1 /*
2 * Simple free lossless/lossy audio codec
3 * Copyright (c) 2004 Alex Beregszaszi
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21 #include "avcodec.h"
22 #include "get_bits.h"
23 #include "golomb.h"
24 #include "internal.h"
25 #include "rangecoder.h"
26
27
28 /**
29 * @file
30 * Simple free lossless/lossy audio codec
31 * Based on Paul Francis Harrison's Bonk (http://www.logarithmic.net/pfh/bonk)
32 * Written and designed by Alex Beregszaszi
33 *
34 * TODO:
35 * - CABAC put/get_symbol
36 * - independent quantizer for channels
37 * - >2 channels support
38 * - more decorrelation types
39 * - more tap_quant tests
40 * - selectable intlist writers/readers (bonk-style, golomb, cabac)
41 */
42
43 #define MAX_CHANNELS 2
44
45 #define MID_SIDE 0
46 #define LEFT_SIDE 1
47 #define RIGHT_SIDE 2
48
49 typedef struct SonicContext {
50 int version;
51 int minor_version;
52 int lossless, decorrelation;
53
54 int num_taps, downsampling;
55 double quantization;
56
57 int channels, samplerate, block_align, frame_size;
58
59 int *tap_quant;
60 int *int_samples;
61 int *coded_samples[MAX_CHANNELS];
62
63 // for encoding
64 int *tail;
65 int tail_size;
66 int *window;
67 int window_size;
68
69 // for decoding
70 int *predictor_k;
71 int *predictor_state[MAX_CHANNELS];
72 } SonicContext;
73
74 #define LATTICE_SHIFT 10
75 #define SAMPLE_SHIFT 4
76 #define LATTICE_FACTOR (1 << LATTICE_SHIFT)
77 #define SAMPLE_FACTOR (1 << SAMPLE_SHIFT)
78
79 #define BASE_QUANT 0.6
80 #define RATE_VARIATION 3.0
81
shift(int a,int b)82 static inline int shift(int a,int b)
83 {
84 return (a+(1<<(b-1))) >> b;
85 }
86
shift_down(int a,int b)87 static inline int shift_down(int a,int b)
88 {
89 return (a>>b)+(a<0);
90 }
91
put_symbol(RangeCoder * c,uint8_t * state,int v,int is_signed,uint64_t rc_stat[256][2],uint64_t rc_stat2[32][2])92 static av_always_inline av_flatten void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){
93 int i;
94
95 #define put_rac(C,S,B) \
96 do{\
97 if(rc_stat){\
98 rc_stat[*(S)][B]++;\
99 rc_stat2[(S)-state][B]++;\
100 }\
101 put_rac(C,S,B);\
102 }while(0)
103
104 if(v){
105 const int a= FFABS(v);
106 const int e= av_log2(a);
107 put_rac(c, state+0, 0);
108 if(e<=9){
109 for(i=0; i<e; i++){
110 put_rac(c, state+1+i, 1); //1..10
111 }
112 put_rac(c, state+1+i, 0);
113
114 for(i=e-1; i>=0; i--){
115 put_rac(c, state+22+i, (a>>i)&1); //22..31
116 }
117
118 if(is_signed)
119 put_rac(c, state+11 + e, v < 0); //11..21
120 }else{
121 for(i=0; i<e; i++){
122 put_rac(c, state+1+FFMIN(i,9), 1); //1..10
123 }
124 put_rac(c, state+1+9, 0);
125
126 for(i=e-1; i>=0; i--){
127 put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
128 }
129
130 if(is_signed)
131 put_rac(c, state+11 + 10, v < 0); //11..21
132 }
133 }else{
134 put_rac(c, state+0, 1);
135 }
136 #undef put_rac
137 }
138
get_symbol(RangeCoder * c,uint8_t * state,int is_signed)139 static inline av_flatten int get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
140 if(get_rac(c, state+0))
141 return 0;
142 else{
143 int i, e;
144 unsigned a;
145 e= 0;
146 while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
147 e++;
148 if (e > 31)
149 return AVERROR_INVALIDDATA;
150 }
151
152 a= 1;
153 for(i=e-1; i>=0; i--){
154 a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
155 }
156
157 e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
158 return (a^e)-e;
159 }
160 }
161
162 #if 1
intlist_write(RangeCoder * c,uint8_t * state,int * buf,int entries,int base_2_part)163 static inline int intlist_write(RangeCoder *c, uint8_t *state, int *buf, int entries, int base_2_part)
164 {
165 int i;
166
167 for (i = 0; i < entries; i++)
168 put_symbol(c, state, buf[i], 1, NULL, NULL);
