• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Elliptic curves over GF(p): curve-specific data and functions
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6  *
7  *  This file is provided under the Apache License 2.0, or the
8  *  GNU General Public License v2.0 or later.
9  *
10  *  **********
11  *  Apache License 2.0:
12  *
13  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
14  *  not use this file except in compliance with the License.
15  *  You may obtain a copy of the License at
16  *
17  *  http://www.apache.org/licenses/LICENSE-2.0
18  *
19  *  Unless required by applicable law or agreed to in writing, software
20  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
21  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22  *  See the License for the specific language governing permissions and
23  *  limitations under the License.
24  *
25  *  **********
26  *
27  *  **********
28  *  GNU General Public License v2.0 or later:
29  *
30  *  This program is free software; you can redistribute it and/or modify
31  *  it under the terms of the GNU General Public License as published by
32  *  the Free Software Foundation; either version 2 of the License, or
33  *  (at your option) any later version.
34  *
35  *  This program is distributed in the hope that it will be useful,
36  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
37  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
38  *  GNU General Public License for more details.
39  *
40  *  You should have received a copy of the GNU General Public License along
41  *  with this program; if not, write to the Free Software Foundation, Inc.,
42  *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
43  *
44  *  **********
45  */
46 
47 #if !defined(MBEDTLS_CONFIG_FILE)
48 #include "mbedtls/config.h"
49 #else
50 #include MBEDTLS_CONFIG_FILE
51 #endif
52 
53 #if defined(MBEDTLS_ECP_C)
54 
55 #include "mbedtls/ecp.h"
56 #include "mbedtls/platform_util.h"
57 
58 #include <string.h>
59 
60 #if !defined(MBEDTLS_ECP_ALT)
61 
62 /* Parameter validation macros based on platform_util.h */
63 #define ECP_VALIDATE_RET( cond )    \
64     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
65 #define ECP_VALIDATE( cond )        \
66     MBEDTLS_INTERNAL_VALIDATE( cond )
67 
68 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
69     !defined(inline) && !defined(__cplusplus)
70 #define inline __inline
71 #endif
72 
73 /*
74  * Conversion macros for embedded constants:
75  * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
76  */
77 #if defined(MBEDTLS_HAVE_INT32)
78 
79 #define BYTES_TO_T_UINT_4( a, b, c, d )                       \
80     ( (mbedtls_mpi_uint) (a) <<  0 ) |                        \
81     ( (mbedtls_mpi_uint) (b) <<  8 ) |                        \
82     ( (mbedtls_mpi_uint) (c) << 16 ) |                        \
83     ( (mbedtls_mpi_uint) (d) << 24 )
84 
85 #define BYTES_TO_T_UINT_2( a, b )                   \
86     BYTES_TO_T_UINT_4( a, b, 0, 0 )
87 
88 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
89     BYTES_TO_T_UINT_4( a, b, c, d ),                \
90     BYTES_TO_T_UINT_4( e, f, g, h )
91 
92 #else /* 64-bits */
93 
94 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
95     ( (mbedtls_mpi_uint) (a) <<  0 ) |                        \
96     ( (mbedtls_mpi_uint) (b) <<  8 ) |                        \
97     ( (mbedtls_mpi_uint) (c) << 16 ) |                        \
98     ( (mbedtls_mpi_uint) (d) << 24 ) |                        \
99     ( (mbedtls_mpi_uint) (e) << 32 ) |                        \
100     ( (mbedtls_mpi_uint) (f) << 40 ) |                        \
101     ( (mbedtls_mpi_uint) (g) << 48 ) |                        \
102     ( (mbedtls_mpi_uint) (h) << 56 )
103 
104 #define BYTES_TO_T_UINT_4( a, b, c, d )             \
105     BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
106 
107 #define BYTES_TO_T_UINT_2( a, b )                   \
108     BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
109 
110 #endif /* bits in mbedtls_mpi_uint */
111 
112 /*
113  * Note: the constants are in little-endian order
114  * to be directly usable in MPIs
115  */
116 
117 /*
118  * Domain parameters for secp192r1
119  */
120 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
121 static const mbedtls_mpi_uint secp192r1_p[] = {
122     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
123     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
124     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
125 };
126 static const mbedtls_mpi_uint secp192r1_b[] = {
127     BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
128     BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
129     BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
130 };
131 static const mbedtls_mpi_uint secp192r1_gx[] = {
132     BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
133     BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
134     BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
135 };
136 static const mbedtls_mpi_uint secp192r1_gy[] = {
137     BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
138     BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
139     BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
140 };
141 static const mbedtls_mpi_uint secp192r1_n[] = {
142     BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
143     BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
144     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
145 };
146 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
147 
148 /*
149  * Domain parameters for secp224r1
150  */
151 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
152 static const mbedtls_mpi_uint secp224r1_p[] = {
153     BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
154     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
155     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
156     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
157 };
158 static const mbedtls_mpi_uint secp224r1_b[] = {
159     BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
160     BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
161     BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
162     BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
163 };
164 static const mbedtls_mpi_uint secp224r1_gx[] = {
165     BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
166     BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
167     BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
168     BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
169 };
170 static const mbedtls_mpi_uint secp224r1_gy[] = {
171     BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
172     BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
173     BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
174     BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
175 };
176 static const mbedtls_mpi_uint secp224r1_n[] = {
177     BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
178     BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
179     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
180     BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
181 };
182 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
183 
184 /*
185  * Domain parameters for secp256r1
186  */
187 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
188 static const mbedtls_mpi_uint secp256r1_p[] = {
189     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
190     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
191     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
192     BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
193 };
194 static const mbedtls_mpi_uint secp256r1_b[] = {
195     BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
196     BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
197     BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
198     BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
199 };
200 static const mbedtls_mpi_uint secp256r1_gx[] = {
201     BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
202     BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
203     BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
204     BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
205 };
206 static const mbedtls_mpi_uint secp256r1_gy[] = {
207     BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
208     BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
209     BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
210     BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
211 };
212 static const mbedtls_mpi_uint secp256r1_n[] = {
213     BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
214     BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
215     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
216     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
217 };
218 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
219 
220 /*
221  * Domain parameters for secp384r1
222  */
223 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
224 static const mbedtls_mpi_uint secp384r1_p[] = {
225     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
226     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
227     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
228     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
229     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
230     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
231 };
232 static const mbedtls_mpi_uint secp384r1_b[] = {
233     BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
234     BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
235     BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
236     BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
237     BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
238     BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
239 };
240 static const mbedtls_mpi_uint secp384r1_gx[] = {
241     BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
242     BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
243     BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
244     BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
245     BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
246     BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
247 };
248 static const mbedtls_mpi_uint secp384r1_gy[] = {
249     BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
250     BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
251     BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
252     BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
253     BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
254     BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
255 };
256 static const mbedtls_mpi_uint secp384r1_n[] = {
257     BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
258     BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
