1 /*
2 * Copyright (c) 2015 Ronald S. Bultje <rsbultje@gmail.com>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20
21 #include <math.h>
22 #include <string.h>
23 #include "checkasm.h"
24 #include "libavcodec/vp9data.h"
25 #include "libavcodec/vp9.h"
26 #include "libavutil/common.h"
27 #include "libavutil/internal.h"
28 #include "libavutil/intreadwrite.h"
29 #include "libavutil/mathematics.h"
30
31 static const uint32_t pixel_mask[3] = { 0xffffffff, 0x03ff03ff, 0x0fff0fff };
32 #define SIZEOF_PIXEL ((bit_depth + 7) / 8)
33
34 #define randomize_buffers() \
35 do { \
36 uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \
37 int k; \
38 for (k = -4; k < SIZEOF_PIXEL * FFMAX(8, size); k += 4) { \
39 uint32_t r = rnd() & mask; \
40 AV_WN32A(a + k, r); \
41 } \
42 for (k = 0; k < size * SIZEOF_PIXEL; k += 4) { \
43 uint32_t r = rnd() & mask; \
44 AV_WN32A(l + k, r); \
45 } \
46 } while (0)
47
check_ipred(void)48 static void check_ipred(void)
49 {
50 LOCAL_ALIGNED_32(uint8_t, a_buf, [64 * 2]);
51 uint8_t *a = &a_buf[32 * 2];
52 LOCAL_ALIGNED_32(uint8_t, l, [32 * 2]);
53 LOCAL_ALIGNED_32(uint8_t, dst0, [32 * 32 * 2]);
54 LOCAL_ALIGNED_32(uint8_t, dst1, [32 * 32 * 2]);
55 VP9DSPContext dsp;
56 int tx, mode, bit_depth;
57 declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride,
58 const uint8_t *left, const uint8_t *top);
59 static const char *const mode_names[N_INTRA_PRED_MODES] = {
60 [VERT_PRED] = "vert",
61 [HOR_PRED] = "hor",
62 [DC_PRED] = "dc",
63 [DIAG_DOWN_LEFT_PRED] = "diag_downleft",
64 [DIAG_DOWN_RIGHT_PRED] = "diag_downright",
65 [VERT_RIGHT_PRED] = "vert_right",
66 [HOR_DOWN_PRED] = "hor_down",
67 [VERT_LEFT_PRED] = "vert_left",
68 [HOR_UP_PRED] = "hor_up",
69 [TM_VP8_PRED] = "tm",
70 [LEFT_DC_PRED] = "dc_left",
71 [TOP_DC_PRED] = "dc_top",
72 [DC_128_PRED] = "dc_128",
73 [DC_127_PRED] = "dc_127",
74 [DC_129_PRED] = "dc_129",
75 };
76
77 for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
78 ff_vp9dsp_init(&dsp, bit_depth, 0);
79 for (tx = 0; tx < 4; tx++) {
80 int size = 4 << tx;
81
82 for (mode = 0; mode < N_INTRA_PRED_MODES; mode++) {
83 if (check_func(dsp.intra_pred[tx][mode], "vp9_%s_%dx%d_%dbpp",
84 mode_names[mode], size, size, bit_depth)) {
85 randomize_buffers();
86 call_ref(dst0, size * SIZEOF_PIXEL, l, a);
87 call_new(dst1, size * SIZEOF_PIXEL, l, a);
88 if (memcmp(dst0, dst1, size * size * SIZEOF_PIXEL))
89 fail();
90 bench_new(dst1, size * SIZEOF_PIXEL,l, a);
91 }
92 }
93 }
94 }
95 report("ipred");
96 }
97
98 #undef randomize_buffers
99
100 #define randomize_buffers() \
101 do { \
102 uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \
103 for (y = 0; y < sz; y++) { \
104 for (x = 0; x < sz * SIZEOF_PIXEL; x += 4) { \
105 uint32_t r = rnd() & mask; \