169
170 return 1;
171 }
172
intlist_read(RangeCoder * c,uint8_t * state,int * buf,int entries,int base_2_part)173 static inline int intlist_read(RangeCoder *c, uint8_t *state, int *buf, int entries, int base_2_part)
174 {
175 int i;
176
177 for (i = 0; i < entries; i++)
178 buf[i] = get_symbol(c, state, 1);
179
180 return 1;
181 }
182 #elif 1
intlist_write(PutBitContext * pb,int * buf,int entries,int base_2_part)183 static inline int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
184 {
185 int i;
186
187 for (i = 0; i < entries; i++)
188 set_se_golomb(pb, buf[i]);
189
190 return 1;
191 }
192
intlist_read(GetBitContext * gb,int * buf,int entries,int base_2_part)193 static inline int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
194 {
195 int i;
196
197 for (i = 0; i < entries; i++)
198 buf[i] = get_se_golomb(gb);
199
200 return 1;
201 }
202
203 #else
204
205 #define ADAPT_LEVEL 8
206
bits_to_store(uint64_t x)207 static int bits_to_store(uint64_t x)
208 {
209 int res = 0;
210
211 while(x)
212 {
213 res++;
214 x >>= 1;
215 }
216 return res;
217 }
218
write_uint_max(PutBitContext * pb,unsigned int value,unsigned int max)219 static void write_uint_max(PutBitContext *pb, unsigned int value, unsigned int max)
220 {
221 int i, bits;
222
223 if (!max)
224 return;
225
226 bits = bits_to_store(max);
227
228 for (i = 0; i < bits-1; i++)
229 put_bits(pb, 1, value & (1 << i));
230
231 if ( (value | (1 << (bits-1))) <= max)
232 put_bits(pb, 1, value & (1 << (bits-1)));
233 }
234
read_uint_max(GetBitContext * gb,int max)235 static unsigned int read_uint_max(GetBitContext *gb, int max)
236 {
237 int i, bits, value = 0;
238
239 if (!max)
240 return 0;
241
242 bits = bits_to_store(max);
243
244 for (i = 0; i < bits-1; i++)
245 if (get_bits1(gb))
246 value += 1 << i;
247
248 if ( (value | (1<<(bits-1))) <= max)
249 if (get_bits1(gb))
250 value += 1 << (bits-1);
251
252 return value;
253 }
254
intlist_write(PutBitContext * pb,int * buf,int entries,int base_2_part)255 static int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
256 {
257 int i, j, x = 0, low_bits = 0, max = 0;
258 int step = 256, pos = 0, dominant = 0, any = 0;
259 int *copy, *bits;
260
261 copy = av_calloc(entries, sizeof(*copy));
262 if (!copy)
263 return AVERROR(ENOMEM);
264
265 if (base_2_part)
266 {
267 int energy = 0;
268
269 for (i = 0; i < entries; i++)
270 energy += abs(buf[i]);
271
272 low_bits = bits_to_store(energy / (entries * 2));
273 if (low_bits > 15)
274 low_bits = 15;
275
276 put_bits(pb, 4, low_bits);
277 }
278
279 for (i = 0; i < entries; i++)
280 {
281 put_bits(pb, low_bits, abs(buf[i]));
282 copy[i] = abs(buf[i]) >> low_bits;
283 if (copy[i] > max)
284 max = abs(copy[i]);
285 }
286
287 bits = av_calloc(entries*max, sizeof(*bits));
288 if (!bits)
289 {
290 av_free(copy);
291 return AVERROR(ENOMEM);
292 }
293
294 for (i = 0; i <= max; i++)
295 {
296 for (j = 0; j < entries; j++)
297 if (copy[j] >= i)
298 bits[x++] = copy[j] > i;
299 }
300
301 // store bitstream
302 while (pos < x)
303 {
304 int steplet = step >> 8;
305
306 if (pos + steplet > x)
307 steplet = x - pos;
308
309 for (i = 0; i < steplet; i++)
310 if (bits[i+pos] != dominant)
311 any = 1;
312
313 put_bits(pb, 1, any);
314
315 if (!any)
316 {
317 pos += steplet;
318 step += step / ADAPT_LEVEL;
319 }
320 else
321 {
322 int interloper = 0;
323
324 while (((pos + interloper) < x) && (bits[pos + interloper] == dominant))
325 interloper++;
326
327 // note change
328 write_uint_max(pb, interloper, (step >> 8) - 1);
329
330 pos += interloper + 1;
331 step -= step / ADAPT_LEVEL;
332 }
333
334 if (step < 256)
335 {
336 step = 65536 / step;
337 dominant = !dominant;
338 }
339 }
340
