• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2017 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 
4 #include "unicode/utypes.h"
5 
6 #if !UCONFIG_NO_FORMATTING
7 
8 #include <cstdlib>
9 #include <cmath>
10 #include <limits>
11 #include <stdlib.h>
12 
13 #include "unicode/plurrule.h"
14 #include "cmemory.h"
15 #include "number_decnum.h"
16 #include "putilimp.h"
17 #include "number_decimalquantity.h"
18 #include "number_roundingutils.h"
19 #include "double-conversion.h"
20 #include "charstr.h"
21 #include "number_utils.h"
22 #include "uassert.h"
23 
24 using namespace icu;
25 using namespace icu::number;
26 using namespace icu::number::impl;
27 
28 using icu::double_conversion::DoubleToStringConverter;
29 using icu::double_conversion::StringToDoubleConverter;
30 
31 namespace {
32 
33 int8_t NEGATIVE_FLAG = 1;
34 int8_t INFINITY_FLAG = 2;
35 int8_t NAN_FLAG = 4;
36 
37 /** Helper function for safe subtraction (no overflow). */
safeSubtract(int32_t a,int32_t b)38 inline int32_t safeSubtract(int32_t a, int32_t b) {
39     // Note: In C++, signed integer subtraction is undefined behavior.
40     int32_t diff = static_cast<int32_t>(static_cast<uint32_t>(a) - static_cast<uint32_t>(b));
41     if (b < 0 && diff < a) { return INT32_MAX; }
42     if (b > 0 && diff > a) { return INT32_MIN; }
43     return diff;
44 }
45 
46 static double DOUBLE_MULTIPLIERS[] = {
47         1e0,
48         1e1,
49         1e2,
50         1e3,
51         1e4,
52         1e5,
53         1e6,
54         1e7,
55         1e8,
56         1e9,
57         1e10,
58         1e11,
59         1e12,
60         1e13,
61         1e14,
62         1e15,
63         1e16,
64         1e17,
65         1e18,
66         1e19,
67         1e20,
68         1e21};
69 
70 }  // namespace
71 
72 icu::IFixedDecimal::~IFixedDecimal() = default;
73 
DecimalQuantity()74 DecimalQuantity::DecimalQuantity() {
75     setBcdToZero();
76     flags = 0;
77 }
78 
~DecimalQuantity()79 DecimalQuantity::~DecimalQuantity() {
80     if (usingBytes) {
81         uprv_free(fBCD.bcdBytes.ptr);
82         fBCD.bcdBytes.ptr = nullptr;
83         usingBytes = false;
84     }
85 }
86 
DecimalQuantity(const DecimalQuantity & other)87 DecimalQuantity::DecimalQuantity(const DecimalQuantity &other) {
88     *this = other;
89 }
90 
DecimalQuantity(DecimalQuantity && src)91 DecimalQuantity::DecimalQuantity(DecimalQuantity&& src) U_NOEXCEPT {
92     *this = std::move(src);
93 }
94 
operator =(const DecimalQuantity & other)95 DecimalQuantity &DecimalQuantity::operator=(const DecimalQuantity &other) {
96     if (this == &other) {
97         return *this;
98     }
99     copyBcdFrom(other);
100     copyFieldsFrom(other);
101     return *this;
102 }
103 
operator =(DecimalQuantity && src)104 DecimalQuantity& DecimalQuantity::operator=(DecimalQuantity&& src) U_NOEXCEPT {
105     if (this == &src) {
106         return *this;
107     }
108     moveBcdFrom(src);
109     copyFieldsFrom(src);
110     return *this;
111 }
112 
copyFieldsFrom(const DecimalQuantity & other)113 void DecimalQuantity::copyFieldsFrom(const DecimalQuantity& other) {
114     bogus = other.bogus;
115     lReqPos = other.lReqPos;
116     rReqPos = other.rReqPos;
117     scale = other.scale;
118     precision = other.precision;
119     flags = other.flags;
120     origDouble = other.origDouble;
121     origDelta = other.origDelta;
122     isApproximate = other.isApproximate;
123     exponent = other.exponent;
124 }
125 
clear()126 void DecimalQuantity::clear() {
127     lReqPos = 0;
128     rReqPos = 0;
129     flags = 0;
130     setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, and BCD data
131 }
132 
setMinInteger(int32_t minInt)133 void DecimalQuantity::setMinInteger(int32_t minInt) {
134     // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
135     U_ASSERT(minInt >= 0);
136 
137     // Special behavior: do not set minInt to be less than what is already set.
138     // This is so significant digits rounding can set the integer length.
139     if (minInt < lReqPos) {
140         minInt = lReqPos;
141     }
142 
143     // Save values into internal state
144     lReqPos = minInt;
145 }
146 
setMinFraction(int32_t minFrac)147 void DecimalQuantity::setMinFraction(int32_t minFrac) {
148     // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
149     U_ASSERT(minFrac >= 0);
150 
151     // Save values into internal state
152     // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE
153     rReqPos = -minFrac;
154 }
155 
applyMaxInteger(int32_t maxInt)156 void DecimalQuantity::applyMaxInteger(int32_t maxInt) {
157     // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
158     U_ASSERT(maxInt >= 0);
159 
160     if (precision == 0) {
161         return;
162     }
163 
164     if (maxInt <= scale) {
165         setBcdToZero();
166         return;
167     }
168 
169     int32_t magnitude = getMagnitude();
170     if (maxInt <= magnitude) {
171         popFromLeft(magnitude - maxInt + 1);
172         compact();
173     }
174 }
175 
getPositionFingerprint() const176 uint64_t DecimalQuantity::getPositionFingerprint() const {
177     uint64_t fingerprint = 0;
178     fingerprint ^= (lReqPos << 16);
179     fingerprint ^= (static_cast<uint64_t>(rReqPos) << 32);
180     return fingerprint;
181 }
182 
roundToIncrement(double roundingIncrement,RoundingMode roundingMode,UErrorCode & status)183 void DecimalQuantity::roundToIncrement(double roundingIncrement, RoundingMode roundingMode,
184                                        UErrorCode& status) {
185     // Do not call this method with an increment having only a 1 or a 5 digit!
186     // Use a more efficient call to either roundToMagnitude() or roundToNickel().
187     // Check a few popular rounding increments; a more thorough check is in Java.