106 AV_WN32A(dst + y * sz * SIZEOF_PIXEL + x, r); \
107 AV_WN32A(src + y * sz * SIZEOF_PIXEL + x, rnd() & mask); \
108 } \
109 for (x = 0; x < sz; x++) { \
110 if (bit_depth == 8) { \
111 coef[y * sz + x] = src[y * sz + x] - dst[y * sz + x]; \
112 } else { \
113 ((int32_t *) coef)[y * sz + x] = \
114 ((uint16_t *) src)[y * sz + x] - \
115 ((uint16_t *) dst)[y * sz + x]; \
116 } \
117 } \
118 } \
119 } while(0)
120
121 // wht function copied from libvpx
fwht_1d(double * out,const double * in,int sz)122 static void fwht_1d(double *out, const double *in, int sz)
123 {
124 double t0 = in[0] + in[1];
125 double t3 = in[3] - in[2];
126 double t4 = trunc((t0 - t3) * 0.5);
127 double t1 = t4 - in[1];
128 double t2 = t4 - in[2];
129
130 out[0] = t0 - t2;
131 out[1] = t2;
132 out[2] = t3 + t1;
133 out[3] = t1;
134 }
135
136 // standard DCT-II
fdct_1d(double * out,const double * in,int sz)137 static void fdct_1d(double *out, const double *in, int sz)
138 {
139 int k, n;
140
141 for (k = 0; k < sz; k++) {
142 out[k] = 0.0;
143 for (n = 0; n < sz; n++)
144 out[k] += in[n] * cos(M_PI * (2 * n + 1) * k / (sz * 2.0));
145 }
146 out[0] *= M_SQRT1_2;
147 }
148
149 // see "Towards jointly optimal spatial prediction and adaptive transform in
150 // video/image coding", by J. Han, A. Saxena, and K. Rose
151 // IEEE Proc. ICASSP, pp. 726-729, Mar. 2010.
fadst4_1d(double * out,const double * in,int sz)152 static void fadst4_1d(double *out, const double *in, int sz)
153 {
154 int k, n;
155
156 for (k = 0; k < sz; k++) {
157 out[k] = 0.0;
158 for (n = 0; n < sz; n++)
159 out[k] += in[n] * sin(M_PI * (n + 1) * (2 * k + 1) / (sz * 2.0 + 1.0));
160 }
161 }
162
163 // see "A Butterfly Structured Design of The Hybrid Transform Coding Scheme",
164 // by Jingning Han, Yaowu Xu, and Debargha Mukherjee
165 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41418.pdf
fadst_1d(double * out,const double * in,int sz)166 static void fadst_1d(double *out, const double *in, int sz)
167 {
168 int k, n;
169
170 for (k = 0; k < sz; k++) {
171 out[k] = 0.0;
172 for (n = 0; n < sz; n++)
173 out[k] += in[n] * sin(M_PI * (2 * n + 1) * (2 * k + 1) / (sz * 4.0));
174 }
175 }
176
177 typedef void (*ftx1d_fn)(double *out, const double *in, int sz);
ftx_2d(double * out,const double * in,enum TxfmMode tx,enum TxfmType txtp,int sz)178 static void ftx_2d(double *out, const double *in, enum TxfmMode tx,
179 enum TxfmType txtp, int sz)
180 {
181 static const double scaling_factors[5][4] = {
182 { 4.0, 16.0 * M_SQRT1_2 / 3.0, 16.0 * M_SQRT1_2 / 3.0, 32.0 / 9.0 },
183 { 2.0, 2.0, 2.0, 2.0 },
184 { 1.0, 1.0, 1.0, 1.0 },
185 { 0.25 },
186 { 4.0 }
187 };
188 static const ftx1d_fn ftx1d_tbl[5][4][2] = {
189 {
190 { fdct_1d, fdct_1d },
191 { fadst4_1d, fdct_1d },
192 { fdct_1d, fadst4_1d },