259     BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
260     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
261     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
262     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
263 };
264 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
265 
266 /*
267  * Domain parameters for secp521r1
268  */
269 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
270 static const mbedtls_mpi_uint secp521r1_p[] = {
271     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
272     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
273     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
274     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
275     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
276     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
277     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
278     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
279     BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
280 };
281 static const mbedtls_mpi_uint secp521r1_b[] = {
282     BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
283     BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
284     BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
285     BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
286     BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
287     BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
288     BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
289     BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
290     BYTES_TO_T_UINT_2( 0x51, 0x00 ),
291 };
292 static const mbedtls_mpi_uint secp521r1_gx[] = {
293     BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
294     BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
295     BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
296     BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
297     BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
298     BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
299     BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
300     BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
301     BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
302 };
303 static const mbedtls_mpi_uint secp521r1_gy[] = {
304     BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
305     BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
306     BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
307     BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
308     BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
309     BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
310     BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
311     BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
312     BYTES_TO_T_UINT_2( 0x18, 0x01 ),
313 };
314 static const mbedtls_mpi_uint secp521r1_n[] = {
315     BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
316     BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
317     BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
318     BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
319     BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
320     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
321     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
322     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
323     BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
324 };
325 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
326 
327 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
328 static const mbedtls_mpi_uint secp192k1_p[] = {
329     BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
330     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
331     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
332 };
333 static const mbedtls_mpi_uint secp192k1_a[] = {
334     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
335 };
336 static const mbedtls_mpi_uint secp192k1_b[] = {
337     BYTES_TO_T_UINT_2( 0x03, 0x00 ),
338 };
339 static const mbedtls_mpi_uint secp192k1_gx[] = {
340     BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
341     BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
342     BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
343 };
344 static const mbedtls_mpi_uint secp192k1_gy[] = {
345     BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
346     BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
347     BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
348 };
349 static const mbedtls_mpi_uint secp192k1_n[] = {
350     BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
351     BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
352     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
353 };
354 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
355 
356 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
357 static const mbedtls_mpi_uint secp224k1_p[] = {
358     BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
359     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
360     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
361     BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
362 };
363 static const mbedtls_mpi_uint secp224k1_a[] = {
364     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
365 };
366 static const mbedtls_mpi_uint secp224k1_b[] = {
367     BYTES_TO_T_UINT_2( 0x05, 0x00 ),
368 };
369 static const mbedtls_mpi_uint secp224k1_gx[] = {
370     BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
371     BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
372     BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
373     BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
374 };
375 static const mbedtls_mpi_uint secp224k1_gy[] = {
376     BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
377     BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
378     BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
379     BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
380 };
381 static const mbedtls_mpi_uint secp224k1_n[] = {
382     BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
383     BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
384     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
385     BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
386 };
387 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
388 
389 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
390 static const mbedtls_mpi_uint secp256k1_p[] = {
391     BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
392     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
393     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
394     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
395 };
396 static const mbedtls_mpi_uint secp256k1_a[] = {
397     BYTES_TO_T_UINT_2( 0x00, 0x00 ),
398 };
399 static const mbedtls_mpi_uint secp256k1_b[] = {
400     BYTES_TO_T_UINT_2( 0x07, 0x00 ),
401 };
402 static const mbedtls_mpi_uint secp256k1_gx[] = {
403     BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
404     BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
405     BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
406     BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
407 };
408 static const mbedtls_mpi_uint secp256k1_gy[] = {
409     BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
410     BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
411     BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
412     BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
413 };
414 static const mbedtls_mpi_uint secp256k1_n[] = {
415     BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
416     BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
417     BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
418     BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
419 };
420 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
421 
422 /*
423  * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
424  */
425 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
426 static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
427     BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
428     BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
429     BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
430     BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
431 };
432 static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
433     BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
434     BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
435     BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
436     BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
437 };
438 static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
439     BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
440     BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
441     BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
442     BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
443 };
444 static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
445     BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
446     BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
447     BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
448     BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
449 };
450 static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
451     BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
452     BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
453     BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
454     BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
455 };
456 static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
457     BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
458     BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
459     BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
460     BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
461 };
462 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
463 
464 /*
465  * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
466  */
467 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
468 static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
469     BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
470     BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
471     BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
472     BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
473     BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
474     BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
475 };
476 static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
477     BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
478     BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
479     BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