188     U_ASSERT(roundingIncrement != 0.01);
189     U_ASSERT(roundingIncrement != 0.05);
190     U_ASSERT(roundingIncrement != 0.1);
191     U_ASSERT(roundingIncrement != 0.5);
192     U_ASSERT(roundingIncrement != 1);
193     U_ASSERT(roundingIncrement != 5);
194 
195     DecNum incrementDN;
196     incrementDN.setTo(roundingIncrement, status);
197     if (U_FAILURE(status)) { return; }
198 
199     // Divide this DecimalQuantity by the increment, round, then multiply back.
200     divideBy(incrementDN, status);
201     if (U_FAILURE(status)) { return; }
202     roundToMagnitude(0, roundingMode, status);
203     if (U_FAILURE(status)) { return; }
204     multiplyBy(incrementDN, status);
205     if (U_FAILURE(status)) { return; }
206 }
207 
multiplyBy(const DecNum & multiplicand,UErrorCode & status)208 void DecimalQuantity::multiplyBy(const DecNum& multiplicand, UErrorCode& status) {
209     if (isZeroish()) {
210         return;
211     }
212     // Convert to DecNum, multiply, and convert back.
213     DecNum decnum;
214     toDecNum(decnum, status);
215     if (U_FAILURE(status)) { return; }
216     decnum.multiplyBy(multiplicand, status);
217     if (U_FAILURE(status)) { return; }
218     setToDecNum(decnum, status);
219 }
220 
divideBy(const DecNum & divisor,UErrorCode & status)221 void DecimalQuantity::divideBy(const DecNum& divisor, UErrorCode& status) {
222     if (isZeroish()) {
223         return;
224     }
225     // Convert to DecNum, multiply, and convert back.
226     DecNum decnum;
227     toDecNum(decnum, status);
228     if (U_FAILURE(status)) { return; }
229     decnum.divideBy(divisor, status);
230     if (U_FAILURE(status)) { return; }
231     setToDecNum(decnum, status);
232 }
233 
negate()234 void DecimalQuantity::negate() {
235     flags ^= NEGATIVE_FLAG;
236 }
237 
getMagnitude() const238 int32_t DecimalQuantity::getMagnitude() const {
239     U_ASSERT(precision != 0);
240     return scale + precision - 1;
241 }
242 
adjustMagnitude(int32_t delta)243 bool DecimalQuantity::adjustMagnitude(int32_t delta) {
244     if (precision != 0) {
245         // i.e., scale += delta; origDelta += delta
246         bool overflow = uprv_add32_overflow(scale, delta, &scale);
247         overflow = uprv_add32_overflow(origDelta, delta, &origDelta) || overflow;
248         // Make sure that precision + scale won't overflow, either
249         int32_t dummy;
250         overflow = overflow || uprv_add32_overflow(scale, precision, &dummy);
251         return overflow;
252     }
253     return false;
254 }
255 
getPluralOperand(PluralOperand operand) const256 double DecimalQuantity::getPluralOperand(PluralOperand operand) const {
257     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
258     // See the comment at the top of this file explaining the "isApproximate" field.
259     U_ASSERT(!isApproximate);
260 
261     switch (operand) {
262         case PLURAL_OPERAND_I:
263             // Invert the negative sign if necessary
264             return static_cast<double>(isNegative() ? -toLong(true) : toLong(true));
265         case PLURAL_OPERAND_F:
266             return static_cast<double>(toFractionLong(true));
267         case PLURAL_OPERAND_T:
268             return static_cast<double>(toFractionLong(false));
269         case PLURAL_OPERAND_V:
270             return fractionCount();
271         case PLURAL_OPERAND_W:
272             return fractionCountWithoutTrailingZeros();
273         case PLURAL_OPERAND_E:
274             return static_cast<double>(getExponent());
275         default:
276             return std::abs(toDouble());
277     }
278 }
279 
getExponent() const280 int32_t DecimalQuantity::getExponent() const {
281     return exponent;
282 }
283 
adjustExponent(int delta)284 void DecimalQuantity::adjustExponent(int delta) {
285     exponent = exponent + delta;
286 }
287 
hasIntegerValue() const288 bool DecimalQuantity::hasIntegerValue() const {
289     return scale >= 0;
290 }
291 
getUpperDisplayMagnitude() const292 int32_t DecimalQuantity::getUpperDisplayMagnitude() const {
293     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
294     // See the comment in the header file explaining the "isApproximate" field.
295     U_ASSERT(!isApproximate);
296 
297     int32_t magnitude = scale + precision;
298     int32_t result = (lReqPos > magnitude) ? lReqPos : magnitude;
299     return result - 1;
300 }
301 
getLowerDisplayMagnitude() const302 int32_t DecimalQuantity::getLowerDisplayMagnitude() const {
303     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
304     // See the comment in the header file explaining the "isApproximate" field.
305     U_ASSERT(!isApproximate);
306 
307     int32_t magnitude = scale;
308     int32_t result = (rReqPos < magnitude) ? rReqPos : magnitude;
309     return result;
310 }
311 
getDigit(int32_t magnitude) const312 int8_t DecimalQuantity::getDigit(int32_t magnitude) const {
313     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
314     // See the comment at the top of this file explaining the "isApproximate" field.
