1 /* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
2 * Permission is hereby granted, free of charge, to any person obtaining a copy
3 * of this software and associated documentation files (the "Software"), to
4 * deal in the Software without restriction, including without limitation the
5 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
6 * sell copies of the Software, and to permit persons to whom the Software is
7 * furnished to do so, subject to the following conditions:
8 *
9 * The above copyright notice and this permission notice shall be included in
10 * all copies or substantial portions of the Software.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
13 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
15 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
16 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
17 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
18 * IN THE SOFTWARE.
19 */
20
21 #include "uv.h"
22 #include "internal.h"
23
24 #include <assert.h>
25 #include <errno.h>
26 #include <signal.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <unistd.h>
30
31 #ifndef SA_RESTART
32 # define SA_RESTART 0
33 #endif
34
35 typedef struct {
36 uv_signal_t* handle;
37 int signum;
38 } uv__signal_msg_t;
39
40 RB_HEAD(uv__signal_tree_s, uv_signal_s);
41
42
43 static int uv__signal_unlock(void);
44 static int uv__signal_start(uv_signal_t* handle,
45 uv_signal_cb signal_cb,
46 int signum,
47 int oneshot);
48 static void uv__signal_event(uv_loop_t* loop, uv__io_t* w, unsigned int events);
49 static int uv__signal_compare(uv_signal_t* w1, uv_signal_t* w2);
50 static void uv__signal_stop(uv_signal_t* handle);
51 static void uv__signal_unregister_handler(int signum);
52
53
54 static uv_once_t uv__signal_global_init_guard = UV_ONCE_INIT;
55 static struct uv__signal_tree_s uv__signal_tree =
56 RB_INITIALIZER(uv__signal_tree);
57 static int uv__signal_lock_pipefd[2] = { -1, -1 };
58
59 RB_GENERATE_STATIC(uv__signal_tree_s,
60 uv_signal_s, tree_entry,
61 uv__signal_compare)
62
63 static void uv__signal_global_reinit(void);
64
uv__signal_global_init(void)65 static void uv__signal_global_init(void) {
66 if (uv__signal_lock_pipefd[0] == -1)
67 /* pthread_atfork can register before and after handlers, one
68 * for each child. This only registers one for the child. That
69 * state is both persistent and cumulative, so if we keep doing
70 * it the handler functions will be called multiple times. Thus
71 * we only want to do it once.
72 */
73 if (pthread_atfork(NULL, NULL, &uv__signal_global_reinit))
74 abort();
75
76 uv__signal_global_reinit();
77 }
78
79
UV_DESTRUCTOR(static void uv__signal_global_fini (void))80 UV_DESTRUCTOR(static void uv__signal_global_fini(void)) {
81 /* We can only use signal-safe functions here.
82 * That includes read/write and close, fortunately.
83 * We do all of this directly here instead of resetting
84 * uv__signal_global_init_guard because
85 * uv__signal_global_once_init is only called from uv_loop_init
86 * and this needs to function in existing loops.
