1 /****************************************************************
2
3 The author of this software is David M. Gay.
4
5 Copyright (C) 1998-2000 by Lucent Technologies
6 All Rights Reserved
7
8 Permission to use, copy, modify, and distribute this software and
9 its documentation for any purpose and without fee is hereby
10 granted, provided that the above copyright notice appear in all
11 copies and that both that the copyright notice and this
12 permission notice and warranty disclaimer appear in supporting
13 documentation, and that the name of Lucent or any of its entities
14 not be used in advertising or publicity pertaining to
15 distribution of the software without specific, written prior
16 permission.
17
18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25 THIS SOFTWARE.
26
27 ****************************************************************/
28
29 /* This is a variation on dtoa.c that converts arbitary binary
30 floating-point formats to and from decimal notation. It uses
31 double-precision arithmetic internally, so there are still
32 various #ifdefs that adapt the calculations to the native
33 double-precision arithmetic (any of IEEE, VAX D_floating,
34 or IBM mainframe arithmetic).
35
36 Please send bug reports to David M. Gay (dmg at acm dot org,
37 with " at " changed at "@" and " dot " changed to ".").
38 */
39
40 /* On a machine with IEEE extended-precision registers, it is
41 * necessary to specify double-precision (53-bit) rounding precision
42 * before invoking strtod or dtoa. If the machine uses (the equivalent
43 * of) Intel 80x87 arithmetic, the call
44 * _control87(PC_53, MCW_PC);
45 * does this with many compilers. Whether this or another call is
46 * appropriate depends on the compiler; for this to work, it may be
47 * necessary to #include "float.h" or another system-dependent header
48 * file.
49 */
50
51 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
52 *
53 * This strtod returns a nearest machine number to the input decimal
54 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
55 * broken by the IEEE round-even rule. Otherwise ties are broken by
56 * biased rounding (add half and chop).
57 *
58 * Inspired loosely by William D. Clinger's paper "How to Read Floating
59 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
60 *
61 * Modifications:
62 *
63 * 1. We only require IEEE, IBM, or VAX double-precision
64 * arithmetic (not IEEE double-extended).
65 * 2. We get by with floating-point arithmetic in a case that
66 * Clinger missed -- when we're computing d * 10^n
67 * for a small integer d and the integer n is not too
68 * much larger than 22 (the maximum integer k for which
69 * we can represent 10^k exactly), we may be able to
70 * compute (d*10^k) * 10^(e-k) with just one roundoff.
71 * 3. Rather than a bit-at-a-time adjustment of the binary
72 * result in the hard case, we use floating-point
73 * arithmetic to determine the adjustment to within
74 * one bit; only in really hard cases do we need to
75 * compute a second residual.
76 * 4. Because of 3., we don't need a large table of powers of 10
77 * for ten-to-e (just some small tables, e.g. of 10^k
78 * for 0 <= k <= 22).
79 */
80
81 /*
82 * #define IEEE_8087 for IEEE-arithmetic machines where the least
83 * significant byte has the lowest address.
84 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
85 * significant byte has the lowest address.
86 * #define Long int on machines with 32-bit ints and 64-bit longs.
87 * #define Sudden_Underflow for IEEE-format machines without gradual
88 * underflow (i.e., that flush to zero on underflow).
89 * #define IBM for IBM mainframe-style floating-point arithmetic.
90 * #define VAX for VAX-style floating-point arithmetic (D_floating).
91 * #define No_leftright to omit left-right logic in fast floating-point
92 * computation of dtoa and gdtoa. This will cause modes 4 and 5 to be
93 * treated the same as modes 2 and 3 for some inputs.
94 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
95 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
96 * that use extended-precision instructions to compute rounded
97 * products and quotients) with IBM.
98 * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
99 * that rounds toward +Infinity.
100 * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
101 * rounding when the underlying floating-point arithmetic uses
102 * unbiased rounding. This prevent using ordinary floating-point
103 * arithmetic when the result could be computed with one rounding error.
104 * #define Inaccurate_Divide for IEEE-format with correctly rounded
105 * products but inaccurate quotients, e.g., for Intel i860.
106 * #define NO_LONG_LONG on machines that do not have a "long long"
107 * integer type (of >= 64 bits). On such machines, you can
108 * #define Just_16 to store 16 bits per 32-bit Long when doing
109 * high-precision integer arithmetic. Whether this speeds things
110 * up or slows things down depends on the machine and the number
111 * being converted. If long long is available and the name is
112 * something other than "long long", #define Llong to be the name,
113 * and if "unsigned Llong" does not work as an unsigned version of
114 * Llong, #define #ULLong to be the corresponding unsigned type.