480     BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
481     BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
482     BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
483 };
484 static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
485     BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
486     BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
487     BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
488     BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
489     BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
490     BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
491 };
492 static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
493     BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
494     BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
495     BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
496     BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
497     BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
498     BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
499 };
500 static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
501     BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
502     BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
503     BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
504     BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
505     BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
506     BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
507 };
508 static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
509     BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
510     BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
511     BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
512     BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
513     BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
514     BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
515 };
516 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
517 
518 /*
519  * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
520  */
521 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
522 static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
523     BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
524     BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
525     BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
526     BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
527     BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
528     BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
529     BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
530     BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
531 };
532 static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
533     BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
534     BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
535     BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
536     BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
537     BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
538     BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
539     BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
540     BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
541 };
542 static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
543     BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
544     BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
545     BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
546     BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
547     BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
548     BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
549     BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
550     BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
551 };
552 static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
553     BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
554     BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
555     BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
556     BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
557     BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
558     BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
559     BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
560     BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
561 };
562 static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
563     BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
564     BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
565     BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
566     BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
567     BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
568     BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
569     BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
570     BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
571 };
572 static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
573     BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
574     BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
575     BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
576     BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
577     BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
578     BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
579     BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
580     BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
581 };
582 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
583 
584 /*
585  * Create an MPI from embedded constants
586  * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
587  */
ecp_mpi_load(mbedtls_mpi * X,const mbedtls_mpi_uint * p,size_t len)588 static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
589 {
590     X->s = 1;
591     X->n = len / sizeof( mbedtls_mpi_uint );
592     X->p = (mbedtls_mpi_uint *) p;
593 }
594 
595 /*
596  * Set an MPI to static value 1
597  */
ecp_mpi_set1(mbedtls_mpi * X)598 static inline void ecp_mpi_set1( mbedtls_mpi *X )
599 {
600     static mbedtls_mpi_uint one[] = { 1 };
601     X->s = 1;
602     X->n = 1;
603     X->p = one;
604 }
605 
606 /*
607  * Make group available from embedded constants
608  */
ecp_group_load(mbedtls_ecp_group * grp,const mbedtls_mpi_uint * p,size_t plen,const mbedtls_mpi_uint * a,size_t alen,const mbedtls_mpi_uint * b,size_t blen,const mbedtls_mpi_uint * gx,size_t gxlen,const mbedtls_mpi_uint * gy,size_t gylen,const mbedtls_mpi_uint * n,size_t nlen)609 static int ecp_group_load( mbedtls_ecp_group *grp,
610                            const mbedtls_mpi_uint *p,  size_t plen,
611                            const mbedtls_mpi_uint *a,  size_t alen,
612                            const mbedtls_mpi_uint *b,  size_t blen,
613                            const mbedtls_mpi_uint *gx, size_t gxlen,
614                            const mbedtls_mpi_uint *gy, size_t gylen,
615                            const mbedtls_mpi_uint *n,  size_t nlen)
616 {
617     ecp_mpi_load( &grp->P, p, plen );
618     if( a != NULL )
619         ecp_mpi_load( &grp->A, a, alen );
620     ecp_mpi_load( &grp->B, b, blen );
621     ecp_mpi_load( &grp->N, n, nlen );
622 
623     ecp_mpi_load( &grp->G.X, gx, gxlen );
624     ecp_mpi_load( &grp->G.Y, gy, gylen );
625     ecp_mpi_set1( &grp->G.Z );
626 
627     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
628     grp->nbits = mbedtls_mpi_bitlen( &grp->N );
629 
630     grp->h = 1;
631 
632     return( 0 );
633 }
634 
635 #if defined(MBEDTLS_ECP_NIST_OPTIM)
636 /* Forward declarations */
637 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
638 static int ecp_mod_p192( mbedtls_mpi * );
639 #endif
640 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
641 static int ecp_mod_p224( mbedtls_mpi * );
642 #endif
643 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
644 static int ecp_mod_p256( mbedtls_mpi * );
645 #endif
646 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
647 static int ecp_mod_p384( mbedtls_mpi * );
648 #endif
649 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
650 static int ecp_mod_p521( mbedtls_mpi * );
651 #endif
652 
653 #define NIST_MODP( P )      grp->modp = ecp_mod_ ## P;
654 #else
655 #define NIST_MODP( P )
656 #endif /* MBEDTLS_ECP_NIST_OPTIM */
657 
658 /* Additional forward declarations */
659 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
660 static int ecp_mod_p255( mbedtls_mpi * );
661 #endif
662 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
663 static int ecp_mod_p448( mbedtls_mpi * );
664 #endif
665 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
666 static int ecp_mod_p192k1( mbedtls_mpi * );
667 #endif
668 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
669 static int ecp_mod_p224k1( mbedtls_mpi * );
670 #endif
671 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
672 static int ecp_mod_p256k1( mbedtls_mpi * );
673 #endif
674 
675 #define LOAD_GROUP_A( G )   ecp_group_load( grp,            \
676                             G ## _p,  sizeof( G ## _p  ),   \
677                             G ## _a,  sizeof( G ## _a  ),   \
678                             G ## _b,  sizeof( G ## _b  ),   \
679                             G ## _gx, sizeof( G ## _gx ),   \
680                             G ## _gy, sizeof( G ## _gy ),   \
681                             G ## _n,  sizeof( G ## _n  ) )
682 
683 #define LOAD_GROUP( G )     ecp_group_load( grp,            \
684                             G ## _p,  sizeof( G ## _p  ),   \
685                             NULL,     0,                    \
686                             G ## _b,  sizeof( G ## _b  ),   \
687                             G ## _gx, sizeof( G ## _gx ),   \
688                             G ## _gy, sizeof( G ## _gy ),   \
689                             G ## _n,  sizeof( G ## _n  ) )
690 
691 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
692 /*
693  * Specialized function for creating the Curve25519 group
694  */
ecp_use_curve25519(mbedtls_ecp_group * grp)695 static int ecp_use_curve25519( mbedtls_ecp_group *grp )
696 {
697     int ret;
698 
699     /* Actually ( A + 2 ) / 4 */
700     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) );
701 
702     /* P = 2^255 - 19 */
703     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
704     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
705     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
706     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
707 
708     /* N = 2^252 + 27742317777372353535851937790883648493 */
709     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->N, 16,
710                                               "14DEF9DEA2F79CD65812631A5CF5D3ED" ) );
711     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 252, 1 ) );
712 
713     /* Y intentionally not set, since we use x/z coordinates.