87 */
88 if (uv__signal_lock_pipefd[0] != -1) {
89 uv__close(uv__signal_lock_pipefd[0]);
90 uv__signal_lock_pipefd[0] = -1;
91 }
92
93 if (uv__signal_lock_pipefd[1] != -1) {
94 uv__close(uv__signal_lock_pipefd[1]);
95 uv__signal_lock_pipefd[1] = -1;
96 }
97 }
98
99
uv__signal_global_reinit(void)100 static void uv__signal_global_reinit(void) {
101 uv__signal_global_fini();
102
103 if (uv__make_pipe(uv__signal_lock_pipefd, 0))
104 abort();
105
106 if (uv__signal_unlock())
107 abort();
108 }
109
110
uv__signal_global_once_init(void)111 void uv__signal_global_once_init(void) {
112 uv_once(&uv__signal_global_init_guard, uv__signal_global_init);
113 }
114
115
uv__signal_lock(void)116 static int uv__signal_lock(void) {
117 int r;
118 char data;
119
120 do {
121 r = read(uv__signal_lock_pipefd[0], &data, sizeof data);
122 } while (r < 0 && errno == EINTR);
123
124 return (r < 0) ? -1 : 0;
125 }
126
127
uv__signal_unlock(void)128 static int uv__signal_unlock(void) {
129 int r;
130 char data = 42;
131
132 do {
133 r = write(uv__signal_lock_pipefd[1], &data, sizeof data);
134 } while (r < 0 && errno == EINTR);
135
136 return (r < 0) ? -1 : 0;
137 }
138
139
uv__signal_block_and_lock(sigset_t * saved_sigmask)140 static void uv__signal_block_and_lock(sigset_t* saved_sigmask) {
141 sigset_t new_mask;
142
143 if (sigfillset(&new_mask))
144 abort();
145
146 if (pthread_sigmask(SIG_SETMASK, &new_mask, saved_sigmask))
147 abort();
148
149 if (uv__signal_lock())
150 abort();
151 }
152
153
uv__signal_unlock_and_unblock(sigset_t * saved_sigmask)154 static void uv__signal_unlock_and_unblock(sigset_t* saved_sigmask) {
155 if (uv__signal_unlock())
156 abort();
157
158 if (pthread_sigmask(SIG_SETMASK, saved_sigmask, NULL))
159 abort();
160 }
161
162
uv__signal_first_handle(int signum)163 static uv_signal_t* uv__signal_first_handle(int signum) {
164 /* This function must be called with the signal lock held. */
165 uv_signal_t lookup;
166 uv_signal_t* handle;
167
168 lookup.signum = signum;
169 lookup.flags = 0;
170 lookup.loop = NULL;
171
172 handle = RB_NFIND(uv__signal_tree_s, &uv__signal_tree, &lookup);
173
174 if (handle != NULL && handle->signum == signum)
175 return handle;
176
177 return NULL;
178 }
179
180
uv__signal_handler(int signum)181 static void uv__signal_handler(int signum) {
182 uv__signal_msg_t msg;
183 uv_signal_t* handle;
184 int saved_errno;
185
186 saved_errno = errno;
187 memset(&msg, 0, sizeof msg);
188
189 if (uv__signal_lock()) {
190 errno = saved_errno;
191 return;
192 }
193
194 for (handle = uv__signal_first_handle(signum);
195 handle != NULL && handle->signum == signum;
196 handle = RB_NEXT(uv__signal_tree_s, &uv__signal_tree, handle)) {
197 int r;
198
199 msg.signum = signum;
200 msg.handle = handle;
201
202 /* write() should be atomic for small data chunks, so the entire message
203 * should be written at once. In theory the pipe could become full, in
204 * which case the user is out of luck.
205 */
206 do {
207 r = write(handle->loop->signal_pipefd[1], &msg, sizeof msg);
208 } while (r == -1 && errno == EINTR);
209
210 assert(r == sizeof msg ||
211 (r == -1 && (errno == EAGAIN || errno == EWOULDBLOCK)));
212
213 if (r != -1)
214 handle->caught_signals++;
215 }
216
217 uv__signal_unlock();
218 errno = saved_errno;
219 }
220
221
uv__signal_register_handler(int signum,int oneshot)222 static int uv__signal_register_handler(int signum, int oneshot) {
223 /* When this function is called, the signal lock must be held. */
224 struct sigaction sa;
225
226 /* XXX use a separate signal stack? */
227 memset(&sa, 0, sizeof(sa));
228 if (sigfillset(&sa.sa_mask))
229 abort();
230 sa.sa_handler = uv__signal_handler;
231 sa.sa_flags = SA_RESTART;
232 if (oneshot)
233 sa.sa_flags |= SA_RESETHAND;
234
235 /* XXX save old action so we can restore it later on? */
236 if (sigaction(signum, &sa, NULL))
237 return UV__ERR(errno);
238
239 return 0;
240 }
241
242
uv__signal_unregister_handler(int signum)243 static void uv__signal_unregister_handler(int signum) {
244 /* When this function is called, the signal lock must be held. */
245 struct sigaction sa;
246
247 memset(&sa, 0, sizeof(sa));
248 sa.sa_handler = SIG_DFL;
249
250 /* sigaction can only fail with EINVAL or EFAULT; an attempt to deregister a
251 * signal implies that it was successfully registered earlier, so EINVAL
252 * should never happen.
