scanline += (bytestream2_get_le32(&s->gb) + 8);
1786 }
1787 bytestream2_seek(&s->gb, start_offset_table, SEEK_SET);
1788 }
1789
1790 // save pointer we are going to use in decode_block
1791 s->buf = avpkt->data;
1792 s->buf_size = avpkt->size;
1793
1794 // Zero out the start if ymin is not 0
1795 for (i = 0; i < planes; i++) {
1796 ptr = picture->data[i];
1797 for (y = 0; y < FFMIN(s->ymin, s->h); y++) {
1798 memset(ptr, 0, out_line_size);
1799 ptr += picture->linesize[i];
1800 }
1801 }
1802
1803 s->picture = picture;
1804
1805 avctx->execute2(avctx, decode_block, s->thread_data, NULL, nb_blocks);
1806
1807 // Zero out the end if ymax+1 is not h
1808 for (i = 0; i < planes; i++) {
1809 ptr = picture->data[i] + ((s->ymax+1) * picture->linesize[i]);
1810 for (y = s->ymax + 1; y < avctx->height; y++) {
1811 memset(ptr, 0, out_line_size);
1812 ptr += picture->linesize[i];
1813 }
1814 }
1815
1816 picture->pict_type = AV_PICTURE_TYPE_I;
1817 *got_frame = 1;
1818
1819 return avpkt->size;
1820 }
1821
decode_init(AVCodecContext * avctx)1822 static av_cold int decode_init(AVCodecContext *avctx)
1823 {
1824 EXRContext *s = avctx->priv_data;
1825 uint32_t i;
1826 union av_intfloat32 t;
1827 float one_gamma = 1.0f / s->gamma;
1828 avpriv_trc_function trc_func = NULL;
1829
1830 s->avctx = avctx;
1831
1832 ff_exrdsp_init(&s->dsp);
1833
1834 #if HAVE_BIGENDIAN
1835 ff_bswapdsp_init(&s->bbdsp);
1836 #endif
1837
1838 trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
1839 if (trc_func) {
1840 for (i = 0; i < 65536; ++i) {
1841 t = exr_half2float(i);
1842 t.f = trc_func(t.f);
1843 s->gamma_table[i] = t;
1844 }
1845 } else {
1846 if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
1847 for (i = 0; i < 65536; ++i) {
1848 s->gamma_table[i] = exr_half2float(i);
1849 }
1850 } else {
1851 for (i = 0; i < 65536; ++i) {
1852 t = exr_half2float(i);
1853 /* If negative value we reuse half value */
1854 if (t.f <= 0.0f) {
1855 s->gamma_table[i] = t;
1856 } else {
1857 t.f = powf(t.f, one_gamma);
1858 s->gamma_table[i] = t;
1859 }
1860 }
1861 }
1862 }
1863
1864 // allocate thread data, used for non EXR_RAW compression types
1865 s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
1866 if (!s->thread_data)
1867 return AVERROR_INVALIDDATA;
1868
1869 return 0;
1870 }
1871
decode_end(AVCodecContext * avctx)1872 static av_cold int decode_end(AVCodecContext *avctx)
1873 {
1874 EXRContext *s = avctx->priv_data;
1875 int i;
1876 for (i = 0; i < avctx->thread_count; i++) {
1877 EXRThreadData *td = &s->thread_data[i];
1878 av_freep(&td->uncompressed_data);
1879 av_freep(&td->tmp);
1880 av_freep(&td->bitmap);
1881 av_freep(&td->lut);
1882 }
1883
1884 av_freep(&s->thread_data);
1885 av_freep(&s->channels);
1886
1887 return 0;
1888 }
1889
1890 #define OFFSET(x) offsetof(EXRContext, x)
1891 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1892 static const AVOption options[] = {
1893 { "layer", "Set the decoding layer", OFFSET(layer),
1894 AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
1895 { "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
1896 AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
1897
1898 // XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option
1899 { "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type),
1900 AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"},
1901 { "bt709", "BT.709", 0,
1902 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1903 { "gamma", "gamma", 0,
1904 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1905 { "gamma22", "BT.470 M", 0,
1906 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1907 { "gamma28", "BT.470 BG", 0,
1908 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1909 { "smpte170m", "SMPTE 170 M", 0,
1910 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1911 { "smpte240m", "SMPTE 240 M", 0,
1912 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1913 { "linear", "Linear", 0,
1914 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1915 { "log", "Log", 0,
1916 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1917 { "log_sqrt", "Log square root", 0,
1918 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1919 { "iec61966_2_4", "IEC 61966-2-4", 0,
1920 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1921 { "bt1361", "BT.1361", 0,
1922 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1923 { "iec61966_2_1", "IEC 61966-2-1", 0,
1924 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1925 { "bt2020_10bit", "BT.2020 - 10 bit", 0,
1926 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1927 { "bt2020_12bit", "BT.2020 - 12 bit", 0,
1928 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1929 { "smpte2084", "SMPTE ST 2084", 0,
1930 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1931 { "smpte428_1", "SMPTE ST 428-1", 0,
1932 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1933
1934 { NULL },
1935 };
1936
1937 static const AVClass exr_class = {
1938 .class_name = "EXR",
1939 .item_name = av_default_item_name,
1940 .option = options,
1941 .version = LIBAVUTIL_VERSION_INT,
1942 };
1943
1944 AVCodec ff_exr_decoder = {
1945 .name = "exr",
1946 .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
1947 .type = AVMEDIA_TYPE_VIDEO,
1948 .id = AV_CODEC_ID_EXR,
1949 .priv_data_size = sizeof(EXRContext),
1950 .init = decode_init,
1951 .close = decode_end,
1952 .decode = decode_frame,
1953 .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
1954 AV_CODEC_CAP_SLICE_THREADS,
1955 .priv_class = &exr_class,
1956 };
1957