714      * This is used as a marker to identify Montgomery curves! */
715     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
716     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
717     mbedtls_mpi_free( &grp->G.Y );
718 
719     /* Actually, the required msb for private keys */
720     grp->nbits = 254;
721 
722 cleanup:
723     if( ret != 0 )
724         mbedtls_ecp_group_free( grp );
725 
726     return( ret );
727 }
728 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
729 
730 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
731 /*
732  * Specialized function for creating the Curve448 group
733  */
ecp_use_curve448(mbedtls_ecp_group * grp)734 static int ecp_use_curve448( mbedtls_ecp_group *grp )
735 {
736     mbedtls_mpi Ns;
737     int ret;
738 
739     mbedtls_mpi_init( &Ns );
740 
741     /* Actually ( A + 2 ) / 4 */
742     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "98AA" ) );
743 
744     /* P = 2^448 - 2^224 - 1 */
745     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
746     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
747     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
748     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
749     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
750     grp->pbits = mbedtls_mpi_bitlen( &grp->P );
751 
752     /* Y intentionally not set, since we use x/z coordinates.
753      * This is used as a marker to identify Montgomery curves! */
754     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 5 ) );
755     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
756     mbedtls_mpi_free( &grp->G.Y );
757 
758     /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
759     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 446, 1 ) );
760     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &Ns, 16,
761                                               "8335DC163BB124B65129C96FDE933D8D723A70AADC873D6D54A7BB0D" ) );
762     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &grp->N, &grp->N, &Ns ) );
763 
764     /* Actually, the required msb for private keys */
765     grp->nbits = 447;
766 
767 cleanup:
768     mbedtls_mpi_free( &Ns );
769     if( ret != 0 )
770         mbedtls_ecp_group_free( grp );
771 
772     return( ret );
773 }
774 #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
775 
776 /*
777  * Set a group using well-known domain parameters
778  */
mbedtls_ecp_group_load(mbedtls_ecp_group * grp,mbedtls_ecp_group_id id)779 int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
780 {
781     ECP_VALIDATE_RET( grp != NULL );
782     mbedtls_ecp_group_free( grp );
783 
784     grp->id = id;
785 
786     switch( id )
787     {
788 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
789         case MBEDTLS_ECP_DP_SECP192R1:
790             NIST_MODP( p192 );
791             return( LOAD_GROUP( secp192r1 ) );
792 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
793 
794 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
795         case MBEDTLS_ECP_DP_SECP224R1:
796             NIST_MODP( p224 );
797             return( LOAD_GROUP( secp224r1 ) );
798 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
799 
800 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
801         case MBEDTLS_ECP_DP_SECP256R1:
802             NIST_MODP( p256 );
803             return( LOAD_GROUP( secp256r1 ) );
804 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
805 
806 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
807         case MBEDTLS_ECP_DP_SECP384R1:
808             NIST_MODP( p384 );
809             return( LOAD_GROUP( secp384r1 ) );
810 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
811 
812 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
813         case MBEDTLS_ECP_DP_SECP521R1:
814             NIST_MODP( p521 );
815             return( LOAD_GROUP( secp521r1 ) );
816 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
817 
818 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
819         case MBEDTLS_ECP_DP_SECP192K1:
820             grp->modp = ecp_mod_p192k1;
821             return( LOAD_GROUP_A( secp192k1 ) );
822 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
823 
824 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
825         case MBEDTLS_ECP_DP_SECP224K1:
826             grp->modp = ecp_mod_p224k1;
827             return( LOAD_GROUP_A( secp224k1 ) );
828 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
829 
830 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
831         case MBEDTLS_ECP_DP_SECP256K1:
832             grp->modp = ecp_mod_p256k1;
833             return( LOAD_GROUP_A( secp256k1 ) );
834 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
835 
836 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
837         case MBEDTLS_ECP_DP_BP256R1:
838             return( LOAD_GROUP_A( brainpoolP256r1 ) );
839 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
840 
841 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
842         case MBEDTLS_ECP_DP_BP384R1:
843             return( LOAD_GROUP_A( brainpoolP384r1 ) );
844 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
845 
846 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
847         case MBEDTLS_ECP_DP_BP512R1:
848             return( LOAD_GROUP_A( brainpoolP512r1 ) );
849 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
850 
851 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
852         case MBEDTLS_ECP_DP_CURVE25519:
853             grp->modp = ecp_mod_p255;
854             return( ecp_use_curve25519( grp ) );
855 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
856 
857 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
858         case MBEDTLS_ECP_DP_CURVE448:
859             grp->modp = ecp_mod_p448;
860             return( ecp_use_curve448( grp ) );
861 #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
862 
863         default:
864             mbedtls_ecp_group_free( grp );
865             return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
866     }
867 }
868 
869 #if defined(MBEDTLS_ECP_NIST_OPTIM)
870 /*
871  * Fast reduction modulo the primes used by the NIST curves.