341 // store signs
342 for (i = 0; i < entries; i++)
343 if (buf[i])
344 put_bits(pb, 1, buf[i] < 0);
345
346 av_free(bits);
347 av_free(copy);
348
349 return 0;
350 }
351
intlist_read(GetBitContext * gb,int * buf,int entries,int base_2_part)352 static int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
353 {
354 int i, low_bits = 0, x = 0;
355 int n_zeros = 0, step = 256, dominant = 0;
356 int pos = 0, level = 0;
357 int *bits = av_calloc(entries, sizeof(*bits));
358
359 if (!bits)
360 return AVERROR(ENOMEM);
361
362 if (base_2_part)
363 {
364 low_bits = get_bits(gb, 4);
365
366 if (low_bits)
367 for (i = 0; i < entries; i++)
368 buf[i] = get_bits(gb, low_bits);
369 }
370
371 // av_log(NULL, AV_LOG_INFO, "entries: %d, low bits: %d\n", entries, low_bits);
372
373 while (n_zeros < entries)
374 {
375 int steplet = step >> 8;
376
377 if (!get_bits1(gb))
378 {
379 for (i = 0; i < steplet; i++)
380 bits[x++] = dominant;
381
382 if (!dominant)
383 n_zeros += steplet;
384
385 step += step / ADAPT_LEVEL;
386 }
387 else
388 {
389 int actual_run = read_uint_max(gb, steplet-1);
390
391 // av_log(NULL, AV_LOG_INFO, "actual run: %d\n", actual_run);
392
393 for (i = 0; i < actual_run; i++)
394 bits[x++] = dominant;
395
396 bits[x++] = !dominant;
397
398 if (!dominant)
399 n_zeros += actual_run;
400 else
401 n_zeros++;
402
403 step -= step / ADAPT_LEVEL;
404 }
405
406 if (step < 256)
407 {
408 step = 65536 / step;
409 dominant = !dominant;
410 }
411 }
412
413 // reconstruct unsigned values
414 n_zeros = 0;
415 for (i = 0; n_zeros < entries; i++)
416 {
417 while(1)
418 {
419 if (pos >= entries)
420 {
421 pos = 0;
422 level += 1 << low_bits;
423 }
424
425 if (buf[pos] >= level)
426 break;
427
428 pos++;
429 }
430
431 if (bits[i])
432 buf[pos] += 1 << low_bits;
433 else
434 n_zeros++;
435
436 pos++;
437 }
438 av_free(bits);
439
440 // read signs
441 for (i = 0; i < entries; i++)
442 if (buf[i] && get_bits1(gb))
443 buf[i] = -buf[i];
444
445 // av_log(NULL, AV_LOG_INFO, "zeros: %d pos: %d\n", n_zeros, pos);
446
447 return 0;
448 }
449 #endif
450
predictor_init_state(int * k,int * state,int order)451 static void predictor_init_state(int *k, int *state, int order)
452 {
453 int i;
454
455 for (i = order-2; i >= 0; i--)
456 {
457 int j, p, x = state[i];
458
459 for (j = 0, p = i+1; p < order; j++,p++)
460 {
461 int tmp = x + shift_down(k[j] * state[p], LATTICE_SHIFT);
462 state[p] += shift_down(k[j]*x, LATTICE_SHIFT);
463 x = tmp;
464 }
465 }
466 }
467
predictor_calc_error(int * k,int * state,int order,int error)468 static int predictor_calc_error(int *k, int *state, int order, int error)
469 {
470 int i, x = error - shift_down(k[order-1] * state[order-1], LATTICE_SHIFT);
471
472 #if 1
473 int *k_ptr = &(k[order-2]),
474 *state_ptr = &(state[order-2]);
475 for (i = order-2; i >= 0; i--, k_ptr--, state_ptr--)
476 {
477 int k_value = *k_ptr, state_value = *state_ptr;
478 x -= shift_down(k_value * (unsigned)state_value, LATTICE_SHIFT);
479 state_ptr[1] = state_value + shift_down(k_value * (unsigned)x, LATTICE_SHIFT);
480 }
481 #else
482 for (i = order-2; i >= 0; i--)
483 {
484 x -= shift_down(k[i] * state[i], LATTICE_SHIFT);
485 state[i+1] = state[i] + shift_down(k[i] * x, LATTICE_SHIFT);
486 }
487 #endif
488
489 // don't drift too far, to avoid overflows
490 if (x > (SAMPLE_FACTOR<<16)) x = (SAMPLE_FACTOR<<16);
491 if (x < -(SAMPLE_FACTOR<<16)) x = -(SAMPLE_FACTOR<<16);
492
493 state[0] = x;
494
495 return x;
496 }
497
498 #if CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER
499 // Heavily modified Levinson-Durbin algorithm which
500 // copes better with quantization, and calculates the
501 // actual whitened result as it goes.