115 * #define KR_headers for old-style C function headers.
116 * #define Bad_float_h if your system lacks a float.h or if it does not
117 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
118 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
119 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
120 * if memory is available and otherwise does something you deem
121 * appropriate. If MALLOC is undefined, malloc will be invoked
122 * directly -- and assumed always to succeed.
123 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
124 * memory allocations from a private pool of memory when possible.
125 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
126 * unless #defined to be a different length. This default length
127 * suffices to get rid of MALLOC calls except for unusual cases,
128 * such as decimal-to-binary conversion of a very long string of
129 * digits. When converting IEEE double precision values, the
130 * longest string gdtoa can return is about 751 bytes long. For
131 * conversions by strtod of strings of 800 digits and all gdtoa
132 * conversions of IEEE doubles in single-threaded executions with
133 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
134 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
135 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
136 * #defined automatically on IEEE systems. On such systems,
137 * when INFNAN_CHECK is #defined, strtod checks
138 * for Infinity and NaN (case insensitively).
139 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
140 * strtodg also accepts (case insensitively) strings of the form
141 * NaN(x), where x is a string of hexadecimal digits (optionally
142 * preceded by 0x or 0X) and spaces; if there is only one string
143 * of hexadecimal digits, it is taken for the fraction bits of the
144 * resulting NaN; if there are two or more strings of hexadecimal
145 * digits, each string is assigned to the next available sequence
146 * of 32-bit words of fractions bits (starting with the most
147 * significant), right-aligned in each sequence.
148 * Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
149 * is consumed even when ... has the wrong form (in which case the
150 * "(...)" is consumed but ignored).
151 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
152 * multiple threads. In this case, you must provide (or suitably
153 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
154 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
155 * in pow5mult, ensures lazy evaluation of only one copy of high
156 * powers of 5; omitting this lock would introduce a small
157 * probability of wasting memory, but would otherwise be harmless.)
158 * You must also invoke freedtoa(s) to free the value s returned by
159 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
160 * #define IMPRECISE_INEXACT if you do not care about the setting of
161 * the STRTOG_Inexact bits in the special case of doing IEEE double
162 * precision conversions (which could also be done by the strtog in
163 * dtoa.c).
164 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
165 * floating-point constants.
166 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
167 * strtodg.c).
168 * #define NO_STRING_H to use private versions of memcpy.
169 * On some K&R systems, it may also be necessary to
170 * #define DECLARE_SIZE_T in this case.
171 * #define USE_LOCALE to use the current locale's decimal_point value.
172 */
173
174 #ifndef GDTOAIMP_H_INCLUDED
175 #define GDTOAIMP_H_INCLUDED
176 #include "gdtoa.h"
177 #include "gd_qnan.h"
178
179 #if defined(__MINGW32__) || defined(__MINGW64__)
180 #define MULTIPLE_THREADS 1
181 #define USE_LOCALE 1
182 #define NO_LOCALE_CACHE 1
183 #endif /* MinGW */
184
185 #ifdef Honor_FLT_ROUNDS
186 #include <fenv.h>
187 #endif
188
189 #ifdef DEBUG
190 #include <stdio.h>
191 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
192 #endif
193
194 #include <stdlib.h>