315     U_ASSERT(!isApproximate);
316 
317     return getDigitPos(magnitude - scale);
318 }
319 
fractionCount() const320 int32_t DecimalQuantity::fractionCount() const {
321     int32_t fractionCountWithExponent = -getLowerDisplayMagnitude() - exponent;
322     return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0;
323 }
324 
fractionCountWithoutTrailingZeros() const325 int32_t DecimalQuantity::fractionCountWithoutTrailingZeros() const {
326     int32_t fractionCountWithExponent = -scale - exponent;
327     return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0;  // max(-fractionCountWithExponent, 0)
328 }
329 
isNegative() const330 bool DecimalQuantity::isNegative() const {
331     return (flags & NEGATIVE_FLAG) != 0;
332 }
333 
signum() const334 Signum DecimalQuantity::signum() const {
335     bool isZero = (isZeroish() && !isInfinite());
336     bool isNeg = isNegative();
337     if (isZero && isNeg) {
338         return SIGNUM_NEG_ZERO;
339     } else if (isZero) {
340         return SIGNUM_POS_ZERO;
341     } else if (isNeg) {
342         return SIGNUM_NEG;
343     } else {
344         return SIGNUM_POS;
345     }
346 }
347 
isInfinite() const348 bool DecimalQuantity::isInfinite() const {
349     return (flags & INFINITY_FLAG) != 0;
350 }
351 
isNaN() const352 bool DecimalQuantity::isNaN() const {
353     return (flags & NAN_FLAG) != 0;
354 }
355 
isZeroish() const356 bool DecimalQuantity::isZeroish() const {
357     return precision == 0;
358 }
359 
setToInt(int32_t n)360 DecimalQuantity &DecimalQuantity::setToInt(int32_t n) {
361     setBcdToZero();
362     flags = 0;
363     if (n == INT32_MIN) {
364         flags |= NEGATIVE_FLAG;
365         // leave as INT32_MIN; handled below in _setToInt()
366     } else if (n < 0) {
367         flags |= NEGATIVE_FLAG;
368         n = -n;
369     }
370     if (n != 0) {
371         _setToInt(n);
372         compact();
373     }
374     return *this;
375 }
376 
_setToInt(int32_t n)377 void DecimalQuantity::_setToInt(int32_t n) {
378     if (n == INT32_MIN) {
379         readLongToBcd(-static_cast<int64_t>(n));
380     } else {
381         readIntToBcd(n);
382     }
383 }
384 
setToLong(int64_t n)385 DecimalQuantity &DecimalQuantity::setToLong(int64_t n) {
386     setBcdToZero();
387     flags = 0;
388     if (n < 0 && n > INT64_MIN) {
389         flags |= NEGATIVE_FLAG;
390         n = -n;
391     }
392     if (n != 0) {
393         _setToLong(n);
394         compact();
395     }
396     return *this;
397 }
398 
_setToLong(int64_t n)399 void DecimalQuantity::_setToLong(int64_t n) {
400     if (n == INT64_MIN) {
401         DecNum decnum;
402         UErrorCode localStatus = U_ZERO_ERROR;
403         decnum.setTo("9.223372036854775808E+18", localStatus);
404         if (U_FAILURE(localStatus)) { return; } // unexpected
405         flags |= NEGATIVE_FLAG;
406         readDecNumberToBcd(decnum);
407     } else if (n <= INT32_MAX) {
408         readIntToBcd(static_cast<int32_t>(n));
409     } else {
410         readLongToBcd(n);
411     }
412 }
413 
setToDouble(double n)414 DecimalQuantity &DecimalQuantity::setToDouble(double n) {
415     setBcdToZero();
416     flags = 0;
417     // signbit() from <math.h> handles +0.0 vs -0.0
418     if (std::signbit(n)) {
419         flags |= NEGATIVE_FLAG;
420         n = -n;
421     }
422     if (std::isnan(n) != 0) {
423         flags |= NAN_FLAG;
424     } else if (std::isfinite(n) == 0) {
425         flags |= INFINITY_FLAG;
426     } else if (n != 0) {
427         _setToDoubleFast(n);
428         compact();
429     }
430     return *this;
431 }
432 
_setToDoubleFast(double n)433 void DecimalQuantity::_setToDoubleFast(double n) {
434     isApproximate = true;
435     origDouble = n;
436     origDelta = 0;
437 
438     // Make sure the double is an IEEE 754 double.  If not, fall back to the slow path right now.
439     // TODO: Make a fast path for other types of doubles.
440     if (!std::numeric_limits<double>::is_iec559) {
441         convertToAccurateDouble();
442         return;
443     }
444 
445     // To get the bits from the double, use memcpy, which takes care of endianness.
446     uint64_t ieeeBits;
447     uprv_memcpy(&ieeeBits, &n, sizeof(n));
448     int32_t exponent = static_cast<int32_t>((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff;
449 
450     // Not all integers can be represented exactly for exponent > 52
451     if (exponent <= 52 && static_cast<int64_t>(n) == n) {
452         _setToLong(static_cast<int64_t>(n));
453         return;
454     }
455 
456     if (exponent == -1023 || exponent == 1024) {
457         // The extreme values of exponent are special; use slow path.
458         convertToAccurateDouble();
459         return;
460     }
461 
462     // 3.3219... is log2(10)
463     auto fracLength = static_cast<int32_t> ((52 - exponent) / 3.32192809488736234787031942948939017586);
464     if (fracLength >= 0) {
465         int32_t i = fracLength;
466         // 1e22 is the largest exact double.
467         for (; i >= 22; i -= 22) n *= 1e22;
468         n *= DOUBLE_MULTIPLIERS[i];
469     } else {
470         int32_t i = fracLength;
471         // 1e22 is the largest exact double.
472         for (; i <= -22; i += 22) n /= 1e22;
473         n /= DOUBLE_MULTIPLIERS[-i];
474     }
475     auto result = static_cast<int64_t>(uprv_round(n));
476     if (result != 0) {
477         _setToLong(result);
478         scale -= fracLength;
479     }
480 }
481 
convertToAccurateDouble()482 void DecimalQuantity::convertToAccurateDouble() {
483     U_ASSERT(origDouble != 0);
484     int32_t delta = origDelta;
485 
486     // Call the slow oracle function (Double.toString in Java, DoubleToAscii in C++).
487     char buffer[DoubleToStringConverter::kBase10MaximalLength + 1];
488     bool sign; // unused; always positive
489     int32_t length;
490     int32_t point;
491     DoubleToStringConverter::DoubleToAscii(
492         origDouble,
493         DoubleToStringConverter::DtoaMode::SHORTEST,
494         0,
495         buffer,
496         sizeof(buffer),
497         &sign,
498         &length,
499         &point
500     );
501 
502     setBcdToZero();
503     readDoubleConversionToBcd(buffer, length, point);
504     scale += delta;
505     explicitExactDouble = true;
506 }
507 
setToDecNumber(StringPiece n,UErrorCode & status)508 DecimalQuantity &DecimalQuantity::setToDecNumber(StringPiece n, UErrorCode& status) {
509     setBcdToZero();
510     flags = 0;
511 
512     // Compute the decNumber representation
513     DecNum decnum;
514     decnum.setTo(n, status);
515 
516     _setToDecNum(decnum, status);
517     return *this;
518 }
519 
setToDecNum(const DecNum & decnum,UErrorCode & status)520 DecimalQuantity& DecimalQuantity::setToDecNum(const DecNum& decnum, UErrorCode& status) {
521     setBcdToZero();
522     flags = 0;
523 
524     _setToDecNum(decnum, status);
525     return *this;
526 }
527 
_setToDecNum(const DecNum & decnum,UErrorCode & status)528 void DecimalQuantity::_setToDecNum(const DecNum& decnum, UErrorCode& status) {
529     if (U_FAILURE(status)) { return; }
530     if (decnum.isNegative()) {
531         flags |= NEGATIVE_FLAG;
532     }
533     if (!decnum.isZero()) {
534         readDecNumberToBcd(decnum);
535         compact();
536     }
537 }
538 
toLong(bool truncateIfOverflow) const539 int64_t DecimalQuantity::toLong(bool truncateIfOverflow) const {
540     // NOTE: Call sites should be guarded by fitsInLong(), like this:
541     // if (dq.fitsInLong()) { /* use dq.toLong() */ } else { /* use some fallback */ }
542     // Fallback behavior upon truncateIfOverflow is to truncate at 17 digits.