502
modified_levinson_durbin(int * window,int window_entries,int * out,int out_entries,int channels,int * tap_quant)503 static int modified_levinson_durbin(int *window, int window_entries,
504 int *out, int out_entries, int channels, int *tap_quant)
505 {
506 int i;
507 int *state = av_calloc(window_entries, sizeof(*state));
508
509 if (!state)
510 return AVERROR(ENOMEM);
511
512 memcpy(state, window, 4* window_entries);
513
514 for (i = 0; i < out_entries; i++)
515 {
516 int step = (i+1)*channels, k, j;
517 double xx = 0.0, xy = 0.0;
518 #if 1
519 int *x_ptr = &(window[step]);
520 int *state_ptr = &(state[0]);
521 j = window_entries - step;
522 for (;j>0;j--,x_ptr++,state_ptr++)
523 {
524 double x_value = *x_ptr;
525 double state_value = *state_ptr;
526 xx += state_value*state_value;
527 xy += x_value*state_value;
528 }
529 #else
530 for (j = 0; j <= (window_entries - step); j++);
531 {
532 double stepval = window[step+j];
533 double stateval = window[j];
534 // xx += (double)window[j]*(double)window[j];
535 // xy += (double)window[step+j]*(double)window[j];
536 xx += stateval*stateval;
537 xy += stepval*stateval;
538 }
539 #endif
540 if (xx == 0.0)
541 k = 0;
542 else
543 k = (int)(floor(-xy/xx * (double)LATTICE_FACTOR / (double)(tap_quant[i]) + 0.5));
544
545 if (k > (LATTICE_FACTOR/tap_quant[i]))
546 k = LATTICE_FACTOR/tap_quant[i];
547 if (-k > (LATTICE_FACTOR/tap_quant[i]))
548 k = -(LATTICE_FACTOR/tap_quant[i]);
549
550 out[i] = k;
551 k *= tap_quant[i];
552
553 #if 1
554 x_ptr = &(window[step]);
555 state_ptr = &(state[0]);
556 j = window_entries - step;
557 for (;j>0;j--,x_ptr++,state_ptr++)
558 {
559 int x_value = *x_ptr;
560 int state_value = *state_ptr;
561 *x_ptr = x_value + shift_down(k*state_value,LATTICE_SHIFT);
562 *state_ptr = state_value + shift_down(k*x_value, LATTICE_SHIFT);
563 }
564 #else
565 for (j=0; j <= (window_entries - step); j++)
566 {
567 int stepval = window[step+j];
568 int stateval=state[j];
569 window[step+j] += shift_down(k * stateval, LATTICE_SHIFT);
570 state[j] += shift_down(k * stepval, LATTICE_SHIFT);
571 }
572 #endif
573 }
574
575 av_free(state);
576 return 0;
577 }
578
code_samplerate(int samplerate)579 static inline int code_samplerate(int samplerate)
580 {
581 switch (samplerate)
582 {
583 case 44100: return 0;
584 case 22050: return 1;
585 case 11025: return 2;
586 case 96000: return 3;
587 case 48000: return 4;
588 case 32000: return 5;
589 case 24000: return 6;
590 case 16000: return 7;
591 case 8000: return 8;
592 }
593 return AVERROR(EINVAL);
594 }
595
sonic_encode_init(AVCodecContext * avctx)596 static av_cold int sonic_encode_init(AVCodecContext *avctx)
597 {
598 SonicContext *s = avctx->priv_data;
599 PutBitContext pb;
600 int i;
601
602 s->version = 2;
603
604 if (avctx->channels > MAX_CHANNELS)
605 {
606 av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
607 return AVERROR(EINVAL); /* only stereo or mono for now */
608 }
609
610 if (avctx->channels == 2)
611 s->decorrelation = MID_SIDE;
612 else
613 s->decorrelation = 3;
614
615 if (avctx->codec->id == AV_CODEC_ID_SONIC_LS)
616 {
617 s->lossless = 1;
618 s->num_taps = 32;
619 s->downsampling = 1;
620 s->quantization = 0.0;
621 }
622 else
623 {
624 s->num_taps = 128;
625 s->downsampling = 2;
626 s->quantization = 1.0;
627 }
628
629 // max tap 2048
630 if (s->num_taps < 32 || s->num_taps > 1024 || s->num_taps % 32) {
631 av_log(avctx, AV_LOG_ERROR, "Invalid number of taps\n");
632 return AVERROR_INVALIDDATA;
633 }
634
635 // generate taps
636 s->tap_quant = av_calloc(s->num_taps, sizeof(*s->tap_quant));
637 if (!s->tap_quant)
638 return AVERROR(ENOMEM);
639
640 for (i = 0; i < s->num_taps; i++)
641 s->tap_quant[i] = ff_sqrt(i+1);
642