253 */
254 if (sigaction(signum, &sa, NULL))
255 abort();
256 }
257
258
uv__signal_loop_once_init(uv_loop_t * loop)259 static int uv__signal_loop_once_init(uv_loop_t* loop) {
260 int err;
261
262 /* Return if already initialized. */
263 if (loop->signal_pipefd[0] != -1)
264 return 0;
265
266 err = uv__make_pipe(loop->signal_pipefd, UV__F_NONBLOCK);
267 if (err)
268 return err;
269
270 uv__io_init(&loop->signal_io_watcher,
271 uv__signal_event,
272 loop->signal_pipefd[0]);
273 uv__io_start(loop, &loop->signal_io_watcher, POLLIN);
274
275 return 0;
276 }
277
278
uv__signal_loop_fork(uv_loop_t * loop)279 int uv__signal_loop_fork(uv_loop_t* loop) {
280 uv__io_stop(loop, &loop->signal_io_watcher, POLLIN);
281 uv__close(loop->signal_pipefd[0]);
282 uv__close(loop->signal_pipefd[1]);
283 loop->signal_pipefd[0] = -1;
284 loop->signal_pipefd[1] = -1;
285 return uv__signal_loop_once_init(loop);
286 }
287
288
uv__signal_loop_cleanup(uv_loop_t * loop)289 void uv__signal_loop_cleanup(uv_loop_t* loop) {
290 QUEUE* q;
291
292 /* Stop all the signal watchers that are still attached to this loop. This
293 * ensures that the (shared) signal tree doesn't contain any invalid entries
294 * entries, and that signal handlers are removed when appropriate.
295 * It's safe to use QUEUE_FOREACH here because the handles and the handle
296 * queue are not modified by uv__signal_stop().
297 */
298 QUEUE_FOREACH(q, &loop->handle_queue) {
299 uv_handle_t* handle = QUEUE_DATA(q, uv_handle_t, handle_queue);
300
301 if (handle->type == UV_SIGNAL)
302 uv__signal_stop((uv_signal_t*) handle);
303 }
304
305 if (loop->signal_pipefd[0] != -1) {
306 uv__close(loop->signal_pipefd[0]);
307 loop->signal_pipefd[0] = -1;
308 }
309
310 if (loop->signal_pipefd[1] != -1) {
311 uv__close(loop->signal_pipefd[1]);
312 loop->signal_pipefd[1] = -1;
313 }
314 }
315
316
uv_signal_init(uv_loop_t * loop,uv_signal_t * handle)317 int uv_signal_init(uv_loop_t* loop, uv_signal_t* handle) {
318 int err;
319
320 err = uv__signal_loop_once_init(loop);
321 if (err)
322 return err;
323
324 uv__handle_init(loop, (uv_handle_t*) handle, UV_SIGNAL);
325 handle->signum = 0;
326 handle->caught_signals = 0;
327 handle->dispatched_signals = 0;
328
329 return 0;
330 }
331
332
uv__signal_close(uv_signal_t * handle)333 void uv__signal_close(uv_signal_t* handle) {
334 uv__signal_stop(handle);
335 }
336
337
uv_signal_start(uv_signal_t * handle,uv_signal_cb signal_cb,int signum)338 int uv_signal_start(uv_signal_t* handle, uv_signal_cb signal_cb, int signum) {
339 return uv__signal_start(handle, signal_cb, signum, 0);
340 }
341
342
uv_signal_start_oneshot(uv_signal_t * handle,uv_signal_cb signal_cb,int signum)343 int uv_signal_start_oneshot(uv_signal_t* handle,
344 uv_signal_cb signal_cb,
345 int signum) {
346 return uv__signal_start(handle, signal_cb, signum, 1);
347 }
348
349
uv__signal_start(uv_signal_t * handle,uv_signal_cb signal_cb,int signum,int oneshot)350 static int uv__signal_start(uv_signal_t* handle,
351 uv_signal_cb signal_cb,
352 int signum,
353 int oneshot) {
354 sigset_t saved_sigmask;
355 int err;
356 uv_signal_t* first_handle;
357
358 assert(!uv__is_closing(handle));
359
360 /* If the user supplies signum == 0, then return an error already. If the
361 * signum is otherwise invalid then uv__signal_register will find out
362 * eventually.