872  *
873  * These functions are critical for speed, but not needed for correct
874  * operations. So, we make the choice to heavily rely on the internals of our
875  * bignum library, which creates a tight coupling between these functions and
876  * our MPI implementation.  However, the coupling between the ECP module and
877  * MPI remains loose, since these functions can be deactivated at will.
878  */
879 
880 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
881 /*
882  * Compared to the way things are presented in FIPS 186-3 D.2,
883  * we proceed in columns, from right (least significant chunk) to left,
884  * adding chunks to N in place, and keeping a carry for the next chunk.
885  * This avoids moving things around in memory, and uselessly adding zeros,
886  * compared to the more straightforward, line-oriented approach.
887  *
888  * For this prime we need to handle data in chunks of 64 bits.
889  * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
890  * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
891  */
892 
893 /* Add 64-bit chunks (dst += src) and update carry */
add64(mbedtls_mpi_uint * dst,mbedtls_mpi_uint * src,mbedtls_mpi_uint * carry)894 static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
895 {
896     unsigned char i;
897     mbedtls_mpi_uint c = 0;
898     for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
899     {
900         *dst += c;      c  = ( *dst < c );
901         *dst += *src;   c += ( *dst < *src );
902     }
903     *carry += c;
904 }
905 
906 /* Add carry to a 64-bit chunk and update carry */
carry64(mbedtls_mpi_uint * dst,mbedtls_mpi_uint * carry)907 static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
908 {
909     unsigned char i;
910     for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
911     {
912         *dst += *carry;
913         *carry  = ( *dst < *carry );
914     }
915 }
916 
917 #define WIDTH       8 / sizeof( mbedtls_mpi_uint )
918 #define A( i )      N->p + (i) * WIDTH
919 #define ADD( i )    add64( p, A( i ), &c )
920 #define NEXT        p += WIDTH; carry64( p, &c )
921 #define LAST        p += WIDTH; *p = c; while( ++p < end ) *p = 0
922 
923 /*
924  * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
925  */
ecp_mod_p192(mbedtls_mpi * N)926 static int ecp_mod_p192( mbedtls_mpi *N )
927 {
928     int ret;
929     mbedtls_mpi_uint c = 0;
930     mbedtls_mpi_uint *p, *end;
931 
932     /* Make sure we have enough blocks so that A(5) is legal */
933     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
934 
935     p = N->p;
936     end = p + N->n;
937 
938     ADD( 3 ); ADD( 5 );             NEXT; // A0 += A3 + A5
939     ADD( 3 ); ADD( 4 ); ADD( 5 );   NEXT; // A1 += A3 + A4 + A5
940     ADD( 4 ); ADD( 5 );             LAST; // A2 += A4 + A5
941 
942 cleanup:
943     return( ret );
944 }
945 
946 #undef WIDTH
947 #undef A
948 #undef ADD
949 #undef NEXT
950 #undef LAST
951 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
952 
953 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \
954     defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \
955     defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
956 /*
957  * The reader is advised to first understand ecp_mod_p192() since the same
958  * general structure is used here, but with additional complications:
959  * (1) chunks of 32 bits, and (2) subtractions.
960  */
961 
962 /*
963  * For these primes, we need to handle data in chunks of 32 bits.
964  * This makes it more complicated if we use 64 bits limbs in MPI,
965  * which prevents us from using a uniform access method as for p192.
966  *
967  * So, we define a mini abstraction layer to access 32 bit chunks,
968  * load them in 'cur' for work, and store them back from 'cur' when done.
969  *
970  * While at it, also define the size of N in terms of 32-bit chunks.
971  */
972 #define LOAD32      cur = A( i );
973 
974 #if defined(MBEDTLS_HAVE_INT32)  /* 32 bit */
975 
976 #define MAX32       N->n
977 #define A( j )      N->p[j]
978 #define STORE32     N->p[i] = cur;
979 
980 #else                               /* 64-bit */
981 
982 #define MAX32       N->n * 2
983 #define A( j ) (j) % 2 ? (uint32_t)( N->p[(j)/2] >> 32 ) : \
984                          (uint32_t)( N->p[(j)/2] )
985 #define STORE32                                   \
986     if( i % 2 ) {                                 \
987         N->p[i/2] &= 0x00000000FFFFFFFF;          \
988         N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32;        \
989     } else {                                      \
990         N->p[i/2] &= 0xFFFFFFFF00000000;          \
991         N->p[i/2] |= (mbedtls_mpi_uint) cur;                \
992     }
993 
994 #endif /* sizeof( mbedtls_mpi_uint ) */
995 
996 /*
997  * Helpers for addition and subtraction of chunks, with signed carry.
