• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkCanvas.h"
9 #include "include/core/SkPath.h"
10 #include "include/core/SkPoint.h"
11 #include "include/core/SkString.h"
12 #include "src/gpu/geometry/GrPathUtils.h"
13 #include "src/gpu/ops/GrAAConvexTessellator.h"
14 
15 // Next steps:
16 //  add an interactive sample app slide
17 //  add debug check that all points are suitably far apart
18 //  test more degenerate cases
19 
20 // The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
21 static const SkScalar kClose = (SK_Scalar1 / 16);
22 static const SkScalar kCloseSqd = kClose * kClose;
23 
24 // tesselation tolerance values, in device space pixels
25 static const SkScalar kQuadTolerance = 0.2f;
26 static const SkScalar kCubicTolerance = 0.2f;
27 static const SkScalar kConicTolerance = 0.25f;
28 
29 // dot product below which we use a round cap between curve segments
30 static const SkScalar kRoundCapThreshold = 0.8f;
31 
32 // dot product above which we consider two adjacent curves to be part of the "same" curve
33 static const SkScalar kCurveConnectionThreshold = 0.8f;
34 
intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & n1,SkScalar * t)35 static bool intersect(const SkPoint& p0, const SkPoint& n0,
36                       const SkPoint& p1, const SkPoint& n1,
37                       SkScalar* t) {
38     const SkPoint v = p1 - p0;
39     SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
40     if (SkScalarNearlyZero(perpDot)) {
41         return false;
42     }
43     *t = (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
44     SkASSERT(SkScalarIsFinite(*t));
45     return true;
46 }
47 
48 // This is a special case version of intersect where we have the vector
49 // perpendicular to the second line rather than the vector parallel to it.
perp_intersect(const SkPoint & p0,const SkPoint & n0,const SkPoint & p1,const SkPoint & perp)50 static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
51                                const SkPoint& p1, const SkPoint& perp) {
52     const SkPoint v = p1 - p0;
53     SkScalar perpDot = n0.dot(perp);
54     return v.dot(perp) / perpDot;
55 }
56 
duplicate_pt(const SkPoint & p0,const SkPoint & p1)57 static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
58     SkScalar distSq = SkPointPriv::DistanceToSqd(p0, p1);
59     return distSq < kCloseSqd;
60 }
61 
points_are_colinear_and_b_is_middle(const SkPoint & a,const SkPoint & b,const SkPoint & c)62 static bool points_are_colinear_and_b_is_middle(const SkPoint& a, const SkPoint& b,
63                                                 const SkPoint& c) {
64     // 'area' is twice the area of the triangle with corners a, b, and c.
65     SkScalar area = a.fX * (b.fY - c.fY) + b.fX * (c.fY - a.fY) + c.fX * (a.fY - b.fY);
66     if (SkScalarAbs(area) >= 2 * kCloseSqd) {
67         return false;
68     }
69     return (a - b).dot(b - c) >= 0;
70 }
71 
addPt(const SkPoint & pt,SkScalar depth,SkScalar coverage,bool movable,CurveState curve)72 int GrAAConvexTessellator::addPt(const SkPoint& pt,
73                                  SkScalar depth,
74                                  SkScalar coverage,
75                                  bool movable,
76                                  CurveState curve) {
77     SkASSERT(pt.isFinite());
78     this->validate();
79 
80     int index = fPts.count();
81     *fPts.push() = pt;
82     *fCoverages.push() = coverage;
83     *fMovable.push() = movable;
84     *fCurveState.push() = curve;
85 
86     this->validate();
87     return index;
88 }
89 
popLastPt()90 void GrAAConvexTessellator::popLastPt() {
91     this->validate();
92 
93     fPts.pop();
94     fCoverages.pop();
95     fMovable.pop();
96     fCurveState.pop();
97 
98     this->validate();
99 }
100 
popFirstPtShuffle()101 void GrAAConvexTessellator::popFirstPtShuffle() {
102     this->validate();
103 
104     fPts.removeShuffle(0);
105     fCoverages.removeShuffle(0);
106     fMovable.removeShuffle(0);
107     fCurveState.removeShuffle(0);
108 
109     this->validate();
110 }
111 
updatePt(int index,const SkPoint & pt,SkScalar depth,SkScalar coverage)112 void GrAAConvexTessellator::updatePt(int index,
113                                      const SkPoint& pt,
114                                      SkScalar depth,
115                                      SkScalar coverage) {
116     this->validate();
117     SkASSERT(fMovable[index]);
118 
119     fPts[index] = pt;
120     fCoverages[index] = coverage;
121 }
122 
addTri(int i0,int i1,int i2)123 void GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
124     if (i0 == i1 || i1 == i2 || i2 == i0) {
125         return;
126     }
127 
128     *fIndices.push() = i0;
129     *fIndices.push() = i1;
130     *fIndices.push() = i2;
131 }
132 
rewind()133 void GrAAConvexTessellator::rewind() {
134     fPts.rewind();
135     fCoverages.rewind();
136     fMovable.rewind();
137     fIndices.rewind();
138     fNorms.rewind();
139     fCurveState.rewind();
140     fInitialRing.rewind();
141     fCandidateVerts.rewind();
142 #if GR_AA_CONVEX_TESSELLATOR_VIZ
143     fRings.rewind();        // TODO: leak in this case!