643 s->channels = avctx->channels;
644 s->samplerate = avctx->sample_rate;
645
646 s->block_align = 2048LL*s->samplerate/(44100*s->downsampling);
647 s->frame_size = s->channels*s->block_align*s->downsampling;
648
649 s->tail_size = s->num_taps*s->channels;
650 s->tail = av_calloc(s->tail_size, sizeof(*s->tail));
651 if (!s->tail)
652 return AVERROR(ENOMEM);
653
654 s->predictor_k = av_calloc(s->num_taps, sizeof(*s->predictor_k) );
655 if (!s->predictor_k)
656 return AVERROR(ENOMEM);
657
658 for (i = 0; i < s->channels; i++)
659 {
660 s->coded_samples[i] = av_calloc(s->block_align, sizeof(**s->coded_samples));
661 if (!s->coded_samples[i])
662 return AVERROR(ENOMEM);
663 }
664
665 s->int_samples = av_calloc(s->frame_size, sizeof(*s->int_samples));
666
667 s->window_size = ((2*s->tail_size)+s->frame_size);
668 s->window = av_calloc(s->window_size, sizeof(*s->window));
669 if (!s->window || !s->int_samples)
670 return AVERROR(ENOMEM);
671
672 avctx->extradata = av_mallocz(16);
673 if (!avctx->extradata)
674 return AVERROR(ENOMEM);
675 init_put_bits(&pb, avctx->extradata, 16*8);
676
677 put_bits(&pb, 2, s->version); // version
678 if (s->version >= 1)
679 {
680 if (s->version >= 2) {
681 put_bits(&pb, 8, s->version);
682 put_bits(&pb, 8, s->minor_version);
683 }
684 put_bits(&pb, 2, s->channels);
685 put_bits(&pb, 4, code_samplerate(s->samplerate));
686 }
687 put_bits(&pb, 1, s->lossless);
688 if (!s->lossless)
689 put_bits(&pb, 3, SAMPLE_SHIFT); // XXX FIXME: sample precision
690 put_bits(&pb, 2, s->decorrelation);
691 put_bits(&pb, 2, s->downsampling);
692 put_bits(&pb, 5, (s->num_taps >> 5)-1); // 32..1024
693 put_bits(&pb, 1, 0); // XXX FIXME: no custom tap quant table
694
695 flush_put_bits(&pb);
696 avctx->extradata_size = put_bits_count(&pb)/8;
697
698 av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d.%d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
699 s->version, s->minor_version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
700
701 avctx->frame_size = s->block_align*s->downsampling;
702
703 return 0;
704 }
705
sonic_encode_close(AVCodecContext * avctx)706 static av_cold int sonic_encode_close(AVCodecContext *avctx)
707 {
708 SonicContext *s = avctx->priv_data;
709 int i;
710
711 for (i = 0; i < s->channels; i++)
712 av_freep(&s->coded_samples[i]);
713
714 av_freep(&s->predictor_k);
715 av_freep(&s->tail);
716 av_freep(&s->tap_quant);
717 av_freep(&s->window);
718 av_freep(&s->int_samples);
719
720 return 0;
721 }
722
sonic_encode_frame(AVCodecContext * avctx,AVPacket * avpkt,const AVFrame * frame,int * got_packet_ptr)723 static int sonic_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
724 const AVFrame *frame, int *got_packet_ptr)
725 {
726 SonicContext *s = avctx->priv_data;
727 RangeCoder c;
728 int i, j, ch, quant = 0, x = 0;
729 int ret;
730 const short *samples = (const int16_t*)frame->data[0];
731 uint8_t state[32];
732
733 if ((ret = ff_alloc_packet2(avctx, avpkt, s->frame_size * 5 + 1000, 0)) < 0)
734 return ret;
735
736 ff_init_range_encoder(&c, avpkt->data, avpkt->size);
737 ff_build_rac_states(&c, 0.05*(1LL<<32), 256-8);
738 memset(state, 128, sizeof(state));
739
740 // short -> internal
741 for (i = 0; i < s->frame_size; i++)
742 s->int_samples[i] = samples[i];
743
744 if (!s->lossless)
745 for (i = 0; i < s->frame_size; i++)
746 s->int_samples[i] = s->int_samples[i] << SAMPLE_SHIFT;
747
748 switch(s->decorrelation)
749 {
750 case MID_SIDE:
751 for (i = 0; i < s->frame_size; i += s->channels)
752 {
753 s->int_samples[i] += s->int_samples[i+1];
754 s->int_samples[i+1] -= shift(s->int_samples[i], 1);
755 }
756 break;
757 case LEFT_SIDE:
758 for (i = 0; i < s->frame_size; i += s->channels)
