1 // Copyright Joyent, Inc. and other Node contributors.
2 //
3 // Permission is hereby granted, free of charge, to any person obtaining a
4 // copy of this software and associated documentation files (the
5 // "Software"), to deal in the Software without restriction, including
6 // without limitation the rights to use, copy, modify, merge, publish,
7 // distribute, sublicense, and/or sell copies of the Software, and to permit
8 // persons to whom the Software is furnished to do so, subject to the
9 // following conditions:
10 //
11 // The above copyright notice and this permission notice shall be included
12 // in all copies or substantial portions of the Software.
13 //
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
16 // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
17 // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
18 // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
19 // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
20 // USE OR OTHER DEALINGS IN THE SOFTWARE.
21
22 #ifndef SRC_UTIL_INL_H_
23 #define SRC_UTIL_INL_H_
24
25 #if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
26
27 #include <cmath>
28 #include <cstring>
29 #include "util.h"
30
31 // These are defined by <sys/byteorder.h> or <netinet/in.h> on some systems.
32 // To avoid warnings, undefine them before redefining them.
33 #ifdef BSWAP_2
34 # undef BSWAP_2
35 #endif
36 #ifdef BSWAP_4
37 # undef BSWAP_4
38 #endif
39 #ifdef BSWAP_8
40 # undef BSWAP_8
41 #endif
42
43 #if defined(_MSC_VER)
44 #include <intrin.h>
45 #define BSWAP_2(x) _byteswap_ushort(x)
46 #define BSWAP_4(x) _byteswap_ulong(x)
47 #define BSWAP_8(x) _byteswap_uint64(x)
48 #else
49 #define BSWAP_2(x) ((x) << 8) | ((x) >> 8)
50 #define BSWAP_4(x) \
51 (((x) & 0xFF) << 24) | \
52 (((x) & 0xFF00) << 8) | \
53 (((x) >> 8) & 0xFF00) | \
54 (((x) >> 24) & 0xFF)
55 #define BSWAP_8(x) \
56 (((x) & 0xFF00000000000000ull) >> 56) | \
57 (((x) & 0x00FF000000000000ull) >> 40) | \
58 (((x) & 0x0000FF0000000000ull) >> 24) | \
59 (((x) & 0x000000FF00000000ull) >> 8) | \
60 (((x) & 0x00000000FF000000ull) << 8) | \
61 (((x) & 0x0000000000FF0000ull) << 24) | \
62 (((x) & 0x000000000000FF00ull) << 40) | \
63 (((x) & 0x00000000000000FFull) << 56)
64 #endif
65
66 namespace node {
67
68 template <typename T>
ListNode()69 ListNode<T>::ListNode() : prev_(this), next_(this) {}
70
71 template <typename T>
~ListNode()72 ListNode<T>::~ListNode() {
73 Remove();
74 }
75
76 template <typename T>
Remove()77 void ListNode<T>::Remove() {
78 prev_->next_ = next_;
79 next_->prev_ = prev_;
80 prev_ = this;
81 next_ = this;
82 }
83
84 template <typename T>
IsEmpty()85 bool ListNode<T>::IsEmpty() const {
86 return prev_ == this;
87 }
88
89 template <typename T, ListNode<T> (T::*M)>
Iterator(ListNode<T> * node)90 ListHead<T, M>::Iterator::Iterator(ListNode<T>* node) : node_(node) {}
91
92 template <typename T, ListNode<T> (T::*M)>
93 T* ListHead<T, M>::Iterator::operator*() const {
94 return ContainerOf(M, node_);
95 }
96
97 template <typename T, ListNode<T> (T::*M)>
98 const typename ListHead<T, M>::Iterator&
99 ListHead<T, M>::Iterator::operator++() {
100 node_ = node_->next_;
101 return *this;
102 }
103
104 template <typename T, ListNode<T> (T::*M)>
105 bool ListHead<T, M>::Iterator::operator!=(const Iterator& that) const {
106 return node_ != that.node_;
107 }
108
109 template <typename T, ListNode<T> (T::*M)>
~ListHead()110 ListHead<T, M>::~ListHead() {
111 while (IsEmpty() == false)
112 head_.next_->Remove();
113 }
114
115 template <typename T, ListNode<T> (T::*M)>