193 { fadst4_1d, fadst4_1d },
194 }, {
195 { fdct_1d, fdct_1d },
196 { fadst_1d, fdct_1d },
197 { fdct_1d, fadst_1d },
198 { fadst_1d, fadst_1d },
199 }, {
200 { fdct_1d, fdct_1d },
201 { fadst_1d, fdct_1d },
202 { fdct_1d, fadst_1d },
203 { fadst_1d, fadst_1d },
204 }, {
205 { fdct_1d, fdct_1d },
206 }, {
207 { fwht_1d, fwht_1d },
208 },
209 };
210 double temp[1024];
211 double scaling_factor = scaling_factors[tx][txtp];
212 int i, j;
213
214 // cols
215 for (i = 0; i < sz; ++i) {
216 double temp_out[32];
217
218 ftx1d_tbl[tx][txtp][0](temp_out, &in[i * sz], sz);
219 // scale and transpose
220 for (j = 0; j < sz; ++j)
221 temp[j * sz + i] = temp_out[j] * scaling_factor;
222 }
223
224 // rows
225 for (i = 0; i < sz; i++)
226 ftx1d_tbl[tx][txtp][1](&out[i * sz], &temp[i * sz], sz);
227 }
228
ftx(int16_t * buf,enum TxfmMode tx,enum TxfmType txtp,int sz,int bit_depth)229 static void ftx(int16_t *buf, enum TxfmMode tx,
230 enum TxfmType txtp, int sz, int bit_depth)
231 {
232 double ind[1024], outd[1024];
233 int n;
234
235 emms_c();
236 for (n = 0; n < sz * sz; n++) {
237 if (bit_depth == 8)
238 ind[n] = buf[n];
239 else
240 ind[n] = ((int32_t *) buf)[n];
241 }
242 ftx_2d(outd, ind, tx, txtp, sz);
243 for (n = 0; n < sz * sz; n++) {
244 if (bit_depth == 8)
245 buf[n] = lrint(outd[n]);
246 else
247 ((int32_t *) buf)[n] = lrint(outd[n]);
248 }
249 }
250
copy_subcoefs(int16_t * out,const int16_t * in,enum TxfmMode tx,enum TxfmType txtp,int sz,int sub,int bit_depth)251 static int copy_subcoefs(int16_t *out, const int16_t *in, enum TxfmMode tx,
252 enum TxfmType txtp, int sz, int sub, int bit_depth)
253 {
254 // copy the topleft coefficients such that the return value (being the
255 // coefficient scantable index for the eob token) guarantees that only
256 // the topleft $sub out of $sz (where $sz >= $sub) coefficients in both
257 // dimensions are non-zero. This leads to braching to specific optimized
258 // simd versions (e.g. dc-only) so that we get full asm coverage in this
259 // test
260
261 int n;
262 const int16_t *scan = ff_vp9_scans[tx][txtp];
263 int eob;
264
265 for (n = 0; n < sz * sz; n++) {
266 int rc = scan[n], rcx = rc % sz, rcy = rc / sz;
267
268 // find eob for this sub-idct
269 if (rcx >= sub || rcy >= sub)
270 break;
271
272 // copy coef
273 if (bit_depth == 8) {
274 out[rc] = in[rc];
275 } else {
276 AV_COPY32(&out[rc * 2], &in[rc * 2]);
277 }
278 }
279
280 eob = n;
281
282 for (; n < sz * sz; n++) {
283 int rc = scan[n];
284
285 // zero
286 if (bit_depth == 8) {
287 out[rc] = 0;
288 } else {
289 AV_ZERO32(&out[rc * 2]);
290 }
291 }
292
293 return eob;
294 }
295
iszero(const int16_t * c,int sz)296 static int iszero(const int16_t *c, int sz)
297 {
298 int n;
299
300 for (n = 0; n < sz / sizeof(int16_t); n += 2)