998  */
add32(uint32_t * dst,uint32_t src,signed char * carry)999 static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
1000 {
1001     *dst += src;
1002     *carry += ( *dst < src );
1003 }
1004 
sub32(uint32_t * dst,uint32_t src,signed char * carry)1005 static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
1006 {
1007     *carry -= ( *dst < src );
1008     *dst -= src;
1009 }
1010 
1011 #define ADD( j )    add32( &cur, A( j ), &c );
1012 #define SUB( j )    sub32( &cur, A( j ), &c );
1013 
1014 /*
1015  * Helpers for the main 'loop'
1016  * (see fix_negative for the motivation of C)
1017  */
1018 #define INIT( b )                                                       \
1019     int ret;                                                            \
1020     signed char c = 0, cc;                                              \
1021     uint32_t cur;                                                       \
1022     size_t i = 0, bits = (b);                                           \
1023     mbedtls_mpi C;                                                      \
1024     mbedtls_mpi_uint Cp[ (b) / 8 / sizeof( mbedtls_mpi_uint) + 1 ];     \
1025                                                                         \
1026     C.s = 1;                                                            \
1027     C.n = (b) / 8 / sizeof( mbedtls_mpi_uint) + 1;                      \
1028     C.p = Cp;                                                           \
1029     memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) );                  \
1030                                                                         \
1031     MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, (b) * 2 / 8 /                 \
1032                                        sizeof( mbedtls_mpi_uint ) ) );  \
1033     LOAD32;
1034 
1035 #define NEXT                    \
1036     STORE32; i++; LOAD32;       \
1037     cc = c; c = 0;              \
1038     if( cc < 0 )                \
1039         sub32( &cur, -cc, &c ); \
1040     else                        \
1041         add32( &cur, cc, &c );  \
1042 
1043 #define LAST                                    \
1044     STORE32; i++;                               \
1045     cur = c > 0 ? c : 0; STORE32;               \
1046     cur = 0; while( ++i < MAX32 ) { STORE32; }  \
1047     if( c < 0 ) MBEDTLS_MPI_CHK( fix_negative( N, c, &C, bits ) );
1048 
1049 /*
1050  * If the result is negative, we get it in the form
1051  * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
1052  */
fix_negative(mbedtls_mpi * N,signed char c,mbedtls_mpi * C,size_t bits)1053 static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
1054 {
1055     int ret;
1056 
1057     /* C = - c * 2^(bits + 32) */
1058 #if !defined(MBEDTLS_HAVE_INT64)
1059     ((void) bits);
1060 #else
1061     if( bits == 224 )
1062         C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
1063     else
1064 #endif
1065         C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c;
1066 
1067     /* N = - ( C - N ) */
1068     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
1069     N->s = -1;
1070 
1071 cleanup:
1072 
1073     return( ret );
1074 }
1075 
1076 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
1077 /*
1078  * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
1079  */
ecp_mod_p224(mbedtls_mpi * N)1080 static int ecp_mod_p224( mbedtls_mpi *N )
1081 {
1082     INIT( 224 );
1083 
1084     SUB(  7 ); SUB( 11 );               NEXT; // A0 += -A7 - A11
1085     SUB(  8 ); SUB( 12 );               NEXT; // A1 += -A8 - A12
1086     SUB(  9 ); SUB( 13 );               NEXT; // A2 += -A9 - A13
1087     SUB( 10 ); ADD(  7 ); ADD( 11 );    NEXT; // A3 += -A10 + A7 + A11
1088     SUB( 11 ); ADD(  8 ); ADD( 12 );    NEXT; // A4 += -A11 + A8 + A12
1089     SUB( 12 ); ADD(  9 ); ADD( 13 );    NEXT; // A5 += -A12 + A9 + A13
1090     SUB( 13 ); ADD( 10 );               LAST; // A6 += -A13 + A10
1091 
1092 cleanup:
1093     return( ret );
1094 }
1095 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
1096 
1097 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
1098 /*
1099  * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
1100  */
ecp_mod_p256(mbedtls_mpi * N)1101 static int ecp_mod_p256( mbedtls_mpi *N )
1102 {
1103     INIT( 256 );
1104 
1105     ADD(  8 ); ADD(  9 );
1106     SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 );             NEXT; // A0
1107 
1108     ADD(  9 ); ADD( 10 );
1109     SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 );             NEXT; // A1
1110 
1111     ADD( 10 ); ADD( 11 );
1112     SUB( 13 ); SUB( 14 ); SUB( 15 );                        NEXT; // A2
1113 
1114     ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
1115     SUB( 15 ); SUB(  8 ); SUB(  9 );                        NEXT; // A3
1116 
1117     ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
1118     SUB(  9 ); SUB( 10 );                                   NEXT; // A4
1119 
1120     ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
1121     SUB( 10 ); SUB( 11 );                                   NEXT; // A5
1122 
1123     ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
1124     SUB(  8 ); SUB(  9 );                                   NEXT; // A6
1125 
1126     ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
1127     SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 );             LAST; // A7
1128 
1129 cleanup:
1130     return( ret );
1131 }
1132 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
1133 
1134 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
1135 /*
1136  * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
1137  */
ecp_mod_p384(mbedtls_mpi * N)1138 static int ecp_mod_p384( mbedtls_mpi *N )
1139 {
1140     INIT( 384 );
1141 
1142     ADD( 12 ); ADD( 21 ); ADD( 20 );
1143     SUB( 23 );                                              NEXT; // A0
1144 
1145     ADD( 13 ); ADD( 22 ); ADD( 23 );
1146     SUB( 12 ); SUB( 20 );                                   NEXT; // A2
1147 
1148     ADD( 14 ); ADD( 23 );
1149     SUB( 13 ); SUB( 21 );                                   NEXT; // A2
1150 
1151     ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
1152     SUB( 14 ); SUB( 22 ); SUB( 23 );                        NEXT; // A3
1153 
1154     ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
1155     SUB( 15 ); SUB( 23 ); SUB( 23 );                        NEXT; // A4
1156 
1157     ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
1158     SUB( 16 );                                              NEXT; // A5
1159 
1160     ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
1161     SUB( 17 );                                              NEXT; // A6
1162 
1163     ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
1164     SUB( 18 );                                              NEXT; // A7
1165 
1166     ADD( 20 ); ADD( 17 ); ADD( 16 );
1167     SUB( 19 );                                              NEXT; // A8
1168 
1169     ADD( 21 ); ADD( 18 ); ADD( 17 );
1170     SUB( 20 );                                              NEXT; // A9
1171 
1172     ADD( 22 ); ADD( 19 ); ADD( 18 );
1173     SUB( 21 );                                              NEXT; // A10
1174 
1175     ADD( 23 ); ADD( 20 ); ADD( 19 );
1176     SUB( 22 );                                              LAST; // A11
1177 
1178 cleanup:
1179     return( ret );
1180 }
1181 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1182 
1183 #undef A
1184 #undef LOAD32
1185 #undef STORE32
1186 #undef MAX32
1187 #undef INIT
1188 #undef NEXT
1189 #undef LAST
1190 
1191 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
1192           MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
1193           MBEDTLS_ECP_DP_SECP384R1_ENABLED */
1194 
1195 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
1196 /*
1197  * Here we have an actual Mersenne prime, so things are more straightforward.