543     uint64_t result = 0L;
544     int32_t upperMagnitude = exponent + scale + precision - 1;
545     if (truncateIfOverflow) {
546         upperMagnitude = std::min(upperMagnitude, 17);
547     }
548     for (int32_t magnitude = upperMagnitude; magnitude >= 0; magnitude--) {
549         result = result * 10 + getDigitPos(magnitude - scale - exponent);
550     }
551     if (isNegative()) {
552         return static_cast<int64_t>(0LL - result); // i.e., -result
553     }
554     return static_cast<int64_t>(result);
555 }
556 
toFractionLong(bool includeTrailingZeros) const557 uint64_t DecimalQuantity::toFractionLong(bool includeTrailingZeros) const {
558     uint64_t result = 0L;
559     int32_t magnitude = -1 - exponent;
560     int32_t lowerMagnitude = scale;
561     if (includeTrailingZeros) {
562         lowerMagnitude = std::min(lowerMagnitude, rReqPos);
563     }
564     for (; magnitude >= lowerMagnitude && result <= 1e18L; magnitude--) {
565         result = result * 10 + getDigitPos(magnitude - scale);
566     }
567     // Remove trailing zeros; this can happen during integer overflow cases.
568     if (!includeTrailingZeros) {
569         while (result > 0 && (result % 10) == 0) {
570             result /= 10;
571         }
572     }
573     return result;
574 }
575 
fitsInLong(bool ignoreFraction) const576 bool DecimalQuantity::fitsInLong(bool ignoreFraction) const {
577     if (isInfinite() || isNaN()) {
578         return false;
579     }
580     if (isZeroish()) {
581         return true;
582     }
583     if (exponent + scale < 0 && !ignoreFraction) {
584         return false;
585     }
586     int magnitude = getMagnitude();
587     if (magnitude < 18) {
588         return true;
589     }
590     if (magnitude > 18) {
591         return false;
592     }
593     // Hard case: the magnitude is 10^18.
594     // The largest int64 is: 9,223,372,036,854,775,807
595     for (int p = 0; p < precision; p++) {
596         int8_t digit = getDigit(18 - p);
597         static int8_t INT64_BCD[] = { 9, 2, 2, 3, 3, 7, 2, 0, 3, 6, 8, 5, 4, 7, 7, 5, 8, 0, 8 };
598         if (digit < INT64_BCD[p]) {
599             return true;
600         } else if (digit > INT64_BCD[p]) {
601             return false;
602         }
603     }
604     // Exactly equal to max long plus one.
605     return isNegative();
606 }
607 
toDouble() const608 double DecimalQuantity::toDouble() const {
609     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
610     // See the comment in the header file explaining the "isApproximate" field.
611     U_ASSERT(!isApproximate);
612 
613     if (isNaN()) {
614         return NAN;
615     } else if (isInfinite()) {
616         return isNegative() ? -INFINITY : INFINITY;
617     }
618 
619     // We are processing well-formed input, so we don't need any special options to StringToDoubleConverter.
620     StringToDoubleConverter converter(0, 0, 0, "", "");
621     UnicodeString numberString = this->toScientificString();
622     int32_t count;
623     return converter.StringToDouble(
624             reinterpret_cast<const uint16_t*>(numberString.getBuffer()),
625             numberString.length(),
626             &count);
627 }
628 
toDecNum(DecNum & output,UErrorCode & status) const629 void DecimalQuantity::toDecNum(DecNum& output, UErrorCode& status) const {
630     // Special handling for zero
631     if (precision == 0) {
632         output.setTo("0", status);
633     }
634 
635     // Use the BCD constructor. We need to do a little bit of work to convert, though.
636     // The decNumber constructor expects most-significant first, but we store least-significant first.
637     MaybeStackArray<uint8_t, 20> ubcd(precision);
638     for (int32_t m = 0; m < precision; m++) {
639         ubcd[precision - m - 1] = static_cast<uint8_t>(getDigitPos(m));
640     }
641     output.setTo(ubcd.getAlias(), precision, scale, isNegative(), status);
642 }
643 
truncate()644 void DecimalQuantity::truncate() {
645     if (scale < 0) {
646         shiftRight(-scale);
647         scale = 0;
648         compact();
649     }
650 }
651 
roundToNickel(int32_t magnitude,RoundingMode roundingMode,UErrorCode & status)652 void DecimalQuantity::roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) {
653     roundToMagnitude(magnitude, roundingMode, true, status);
654 }
655 
roundToMagnitude(int32_t magnitude,RoundingMode roundingMode,UErrorCode & status)656 void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) {
657     roundToMagnitude(magnitude, roundingMode, false, status);
658 }
659 
roundToMagnitude(int32_t magnitude,RoundingMode roundingMode,bool nickel,UErrorCode & status)660 void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status) {
661     // The position in the BCD at which rounding will be performed; digits to the right of position
662     // will be rounded away.
663     int position = safeSubtract(magnitude, scale);
664 
665     // "trailing" = least significant digit to the left of rounding
666     int8_t trailingDigit = getDigitPos(position);
667 
668     if (position <= 0 && !isApproximate && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
669         // All digits are to the left of the rounding magnitude.
670     } else if (precision == 0) {
671         // No rounding for zero.
672     } else {
673         // Perform rounding logic.
674         // "leading" = most significant digit to the right of rounding
675         int8_t leadingDigit = getDigitPos(safeSubtract(position, 1));
676 
677         // Compute which section of the number we are in.