144 #else
145     fRings[0].rewind();
146     fRings[1].rewind();
147 #endif
148 }
149 
computeNormals()150 void GrAAConvexTessellator::computeNormals() {
151     auto normalToVector = [this](SkVector v) {
152         SkVector n = SkPointPriv::MakeOrthog(v, fSide);
153         SkAssertResult(n.normalize());
154         SkASSERT(SkScalarNearlyEqual(1.0f, n.length()));
155         return n;
156     };
157 
158     // Check the cross product of the final trio
159     fNorms.append(fPts.count());
160     fNorms[0] = fPts[1] - fPts[0];
161     fNorms.top() = fPts[0] - fPts.top();
162     SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
163     fSide = (cross > 0.0f) ? SkPointPriv::kRight_Side : SkPointPriv::kLeft_Side;
164     fNorms[0] = normalToVector(fNorms[0]);
165     for (int cur = 1; cur < fNorms.count() - 1; ++cur) {
166         fNorms[cur] = normalToVector(fPts[cur + 1] - fPts[cur]);
167     }
168     fNorms.top() = normalToVector(fNorms.top());
169 }
170 
computeBisectors()171 void GrAAConvexTessellator::computeBisectors() {
172     fBisectors.setCount(fNorms.count());
173 
174     int prev = fBisectors.count() - 1;
175     for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
176         fBisectors[cur] = fNorms[cur] + fNorms[prev];
177         if (!fBisectors[cur].normalize()) {
178             fBisectors[cur] = SkPointPriv::MakeOrthog(fNorms[cur], (SkPointPriv::Side)-fSide) +
179                               SkPointPriv::MakeOrthog(fNorms[prev], fSide);
180             SkAssertResult(fBisectors[cur].normalize());
181         } else {
182             fBisectors[cur].negate();      // make the bisector face in
183         }
184         if (fCurveState[prev] == kIndeterminate_CurveState) {
185             if (fCurveState[cur] == kSharp_CurveState) {
186                 fCurveState[prev] = kSharp_CurveState;
187             } else {
188                 if (SkScalarAbs(fNorms[cur].dot(fNorms[prev])) > kCurveConnectionThreshold) {
189                     fCurveState[prev] = kCurve_CurveState;
190                     fCurveState[cur]  = kCurve_CurveState;
191                 } else {
192                     fCurveState[prev] = kSharp_CurveState;
193                     fCurveState[cur]  = kSharp_CurveState;
194                 }
195             }
196         }
197 
198         SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
199     }
200 }
201 
202 // Create as many rings as we need to (up to a predefined limit) to reach the specified target
203 // depth. If we are in fill mode, the final ring will automatically be fanned.
createInsetRings(Ring & previousRing,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage,Ring ** finalRing)204 bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
205                                              SkScalar initialCoverage, SkScalar targetDepth,
206                                              SkScalar targetCoverage, Ring** finalRing) {
207     static const int kMaxNumRings = 8;
208 
209     if (previousRing.numPts() < 3) {
210         return false;
211     }
212     Ring* currentRing = &previousRing;
213     int i;
214     for (i = 0; i < kMaxNumRings; ++i) {
215         Ring* nextRing = this->getNextRing(currentRing);
216         SkASSERT(nextRing != currentRing);
217 
218         bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
219                                           targetDepth, targetCoverage, i == 0);
220         currentRing = nextRing;
221         if (done) {
222             break;
223         }
224         currentRing->init(*this);
225     }
226 
227     if (kMaxNumRings == i) {
228         // Bail if we've exceeded the amount of time we want to throw at this.
229         this->terminate(*currentRing);
230         return false;
231     }
232     bool done = currentRing->numPts() >= 3;
233     if (done) {
234         currentRing->init(*this);
235     }
236     *finalRing = currentRing;
237     return done;
238 }
239 
240 // The general idea here is to, conceptually, start with the original polygon and slide
241 // the vertices along the bisectors until the first intersection. At that
242 // point two of the edges collapse and the process repeats on the new polygon.
243 // The polygon state is captured in the Ring class while the GrAAConvexTessellator
244 // controls the iteration. The CandidateVerts holds the formative points for the
245 // next ring.