195 #include <string.h>
196
197 #ifdef MALLOC
198 extern void *MALLOC (size_t);
199 #else
200 #define MALLOC malloc
201 #endif
202
203 #undef IEEE_Arith
204 #undef Avoid_Underflow
205 #ifdef IEEE_MC68k
206 #define IEEE_Arith
207 #endif
208 #ifdef IEEE_8087
209 #define IEEE_Arith
210 #endif
211
212 #include <errno.h>
213
214 #ifdef NO_ERRNO
215 #define SET_ERRNO(x)
216 #else
217 #define SET_ERRNO(x) \
218 errno = (x)
219 #endif
220
221 #ifdef Bad_float_h
222
223 #ifdef IEEE_Arith
224 #define DBL_DIG 15
225 #define DBL_MAX_10_EXP 308
226 #define DBL_MAX_EXP 1024
227 #define FLT_RADIX 2
228 #define DBL_MAX 1.7976931348623157e+308
229 #endif
230
231 #ifdef IBM
232 #define DBL_DIG 16
233 #define DBL_MAX_10_EXP 75
234 #define DBL_MAX_EXP 63
235 #define FLT_RADIX 16
236 #define DBL_MAX 7.2370055773322621e+75
237 #endif
238
239 #ifdef VAX
240 #define DBL_DIG 16
241 #define DBL_MAX_10_EXP 38
242 #define DBL_MAX_EXP 127
243 #define FLT_RADIX 2
244 #define DBL_MAX 1.7014118346046923e+38
245 #define n_bigtens 2
246 #endif
247
248 #ifndef LONG_MAX
249 #define LONG_MAX 2147483647
250 #endif
251
252 #else /* ifndef Bad_float_h */
253 #include <float.h>
254 #endif /* Bad_float_h */
255
256 #ifdef IEEE_Arith
257 #define Scale_Bit 0x10
258 #define n_bigtens 5
259 #endif
260
261 #ifdef IBM
262 #define n_bigtens 3
263 #endif
264
265 #ifdef VAX
266 #define n_bigtens 2
267 #endif
268
269 #ifndef __MATH_H__
270 #include <math.h>
271 #endif
272
273 #ifdef __cplusplus
274 extern "C" {
275 #endif
276
277 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
278 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
279 #endif
280
281 typedef union _dbl_union { double d; ULong L[2]; } dbl_union;
282
283 #ifdef IEEE_8087
284 #define word0(x) (x)->L[1]
285 #define word1(x) (x)->L[0]
286 #else
287 #define word0(x) (x)->L[0]
288 #define word1(x) (x)->L[1]
289 #endif
290 #define dval(x) (x)->d
291
292 /* The following definition of Storeinc is appropriate for MIPS processors.
293 * An alternative that might be better on some machines is
294 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
295 */
296 #if defined(IEEE_8087) + defined(VAX)
297 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
298 ((unsigned short *)a)[0] = (unsigned short)c, a++)
299 #else
300 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
301 ((unsigned short *)a)[1] = (unsigned short)c, a++)
302 #endif
303
304 /* #define P DBL_MANT_DIG */
305 /* Ten_pmax = floor(P*log(2)/log(5)) */
306 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
307 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
308 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
309
310 #ifdef IEEE_Arith
311 #define Exp_shift 20
312 #define Exp_shift1 20
313 #define Exp_msk1 0x100000
314 #define Exp_msk11 0x100000
315 #define Exp_mask 0x7ff00000
316 #define P 53
317 #define Bias 1023
318 #define Emin (-1022)
319 #define Exp_1 0x3ff00000
320 #define Exp_11 0x3ff00000
321 #define Ebits 11
322 #define Frac_mask 0xfffff
323 #define Frac_mask1 0xfffff
324 #define Ten_pmax 22
325 #define Bletch 0x10
326 #define Bndry_mask 0xfffff
327 #define Bndry_mask1 0xfffff
328 #define LSB 1
329 #define Sign_bit 0x80000000
330 #define Log2P 1
331 #define Tiny0 0
332 #define Tiny1 1
333 #define Quick_max 14
334 #define Int_max 14
335
336 #ifndef Flt_Rounds
337 #ifdef FLT_ROUNDS
338 #define Flt_Rounds FLT_ROUNDS
339 #else
340 #define Flt_Rounds 1
341 #endif
342 #endif /*Flt_Rounds*/
343
344 #else /* ifndef IEEE_Arith */
345 #undef Sudden_Underflow
346 #define Sudden_Underflow
347 #ifdef IBM
348 #undef Flt_Rounds
349 #define Flt_Rounds 0
350 #define Exp_shift 24
351 #define Exp_shift1 24
352 #define Exp_msk1 0x1000000
353 #define Exp_msk11 0x1000000
354 #define Exp_mask 0x7f000000
355 #define P 14
356 #define Bias 65
357 #define Exp_1 0x41000000
358 #define Exp_11 0x41000000
359 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
360 #define Frac_mask 0xffffff
361 #define Frac_mask1 0xffffff