301 if (AV_RN32A(&c[n]))
302 return 0;
303
304 return 1;
305 }
306
307 #define SIZEOF_COEF (2 * ((bit_depth + 7) / 8))
308
check_itxfm(void)309 static void check_itxfm(void)
310 {
311 LOCAL_ALIGNED_32(uint8_t, src, [32 * 32 * 2]);
312 LOCAL_ALIGNED_32(uint8_t, dst, [32 * 32 * 2]);
313 LOCAL_ALIGNED_32(uint8_t, dst0, [32 * 32 * 2]);
314 LOCAL_ALIGNED_32(uint8_t, dst1, [32 * 32 * 2]);
315 LOCAL_ALIGNED_32(int16_t, coef, [32 * 32 * 2]);
316 LOCAL_ALIGNED_32(int16_t, subcoef0, [32 * 32 * 2]);
317 LOCAL_ALIGNED_32(int16_t, subcoef1, [32 * 32 * 2]);
318 declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride, int16_t *block, int eob);
319 VP9DSPContext dsp;
320 int y, x, tx, txtp, bit_depth, sub;
321 static const char *const txtp_types[N_TXFM_TYPES] = {
322 [DCT_DCT] = "dct_dct", [DCT_ADST] = "adst_dct",
323 [ADST_DCT] = "dct_adst", [ADST_ADST] = "adst_adst"
324 };
325
326 for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
327 ff_vp9dsp_init(&dsp, bit_depth, 0);
328
329 for (tx = TX_4X4; tx <= N_TXFM_SIZES /* 4 = lossless */; tx++) {
330 int sz = 4 << (tx & 3);
331 int n_txtps = tx < TX_32X32 ? N_TXFM_TYPES : 1;
332
333 for (txtp = 0; txtp < n_txtps; txtp++) {
334 // skip testing sub-IDCTs for WHT or ADST since they don't
335 // implement it in any of the SIMD functions. If they do,
336 // consider changing this to ensure we have complete test
337 // coverage. Test sub=1 for dc-only, then 2, 4, 8, 12, etc,
338 // since the arm version can distinguish them at that level.
339 for (sub = (txtp == 0 && tx < 4) ? 1 : sz; sub <= sz;
340 sub < 4 ? (sub <<= 1) : (sub += 4)) {
341 if (check_func(dsp.itxfm_add[tx][txtp],
342 "vp9_inv_%s_%dx%d_sub%d_add_%d",
343 tx == 4 ? "wht_wht" : txtp_types[txtp],
344 sz, sz, sub, bit_depth)) {
345 int eob;
346
347 randomize_buffers();
348 ftx(coef, tx, txtp, sz, bit_depth);
349
350 if (sub < sz) {
351 eob = copy_subcoefs(subcoef0, coef, tx, txtp,
352 sz, sub, bit_depth);
353 } else {
354 eob = sz * sz;
355 memcpy(subcoef0, coef, sz * sz * SIZEOF_COEF);
356 }
357
358 memcpy(dst0, dst, sz * sz * SIZEOF_PIXEL);
359 memcpy(dst1, dst, sz * sz * SIZEOF_PIXEL);
360 memcpy(subcoef1, subcoef0, sz * sz * SIZEOF_COEF);
361 call_ref(dst0, sz * SIZEOF_PIXEL, subcoef0, eob);
362 call_new(dst1, sz * SIZEOF_PIXEL, subcoef1, eob);
363 if (memcmp(dst0, dst1, sz * sz * SIZEOF_PIXEL) ||
364 !iszero(subcoef0, sz * sz * SIZEOF_COEF) ||
365 !iszero(subcoef1, sz * sz * SIZEOF_COEF))
366 fail();
367
368 bench_new(dst, sz * SIZEOF_PIXEL, coef, eob);
369 }
370 }
371 }
372 }
373 }
374 report("itxfm");
375 }
376
377 #undef randomize_buffers
378
379 #define setpx(a,b,c) \
380 do { \
381 if (SIZEOF_PIXEL == 1) { \
382 buf0[(a) + (b) * jstride] = av_clip_uint8(c); \
383 } else { \