tessellate(const SkMatrix & m,const SkPath & path)246 bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
247     if (!this->extractFromPath(m, path)) {
248         return false;
249     }
250 
251     SkScalar coverage = 1.0f;
252     SkScalar scaleFactor = 0.0f;
253 
254     if (SkStrokeRec::kStrokeAndFill_Style == fStyle) {
255         SkASSERT(m.isSimilarity());
256         scaleFactor = m.getMaxScale(); // x and y scale are the same
257         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
258         Ring outerStrokeAndAARing;
259         this->createOuterRing(fInitialRing,
260                               effectiveStrokeWidth / 2 + kAntialiasingRadius, 0.0,
261                               &outerStrokeAndAARing);
262 
263         // discard all the triangles added between the originating ring and the new outer ring
264         fIndices.rewind();
265 
266         outerStrokeAndAARing.init(*this);
267 
268         outerStrokeAndAARing.makeOriginalRing();
269 
270         // Add the outer stroke ring's normals to the originating ring's normals
271         // so it can also act as an originating ring
272         fNorms.setCount(fNorms.count() + outerStrokeAndAARing.numPts());
273         for (int i = 0; i < outerStrokeAndAARing.numPts(); ++i) {
274             SkASSERT(outerStrokeAndAARing.index(i) < fNorms.count());
275             fNorms[outerStrokeAndAARing.index(i)] = outerStrokeAndAARing.norm(i);
276         }
277 
278         // the bisectors are only needed for the computation of the outer ring
279         fBisectors.rewind();
280 
281         Ring* insetAARing;
282         this->createInsetRings(outerStrokeAndAARing,
283                                0.0f, 0.0f, 2*kAntialiasingRadius, 1.0f,
284                                &insetAARing);
285 
286         SkDEBUGCODE(this->validate();)
287         return true;
288     }
289 
290     if (SkStrokeRec::kStroke_Style == fStyle) {
291         SkASSERT(fStrokeWidth >= 0.0f);
292         SkASSERT(m.isSimilarity());
293         scaleFactor = m.getMaxScale(); // x and y scale are the same
294         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
295         Ring outerStrokeRing;
296         this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius,
297                               coverage, &outerStrokeRing);
298         outerStrokeRing.init(*this);
299         Ring outerAARing;
300         this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
301     } else {
302         Ring outerAARing;
303         this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
304     }
305 
306     // the bisectors are only needed for the computation of the outer ring
307     fBisectors.rewind();
308     if (SkStrokeRec::kStroke_Style == fStyle && fInitialRing.numPts() > 2) {
309         SkASSERT(fStrokeWidth >= 0.0f);
310         SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
311         Ring* insetStrokeRing;
312         SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius;
313         if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
314                                    &insetStrokeRing)) {
315             Ring* insetAARing;
316             this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
317                                    kAntialiasingRadius * 2, 0.0f, &insetAARing);
318         }
319     } else {
320         Ring* insetAARing;
321         this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
322     }
323 
324     SkDEBUGCODE(this->validate();)
325     return true;
326 }
327 
computeDepthFromEdge(int edgeIdx,const SkPoint & p) const328 SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
329     SkASSERT(edgeIdx < fNorms.count());
330 
331     SkPoint v = p - fPts[edgeIdx];
332     SkScalar depth = -fNorms[edgeIdx].dot(v);
333     return depth;
334 }
335 
336 // Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
337 // along the 'bisector' from the 'startIdx'-th point.
computePtAlongBisector(int startIdx,const SkVector & bisector,int edgeIdx,SkScalar desiredDepth,SkPoint * result) const338 bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
339                                                    const SkVector& bisector,
340                                                    int edgeIdx,
341                                                    SkScalar desiredDepth,
342                                                    SkPoint* result) const {
343     const SkPoint& norm = fNorms[edgeIdx];
344 
345     // First find the point where the edge and the bisector intersect
346     SkPoint newP;
347 
348     SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
349     if (SkScalarNearlyEqual(t, 0.0f)) {
350         // the start point was one of the original ring points
351         SkASSERT(startIdx < fPts.count());
352         newP = fPts[startIdx];
353     } else if (t < 0.0f) {
354         newP = bisector;
355         newP.scale(t);
356         newP += fPts[startIdx];
357     } else {
358         return false;
359     }
360 
361     // Then offset along the bisector from that point the correct distance
362     SkScalar dot = bisector.dot(norm);
363     t = -desiredDepth / dot;
364     *result = bisector;
365     result->scale(t);
366     *result += newP;
367 
368     return true;
369 }
370 
extractFromPath(const SkMatrix & m,const SkPath & path)371 bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
372     SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
373 
374     SkRect bounds = path.getBounds();
375     m.mapRect(&bounds);
376     if (!bounds.isFinite()) {
377         // We could do something smarter here like clip the path based on the bounds of the dst.
378         // We'd have to be careful about strokes to ensure we don't draw something wrong.
379         return false;
380     }
381 
382     // Outer ring: 3*numPts
383     // Middle ring: numPts
384     // Presumptive inner ring: numPts
385     this->reservePts(5*path.countPoints());
386     // Outer ring: 12*numPts
387     // Middle ring: 0
388     // Presumptive inner ring: 6*numPts + 6
389     fIndices.setReserve(18*path.countPoints() + 6);
390 
391     // TODO: is there a faster way to extract the points from the path? Perhaps
392     // get all the points via a new entry point, transform them all in bulk
393     // and then walk them to find duplicates?
394     SkPath::Iter iter(path, true);
395     SkPoint pts[4];
396     SkPath::Verb verb;
397     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
398         switch (verb) {
399             case SkPath::kLine_Verb:
400                 if (!SkPathPriv::AllPointsEq(pts, 2)) {
401                     this->lineTo(m, pts[1], kSharp_CurveState);
402                 }
403                 break;
404             case SkPath::kQuad_Verb:
405                 if (!SkPathPriv::AllPointsEq(pts, 3)) {
406                     this->quadTo(m, pts);
407                 }
408                 break;
409             case SkPath::kCubic_Verb:
410                 if (!SkPathPriv::AllPointsEq(pts, 4)) {
411                     this->cubicTo(m, pts);
412                 }
413                 break;
414             case SkPath::kConic_Verb:
415                 if (!SkPathPriv::AllPointsEq(pts, 3)) {
416                     this->conicTo(m, pts, iter.conicWeight());
417                 }
418                 break;
419             case SkPath::kMove_Verb:
420             case SkPath::kClose_Verb:
421             case SkPath::kDone_Verb:
422                 break;
423         }
424     }
425 
426     if (this->numPts() < 2) {
427         return false;
428     }
429 
430     // check if last point is a duplicate of the first point. If so, remove it.