1198  * However, chunks are aligned on a 'weird' boundary (521 bits).
1199  */
1200 
1201 /* Size of p521 in terms of mbedtls_mpi_uint */
1202 #define P521_WIDTH      ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1203 
1204 /* Bits to keep in the most significant mbedtls_mpi_uint */
1205 #define P521_MASK       0x01FF
1206 
1207 /*
1208  * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
1209  * Write N as A1 + 2^521 A0, return A0 + A1
1210  */
ecp_mod_p521(mbedtls_mpi * N)1211 static int ecp_mod_p521( mbedtls_mpi *N )
1212 {
1213     int ret;
1214     size_t i;
1215     mbedtls_mpi M;
1216     mbedtls_mpi_uint Mp[P521_WIDTH + 1];
1217     /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
1218      * we need to hold bits 513 to 1056, which is 34 limbs, that is
1219      * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
1220 
1221     if( N->n < P521_WIDTH )
1222         return( 0 );
1223 
1224     /* M = A1 */
1225     M.s = 1;
1226     M.n = N->n - ( P521_WIDTH - 1 );
1227     if( M.n > P521_WIDTH + 1 )
1228         M.n = P521_WIDTH + 1;
1229     M.p = Mp;
1230     memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1231     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1232 
1233     /* N = A0 */
1234     N->p[P521_WIDTH - 1] &= P521_MASK;
1235     for( i = P521_WIDTH; i < N->n; i++ )
1236         N->p[i] = 0;
1237 
1238     /* N = A0 + A1 */
1239     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1240 
1241 cleanup:
1242     return( ret );
1243 }
1244 
1245 #undef P521_WIDTH
1246 #undef P521_MASK
1247 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
1248 
1249 #endif /* MBEDTLS_ECP_NIST_OPTIM */
1250 
1251 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
1252 
1253 /* Size of p255 in terms of mbedtls_mpi_uint */
1254 #define P255_WIDTH      ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
1255 
1256 /*
1257  * Fast quasi-reduction modulo p255 = 2^255 - 19
1258  * Write N as A0 + 2^255 A1, return A0 + 19 * A1
1259  */
ecp_mod_p255(mbedtls_mpi * N)1260 static int ecp_mod_p255( mbedtls_mpi *N )
1261 {
1262     int ret;
1263     size_t i;
1264     mbedtls_mpi M;
1265     mbedtls_mpi_uint Mp[P255_WIDTH + 2];
1266 
1267     if( N->n < P255_WIDTH )
1268         return( 0 );
1269 
1270     /* M = A1 */
1271     M.s = 1;
1272     M.n = N->n - ( P255_WIDTH - 1 );
1273     if( M.n > P255_WIDTH + 1 )
1274         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1275     M.p = Mp;
1276     memset( Mp, 0, sizeof Mp );
1277     memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
1278     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
1279     M.n++; /* Make room for multiplication by 19 */
1280 
1281     /* N = A0 */
1282     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
1283     for( i = P255_WIDTH; i < N->n; i++ )
1284         N->p[i] = 0;
1285 
1286     /* N = A0 + 19 * A1 */
1287     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
1288     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1289 
1290 cleanup:
1291     return( ret );
1292 }
1293 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
1294 
1295 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
1296 
1297 /* Size of p448 in terms of mbedtls_mpi_uint */
1298 #define P448_WIDTH      ( 448 / 8 / sizeof( mbedtls_mpi_uint ) )
1299 
1300 /* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
1301 #define DIV_ROUND_UP( X, Y ) ( ( ( X ) + ( Y ) - 1 ) / ( Y ) )
1302 #define P224_WIDTH_MIN   ( 28 / sizeof( mbedtls_mpi_uint ) )
1303 #define P224_WIDTH_MAX   DIV_ROUND_UP( 28, sizeof( mbedtls_mpi_uint ) )
1304 #define P224_UNUSED_BITS ( ( P224_WIDTH_MAX * sizeof( mbedtls_mpi_uint ) * 8 ) - 224 )
1305 
1306 /*
1307  * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
1308  * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return
1309  * A0 + A1 + B1 + (B0 + B1) * 2^224.  This is different to the reference
1310  * implementation of Curve448, which uses its own special 56-bit limbs rather
1311  * than a generic bignum library.  We could squeeze some extra speed out on
1312  * 32-bit machines by splitting N up into 32-bit limbs and doing the
1313  * arithmetic using the limbs directly as we do for the NIST primes above,
1314  * but for 64-bit targets it should use half the number of operations if we do
1315  * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds.