PushBack(T * element)116 void ListHead<T, M>::PushBack(T* element) {
117 ListNode<T>* that = &(element->*M);
118 head_.prev_->next_ = that;
119 that->prev_ = head_.prev_;
120 that->next_ = &head_;
121 head_.prev_ = that;
122 }
123
124 template <typename T, ListNode<T> (T::*M)>
PushFront(T * element)125 void ListHead<T, M>::PushFront(T* element) {
126 ListNode<T>* that = &(element->*M);
127 head_.next_->prev_ = that;
128 that->prev_ = &head_;
129 that->next_ = head_.next_;
130 head_.next_ = that;
131 }
132
133 template <typename T, ListNode<T> (T::*M)>
IsEmpty()134 bool ListHead<T, M>::IsEmpty() const {
135 return head_.IsEmpty();
136 }
137
138 template <typename T, ListNode<T> (T::*M)>
PopFront()139 T* ListHead<T, M>::PopFront() {
140 if (IsEmpty())
141 return nullptr;
142 ListNode<T>* node = head_.next_;
143 node->Remove();
144 return ContainerOf(M, node);
145 }
146
147 template <typename T, ListNode<T> (T::*M)>
begin()148 typename ListHead<T, M>::Iterator ListHead<T, M>::begin() const {
149 return Iterator(head_.next_);
150 }
151
152 template <typename T, ListNode<T> (T::*M)>
end()153 typename ListHead<T, M>::Iterator ListHead<T, M>::end() const {
154 return Iterator(const_cast<ListNode<T>*>(&head_));
155 }
156
157 template <typename Inner, typename Outer>
OffsetOf(Inner Outer::* field)158 constexpr uintptr_t OffsetOf(Inner Outer::*field) {
159 return reinterpret_cast<uintptr_t>(&(static_cast<Outer*>(nullptr)->*field));
160 }
161
162 template <typename Inner, typename Outer>
ContainerOfHelper(Inner Outer::* field,Inner * pointer)163 ContainerOfHelper<Inner, Outer>::ContainerOfHelper(Inner Outer::*field,
164 Inner* pointer)
165 : pointer_(
166 reinterpret_cast<Outer*>(
167 reinterpret_cast<uintptr_t>(pointer) - OffsetOf(field))) {}
168
169 template <typename Inner, typename Outer>
170 template <typename TypeName>
171 ContainerOfHelper<Inner, Outer>::operator TypeName*() const {
172 return static_cast<TypeName*>(pointer_);
173 }
174
175 template <typename Inner, typename Outer>
ContainerOf(Inner Outer::* field,Inner * pointer)176 constexpr ContainerOfHelper<Inner, Outer> ContainerOf(Inner Outer::*field,
177 Inner* pointer) {
178 return ContainerOfHelper<Inner, Outer>(field, pointer);
179 }
180
OneByteString(v8::Isolate * isolate,const char * data,int length)181 inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
182 const char* data,
183 int length) {
184 return v8::String::NewFromOneByte(isolate,
185 reinterpret_cast<const uint8_t*>(data),
186 v8::NewStringType::kNormal,
187 length).ToLocalChecked();
188 }
189
OneByteString(v8::Isolate * isolate,const signed char * data,int length)190 inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
191 const signed char* data,
192 int length) {
193 return v8::String::NewFromOneByte(isolate,
194 reinterpret_cast<const uint8_t*>(data),
195 v8::NewStringType::kNormal,
196 length).ToLocalChecked();
197 }
198
OneByteString(v8::Isolate * isolate,const unsigned char * data,int length)199 inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
200 const unsigned char* data,
201 int length) {
202 return v8::String::NewFromOneByte(
203 isolate, data, v8::NewStringType::kNormal, length)
204 .ToLocalChecked();
205 }
206
SwapBytes16(char * data,size_t nbytes)207 void SwapBytes16(char* data, size_t nbytes) {
208 CHECK_EQ(nbytes % 2, 0);
209
210 #if defined(_MSC_VER)
211 int align = reinterpret_cast<uintptr_t>(data) % sizeof(uint16_t);
212 if (align == 0) {
213 // MSVC has no strict aliasing, and is able to highly optimize this case.