363 */
364 if (signum == 0)
365 return UV_EINVAL;
366
367 /* Short circuit: if the signal watcher is already watching {signum} don't
368 * go through the process of deregistering and registering the handler.
369 * Additionally, this avoids pending signals getting lost in the small
370 * time frame that handle->signum == 0.
371 */
372 if (signum == handle->signum) {
373 handle->signal_cb = signal_cb;
374 return 0;
375 }
376
377 /* If the signal handler was already active, stop it first. */
378 if (handle->signum != 0) {
379 uv__signal_stop(handle);
380 }
381
382 uv__signal_block_and_lock(&saved_sigmask);
383
384 /* If at this point there are no active signal watchers for this signum (in
385 * any of the loops), it's time to try and register a handler for it here.
386 * Also in case there's only one-shot handlers and a regular handler comes in.
387 */
388 first_handle = uv__signal_first_handle(signum);
389 if (first_handle == NULL ||
390 (!oneshot && (first_handle->flags & UV_SIGNAL_ONE_SHOT))) {
391 err = uv__signal_register_handler(signum, oneshot);
392 if (err) {
393 /* Registering the signal handler failed. Must be an invalid signal. */
394 uv__signal_unlock_and_unblock(&saved_sigmask);
395 return err;
396 }
397 }
398
399 handle->signum = signum;
400 if (oneshot)
401 handle->flags |= UV_SIGNAL_ONE_SHOT;
402
403 RB_INSERT(uv__signal_tree_s, &uv__signal_tree, handle);
404
405 uv__signal_unlock_and_unblock(&saved_sigmask);
406
407 handle->signal_cb = signal_cb;
408 uv__handle_start(handle);
409
410 return 0;
411 }
412
413
uv__signal_event(uv_loop_t * loop,uv__io_t * w,unsigned int events)414 static void uv__signal_event(uv_loop_t* loop,
415 uv__io_t* w,
416 unsigned int events) {
417 uv__signal_msg_t* msg;
418 uv_signal_t* handle;
419 char buf[sizeof(uv__signal_msg_t) * 32];
420 size_t bytes, end, i;
421 int r;
422
423 bytes = 0;
424 end = 0;
425
426 do {
427 r = read(loop->signal_pipefd[0], buf + bytes, sizeof(buf) - bytes);
428
429 if (r == -1 && errno == EINTR)
430 continue;
431
432 if (r == -1 && (errno == EAGAIN || errno == EWOULDBLOCK)) {
433 /* If there are bytes in the buffer already (which really is extremely
434 * unlikely if possible at all) we can't exit the function here. We'll
435 * spin until more bytes are read instead.