1316  */
ecp_mod_p448(mbedtls_mpi * N)1317 static int ecp_mod_p448( mbedtls_mpi *N )
1318 {
1319     int ret;
1320     size_t i;
1321     mbedtls_mpi M, Q;
1322     mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH];
1323 
1324     if( N->n <= P448_WIDTH )
1325         return( 0 );
1326 
1327     /* M = A1 */
1328     M.s = 1;
1329     M.n = N->n - ( P448_WIDTH );
1330     if( M.n > P448_WIDTH )
1331         /* Shouldn't be called with N larger than 2^896! */
1332         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1333     M.p = Mp;
1334     memset( Mp, 0, sizeof( Mp ) );
1335     memcpy( Mp, N->p + P448_WIDTH, M.n * sizeof( mbedtls_mpi_uint ) );
1336 
1337     /* N = A0 */
1338     for( i = P448_WIDTH; i < N->n; i++ )
1339         N->p[i] = 0;
1340 
1341     /* N += A1 */
1342     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
1343 
1344     /* Q = B1, N += B1 */
1345     Q = M;
1346     Q.p = Qp;
1347     memcpy( Qp, Mp, sizeof( Qp ) );
1348     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Q, 224 ) );
1349     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &Q ) );
1350 
1351     /* M = (B0 + B1) * 2^224, N += M */
1352     if( sizeof( mbedtls_mpi_uint ) > 4 )
1353         Mp[P224_WIDTH_MIN] &= ( (mbedtls_mpi_uint)-1 ) >> ( P224_UNUSED_BITS );
1354     for( i = P224_WIDTH_MAX; i < M.n; ++i )
1355         Mp[i] = 0;
1356     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &Q ) );
1357     M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */
1358     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &M, 224 ) );
1359     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
1360 
1361 cleanup:
1362     return( ret );
1363 }
1364 #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
1365 
1366 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \
1367     defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \
1368     defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1369 /*
1370  * Fast quasi-reduction modulo P = 2^s - R,
1371  * with R about 33 bits, used by the Koblitz curves.
1372  *
1373  * Write N as A0 + 2^224 A1, return A0 + R * A1.
1374  * Actually do two passes, since R is big.
1375  */
1376 #define P_KOBLITZ_MAX   ( 256 / 8 / sizeof( mbedtls_mpi_uint ) )  // Max limbs in P
1377 #define P_KOBLITZ_R     ( 8 / sizeof( mbedtls_mpi_uint ) )        // Limbs in R
ecp_mod_koblitz(mbedtls_mpi * N,mbedtls_mpi_uint * Rp,size_t p_limbs,size_t adjust,size_t shift,mbedtls_mpi_uint mask)1378 static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
1379                                    size_t adjust, size_t shift, mbedtls_mpi_uint mask )
1380 {
1381     int ret;
1382     size_t i;
1383     mbedtls_mpi M, R;
1384     mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
1385 
1386     if( N->n < p_limbs )
1387         return( 0 );
1388 
1389     /* Init R */
1390     R.s = 1;
1391     R.p = Rp;
1392     R.n = P_KOBLITZ_R;
1393 
1394     /* Common setup for M */
1395     M.s = 1;
1396     M.p = Mp;
1397 
1398     /* M = A1 */
1399     M.n = N->n - ( p_limbs - adjust );
1400     if( M.n > p_limbs + adjust )
1401         M.n = p_limbs + adjust;
1402     memset( Mp, 0, sizeof Mp );
1403     memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1404     if( shift != 0 )
1405         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1406     M.n += R.n; /* Make room for multiplication by R */
1407 
1408     /* N = A0 */
1409     if( mask != 0 )
1410         N->p[p_limbs - 1] &= mask;
1411     for( i = p_limbs; i < N->n; i++ )
1412         N->p[i] = 0;
1413 
1414     /* N = A0 + R * A1 */
1415     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1416     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1417 
1418     /* Second pass */
1419 
1420     /* M = A1 */
1421     M.n = N->n - ( p_limbs - adjust );
1422     if( M.n > p_limbs + adjust )
1423         M.n = p_limbs + adjust;
1424     memset( Mp, 0, sizeof Mp );
1425     memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
1426     if( shift != 0 )
1427         MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
1428     M.n += R.n; /* Make room for multiplication by R */
1429 
1430     /* N = A0 */
1431     if( mask != 0 )
1432         N->p[p_limbs - 1] &= mask;
1433     for( i = p_limbs; i < N->n; i++ )
1434         N->p[i] = 0;
1435 
1436     /* N = A0 + R * A1 */
1437     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
1438     MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
1439 
1440 cleanup:
1441     return( ret );
1442 }
1443 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
1444           MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
1445           MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
1446 
1447 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
1448 /*
1449  * Fast quasi-reduction modulo p192k1 = 2^192 - R,
1450  * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
1451  */
ecp_mod_p192k1(mbedtls_mpi * N)1452 static int ecp_mod_p192k1( mbedtls_mpi *N )
1453 {
1454     static mbedtls_mpi_uint Rp[] = {
1455         BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1456 
1457     return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1458 }
1459 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
1460 
1461 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
1462 /*
1463  * Fast quasi-reduction modulo p224k1 = 2^224 - R,
1464  * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
1465  */
ecp_mod_p224k1(mbedtls_mpi * N)1466 static int ecp_mod_p224k1( mbedtls_mpi *N )
1467 {
1468     static mbedtls_mpi_uint Rp[] = {
1469         BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1470 
1471 #if defined(MBEDTLS_HAVE_INT64)
1472     return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
1473 #else
1474     return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1475 #endif
1476 }
1477 
1478 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
1479 
1480 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
1481 /*
1482  * Fast quasi-reduction modulo p256k1 = 2^256 - R,
1483  * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
1484  */
ecp_mod_p256k1(mbedtls_mpi * N)1485 static int ecp_mod_p256k1( mbedtls_mpi *N )
1486 {
1487     static mbedtls_mpi_uint Rp[] = {
1488         BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
1489     return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
1490 }
1491 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
1492 
1493 #endif /* !MBEDTLS_ECP_ALT */
1494 
1495 #endif /* MBEDTLS_ECP_C */
1496