759 s->int_samples[i+1] -= s->int_samples[i];
760 break;
761 case RIGHT_SIDE:
762 for (i = 0; i < s->frame_size; i += s->channels)
763 s->int_samples[i] -= s->int_samples[i+1];
764 break;
765 }
766
767 memset(s->window, 0, 4* s->window_size);
768
769 for (i = 0; i < s->tail_size; i++)
770 s->window[x++] = s->tail[i];
771
772 for (i = 0; i < s->frame_size; i++)
773 s->window[x++] = s->int_samples[i];
774
775 for (i = 0; i < s->tail_size; i++)
776 s->window[x++] = 0;
777
778 for (i = 0; i < s->tail_size; i++)
779 s->tail[i] = s->int_samples[s->frame_size - s->tail_size + i];
780
781 // generate taps
782 ret = modified_levinson_durbin(s->window, s->window_size,
783 s->predictor_k, s->num_taps, s->channels, s->tap_quant);
784 if (ret < 0)
785 return ret;
786
787 if ((ret = intlist_write(&c, state, s->predictor_k, s->num_taps, 0)) < 0)
788 return ret;
789
790 for (ch = 0; ch < s->channels; ch++)
791 {
792 x = s->tail_size+ch;
793 for (i = 0; i < s->block_align; i++)
794 {
795 int sum = 0;
796 for (j = 0; j < s->downsampling; j++, x += s->channels)
797 sum += s->window[x];
798 s->coded_samples[ch][i] = sum;
799 }
800 }
801
802 // simple rate control code
803 if (!s->lossless)
804 {
805 double energy1 = 0.0, energy2 = 0.0;
806 for (ch = 0; ch < s->channels; ch++)
807 {
808 for (i = 0; i < s->block_align; i++)
809 {
810 double sample = s->coded_samples[ch][i];
811 energy2 += sample*sample;
812 energy1 += fabs(sample);
813 }
814 }
815
816 energy2 = sqrt(energy2/(s->channels*s->block_align));
817 energy1 = M_SQRT2*energy1/(s->channels*s->block_align);
818
819 // increase bitrate when samples are like a gaussian distribution
820 // reduce bitrate when samples are like a two-tailed exponential distribution
821
822 if (energy2 > energy1)
823 energy2 += (energy2-energy1)*RATE_VARIATION;
824
825 quant = (int)(BASE_QUANT*s->quantization*energy2/SAMPLE_FACTOR);
826 // av_log(avctx, AV_LOG_DEBUG, "quant: %d energy: %f / %f\n", quant, energy1, energy2);
827
828 quant = av_clip(quant, 1, 65534);
829
830 put_symbol(&c, state, quant, 0, NULL, NULL);
831
832 quant *= SAMPLE_FACTOR;
833 }
834
835 // write out coded samples
836 for (ch = 0; ch < s->channels; ch++)
837 {
838 if (!s->lossless)
839 for (i = 0; i < s->block_align; i++)
840 s->coded_samples[ch][i] = ROUNDED_DIV(s->coded_samples[ch][i], quant);
841
842 if ((ret = intlist_write(&c, state, s->coded_samples[ch], s->block_align, 1)) < 0)
843 return ret;
844 }
845
846 // av_log(avctx, AV_LOG_DEBUG, "used bytes: %d\n", (put_bits_count(&pb)+7)/8);
847
848 avpkt->size = ff_rac_terminate(&c, 0);
849 *got_packet_ptr = 1;
850 return 0;
851
852 }
853 #endif /* CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER */
854
855 #if CONFIG_SONIC_DECODER
856 static const int samplerate_table[] =
857 { 44100, 22050, 11025, 96000, 48000, 32000, 24000, 16000, 8000 };
858
sonic_decode_init(AVCodecContext * avctx)859 static av_cold int sonic_decode_init(AVCodecContext *avctx)
860 {
861 SonicContext *s = avctx->priv_data;
862 GetBitContext gb;
863 int i;
864 int ret;
865
866 s->channels = avctx->channels;
867 s->samplerate = avctx->sample_rate;
868
869 if (!avctx->extradata)
870 {
871 av_log(avctx, AV_LOG_ERROR, "No mandatory headers present\n");
872 return AVERROR_INVALIDDATA;
873 }
874
875 ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size);
876 if (ret < 0)
877 return ret;
878
879 s->version = get_bits(&gb, 2);
880 if (s->version >= 2) {
881 s->version = get_bits(&gb, 8);
882 s->minor_version = get_bits(&gb, 8);
883 }
884 if (s->version != 2)
885 {
886 av_log(avctx, AV_LOG_ERROR, "Unsupported Sonic version, please report\n");
887 return AVERROR_INVALIDDATA;
888 }
889
890 if (s->version >= 1)
891 {
892 int sample_rate_index;