436 */
437 if (bytes > 0)
438 continue;
439
440 /* Otherwise, there was nothing there. */
441 return;
442 }
443
444 /* Other errors really should never happen. */
445 if (r == -1)
446 abort();
447
448 bytes += r;
449
450 /* `end` is rounded down to a multiple of sizeof(uv__signal_msg_t). */
451 end = (bytes / sizeof(uv__signal_msg_t)) * sizeof(uv__signal_msg_t);
452
453 for (i = 0; i < end; i += sizeof(uv__signal_msg_t)) {
454 msg = (uv__signal_msg_t*) (buf + i);
455 handle = msg->handle;
456
457 if (msg->signum == handle->signum) {
458 assert(!(handle->flags & UV_HANDLE_CLOSING));
459 handle->signal_cb(handle, handle->signum);
460 }
461
462 handle->dispatched_signals++;
463
464 if (handle->flags & UV_SIGNAL_ONE_SHOT)
465 uv__signal_stop(handle);
466 }
467
468 bytes -= end;
469
470 /* If there are any "partial" messages left, move them to the start of the
471 * the buffer, and spin. This should not happen.
472 */
473 if (bytes) {
474 memmove(buf, buf + end, bytes);
475 continue;
476 }
477 } while (end == sizeof buf);
478 }
479
480
uv__signal_compare(uv_signal_t * w1,uv_signal_t * w2)481 static int uv__signal_compare(uv_signal_t* w1, uv_signal_t* w2) {
482 int f1;
483 int f2;
484 /* Compare signums first so all watchers with the same signnum end up
485 * adjacent.
486 */
487 if (w1->signum < w2->signum) return -1;
488 if (w1->signum > w2->signum) return 1;
489
490 /* Handlers without UV_SIGNAL_ONE_SHOT set will come first, so if the first
491 * handler returned is a one-shot handler, the rest will be too.
492 */
493 f1 = w1->flags & UV_SIGNAL_ONE_SHOT;
494 f2 = w2->flags & UV_SIGNAL_ONE_SHOT;
495 if (f1 < f2) return -1;
496 if (f1 > f2) return 1;
497
498 /* Sort by loop pointer, so we can easily look up the first item after
499 * { .signum = x, .loop = NULL }.
500 */
501 if (w1->loop < w2->loop) return -1;
502 if (w1->loop > w2->loop) return 1;
503
504 if (w1 < w2) return -1;
505 if (w1 > w2) return 1;
506
507 return 0;
508 }
509
510
uv_signal_stop(uv_signal_t * handle)511 int uv_signal_stop(uv_signal_t* handle) {
512 assert(!uv__is_closing(handle));
513 uv__signal_stop(handle);
514 return 0;
515 }
516
517
uv__signal_stop(uv_signal_t * handle)518 static void uv__signal_stop(uv_signal_t* handle) {
519 uv_signal_t* removed_handle;
520 sigset_t saved_sigmask;
521 uv_signal_t* first_handle;
522 int rem_oneshot;
523 int first_oneshot;
524 int ret;
525
526 /* If the watcher wasn't started, this is a no-op. */
527 if (handle->signum == 0)
528 return;
529
530 uv__signal_block_and_lock(&saved_sigmask);
531
532 removed_handle = RB_REMOVE(uv__signal_tree_s, &uv__signal_tree, handle);
533 assert(removed_handle == handle);
534 (void) removed_handle;
535
536 /* Check if there are other active signal watchers observing this signal. If
537 * not, unregister the signal handler.
538 */
539 first_handle = uv__signal_first_handle(handle->signum);
540 if (first_handle == NULL) {
541 uv__signal_unregister_handler(handle->signum);
542 } else {
543 rem_oneshot = handle->flags & UV_SIGNAL_ONE_SHOT;
544 first_oneshot = first_handle->flags & UV_SIGNAL_ONE_SHOT;
545 if (first_oneshot && !rem_oneshot) {
546 ret = uv__signal_register_handler(handle->signum, 1);
547 assert(ret == 0);
548 (void)ret;
549 }
550 }
551
552 uv__signal_unlock_and_unblock(&saved_sigmask);
553
554 handle->signum = 0;
555 uv__handle_stop(handle);
556 }
557