362 #define Bletch 4
363 #define Ten_pmax 22
364 #define Bndry_mask 0xefffff
365 #define Bndry_mask1 0xffffff
366 #define LSB 1
367 #define Sign_bit 0x80000000
368 #define Log2P 4
369 #define Tiny0 0x100000
370 #define Tiny1 0
371 #define Quick_max 14
372 #define Int_max 15
373 #else /* VAX */
374 #undef Flt_Rounds
375 #define Flt_Rounds 1
376 #define Exp_shift 23
377 #define Exp_shift1 7
378 #define Exp_msk1 0x80
379 #define Exp_msk11 0x800000
380 #define Exp_mask 0x7f80
381 #define P 56
382 #define Bias 129
383 #define Exp_1 0x40800000
384 #define Exp_11 0x4080
385 #define Ebits 8
386 #define Frac_mask 0x7fffff
387 #define Frac_mask1 0xffff007f
388 #define Ten_pmax 24
389 #define Bletch 2
390 #define Bndry_mask 0xffff007f
391 #define Bndry_mask1 0xffff007f
392 #define LSB 0x10000
393 #define Sign_bit 0x8000
394 #define Log2P 1
395 #define Tiny0 0x80
396 #define Tiny1 0
397 #define Quick_max 15
398 #define Int_max 15
399 #endif /* IBM, VAX */
400 #endif /* IEEE_Arith */
401
402 #ifndef IEEE_Arith
403 #define ROUND_BIASED
404 #else
405 #ifdef ROUND_BIASED_without_Round_Up
406 #undef ROUND_BIASED
407 #define ROUND_BIASED
408 #endif
409 #endif
410
411 #ifdef RND_PRODQUOT
412 #define rounded_product(a,b) a = rnd_prod(a, b)
413 #define rounded_quotient(a,b) a = rnd_quot(a, b)
414 extern double rnd_prod(double, double), rnd_quot(double, double);
415 #else
416 #define rounded_product(a,b) a *= b
417 #define rounded_quotient(a,b) a /= b
418 #endif
419
420 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
421 #define Big1 0xffffffff
422
423 #undef Pack_16
424 #ifndef Pack_32
425 #define Pack_32
426 #endif
427
428 #ifdef NO_LONG_LONG
429 #undef ULLong
430 #ifdef Just_16
431 #undef Pack_32
432 #define Pack_16
433 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
434 * This makes some inner loops simpler and sometimes saves work
435 * during multiplications, but it often seems to make things slightly
436 * slower. Hence the default is now to store 32 bits per Long.
437 */
438 #endif
439 #else /* long long available */
440 #ifndef Llong
441 #define Llong long long
442 #endif
443 #ifndef ULLong
444 #define ULLong unsigned Llong
445 #endif
446 #endif /* NO_LONG_LONG */
447
448 #ifdef Pack_32
449 #define ULbits 32
450 #define kshift 5
451 #define kmask 31
452 #define ALL_ON 0xffffffff
453 #else
454 #define ULbits 16
455 #define kshift 4
456 #define kmask 15
457 #define ALL_ON 0xffff
458 #endif
459
460 #ifndef MULTIPLE_THREADS
461 #define ACQUIRE_DTOA_LOCK(n) /*nothing*/
462 #define FREE_DTOA_LOCK(n) /*nothing*/
463 #endif
464
465 #define Kmax 9
466
467 #define Bigint __Bigint
468 struct
469 Bigint {
470 struct Bigint *next;
471 int k, maxwds, sign, wds;
472 ULong x[1];
473 };
474 typedef struct Bigint Bigint;
475
476 #ifdef NO_STRING_H
477 #ifdef DECLARE_SIZE_T
478 typedef unsigned int size_t;
479 #endif
480 extern void memcpy_D2A (void*, const void*, size_t);
481 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
482 #else /* !NO_STRING_H */
483 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
484 #endif /* NO_STRING_H */
485
486 #ifdef __GNUC__
487 static inline int
__lo0bits_D2A(ULong * y)488 __lo0bits_D2A (ULong *y)
489 {
490 int ret = __builtin_ctz(*y);
491 *y = *y >> ret;
492 return ret;
493 }
494
495 static inline int
__hi0bits_D2A(ULong y)496 __hi0bits_D2A (ULong y)
497 {
498 return __builtin_clz(y);
499 }
500 #endif
501
502 #define Balloc __Balloc_D2A
503 #define Bfree __Bfree_D2A
504 #define ULtoQ __ULtoQ_D2A
505 #define ULtof __ULtof_D2A
506 #define ULtod __ULtod_D2A
507 #define ULtodd __ULtodd_D2A
508 #define ULtox __ULtox_D2A
509 #define ULtoxL __ULtoxL_D2A
510 #define any_on __any_on_D2A
511 #define b2d __b2d_D2A
512 #define bigtens __bigtens_D2A
513 #define cmp __cmp_D2A
514 #define copybits __copybits_D2A
515 #define d2b __d2b_D2A
516 #define decrement __decrement_D2A
517 #define diff __diff_D2A
518 #define dtoa_result __dtoa_result_D2A