431     if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
432         this->popLastPt();
433     }
434 
435     // Remove any lingering colinear points where the path wraps around
436     bool noRemovalsToDo = false;
437     while (!noRemovalsToDo && this->numPts() >= 3) {
438         if (points_are_colinear_and_b_is_middle(fPts[fPts.count() - 2], fPts.top(), fPts[0])) {
439             this->popLastPt();
440         } else if (points_are_colinear_and_b_is_middle(fPts.top(), fPts[0], fPts[1])) {
441             this->popFirstPtShuffle();
442         } else {
443             noRemovalsToDo = true;
444         }
445     }
446 
447     // Compute the normals and bisectors.
448     SkASSERT(fNorms.empty());
449     if (this->numPts() >= 3) {
450         this->computeNormals();
451         this->computeBisectors();
452     } else if (this->numPts() == 2) {
453         // We've got two points, so we're degenerate.
454         if (fStyle == SkStrokeRec::kFill_Style) {
455             // it's a fill, so we don't need to worry about degenerate paths
456             return false;
457         }
458         // For stroking, we still need to process the degenerate path, so fix it up
459         fSide = SkPointPriv::kLeft_Side;
460 
461         fNorms.append(2);
462         fNorms[0] = SkPointPriv::MakeOrthog(fPts[1] - fPts[0], fSide);
463         fNorms[0].normalize();
464         fNorms[1] = -fNorms[0];
465         SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
466         // we won't actually use the bisectors, so just push zeroes
467         fBisectors.push_back(SkPoint::Make(0.0, 0.0));
468         fBisectors.push_back(SkPoint::Make(0.0, 0.0));
469     } else {
470         return false;
471     }
472 
473     fCandidateVerts.setReserve(this->numPts());
474     fInitialRing.setReserve(this->numPts());
475     for (int i = 0; i < this->numPts(); ++i) {
476         fInitialRing.addIdx(i, i);
477     }
478     fInitialRing.init(fNorms, fBisectors);
479 
480     this->validate();
481     return true;
482 }
483 
getNextRing(Ring * lastRing)484 GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
485 #if GR_AA_CONVEX_TESSELLATOR_VIZ
486     Ring* ring = *fRings.push() = new Ring;
487     ring->setReserve(fInitialRing.numPts());
488     ring->rewind();
489     return ring;
490 #else
491     // Flip flop back and forth between fRings[0] & fRings[1]
492     int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
493     fRings[nextRing].setReserve(fInitialRing.numPts());
494     fRings[nextRing].rewind();
495     return &fRings[nextRing];
496 #endif
497 }
498 
fanRing(const Ring & ring)499 void GrAAConvexTessellator::fanRing(const Ring& ring) {
500     // fan out from point 0
501     int startIdx = ring.index(0);
502     for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
503         this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
504     }
505 }
506 
createOuterRing(const Ring & previousRing,SkScalar outset,SkScalar coverage,Ring * nextRing)507 void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
508                                             SkScalar coverage, Ring* nextRing) {
509     const int numPts = previousRing.numPts();
510     if (numPts == 0) {
511         return;
512     }
513 
514     int prev = numPts - 1;
515     int lastPerpIdx = -1, firstPerpIdx = -1;
516 
517     const SkScalar outsetSq = outset * outset;
518     SkScalar miterLimitSq = outset * fMiterLimit;
519     miterLimitSq = miterLimitSq * miterLimitSq;
520     for (int cur = 0; cur < numPts; ++cur) {
521         int originalIdx = previousRing.index(cur);
522         // For each vertex of the original polygon we add at least two points to the
523         // outset polygon - one extending perpendicular to each impinging edge. Connecting these
524         // two points yields a bevel join. We need one additional point for a mitered join, and
525         // a round join requires one or more points depending upon curvature.
526 
527         // The perpendicular point for the last edge
528         SkPoint normal1 = previousRing.norm(prev);
529         SkPoint perp1 = normal1;
530         perp1.scale(outset);
531         perp1 += this->point(originalIdx);
532 
533         // The perpendicular point for the next edge.
534         SkPoint normal2 = previousRing.norm(cur);
535         SkPoint perp2 = normal2;
536         perp2.scale(outset);
537         perp2 += fPts[originalIdx];
538 
539         CurveState curve = fCurveState[originalIdx];
540 
541         // We know it isn't a duplicate of the prior point (since it and this
542         // one are just perpendicular offsets from the non-merged polygon points)
543         int perp1Idx = this->addPt(perp1, -outset, coverage, false, curve);
544         nextRing->addIdx(perp1Idx, originalIdx);
545 
546         int perp2Idx;
547         // For very shallow angles all the corner points could fuse.