214 uint16_t* data16 = reinterpret_cast<uint16_t*>(data);
215 size_t len16 = nbytes / sizeof(*data16);
216 for (size_t i = 0; i < len16; i++) {
217 data16[i] = BSWAP_2(data16[i]);
218 }
219 return;
220 }
221 #endif
222
223 uint16_t temp;
224 for (size_t i = 0; i < nbytes; i += sizeof(temp)) {
225 memcpy(&temp, &data[i], sizeof(temp));
226 temp = BSWAP_2(temp);
227 memcpy(&data[i], &temp, sizeof(temp));
228 }
229 }
230
SwapBytes32(char * data,size_t nbytes)231 void SwapBytes32(char* data, size_t nbytes) {
232 CHECK_EQ(nbytes % 4, 0);
233
234 #if defined(_MSC_VER)
235 int align = reinterpret_cast<uintptr_t>(data) % sizeof(uint32_t);
236 // MSVC has no strict aliasing, and is able to highly optimize this case.
237 if (align == 0) {
238 uint32_t* data32 = reinterpret_cast<uint32_t*>(data);
239 size_t len32 = nbytes / sizeof(*data32);
240 for (size_t i = 0; i < len32; i++) {
241 data32[i] = BSWAP_4(data32[i]);
242 }
243 return;
244 }
245 #endif
246
247 uint32_t temp;
248 for (size_t i = 0; i < nbytes; i += sizeof(temp)) {
249 memcpy(&temp, &data[i], sizeof(temp));
250 temp = BSWAP_4(temp);
251 memcpy(&data[i], &temp, sizeof(temp));
252 }
253 }
254
SwapBytes64(char * data,size_t nbytes)255 void SwapBytes64(char* data, size_t nbytes) {
256 CHECK_EQ(nbytes % 8, 0);
257
258 #if defined(_MSC_VER)
259 int align = reinterpret_cast<uintptr_t>(data) % sizeof(uint64_t);
260 if (align == 0) {
261 // MSVC has no strict aliasing, and is able to highly optimize this case.
262 uint64_t* data64 = reinterpret_cast<uint64_t*>(data);
263 size_t len64 = nbytes / sizeof(*data64);
264 for (size_t i = 0; i < len64; i++) {
265 data64[i] = BSWAP_8(data64[i]);
266 }
267 return;
268 }
269 #endif
270
271 uint64_t temp;
272 for (size_t i = 0; i < nbytes; i += sizeof(temp)) {
273 memcpy(&temp, &data[i], sizeof(temp));
274 temp = BSWAP_8(temp);
275 memcpy(&data[i], &temp, sizeof(temp));
276 }
277 }
278
ToLower(char c)279 char ToLower(char c) {
280 return c >= 'A' && c <= 'Z' ? c + ('a' - 'A') : c;
281 }
282
ToLower(const std::string & in)283 std::string ToLower(const std::string& in) {
284 std::string out(in.size(), 0);
285 for (size_t i = 0; i < in.size(); ++i)
286 out[i] = ToLower(in[i]);
287 return out;
288 }
289
ToUpper(char c)290 char ToUpper(char c) {
291 return c >= 'a' && c <= 'z' ? (c - 'a') + 'A' : c;
292 }
293
ToUpper(const std::string & in)294 std::string ToUpper(const std::string& in) {
295 std::string out(in.size(), 0);
296 for (size_t i = 0; i < in.size(); ++i)
297 out[i] = ToUpper(in[i]);
298 return out;
299 }
300
StringEqualNoCase(const char * a,const char * b)301 bool StringEqualNoCase(const char* a, const char* b) {
302 while (ToLower(*a) == ToLower(*b++)) {
303 if (*a++ == '\0')
304 return true;
305 }
306 return false;
307 }
308
StringEqualNoCaseN(const char * a,const char * b,size_t length)309 bool StringEqualNoCaseN(const char* a, const char* b, size_t length) {
310 for (size_t i = 0; i < length; i++) {
311 if (ToLower(a[i]) != ToLower(b[i]))
312 return false;
313 if (a[i] == '\0')
314 return true;
315 }
316 return true;
317 }
318
319 template <typename T>
MultiplyWithOverflowCheck(T a,T b)320 inline T MultiplyWithOverflowCheck(T a, T b) {
321 auto ret = a * b;
322 if (a != 0)
323 CHECK_EQ(b, ret / a);
324
325 return ret;
326 }
327
328 // These should be used in our code as opposed to the native
329 // versions as they abstract out some platform and or
330 // compiler version specific functionality.