893 s->channels = get_bits(&gb, 2);
894 sample_rate_index = get_bits(&gb, 4);
895 if (sample_rate_index >= FF_ARRAY_ELEMS(samplerate_table)) {
896 av_log(avctx, AV_LOG_ERROR, "Invalid sample_rate_index %d\n", sample_rate_index);
897 return AVERROR_INVALIDDATA;
898 }
899 s->samplerate = samplerate_table[sample_rate_index];
900 av_log(avctx, AV_LOG_INFO, "Sonicv2 chans: %d samprate: %d\n",
901 s->channels, s->samplerate);
902 }
903
904 if (s->channels > MAX_CHANNELS || s->channels < 1)
905 {
906 av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
907 return AVERROR_INVALIDDATA;
908 }
909 avctx->channels = s->channels;
910
911 s->lossless = get_bits1(&gb);
912 if (!s->lossless)
913 skip_bits(&gb, 3); // XXX FIXME
914 s->decorrelation = get_bits(&gb, 2);
915 if (s->decorrelation != 3 && s->channels != 2) {
916 av_log(avctx, AV_LOG_ERROR, "invalid decorrelation %d\n", s->decorrelation);
917 return AVERROR_INVALIDDATA;
918 }
919
920 s->downsampling = get_bits(&gb, 2);
921 if (!s->downsampling) {
922 av_log(avctx, AV_LOG_ERROR, "invalid downsampling value\n");
923 return AVERROR_INVALIDDATA;
924 }
925
926 s->num_taps = (get_bits(&gb, 5)+1)<<5;
927 if (get_bits1(&gb)) // XXX FIXME
928 av_log(avctx, AV_LOG_INFO, "Custom quant table\n");
929
930 s->block_align = 2048LL*s->samplerate/(44100*s->downsampling);
931 s->frame_size = s->channels*s->block_align*s->downsampling;
932 // avctx->frame_size = s->block_align;
933
934 if (s->num_taps * s->channels > s->frame_size) {
935 av_log(avctx, AV_LOG_ERROR,
936 "number of taps times channels (%d * %d) larger than frame size %d\n",
937 s->num_taps, s->channels, s->frame_size);
938 return AVERROR_INVALIDDATA;
939 }
940
941 av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d.%d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
942 s->version, s->minor_version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
943
944 // generate taps
945 s->tap_quant = av_calloc(s->num_taps, sizeof(*s->tap_quant));
946 if (!s->tap_quant)
947 return AVERROR(ENOMEM);
948
949 for (i = 0; i < s->num_taps; i++)
950 s->tap_quant[i] = ff_sqrt(i+1);
951
952 s->predictor_k = av_calloc(s->num_taps, sizeof(*s->predictor_k));
953
954 for (i = 0; i < s->channels; i++)
955 {
956 s->predictor_state[i] = av_calloc(s->num_taps, sizeof(**s->predictor_state));
957 if (!s->predictor_state[i])
958 return AVERROR(ENOMEM);
959 }
960
961 for (i = 0; i < s->channels; i++)
962 {
963 s->coded_samples[i] = av_calloc(s->block_align, sizeof(**s->coded_samples));
964 if (!s->coded_samples[i])
965 return AVERROR(ENOMEM);
966 }
967 s->int_samples = av_calloc(s->frame_size, sizeof(*s->int_samples));
968 if (!s->int_samples)
969 return AVERROR(ENOMEM);
970
971 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
972 return 0;
973 }
974
sonic_decode_close(AVCodecContext * avctx)975 static av_cold int sonic_decode_close(AVCodecContext *avctx)
976 {
977 SonicContext *s = avctx->priv_data;
978 int i;
979
980 av_freep(&s->int_samples);
981 av_freep(&s->tap_quant);
982 av_freep(&s->predictor_k);
983
984 for (i = 0; i < s->channels; i++)
985 {
986 av_freep(&s->predictor_state[i]);
987 av_freep(&s->coded_samples[i]);
988 }
989
990 return 0;
991 }
992
sonic_decode_frame(AVCodecContext * avctx,void * data,int * got_frame_ptr,AVPacket * avpkt)993 static int sonic_decode_frame(AVCodecContext *avctx,
994 void *data, int *got_frame_ptr,
995 AVPacket *avpkt)
996 {
997 const uint8_t *buf = avpkt->data;
998 int buf_size = avpkt->size;
999 SonicContext *s = avctx->priv_data;
1000 RangeCoder c;
1001 uint8_t state[32];
1002 int i, quant, ch, j, ret;
1003 int16_t *samples;
1004 AVFrame *frame = data;
1005
1006 if (buf_size == 0) return 0;
1007