384 ((uint16_t *)buf0)[(a) + (b) * jstride] = av_clip_uintp2(c, bit_depth); \
385 } \
386 } while (0)
387
388 // c can be an assignment and must not be put under ()
389 #define setdx(a,b,c,d) setpx(a,b,c-(d)+(rnd()%((d)*2+1)))
390 #define setsx(a,b,c,d) setdx(a,b,c,(d) << (bit_depth - 8))
randomize_loopfilter_buffers(int bidx,int lineoff,int str,int bit_depth,int dir,const int * E,const int * F,const int * H,const int * I,uint8_t * buf0,uint8_t * buf1)391 static void randomize_loopfilter_buffers(int bidx, int lineoff, int str,
392 int bit_depth, int dir, const int *E,
393 const int *F, const int *H, const int *I,
394 uint8_t *buf0, uint8_t *buf1)
395 {
396 uint32_t mask = (1 << bit_depth) - 1;
397 int off = dir ? lineoff : lineoff * 16;
398 int istride = dir ? 1 : 16;
399 int jstride = dir ? str : 1;
400 int i, j;
401 for (i = 0; i < 2; i++) /* flat16 */ {
402 int idx = off + i * istride, p0, q0;
403 setpx(idx, 0, q0 = rnd() & mask);
404 setsx(idx, -1, p0 = q0, E[bidx] >> 2);
405 for (j = 1; j < 8; j++) {
406 setsx(idx, -1 - j, p0, F[bidx]);
407 setsx(idx, j, q0, F[bidx]);
408 }
409 }
410 for (i = 2; i < 4; i++) /* flat8 */ {
411 int idx = off + i * istride, p0, q0;
412 setpx(idx, 0, q0 = rnd() & mask);
413 setsx(idx, -1, p0 = q0, E[bidx] >> 2);
414 for (j = 1; j < 4; j++) {
415 setsx(idx, -1 - j, p0, F[bidx]);
416 setsx(idx, j, q0, F[bidx]);
417 }
418 for (j = 4; j < 8; j++) {
419 setpx(idx, -1 - j, rnd() & mask);
420 setpx(idx, j, rnd() & mask);
421 }
422 }
423 for (i = 4; i < 6; i++) /* regular */ {
424 int idx = off + i * istride, p2, p1, p0, q0, q1, q2;
425 setpx(idx, 0, q0 = rnd() & mask);
426 setsx(idx, 1, q1 = q0, I[bidx]);
427 setsx(idx, 2, q2 = q1, I[bidx]);
428 setsx(idx, 3, q2, I[bidx]);
429 setsx(idx, -1, p0 = q0, E[bidx] >> 2);
430 setsx(idx, -2, p1 = p0, I[bidx]);
431 setsx(idx, -3, p2 = p1, I[bidx]);
432 setsx(idx, -4, p2, I[bidx]);
433 for (j = 4; j < 8; j++) {
434 setpx(idx, -1 - j, rnd() & mask);
435 setpx(idx, j, rnd() & mask);
436 }
437 }
438 for (i = 6; i < 8; i++) /* off */ {
439 int idx = off + i * istride;
440 for (j = 0; j < 8; j++) {
441 setpx(idx, -1 - j, rnd() & mask);
442 setpx(idx, j, rnd() & mask);
443 }
444 }
445 }
446 #define randomize_buffers(bidx, lineoff, str) \
447 randomize_loopfilter_buffers(bidx, lineoff, str, bit_depth, dir, \
448 E, F, H, I, buf0, buf1)
449
check_loopfilter(void)450 static void check_loopfilter(void)
451 {
452 LOCAL_ALIGNED_32(uint8_t, base0, [32 + 16 * 16 * 2]);
453 LOCAL_ALIGNED_32(uint8_t, base1, [32 + 16 * 16 * 2]);
454 VP9DSPContext dsp;
455 int dir, wd, wd2, bit_depth;
456 static const char *const dir_name[2] = { "h", "v" };
457 static const int E[2] = { 20, 28 }, I[2] = { 10, 16 };
458 static const int H[2] = { 7, 11 }, F[2] = { 1, 1 };