331 // malloc(0) and realloc(ptr, 0) have implementation-defined behavior in
332 // that the standard allows them to either return a unique pointer or a
333 // nullptr for zero-sized allocation requests. Normalize by always using
334 // a nullptr.
335 template <typename T>
UncheckedRealloc(T * pointer,size_t n)336 T* UncheckedRealloc(T* pointer, size_t n) {
337 size_t full_size = MultiplyWithOverflowCheck(sizeof(T), n);
338
339 if (full_size == 0) {
340 free(pointer);
341 return nullptr;
342 }
343
344 void* allocated = realloc(pointer, full_size);
345
346 if (UNLIKELY(allocated == nullptr)) {
347 // Tell V8 that memory is low and retry.
348 LowMemoryNotification();
349 allocated = realloc(pointer, full_size);
350 }
351
352 return static_cast<T*>(allocated);
353 }
354
355 // As per spec realloc behaves like malloc if passed nullptr.
356 template <typename T>
UncheckedMalloc(size_t n)357 inline T* UncheckedMalloc(size_t n) {
358 if (n == 0) n = 1;
359 return UncheckedRealloc<T>(nullptr, n);
360 }
361
362 template <typename T>
UncheckedCalloc(size_t n)363 inline T* UncheckedCalloc(size_t n) {
364 if (n == 0) n = 1;
365 MultiplyWithOverflowCheck(sizeof(T), n);
366 return static_cast<T*>(calloc(n, sizeof(T)));
367 }
368
369 template <typename T>
Realloc(T * pointer,size_t n)370 inline T* Realloc(T* pointer, size_t n) {
371 T* ret = UncheckedRealloc(pointer, n);
372 CHECK_IMPLIES(n > 0, ret != nullptr);
373 return ret;
374 }
375
376 template <typename T>
Malloc(size_t n)377 inline T* Malloc(size_t n) {
378 T* ret = UncheckedMalloc<T>(n);
379 CHECK_IMPLIES(n > 0, ret != nullptr);
380 return ret;
381 }
382
383 template <typename T>
Calloc(size_t n)384 inline T* Calloc(size_t n) {
385 T* ret = UncheckedCalloc<T>(n);
386 CHECK_IMPLIES(n > 0, ret != nullptr);
387 return ret;
388 }
389
390 // Shortcuts for char*.
Malloc(size_t n)391 inline char* Malloc(size_t n) { return Malloc<char>(n); }
Calloc(size_t n)392 inline char* Calloc(size_t n) { return Calloc<char>(n); }
UncheckedMalloc(size_t n)393 inline char* UncheckedMalloc(size_t n) { return UncheckedMalloc<char>(n); }
UncheckedCalloc(size_t n)394 inline char* UncheckedCalloc(size_t n) { return UncheckedCalloc<char>(n); }
395
396 // This is a helper in the .cc file so including util-inl.h doesn't include more
397 // headers than we really need to.