548         if (duplicate_pt(perp2, this->point(perp1Idx))) {
549             perp2Idx = perp1Idx;
550         } else {
551             perp2Idx = this->addPt(perp2, -outset, coverage, false, curve);
552         }
553 
554         if (perp2Idx != perp1Idx) {
555             if (curve == kCurve_CurveState) {
556                 // bevel or round depending upon curvature
557                 SkScalar dotProd = normal1.dot(normal2);
558                 if (dotProd < kRoundCapThreshold) {
559                     // Currently we "round" by creating a single extra point, which produces
560                     // good results for common cases. For thick strokes with high curvature, we will
561                     // need to add more points; for the time being we simply fall back to software
562                     // rendering for thick strokes.
563                     SkPoint miter = previousRing.bisector(cur);
564                     miter.setLength(-outset);
565                     miter += fPts[originalIdx];
566 
567                     // For very shallow angles all the corner points could fuse
568                     if (!duplicate_pt(miter, this->point(perp1Idx))) {
569                         int miterIdx;
570                         miterIdx = this->addPt(miter, -outset, coverage, false, kSharp_CurveState);
571                         nextRing->addIdx(miterIdx, originalIdx);
572                         // The two triangles for the corner
573                         this->addTri(originalIdx, perp1Idx, miterIdx);
574                         this->addTri(originalIdx, miterIdx, perp2Idx);
575                     }
576                 } else {
577                     this->addTri(originalIdx, perp1Idx, perp2Idx);
578                 }
579             } else {
580                 switch (fJoin) {
581                     case SkPaint::Join::kMiter_Join: {
582                         // The bisector outset point
583                         SkPoint miter = previousRing.bisector(cur);
584                         SkScalar dotProd = normal1.dot(normal2);
585                         // The max is because this could go slightly negative if precision causes
586                         // us to become slightly concave.
587                         SkScalar sinHalfAngleSq = SkTMax(SkScalarHalf(SK_Scalar1 + dotProd), 0.f);
588                         SkScalar lengthSq = sk_ieee_float_divide(outsetSq, sinHalfAngleSq);
589                         if (lengthSq > miterLimitSq) {
590                             // just bevel it
591                             this->addTri(originalIdx, perp1Idx, perp2Idx);
592                             break;
593                         }
594                         miter.setLength(-SkScalarSqrt(lengthSq));
595                         miter += fPts[originalIdx];
596 
597                         // For very shallow angles all the corner points could fuse
598                         if (!duplicate_pt(miter, this->point(perp1Idx))) {
599                             int miterIdx;
600                             miterIdx = this->addPt(miter, -outset, coverage, false,
601                                                    kSharp_CurveState);
602                             nextRing->addIdx(miterIdx, originalIdx);
603                             // The two triangles for the corner
604                             this->addTri(originalIdx, perp1Idx, miterIdx);
605                             this->addTri(originalIdx, miterIdx, perp2Idx);
606                         } else {
607                             // ignore the miter point as it's so close to perp1/perp2 and simply
608                             // bevel.
609                             this->addTri(originalIdx, perp1Idx, perp2Idx);
610                         }
611                         break;
612                     }
613                     case SkPaint::Join::kBevel_Join:
614                         this->addTri(originalIdx, perp1Idx, perp2Idx);
615                         break;
616                     default:
617                         // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is
618                         // only willing to draw mitered or beveled, so we should never get here.
619                         SkASSERT(false);
620                 }
621             }
622 
623             nextRing->addIdx(perp2Idx, originalIdx);
624         }
625 
626         if (0 == cur) {
627             // Store the index of the first perpendicular point to finish up
628             firstPerpIdx = perp1Idx;
629             SkASSERT(-1 == lastPerpIdx);
630         } else {
631             // The triangles for the previous edge
632             int prevIdx = previousRing.index(prev);
633             this->addTri(prevIdx, perp1Idx, originalIdx);
634             this->addTri(prevIdx, lastPerpIdx, perp1Idx);
635         }
636 
637         // Track the last perpendicular outset point so we can construct the
638         // trailing edge triangles.
639         lastPerpIdx = perp2Idx;
640         prev = cur;
641     }
642 
643     // pick up the final edge rect
644     int lastIdx = previousRing.index(numPts - 1);
645     this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
646     this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
647 
648     this->validate();
649 }
650 
651 // Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
652 // and fan it.
terminate(const Ring & ring)653 void GrAAConvexTessellator::terminate(const Ring& ring) {
654     if (fStyle != SkStrokeRec::kStroke_Style && ring.numPts() > 0) {
655         this->fanRing(ring);
656     }
657 }
658 
compute_coverage(SkScalar depth,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage)659 static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
660                                 SkScalar targetDepth, SkScalar targetCoverage) {
661     if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
662         return targetCoverage;
663     }
664     SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
665             (targetCoverage - initialCoverage) + initialCoverage;
666     return SkScalarClampMax(result, 1.0f);
667 }
668 
669 // return true when processing is complete
createInsetRing(const Ring & lastRing,Ring * nextRing,SkScalar initialDepth,SkScalar initialCoverage,SkScalar targetDepth,SkScalar targetCoverage,bool forceNew)670 bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
671                                             SkScalar initialDepth, SkScalar initialCoverage,
672                                             SkScalar targetDepth, SkScalar targetCoverage,
673                                             bool forceNew) {
674     bool done = false;
675 
676     fCandidateVerts.rewind();
677 
678     // Loop through all the points in the ring and find the intersection with the smallest depth
679     SkScalar minDist = SK_ScalarMax, minT = 0.0f;
680     int minEdgeIdx = -1;
681 
682     for (int cur = 0; cur < lastRing.numPts(); ++cur) {
683         int next = (cur + 1) % lastRing.numPts();
684 
685         SkScalar t;
686         bool result = intersect(this->point(lastRing.index(cur)),  lastRing.bisector(cur),
687                                 this->point(lastRing.index(next)), lastRing.bisector(next),
688                                 &t);
689         // The bisectors may be parallel (!result) or the previous ring may have become slightly
690         // concave due to accumulated error (t <= 0).