678         // EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles)
679         // LOWER means we are between the bottom edge and the midpoint, like 1.391
680         // MIDPOINT means we are exactly in the middle, like 1.500
681         // UPPER means we are between the midpoint and the top edge, like 1.916
682         roundingutils::Section section;
683         if (!isApproximate) {
684             if (nickel && trailingDigit != 2 && trailingDigit != 7) {
685                 // Nickel rounding, and not at .02x or .07x
686                 if (trailingDigit < 2) {
687                     // .00, .01 => down to .00
688                     section = roundingutils::SECTION_LOWER;
689                 } else if (trailingDigit < 5) {
690                     // .03, .04 => up to .05
691                     section = roundingutils::SECTION_UPPER;
692                 } else if (trailingDigit < 7) {
693                     // .05, .06 => down to .05
694                     section = roundingutils::SECTION_LOWER;
695                 } else {
696                     // .08, .09 => up to .10
697                     section = roundingutils::SECTION_UPPER;
698                 }
699             } else if (leadingDigit < 5) {
700                 // Includes nickel rounding .020-.024 and .070-.074
701                 section = roundingutils::SECTION_LOWER;
702             } else if (leadingDigit > 5) {
703                 // Includes nickel rounding .026-.029 and .076-.079
704                 section = roundingutils::SECTION_UPPER;
705             } else {
706                 // Includes nickel rounding .025 and .075
707                 section = roundingutils::SECTION_MIDPOINT;
708                 for (int p = safeSubtract(position, 2); p >= 0; p--) {
709                     if (getDigitPos(p) != 0) {
710                         section = roundingutils::SECTION_UPPER;
711                         break;
712                     }
713                 }
714             }
715         } else {
716             int32_t p = safeSubtract(position, 2);
717             int32_t minP = uprv_max(0, precision - 14);
718             if (leadingDigit == 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
719                 section = roundingutils::SECTION_LOWER_EDGE;
720                 for (; p >= minP; p--) {
721                     if (getDigitPos(p) != 0) {
722                         section = roundingutils::SECTION_LOWER;
723                         break;
724                     }
725                 }
726             } else if (leadingDigit == 4 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) {
727                 section = roundingutils::SECTION_MIDPOINT;
728                 for (; p >= minP; p--) {
729                     if (getDigitPos(p) != 9) {
730                         section = roundingutils::SECTION_LOWER;
731                         break;
732                     }
733                 }
734             } else if (leadingDigit == 5 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) {
735                 section = roundingutils::SECTION_MIDPOINT;
736                 for (; p >= minP; p--) {
737                     if (getDigitPos(p) != 0) {
738                         section = roundingutils::SECTION_UPPER;
739                         break;
740                     }
741                 }
742             } else if (leadingDigit == 9 && (!nickel || trailingDigit == 4 || trailingDigit == 9)) {
743                 section = roundingutils::SECTION_UPPER_EDGE;
744                 for (; p >= minP; p--) {
745                     if (getDigitPos(p) != 9) {
746                         section = roundingutils::SECTION_UPPER;
747                         break;
748                     }
749                 }
750             } else if (nickel && trailingDigit != 2 && trailingDigit != 7) {
751                 // Nickel rounding, and not at .02x or .07x
752                 if (trailingDigit < 2) {
753                     // .00, .01 => down to .00
754                     section = roundingutils::SECTION_LOWER;
755                 } else if (trailingDigit < 5) {
756                     // .03, .04 => up to .05
757                     section = roundingutils::SECTION_UPPER;
758                 } else if (trailingDigit < 7) {
759                     // .05, .06 => down to .05
760                     section = roundingutils::SECTION_LOWER;
761                 } else {
762                     // .08, .09 => up to .10
763                     section = roundingutils::SECTION_UPPER;
764                 }
765             } else if (leadingDigit < 5) {
766                 // Includes nickel rounding .020-.024 and .070-.074
767                 section = roundingutils::SECTION_LOWER;
768             } else {
769                 // Includes nickel rounding .026-.029 and .076-.079
770                 section = roundingutils::SECTION_UPPER;
771             }
772 
773             bool roundsAtMidpoint = roundingutils::roundsAtMidpoint(roundingMode);
774             if (safeSubtract(position, 1) < precision - 14 ||
775                 (roundsAtMidpoint && section == roundingutils::SECTION_MIDPOINT) ||
776                 (!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) {
777                 // Oops! This means that we have to get the exact representation of the double,
778                 // because the zone of uncertainty is along the rounding boundary.
779                 convertToAccurateDouble();
780                 roundToMagnitude(magnitude, roundingMode, nickel, status); // start over
781                 return;
782             }
783 
784             // Turn off the approximate double flag, since the value is now confirmed to be exact.
785             isApproximate = false;
786             origDouble = 0.0;
787             origDelta = 0;
788 
789             if (position <= 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
790                 // All digits are to the left of the rounding magnitude.
791                 return;
792             }
793 
794             // Good to continue rounding.
795             if (section == -1) { section = roundingutils::SECTION_LOWER; }
796             if (section == -2) { section = roundingutils::SECTION_UPPER; }
797         }
798 
799         // Nickel rounding "half even" goes to the nearest whole (away from the 5).
800         bool isEven = nickel
801                 ? (trailingDigit < 2 || trailingDigit > 7
802                         || (trailingDigit == 2 && section != roundingutils::SECTION_UPPER)
803                         || (trailingDigit == 7 && section == roundingutils::SECTION_UPPER))
804                 : (trailingDigit % 2) == 0;
805 
806         bool roundDown = roundingutils::getRoundingDirection(isEven,
807                 isNegative(),
808                 section,
809                 roundingMode,
810                 status);
811         if (U_FAILURE(status)) {
812             return;
813         }
814 
815         // Perform truncation
816         if (position >= precision) {
817             setBcdToZero();
818             scale = magnitude;
819         } else {
820             shiftRight(position);
821         }
822 
823         if (nickel) {
824             if (trailingDigit < 5 && roundDown) {
825                 setDigitPos(0, 0);
826                 compact();
827                 return;
828             } else if (trailingDigit >= 5 && !roundDown) {
829                 setDigitPos(0, 9);
830                 trailingDigit = 9;
831                 // do not return: use the bubbling logic below
832             } else {
833                 setDigitPos(0, 5);
834                 // compact not necessary: digit at position 0 is nonzero
835                 return;
836             }
837         }
838 
839         // Bubble the result to the higher digits
840         if (!roundDown) {
841             if (trailingDigit == 9) {
842                 int bubblePos = 0;
843                 // Note: in the long implementation, the most digits BCD can have at this point is
844                 // 15, so bubblePos <= 15 and getDigitPos(bubblePos) is safe.