1008 frame->nb_samples = s->frame_size / avctx->channels;
1009 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1010 return ret;
1011 samples = (int16_t *)frame->data[0];
1012
1013 // av_log(NULL, AV_LOG_INFO, "buf_size: %d\n", buf_size);
1014
1015 memset(state, 128, sizeof(state));
1016 ff_init_range_decoder(&c, buf, buf_size);
1017 ff_build_rac_states(&c, 0.05*(1LL<<32), 256-8);
1018
1019 intlist_read(&c, state, s->predictor_k, s->num_taps, 0);
1020
1021 // dequantize
1022 for (i = 0; i < s->num_taps; i++)
1023 s->predictor_k[i] *= s->tap_quant[i];
1024
1025 if (s->lossless)
1026 quant = 1;
1027 else
1028 quant = get_symbol(&c, state, 0) * SAMPLE_FACTOR;
1029
1030 // av_log(NULL, AV_LOG_INFO, "quant: %d\n", quant);
1031
1032 for (ch = 0; ch < s->channels; ch++)
1033 {
1034 int x = ch;
1035
1036 predictor_init_state(s->predictor_k, s->predictor_state[ch], s->num_taps);
1037
1038 intlist_read(&c, state, s->coded_samples[ch], s->block_align, 1);
1039
1040 for (i = 0; i < s->block_align; i++)
1041 {
1042 for (j = 0; j < s->downsampling - 1; j++)
1043 {
1044 s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, 0);
1045 x += s->channels;
1046 }
1047
1048 s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, s->coded_samples[ch][i] * (unsigned)quant);
1049 x += s->channels;
1050 }
1051
1052 for (i = 0; i < s->num_taps; i++)
1053 s->predictor_state[ch][i] = s->int_samples[s->frame_size - s->channels + ch - i*s->channels];
1054 }
1055
1056 switch(s->decorrelation)
1057 {
1058 case MID_SIDE:
1059 for (i = 0; i < s->frame_size; i += s->channels)
1060 {
1061 s->int_samples[i+1] += shift(s->int_samples[i], 1);
1062 s->int_samples[i] -= s->int_samples[i+1];
1063 }
1064 break;
1065 case LEFT_SIDE:
1066 for (i = 0; i < s->frame_size; i += s->channels)
1067 s->int_samples[i+1] += s->int_samples[i];
1068 break;
1069 case RIGHT_SIDE:
1070 for (i = 0; i < s->frame_size; i += s->channels)
1071 s->int_samples[i] += s->int_samples[i+1];
1072 break;
1073 }
1074
1075 if (!s->lossless)
1076 for (i = 0; i < s->frame_size; i++)
1077 s->int_samples[i] = shift(s->int_samples[i], SAMPLE_SHIFT);
1078
1079 // internal -> short
1080 for (i = 0; i < s->frame_size; i++)
1081 samples[i] = av_clip_int16(s->int_samples[i]);
1082
1083 *got_frame_ptr = 1;
1084
1085 return buf_size;
1086 }
1087
1088 AVCodec ff_sonic_decoder = {
1089 .name = "sonic",
1090 .long_name = NULL_IF_CONFIG_SMALL("Sonic"),
1091 .type = AVMEDIA_TYPE_AUDIO,
1092 .id = AV_CODEC_ID_SONIC,
1093 .priv_data_size = sizeof(SonicContext),
1094 .init = sonic_decode_init,
1095 .close = sonic_decode_close,
1096 .decode = sonic_decode_frame,
1097 .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_EXPERIMENTAL,
1098 };
1099 #endif /* CONFIG_SONIC_DECODER */
1100
1101 #if CONFIG_SONIC_ENCODER
1102 AVCodec ff_sonic_encoder = {
1103 .name = "sonic",
1104 .long_name = NULL_IF_CONFIG_SMALL("Sonic"),
1105 .type = AVMEDIA_TYPE_AUDIO,
1106 .id = AV_CODEC_ID_SONIC,
1107 .priv_data_size = sizeof(SonicContext),
1108 .init = sonic_encode_init,
1109 .encode2 = sonic_encode_frame,
1110 .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE },
1111 .capabilities = AV_CODEC_CAP_EXPERIMENTAL,
1112 .close = sonic_encode_close,
1113 };
1114 #endif
1115
1116 #if CONFIG_SONIC_LS_ENCODER
1117 AVCodec ff_sonic_ls_encoder = {
1118 .name = "sonicls",
1119 .long_name = NULL_IF_CONFIG_SMALL("Sonic lossless"),
1120 .type = AVMEDIA_TYPE_AUDIO,
1121 .id = AV_CODEC_ID_SONIC_LS,
1122 .priv_data_size = sizeof(SonicContext),
1123 .init = sonic_encode_init,
1124 .encode2 = sonic_encode_frame,
1125 .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE },
1126 .capabilities = AV_CODEC_CAP_EXPERIMENTAL,
1127 .close = sonic_encode_close,
1128 };
1129 #endif
1130