691         if (!result || t <= 0) {
692             continue;
693         }
694         SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
695 
696         if (minDist > dist) {
697             minDist = dist;
698             minT = t;
699             minEdgeIdx = cur;
700         }
701     }
702 
703     if (minEdgeIdx == -1) {
704         return false;
705     }
706     SkPoint newPt = lastRing.bisector(minEdgeIdx);
707     newPt.scale(minT);
708     newPt += this->point(lastRing.index(minEdgeIdx));
709 
710     SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
711     if (depth >= targetDepth) {
712         // None of the bisectors intersect before reaching the desired depth.
713         // Just step them all to the desired depth
714         depth = targetDepth;
715         done = true;
716     }
717 
718     // 'dst' stores where each point in the last ring maps to/transforms into
719     // in the next ring.
720     SkTDArray<int> dst;
721     dst.setCount(lastRing.numPts());
722 
723     // Create the first point (who compares with no one)
724     if (!this->computePtAlongBisector(lastRing.index(0),
725                                       lastRing.bisector(0),
726                                       lastRing.origEdgeID(0),
727                                       depth, &newPt)) {
728         this->terminate(lastRing);
729         return true;
730     }
731     dst[0] = fCandidateVerts.addNewPt(newPt,
732                                       lastRing.index(0), lastRing.origEdgeID(0),
733                                       !this->movable(lastRing.index(0)));
734 
735     // Handle the middle points (who only compare with the prior point)
736     for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
737         if (!this->computePtAlongBisector(lastRing.index(cur),
738                                           lastRing.bisector(cur),
739                                           lastRing.origEdgeID(cur),
740                                           depth, &newPt)) {
741             this->terminate(lastRing);
742             return true;
743         }
744         if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
745             dst[cur] = fCandidateVerts.addNewPt(newPt,
746                                                 lastRing.index(cur), lastRing.origEdgeID(cur),
747                                                 !this->movable(lastRing.index(cur)));
748         } else {
749             dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
750         }
751     }
752 
753     // Check on the last point (handling the wrap around)
754     int cur = lastRing.numPts()-1;
755     if  (!this->computePtAlongBisector(lastRing.index(cur),
756                                        lastRing.bisector(cur),
757                                        lastRing.origEdgeID(cur),
758                                        depth, &newPt)) {
759         this->terminate(lastRing);
760         return true;
761     }
762     bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
763     bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
764 
765     if (!dupPrev && !dupNext) {
766         dst[cur] = fCandidateVerts.addNewPt(newPt,
767                                             lastRing.index(cur), lastRing.origEdgeID(cur),
768                                             !this->movable(lastRing.index(cur)));
769     } else if (dupPrev && !dupNext) {
770         dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
771     } else if (!dupPrev && dupNext) {
772         dst[cur] = fCandidateVerts.fuseWithNext();
773     } else {
774         bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
775 
776         if (!dupPrevVsNext) {
777             dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
778         } else {
779             const int fused = fCandidateVerts.fuseWithBoth();
780             dst[cur] = fused;
781             const int targetIdx = dst[cur - 1];
782             for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) {
783                 dst[i] = fused;
784             }
785         }
786     }
787 
788     // Fold the new ring's points into the global pool
789     for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
790         int newIdx;
791         if (fCandidateVerts.needsToBeNew(i) || forceNew) {
792             // if the originating index is still valid then this point wasn't
793             // fused (and is thus movable)
794             SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
795                                                  targetDepth, targetCoverage);
796             newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
797                                  fCandidateVerts.originatingIdx(i) != -1, kSharp_CurveState);
798         } else {
799             SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
800             this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
801                            targetCoverage);
802             newIdx = fCandidateVerts.originatingIdx(i);
803         }
804 
805         nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
806     }
807 
808     // 'dst' currently has indices into the ring. Remap these to be indices
809     // into the global pool since the triangulation operates in that space.