845                 for (; getDigitPos(bubblePos) == 9; bubblePos++) {}
846                 shiftRight(bubblePos); // shift off the trailing 9s
847             }
848             int8_t digit0 = getDigitPos(0);
849             U_ASSERT(digit0 != 9);
850             setDigitPos(0, static_cast<int8_t>(digit0 + 1));
851             precision += 1; // in case an extra digit got added
852         }
853 
854         compact();
855     }
856 }
857 
roundToInfinity()858 void DecimalQuantity::roundToInfinity() {
859     if (isApproximate) {
860         convertToAccurateDouble();
861     }
862 }
863 
appendDigit(int8_t value,int32_t leadingZeros,bool appendAsInteger)864 void DecimalQuantity::appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger) {
865     U_ASSERT(leadingZeros >= 0);
866 
867     // Zero requires special handling to maintain the invariant that the least-significant digit
868     // in the BCD is nonzero.
869     if (value == 0) {
870         if (appendAsInteger && precision != 0) {
871             scale += leadingZeros + 1;
872         }
873         return;
874     }
875 
876     // Deal with trailing zeros
877     if (scale > 0) {
878         leadingZeros += scale;
879         if (appendAsInteger) {
880             scale = 0;
881         }
882     }
883 
884     // Append digit
885     shiftLeft(leadingZeros + 1);
886     setDigitPos(0, value);
887 
888     // Fix scale if in integer mode
889     if (appendAsInteger) {
890         scale += leadingZeros + 1;
891     }
892 }
893 
toPlainString() const894 UnicodeString DecimalQuantity::toPlainString() const {
895     U_ASSERT(!isApproximate);
896     UnicodeString sb;
897     if (isNegative()) {
898         sb.append(u'-');
899     }
900     if (precision == 0) {
901         sb.append(u'0');
902         return sb;
903     }
904     int32_t upper = scale + precision + exponent - 1;
905     int32_t lower = scale + exponent;
906     if (upper < lReqPos - 1) {
907         upper = lReqPos - 1;
908     }
909     if (lower > rReqPos) {
910         lower = rReqPos;
911     }
912     int32_t p = upper;
913     if (p < 0) {
914         sb.append(u'0');
915     }
916     for (; p >= 0; p--) {
917         sb.append(u'0' + getDigitPos(p - scale - exponent));
918     }
919     if (lower < 0) {
920         sb.append(u'.');
921     }
922     for(; p >= lower; p--) {
923         sb.append(u'0' + getDigitPos(p - scale - exponent));
924     }
925     return sb;
926 }
927 
toScientificString() const928 UnicodeString DecimalQuantity::toScientificString() const {
929     U_ASSERT(!isApproximate);
930     UnicodeString result;
931     if (isNegative()) {
932         result.append(u'-');
933     }
934     if (precision == 0) {
935         result.append(u"0E+0", -1);
936         return result;
937     }
938     int32_t upperPos = precision - 1;
939     int32_t lowerPos = 0;
940     int32_t p = upperPos;
941     result.append(u'0' + getDigitPos(p));
942     if ((--p) >= lowerPos) {
943         result.append(u'.');
944         for (; p >= lowerPos; p--) {
945             result.append(u'0' + getDigitPos(p));
946         }
947     }
948     result.append(u'E');
949     int32_t _scale = upperPos + scale + exponent;
950     if (_scale == INT32_MIN) {
951         result.append({u"-2147483648", -1});
952         return result;
953     } else if (_scale < 0) {
954         _scale *= -1;
955         result.append(u'-');
956     } else {
957         result.append(u'+');
958     }
959     if (_scale == 0) {
960         result.append(u'0');
961     }
962     int32_t insertIndex = result.length();
963     while (_scale > 0) {
964         std::div_t res = std::div(_scale, 10);
965         result.insert(insertIndex, u'0' + res.rem);
966         _scale = res.quot;
967     }
968     return result;
969 }
970 
971 ////////////////////////////////////////////////////
972 /// End of DecimalQuantity_AbstractBCD.java      ///
973 /// Start of DecimalQuantity_DualStorageBCD.java ///
974 ////////////////////////////////////////////////////
975 
getDigitPos(int32_t position) const976 int8_t DecimalQuantity::getDigitPos(int32_t position) const {
977     if (usingBytes) {
978         if (position < 0 || position >= precision) { return 0; }
979         return fBCD.bcdBytes.ptr[position];
980     } else {
981         if (position < 0 || position >= 16) { return 0; }
982         return (int8_t) ((fBCD.bcdLong >> (position * 4)) & 0xf);
983     }
984 }
985 
setDigitPos(int32_t position,int8_t value)986 void DecimalQuantity::setDigitPos(int32_t position, int8_t value) {
987     U_ASSERT(position >= 0);
988     if (usingBytes) {
989         ensureCapacity(position + 1);
990         fBCD.bcdBytes.ptr[position] = value;
991     } else if (position >= 16) {
992         switchStorage();
993         ensureCapacity(position + 1);
994         fBCD.bcdBytes.ptr[position] = value;
995     } else {
996         int shift = position * 4;
997         fBCD.bcdLong = (fBCD.bcdLong & ~(0xfL << shift)) | ((long) value << shift);
998     }
999 }
1000 
shiftLeft(int32_t numDigits)1001 void DecimalQuantity::shiftLeft(int32_t numDigits) {
1002     if (!usingBytes && precision + numDigits > 16) {
1003         switchStorage();
1004     }
1005     if (usingBytes) {
1006         ensureCapacity(precision + numDigits);
1007         int i = precision + numDigits - 1;
1008         for (; i >= numDigits; i--) {
1009             fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i - numDigits];
1010         }
1011         for (; i >= 0; i--) {
1012             fBCD.bcdBytes.ptr[i] = 0;
1013         }
1014     } else {
1015         fBCD.bcdLong <<= (numDigits * 4);
1016     }
1017     scale -= numDigits;
1018     precision += numDigits;
1019 }
1020 
shiftRight(int32_t numDigits)1021 void DecimalQuantity::shiftRight(int32_t numDigits) {
1022     if (usingBytes) {
1023         int i = 0;
1024         for (; i < precision - numDigits; i++) {
1025             fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i + numDigits];
1026         }
1027         for (; i < precision; i++) {
1028             fBCD.bcdBytes.ptr[i] = 0;
1029         }
1030     } else {
1031         fBCD.bcdLong >>= (numDigits * 4);
1032     }
1033     scale += numDigits;
1034     precision -= numDigits;
1035 }
1036 
popFromLeft(int32_t numDigits)1037 void DecimalQuantity::popFromLeft(int32_t numDigits) {
1038     U_ASSERT(numDigits <= precision);
1039     if (usingBytes) {
1040         int i = precision - 1;
1041         for (; i >= precision - numDigits; i--) {
1042             fBCD.bcdBytes.ptr[i] = 0;
1043         }
1044     } else {
1045         fBCD.bcdLong &= (static_cast<uint64_t>(1) << ((precision - numDigits) * 4)) - 1;
1046     }
1047     precision -= numDigits;
1048 }
1049 
setBcdToZero()1050 void DecimalQuantity::setBcdToZero() {
1051     if (usingBytes) {
1052         uprv_free(fBCD.bcdBytes.ptr);
1053         fBCD.bcdBytes.ptr = nullptr;
1054         usingBytes = false;
1055     }
1056     fBCD.bcdLong = 0L;
1057     scale = 0;
1058     precision = 0;
1059     isApproximate = false;
1060     origDouble = 0;
1061     origDelta = 0;
1062     exponent = 0;
1063 }
1064 
readIntToBcd(int32_t n)1065 void DecimalQuantity::readIntToBcd(int32_t n) {
1066     U_ASSERT(n != 0);
1067     // ints always fit inside the long implementation.