459 declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t stride, int E, int I, int H);
460
461 for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
462 ff_vp9dsp_init(&dsp, bit_depth, 0);
463
464 for (dir = 0; dir < 2; dir++) {
465 int midoff = (dir ? 8 * 8 : 8) * SIZEOF_PIXEL;
466 int midoff_aligned = (dir ? 8 * 8 : 16) * SIZEOF_PIXEL;
467 uint8_t *buf0 = base0 + midoff_aligned;
468 uint8_t *buf1 = base1 + midoff_aligned;
469
470 for (wd = 0; wd < 3; wd++) {
471 // 4/8/16wd_8px
472 if (check_func(dsp.loop_filter_8[wd][dir],
473 "vp9_loop_filter_%s_%d_8_%dbpp",
474 dir_name[dir], 4 << wd, bit_depth)) {
475 randomize_buffers(0, 0, 8);
476 memcpy(buf1 - midoff, buf0 - midoff,
477 16 * 8 * SIZEOF_PIXEL);
478 call_ref(buf0, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]);
479 call_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]);
480 if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 8 * SIZEOF_PIXEL))
481 fail();
482 bench_new(buf1, 16 * SIZEOF_PIXEL >> dir, E[0], I[0], H[0]);
483 }
484 }
485
486 midoff = (dir ? 16 * 8 : 8) * SIZEOF_PIXEL;
487 midoff_aligned = (dir ? 16 * 8 : 16) * SIZEOF_PIXEL;
488
489 buf0 = base0 + midoff_aligned;
490 buf1 = base1 + midoff_aligned;
491
492 // 16wd_16px loopfilter
493 if (check_func(dsp.loop_filter_16[dir],
494 "vp9_loop_filter_%s_16_16_%dbpp",
495 dir_name[dir], bit_depth)) {
496 randomize_buffers(0, 0, 16);
497 randomize_buffers(0, 8, 16);
498 memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL);
499 call_ref(buf0, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]);
500 call_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]);
501 if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL))
502 fail();
503 bench_new(buf1, 16 * SIZEOF_PIXEL, E[0], I[0], H[0]);
504 }
505
506 for (wd = 0; wd < 2; wd++) {
507 for (wd2 = 0; wd2 < 2; wd2++) {
508 // mix2 loopfilter
509 if (check_func(dsp.loop_filter_mix2[wd][wd2][dir],
510 "vp9_loop_filter_mix2_%s_%d%d_16_%dbpp",
511 dir_name[dir], 4 << wd, 4 << wd2, bit_depth)) {
512 randomize_buffers(0, 0, 16);
513 randomize_buffers(1, 8, 16);
514 memcpy(buf1 - midoff, buf0 - midoff, 16 * 16 * SIZEOF_PIXEL);
515 #define M(a) (((a)[1] << 8) | (a)[0])
516 call_ref(buf0, 16 * SIZEOF_PIXEL, M(E), M(I), M(H));
517 call_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H));
518 if (memcmp(buf0 - midoff, buf1 - midoff, 16 * 16 * SIZEOF_PIXEL))
519 fail();
520 bench_new(buf1, 16 * SIZEOF_PIXEL, M(E), M(I), M(H));
521 #undef M
522 }
523 }
524 }
525 }
526 }
527 report("loopfilter");
528 }
529
530 #undef setsx
531 #undef setpx
532 #undef setdx
533 #undef randomize_buffers
534
535 #define DST_BUF_SIZE (size * size * SIZEOF_PIXEL)
536 #define SRC_BUF_STRIDE 72
537 #define SRC_BUF_SIZE ((size + 7) * SRC_BUF_STRIDE * SIZEOF_PIXEL)