810     for (int i = 0; i < dst.count(); ++i) {
811         dst[i] = nextRing->index(dst[i]);
812     }
813 
814     for (int i = 0; i < lastRing.numPts(); ++i) {
815         int next = (i + 1) % lastRing.numPts();
816 
817         this->addTri(lastRing.index(i), lastRing.index(next), dst[next]);
818         this->addTri(lastRing.index(i), dst[next], dst[i]);
819     }
820 
821     if (done && fStyle != SkStrokeRec::kStroke_Style) {
822         // fill or stroke-and-fill
823         this->fanRing(*nextRing);
824     }
825 
826     if (nextRing->numPts() < 3) {
827         done = true;
828     }
829     return done;
830 }
831 
validate() const832 void GrAAConvexTessellator::validate() const {
833     SkASSERT(fPts.count() == fMovable.count());
834     SkASSERT(fPts.count() == fCoverages.count());
835     SkASSERT(fPts.count() == fCurveState.count());
836     SkASSERT(0 == (fIndices.count() % 3));
837     SkASSERT(!fBisectors.count() || fBisectors.count() == fNorms.count());
838 }
839 
840 //////////////////////////////////////////////////////////////////////////////
init(const GrAAConvexTessellator & tess)841 void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
842     this->computeNormals(tess);
843     this->computeBisectors(tess);
844 }
845 
init(const SkTDArray<SkVector> & norms,const SkTDArray<SkVector> & bisectors)846 void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
847                                        const SkTDArray<SkVector>& bisectors) {
848     for (int i = 0; i < fPts.count(); ++i) {
849         fPts[i].fNorm = norms[i];
850         fPts[i].fBisector = bisectors[i];
851     }
852 }
853 
854 // Compute the outward facing normal at each vertex.
computeNormals(const GrAAConvexTessellator & tess)855 void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
856     for (int cur = 0; cur < fPts.count(); ++cur) {
857         int next = (cur + 1) % fPts.count();
858 
859         fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
860         SkPoint::Normalize(&fPts[cur].fNorm);
861         fPts[cur].fNorm = SkPointPriv::MakeOrthog(fPts[cur].fNorm, tess.side());
862     }
863 }
864 
computeBisectors(const GrAAConvexTessellator & tess)865 void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) {
866     int prev = fPts.count() - 1;
867     for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
868         fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
869         if (!fPts[cur].fBisector.normalize()) {
870             fPts[cur].fBisector =
871                     SkPointPriv::MakeOrthog(fPts[cur].fNorm, (SkPointPriv::Side)-tess.side()) +
872                     SkPointPriv::MakeOrthog(fPts[prev].fNorm, tess.side());
873             SkAssertResult(fPts[cur].fBisector.normalize());
874         } else {
875             fPts[cur].fBisector.negate();      // make the bisector face in
876         }
877     }
878 }
879 
880 //////////////////////////////////////////////////////////////////////////////
881 #ifdef SK_DEBUG
882 // Is this ring convex?
isConvex(const GrAAConvexTessellator & tess) const883 bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
884     if (fPts.count() < 3) {
885         return true;
886     }
887 
888     SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
889     SkPoint cur  = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
890     SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
891     SkScalar maxDot = minDot;
892 
893     prev = cur;
894     for (int i = 1; i < fPts.count(); ++i) {
895         int next = (i + 1) % fPts.count();
896 
897         cur  = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
898         SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
899 
900         minDot = SkMinScalar(minDot, dot);
901         maxDot = SkMaxScalar(maxDot, dot);
902 
903         prev = cur;
904     }
905 
906     if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
907         maxDot = 0;
908     }
909     if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
910         minDot = 0;
911     }
912     return (maxDot >= 0.0f) == (minDot >= 0.0f);
913 }
914 
915 #endif
916 
lineTo(const SkPoint & p,CurveState curve)917 void GrAAConvexTessellator::lineTo(const SkPoint& p, CurveState curve) {
918     if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
919         return;
920     }
921 
922     if (this->numPts() >= 2 &&
923         points_are_colinear_and_b_is_middle(fPts[fPts.count() - 2], fPts.top(), p)) {
924         // The old last point is on the line from the second to last to the new point
925         this->popLastPt();
926         // double-check that the new last point is not a duplicate of the new point. In an ideal
927         // world this wouldn't be necessary (since it's only possible for non-convex paths), but
928         // floating point precision issues mean it can actually happen on paths that were
929         // determined to be convex.
930         if (duplicate_pt(p, this->lastPoint())) {
931             return;
932         }
933     }
934     SkScalar initialRingCoverage = (SkStrokeRec::kFill_Style == fStyle) ? 0.5f : 1.0f;
935     this->addPt(p, 0.0f, initialRingCoverage, false, curve);
936 }
937 
lineTo(const SkMatrix & m,SkPoint p,CurveState curve)938 void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, CurveState curve) {
939     m.mapPoints(&p, 1);
940     this->lineTo(p, curve);
941 }
942 
quadTo(const SkPoint pts[3])943 void GrAAConvexTessellator::quadTo(const SkPoint pts[3]) {
944     int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
945     fPointBuffer.setCount(maxCount);
946     SkPoint* target = fPointBuffer.begin();
947     int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
948                                                      kQuadTolerance, &target, maxCount);
949     fPointBuffer.setCount(count);
950     for (int i = 0; i < count - 1; i++) {
951         this->lineTo(fPointBuffer[i], kCurve_CurveState);
952     }
953     this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
954 }
955 
quadTo(const SkMatrix & m,SkPoint pts[3])956 void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