1068     uint64_t result = 0L;
1069     int i = 16;
1070     for (; n != 0; n /= 10, i--) {
1071         result = (result >> 4) + ((static_cast<uint64_t>(n) % 10) << 60);
1072     }
1073     U_ASSERT(!usingBytes);
1074     fBCD.bcdLong = result >> (i * 4);
1075     scale = 0;
1076     precision = 16 - i;
1077 }
1078 
readLongToBcd(int64_t n)1079 void DecimalQuantity::readLongToBcd(int64_t n) {
1080     U_ASSERT(n != 0);
1081     if (n >= 10000000000000000L) {
1082         ensureCapacity();
1083         int i = 0;
1084         for (; n != 0L; n /= 10L, i++) {
1085             fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(n % 10);
1086         }
1087         U_ASSERT(usingBytes);
1088         scale = 0;
1089         precision = i;
1090     } else {
1091         uint64_t result = 0L;
1092         int i = 16;
1093         for (; n != 0L; n /= 10L, i--) {
1094             result = (result >> 4) + ((n % 10) << 60);
1095         }
1096         U_ASSERT(i >= 0);
1097         U_ASSERT(!usingBytes);
1098         fBCD.bcdLong = result >> (i * 4);
1099         scale = 0;
1100         precision = 16 - i;
1101     }
1102 }
1103 
readDecNumberToBcd(const DecNum & decnum)1104 void DecimalQuantity::readDecNumberToBcd(const DecNum& decnum) {
1105     const decNumber* dn = decnum.getRawDecNumber();
1106     if (dn->digits > 16) {
1107         ensureCapacity(dn->digits);
1108         for (int32_t i = 0; i < dn->digits; i++) {
1109             fBCD.bcdBytes.ptr[i] = dn->lsu[i];
1110         }
1111     } else {
1112         uint64_t result = 0L;
1113         for (int32_t i = 0; i < dn->digits; i++) {
1114             result |= static_cast<uint64_t>(dn->lsu[i]) << (4 * i);
1115         }
1116         fBCD.bcdLong = result;
1117     }
1118     scale = dn->exponent;
1119     precision = dn->digits;
1120 }
1121 
readDoubleConversionToBcd(const char * buffer,int32_t length,int32_t point)1122 void DecimalQuantity::readDoubleConversionToBcd(
1123         const char* buffer, int32_t length, int32_t point) {
1124     // NOTE: Despite the fact that double-conversion's API is called
1125     // "DoubleToAscii", they actually use '0' (as opposed to u8'0').
1126     if (length > 16) {
1127         ensureCapacity(length);
1128         for (int32_t i = 0; i < length; i++) {
1129             fBCD.bcdBytes.ptr[i] = buffer[length-i-1] - '0';
1130         }
1131     } else {
1132         uint64_t result = 0L;
1133         for (int32_t i = 0; i < length; i++) {
1134             result |= static_cast<uint64_t>(buffer[length-i-1] - '0') << (4 * i);
1135         }
1136         fBCD.bcdLong = result;
1137     }
1138     scale = point - length;
1139     precision = length;
1140 }
1141 
compact()1142 void DecimalQuantity::compact() {
1143     if (usingBytes) {
1144         int32_t delta = 0;
1145         for (; delta < precision && fBCD.bcdBytes.ptr[delta] == 0; delta++);
1146         if (delta == precision) {
1147             // Number is zero
1148             setBcdToZero();
1149             return;
1150         } else {
1151             // Remove trailing zeros
1152             shiftRight(delta);
1153         }
1154 
1155         // Compute precision
1156         int32_t leading = precision - 1;
1157         for (; leading >= 0 && fBCD.bcdBytes.ptr[leading] == 0; leading--);
1158         precision = leading + 1;
1159 
1160         // Switch storage mechanism if possible
1161         if (precision <= 16) {
1162             switchStorage();
1163         }
1164 
1165     } else {
1166         if (fBCD.bcdLong == 0L) {
1167             // Number is zero
1168             setBcdToZero();
1169             return;
1170         }
1171 
1172         // Compact the number (remove trailing zeros)
1173         // TODO: Use a more efficient algorithm here and below. There is a logarithmic one.
1174         int32_t delta = 0;
1175         for (; delta < precision && getDigitPos(delta) == 0; delta++);
1176         fBCD.bcdLong >>= delta * 4;
1177         scale += delta;
1178 
1179         // Compute precision
1180         int32_t leading = precision - 1;
1181         for (; leading >= 0 && getDigitPos(leading) == 0; leading--);
1182         precision = leading + 1;
1183     }
1184 }
1185 
ensureCapacity()1186 void DecimalQuantity::ensureCapacity() {
1187     ensureCapacity(40);
1188 }
1189 
ensureCapacity(int32_t capacity)1190 void DecimalQuantity::ensureCapacity(int32_t capacity) {
1191     if (capacity == 0) { return; }
1192     int32_t oldCapacity = usingBytes ? fBCD.bcdBytes.len : 0;
1193     if (!usingBytes) {
1194         // TODO: There is nothing being done to check for memory allocation failures.
1195         // TODO: Consider indexing by nybbles instead of bytes in C++, so that we can
1196         // make these arrays half the size.