519 #define gethex __gethex_D2A
520 #define hexdig __hexdig_D2A
521 #define hexnan __hexnan_D2A
522 #define hi0bits_D2A __hi0bits_D2A
523 #define hi0bits(x) __hi0bits_D2A((ULong)(x))
524 #define i2b __i2b_D2A
525 #define increment __increment_D2A
526 #define lo0bits __lo0bits_D2A
527 #define lshift __lshift_D2A
528 #define match __match_D2A
529 #define mult __mult_D2A
530 #define multadd __multadd_D2A
531 #define nrv_alloc __nrv_alloc_D2A
532 #define pow5mult __pow5mult_D2A
533 #define quorem __quorem_D2A
534 #define ratio __ratio_D2A
535 #define rshift __rshift_D2A
536 #define rv_alloc __rv_alloc_D2A
537 #define s2b __s2b_D2A
538 #define set_ones __set_ones_D2A
539 #define strcp_D2A __strcp_D2A
540 #define strcp __strcp_D2A
541 #define strtoIg __strtoIg_D2A
542 #define sum __sum_D2A
543 #define tens __tens_D2A
544 #define tinytens __tinytens_D2A
545 #define tinytens __tinytens_D2A
546 #define trailz __trailz_D2A
547 #define ulp __ulp_D2A
548
549 #define hexdig_init_D2A __mingw_hexdig_init_D2A
550
551 extern char *dtoa_result;
552 extern const double bigtens[], tens[], tinytens[];
553 extern unsigned char hexdig[];
554
555 extern Bigint *Balloc (int);
556 extern void Bfree (Bigint*);
557 extern void ULtof (ULong*, ULong*, Long, int);
558 extern void ULtod (ULong*, ULong*, Long, int);
559 extern void ULtodd (ULong*, ULong*, Long, int);
560 extern void ULtoQ (ULong*, ULong*, Long, int);
561 extern void ULtox (UShort*, ULong*, Long, int);
562 extern void ULtoxL (ULong*, ULong*, Long, int);
563 extern ULong any_on (Bigint*, int);
564 extern double b2d (Bigint*, int*);
565 extern int cmp (Bigint*, Bigint*);
566 extern void copybits (ULong*, int, Bigint*);
567 extern Bigint *d2b (double, int*, int*);
568 extern void decrement (Bigint*);
569 extern Bigint *diff (Bigint*, Bigint*);
570 extern int gethex (const char**, FPI*, Long*, Bigint**, int);
571 extern void hexdig_init_D2A(void);
572 extern int hexnan (const char**, FPI*, ULong*);
573 extern int hi0bits_D2A (ULong);
574 extern Bigint *i2b (int);
575 extern Bigint *increment (Bigint*);
576 extern int lo0bits (ULong*);
577 extern Bigint *lshift (Bigint*, int);
578 extern int match (const char**, char*);
579 extern Bigint *mult (Bigint*, Bigint*);
580 extern Bigint *multadd (Bigint*, int, int);
581 extern char *nrv_alloc (char*, char **, int);
582 extern Bigint *pow5mult (Bigint*, int);
583 extern int quorem (Bigint*, Bigint*);
584 extern double ratio (Bigint*, Bigint*);
585 extern void rshift (Bigint*, int);
586 extern char *rv_alloc (int);
587 extern Bigint *s2b (const char*, int, int, ULong, int);
588 extern Bigint *set_ones (Bigint*, int);
589 extern char *strcp (char*, const char*);
590 extern Bigint *sum (Bigint*, Bigint*);
591 extern int trailz (Bigint*);
592 extern double ulp (dbl_union *);
593
594 #ifdef __cplusplus
595 }
596 #endif
597 /*
598 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to
599 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
600 * respectively), but now are determined by compiling and running
601 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
602 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
603 * and -DNAN_WORD1=... values if necessary. This should still work.
604 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
605 */
606 #ifdef IEEE_Arith
607 #ifndef NO_INFNAN_CHECK
608 #undef INFNAN_CHECK
609 #define INFNAN_CHECK
610 #endif
611 #ifdef IEEE_MC68k
612 #define _0 0
613 #define _1 1
614 #ifndef NAN_WORD0
615 #define NAN_WORD0 d_QNAN0
616 #endif
617 #ifndef NAN_WORD1
618 #define NAN_WORD1 d_QNAN1
619 #endif
620 #else
621 #define _0 1
622 #define _1 0
623 #ifndef NAN_WORD0
624 #define NAN_WORD0 d_QNAN1
625 #endif
626 #ifndef NAN_WORD1
627 #define NAN_WORD1 d_QNAN0
628 #endif
629 #endif
630 #else
631 #undef INFNAN_CHECK
632 #endif
633
634 #undef SI
635 #ifdef Sudden_Underflow
636 #define SI 1
637 #else
638 #define SI 0
639 #endif
640
641 #endif /* GDTOAIMP_H_INCLUDED */
642