957     m.mapPoints(pts, 3);
958     this->quadTo(pts);
959 }
960 
cubicTo(const SkMatrix & m,SkPoint pts[4])961 void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) {
962     m.mapPoints(pts, 4);
963     int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
964     fPointBuffer.setCount(maxCount);
965     SkPoint* target = fPointBuffer.begin();
966     int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
967             kCubicTolerance, &target, maxCount);
968     fPointBuffer.setCount(count);
969     for (int i = 0; i < count - 1; i++) {
970         this->lineTo(fPointBuffer[i], kCurve_CurveState);
971     }
972     this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
973 }
974 
975 // include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
976 #include "src/core/SkGeometry.h"
977 
conicTo(const SkMatrix & m,SkPoint pts[3],SkScalar w)978 void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) {
979     m.mapPoints(pts, 3);
980     SkAutoConicToQuads quadder;
981     const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
982     SkPoint lastPoint = *(quads++);
983     int count = quadder.countQuads();
984     for (int i = 0; i < count; ++i) {
985         SkPoint quadPts[3];
986         quadPts[0] = lastPoint;
987         quadPts[1] = quads[0];
988         quadPts[2] = i == count - 1 ? pts[2] : quads[1];
989         this->quadTo(quadPts);
990         lastPoint = quadPts[2];
991         quads += 2;
992     }
993 }
994 
995 //////////////////////////////////////////////////////////////////////////////
996 #if GR_AA_CONVEX_TESSELLATOR_VIZ
997 static const SkScalar kPointRadius = 0.02f;
998 static const SkScalar kArrowStrokeWidth = 0.0f;
999 static const SkScalar kArrowLength = 0.2f;
1000 static const SkScalar kEdgeTextSize = 0.1f;
1001 static const SkScalar kPointTextSize = 0.02f;
1002 
draw_point(SkCanvas * canvas,const SkPoint & p,SkScalar paramValue,bool stroke)1003 static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
1004     SkPaint paint;
1005     SkASSERT(paramValue <= 1.0f);
1006     int gs = int(255*paramValue);
1007     paint.setARGB(255, gs, gs, gs);
1008 
1009     canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
1010 
1011     if (stroke) {
1012         SkPaint stroke;
1013         stroke.setColor(SK_ColorYELLOW);
1014         stroke.setStyle(SkPaint::kStroke_Style);
1015         stroke.setStrokeWidth(kPointRadius/3.0f);
1016         canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
1017     }
1018 }
1019 
draw_line(SkCanvas * canvas,const SkPoint & p0,const SkPoint & p1,SkColor color)1020 static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
1021     SkPaint p;
1022     p.setColor(color);
1023 
1024     canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
1025 }
1026 
draw_arrow(SkCanvas * canvas,const SkPoint & p,const SkPoint & n,SkScalar len,SkColor color)1027 static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
1028                        SkScalar len, SkColor color) {
1029     SkPaint paint;
1030     paint.setColor(color);
1031     paint.setStrokeWidth(kArrowStrokeWidth);
1032     paint.setStyle(SkPaint::kStroke_Style);
1033 
1034     canvas->drawLine(p.fX, p.fY,
1035                      p.fX + len * n.fX, p.fY + len * n.fY,
1036                      paint);
1037 }
1038 
draw(SkCanvas * canvas,const GrAAConvexTessellator & tess) const1039 void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
1040     SkPaint paint;
1041     paint.setTextSize(kEdgeTextSize);
1042 
1043     for (int cur = 0; cur < fPts.count(); ++cur) {
1044         int next = (cur + 1) % fPts.count();
1045 
1046         draw_line(canvas,
1047                   tess.point(fPts[cur].fIndex),
1048                   tess.point(fPts[next].fIndex),
1049                   SK_ColorGREEN);
1050 
1051         SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
1052         mid.scale(0.5f);
1053 
1054         if (fPts.count()) {
1055             draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
1056             mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
1057             mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
1058         }
1059 
1060         SkString num;
1061         num.printf("%d", this->origEdgeID(cur));
1062         canvas->drawString(num, mid.fX, mid.fY, paint);
1063 
1064         if (fPts.count()) {
1065             draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
1066                        kArrowLength, SK_ColorBLUE);
1067         }
1068     }
1069 }
1070 
draw(SkCanvas * canvas) const1071 void GrAAConvexTessellator::draw(SkCanvas* canvas) const {
1072     for (int i = 0; i < fIndices.count(); i += 3) {
1073         SkASSERT(fIndices[i] < this->numPts()) ;
1074         SkASSERT(fIndices[i+1] < this->numPts()) ;
1075         SkASSERT(fIndices[i+2] < this->numPts()) ;
1076 
1077         draw_line(canvas,
1078                   this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
1079                   SK_ColorBLACK);
1080         draw_line(canvas,
1081                   this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
1082                   SK_ColorBLACK);
1083         draw_line(canvas,
1084                   this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
1085                   SK_ColorBLACK);
1086     }
1087 
1088     fInitialRing.draw(canvas, *this);
1089     for (int i = 0; i < fRings.count(); ++i) {
1090         fRings[i]->draw(canvas, *this);
1091     }
1092 
1093     for (int i = 0; i < this->numPts(); ++i) {
1094         draw_point(canvas,
1095                    this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
1096                    !this->movable(i));
1097 
1098         SkPaint paint;
1099         paint.setTextSize(kPointTextSize);
1100         if (this->depth(i) <= -kAntialiasingRadius) {
1101             paint.setColor(SK_ColorWHITE);
1102         }
1103 
1104         SkString num;
1105         num.printf("%d", i);
1106         canvas->drawString(num,
1107                          this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
1108                          paint);
1109     }
1110 }
1111 
1112 #endif
1113