1197         fBCD.bcdBytes.ptr = static_cast<int8_t*>(uprv_malloc(capacity * sizeof(int8_t)));
1198         fBCD.bcdBytes.len = capacity;
1199         // Initialize the byte array to zeros (this is done automatically in Java)
1200         uprv_memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t));
1201     } else if (oldCapacity < capacity) {
1202         auto bcd1 = static_cast<int8_t*>(uprv_malloc(capacity * 2 * sizeof(int8_t)));
1203         uprv_memcpy(bcd1, fBCD.bcdBytes.ptr, oldCapacity * sizeof(int8_t));
1204         // Initialize the rest of the byte array to zeros (this is done automatically in Java)
1205         uprv_memset(bcd1 + oldCapacity, 0, (capacity - oldCapacity) * sizeof(int8_t));
1206         uprv_free(fBCD.bcdBytes.ptr);
1207         fBCD.bcdBytes.ptr = bcd1;
1208         fBCD.bcdBytes.len = capacity * 2;
1209     }
1210     usingBytes = true;
1211 }
1212 
switchStorage()1213 void DecimalQuantity::switchStorage() {
1214     if (usingBytes) {
1215         // Change from bytes to long
1216         uint64_t bcdLong = 0L;
1217         for (int i = precision - 1; i >= 0; i--) {
1218             bcdLong <<= 4;
1219             bcdLong |= fBCD.bcdBytes.ptr[i];
1220         }
1221         uprv_free(fBCD.bcdBytes.ptr);
1222         fBCD.bcdBytes.ptr = nullptr;
1223         fBCD.bcdLong = bcdLong;
1224         usingBytes = false;
1225     } else {
1226         // Change from long to bytes
1227         // Copy the long into a local variable since it will get munged when we allocate the bytes
1228         uint64_t bcdLong = fBCD.bcdLong;
1229         ensureCapacity();
1230         for (int i = 0; i < precision; i++) {
1231             fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(bcdLong & 0xf);
1232             bcdLong >>= 4;
1233         }
1234         U_ASSERT(usingBytes);
1235     }
1236 }
1237 
copyBcdFrom(const DecimalQuantity & other)1238 void DecimalQuantity::copyBcdFrom(const DecimalQuantity &other) {
1239     setBcdToZero();
1240     if (other.usingBytes) {
1241         ensureCapacity(other.precision);
1242         uprv_memcpy(fBCD.bcdBytes.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t));
1243     } else {
1244         fBCD.bcdLong = other.fBCD.bcdLong;
1245     }
1246 }
1247 
moveBcdFrom(DecimalQuantity & other)1248 void DecimalQuantity::moveBcdFrom(DecimalQuantity &other) {
1249     setBcdToZero();
1250     if (other.usingBytes) {
1251         usingBytes = true;
1252         fBCD.bcdBytes.ptr = other.fBCD.bcdBytes.ptr;
1253         fBCD.bcdBytes.len = other.fBCD.bcdBytes.len;
1254         // Take ownership away from the old instance:
1255         other.fBCD.bcdBytes.ptr = nullptr;
1256         other.usingBytes = false;
1257     } else {
1258         fBCD.bcdLong = other.fBCD.bcdLong;
1259     }
1260 }
1261 
checkHealth() const1262 const char16_t* DecimalQuantity::checkHealth() const {
1263     if (usingBytes) {
1264         if (precision == 0) { return u"Zero precision but we are in byte mode"; }
1265         int32_t capacity = fBCD.bcdBytes.len;
1266         if (precision > capacity) { return u"Precision exceeds length of byte array"; }
1267         if (getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in byte mode"; }
1268         if (getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode"; }
1269         for (int i = 0; i < precision; i++) {
1270             if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in byte array"; }
1271             if (getDigitPos(i) < 0) { return u"Digit below 0 in byte array"; }
1272         }
1273         for (int i = precision; i < capacity; i++) {
1274             if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in byte array"; }
1275         }
1276     } else {
1277         if (precision == 0 && fBCD.bcdLong != 0) {
1278             return u"Value in bcdLong even though precision is zero";
1279         }
1280         if (precision > 16) { return u"Precision exceeds length of long"; }
1281         if (precision != 0 && getDigitPos(precision - 1) == 0) {
1282             return u"Most significant digit is zero in long mode";
1283         }
1284         if (precision != 0 && getDigitPos(0) == 0) {
1285             return u"Least significant digit is zero in long mode";
1286         }
1287         for (int i = 0; i < precision; i++) {
1288             if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in long"; }
1289             if (getDigitPos(i) < 0) { return u"Digit below 0 in long (?!)"; }
1290         }
1291         for (int i = precision; i < 16; i++) {
1292             if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in long"; }
1293         }
1294     }
1295 
1296     // No error
1297     return nullptr;
1298 }
1299 
operator ==(const DecimalQuantity & other) const1300 bool DecimalQuantity::operator==(const DecimalQuantity& other) const {
1301     bool basicEquals =
1302             scale == other.scale
1303             && precision == other.precision
1304             && flags == other.flags
1305             && lReqPos == other.lReqPos
1306             && rReqPos == other.rReqPos
1307             && isApproximate == other.isApproximate;
1308     if (!basicEquals) {
1309         return false;
1310     }
1311 
1312     if (precision == 0) {
1313         return true;
1314     } else if (isApproximate) {
1315         return origDouble == other.origDouble && origDelta == other.origDelta;
1316     } else {
1317         for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) {
1318             if (getDigit(m) != other.getDigit(m)) {
1319                 return false;
1320             }
1321         }
1322         return true;
1323     }
1324 }
1325 
toString() const1326 UnicodeString DecimalQuantity::toString() const {
1327     MaybeStackArray<char, 30> digits(precision + 1);
1328     for (int32_t i = 0; i < precision; i++) {
1329         digits[i] = getDigitPos(precision - i - 1) + '0';
1330     }
1331     digits[precision] = 0; // terminate buffer
1332     char buffer8[100];
1333     snprintf(
1334             buffer8,
1335             sizeof(buffer8),
1336             "<DecimalQuantity %d:%d %s %s%s%s%d>",
1337             lReqPos,
1338             rReqPos,
1339             (usingBytes ? "bytes" : "long"),
1340             (isNegative() ? "-" : ""),
1341             (precision == 0 ? "0" : digits.getAlias()),
1342             "E",
1343             scale);
1344     return UnicodeString(buffer8, -1, US_INV);
1345 }
1346 
1347 #endif /* #if !UCONFIG_NO_FORMATTING */
1348