538 #define src (buf + 3 * SIZEOF_PIXEL * (SRC_BUF_STRIDE + 1))
539
540 #define randomize_buffers() \
541 do { \
542 uint32_t mask = pixel_mask[(bit_depth - 8) >> 1]; \
543 int k; \
544 for (k = 0; k < SRC_BUF_SIZE; k += 4) { \
545 uint32_t r = rnd() & mask; \
546 AV_WN32A(buf + k, r); \
547 } \
548 if (op == 1) { \
549 for (k = 0; k < DST_BUF_SIZE; k += 4) { \
550 uint32_t r = rnd() & mask; \
551 AV_WN32A(dst0 + k, r); \
552 AV_WN32A(dst1 + k, r); \
553 } \
554 } \
555 } while (0)
556
check_mc(void)557 static void check_mc(void)
558 {
559 LOCAL_ALIGNED_32(uint8_t, buf, [72 * 72 * 2]);
560 LOCAL_ALIGNED_32(uint8_t, dst0, [64 * 64 * 2]);
561 LOCAL_ALIGNED_32(uint8_t, dst1, [64 * 64 * 2]);
562 VP9DSPContext dsp;
563 int op, hsize, bit_depth, filter, dx, dy;
564 declare_func_emms(AV_CPU_FLAG_MMX | AV_CPU_FLAG_MMXEXT, void, uint8_t *dst, ptrdiff_t dst_stride,
565 const uint8_t *ref, ptrdiff_t ref_stride,
566 int h, int mx, int my);
567 static const char *const filter_names[4] = {
568 "8tap_smooth", "8tap_regular", "8tap_sharp", "bilin"
569 };
570 static const char *const subpel_names[2][2] = { { "", "h" }, { "v", "hv" } };
571 static const char *const op_names[2] = { "put", "avg" };
572 char str[256];
573
574 for (op = 0; op < 2; op++) {
575 for (bit_depth = 8; bit_depth <= 12; bit_depth += 2) {
576 ff_vp9dsp_init(&dsp, bit_depth, 0);
577 for (hsize = 0; hsize < 5; hsize++) {
578 int size = 64 >> hsize;
579
580 for (filter = 0; filter < 4; filter++) {
581 for (dx = 0; dx < 2; dx++) {
582 for (dy = 0; dy < 2; dy++) {
583 if (dx || dy) {
584 snprintf(str, sizeof(str),
585 "%s_%s_%d%s", op_names[op],
586 filter_names[filter], size,
587 subpel_names[dy][dx]);
588 } else {
589 snprintf(str, sizeof(str),
590 "%s%d", op_names[op], size);
591 }
592 if (check_func(dsp.mc[hsize][filter][op][dx][dy],
593 "vp9_%s_%dbpp", str, bit_depth)) {
594 int mx = dx ? 1 + (rnd() % 14) : 0;
595 int my = dy ? 1 + (rnd() % 14) : 0;
596 randomize_buffers();
597 call_ref(dst0, size * SIZEOF_PIXEL,
598 src, SRC_BUF_STRIDE * SIZEOF_PIXEL,
599 size, mx, my);
600 call_new(dst1, size * SIZEOF_PIXEL,
601 src, SRC_BUF_STRIDE * SIZEOF_PIXEL,
602 size, mx, my);
603 if (memcmp(dst0, dst1, DST_BUF_SIZE))
604 fail();
605
606 // simd implementations for each filter of subpel
607 // functions are identical
608 if (filter >= 1 && filter <= 2) continue;
609 // 10/12 bpp for bilin are identical
610 if (bit_depth == 12 && filter == 3) continue;
611
612 bench_new(dst1, size * SIZEOF_PIXEL,
613 src, SRC_BUF_STRIDE * SIZEOF_PIXEL,
614 size, mx, my);
615 }
616 }
617 }
618 }
619 }
620 }
621 }
622 report("mc");
623 }
624
checkasm_check_vp9dsp(void)625 void checkasm_check_vp9dsp(void)
626 {
627 check_ipred();
628 check_itxfm();
629 check_loopfilter();
630 check_mc();
631 }
632