398 void ThrowErrStringTooLong(v8::Isolate* isolate);
399
ToV8Value(v8::Local<v8::Context> context,const std::string & str,v8::Isolate * isolate)400 v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
401 const std::string& str,
402 v8::Isolate* isolate) {
403 if (isolate == nullptr) isolate = context->GetIsolate();
404 if (UNLIKELY(str.size() >= static_cast<size_t>(v8::String::kMaxLength))) {
405 // V8 only has a TODO comment about adding an exception when the maximum
406 // string size is exceeded.
407 ThrowErrStringTooLong(isolate);
408 return v8::MaybeLocal<v8::Value>();
409 }
410
411 return v8::String::NewFromUtf8(
412 isolate, str.data(), v8::NewStringType::kNormal, str.size())
413 .FromMaybe(v8::Local<v8::String>());
414 }
415
416 template <typename T>
ToV8Value(v8::Local<v8::Context> context,const std::vector<T> & vec,v8::Isolate * isolate)417 v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
418 const std::vector<T>& vec,
419 v8::Isolate* isolate) {
420 if (isolate == nullptr) isolate = context->GetIsolate();
421 v8::EscapableHandleScope handle_scope(isolate);
422
423 MaybeStackBuffer<v8::Local<v8::Value>, 128> arr(vec.size());
424 arr.SetLength(vec.size());
425 for (size_t i = 0; i < vec.size(); ++i) {
426 if (!ToV8Value(context, vec[i], isolate).ToLocal(&arr[i]))
427 return v8::MaybeLocal<v8::Value>();
428 }
429
430 return handle_scope.Escape(v8::Array::New(isolate, arr.out(), arr.length()));
431 }
432
433 template <typename T, typename U>
ToV8Value(v8::Local<v8::Context> context,const std::unordered_map<T,U> & map,v8::Isolate * isolate)434 v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
435 const std::unordered_map<T, U>& map,
436 v8::Isolate* isolate) {
437 if (isolate == nullptr) isolate = context->GetIsolate();
438 v8::EscapableHandleScope handle_scope(isolate);
439
440 v8::Local<v8::Map> ret = v8::Map::New(isolate);
441 for (const auto& item : map) {
442 v8::Local<v8::Value> first, second;
443 if (!ToV8Value(context, item.first, isolate).ToLocal(&first) ||
444 !ToV8Value(context, item.second, isolate).ToLocal(&second) ||
445 ret->Set(context, first, second).IsEmpty()) {
446 return v8::MaybeLocal<v8::Value>();
447 }
448 }
449
450 return handle_scope.Escape(ret);
451 }
452
453 template <typename T, typename >
ToV8Value(v8::Local<v8::Context> context,const T & number,v8::Isolate * isolate)454 v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
455 const T& number,
456 v8::Isolate* isolate) {
457 if (isolate == nullptr) isolate = context->GetIsolate();
458
459 using Limits = std::numeric_limits<T>;
460 // Choose Uint32, Int32, or Double depending on range checks.
461 // These checks should all collapse at compile time.
462 if (static_cast<uint32_t>(Limits::max()) <=
463 std::numeric_limits<uint32_t>::max() &&
464 static_cast<uint32_t>(Limits::min()) >=
465 std::numeric_limits<uint32_t>::min() && Limits::is_exact) {
466 return v8::Integer::NewFromUnsigned(isolate, static_cast<uint32_t>(number));
467 }
468
469 if (static_cast<int32_t>(Limits::max()) <=
470 std::numeric_limits<int32_t>::max() &&
471 static_cast<int32_t>(Limits::min()) >=
472 std::numeric_limits<int32_t>::min() && Limits::is_exact) {
473 return v8::Integer::New(isolate, static_cast<int32_t>(number));
474 }
475
476 return v8::Number::New(isolate, static_cast<double>(number));
477 }
478
SlicedArguments(const v8::FunctionCallbackInfo<v8::Value> & args,size_t start)479 SlicedArguments::SlicedArguments(
480 const v8::FunctionCallbackInfo<v8::Value>& args, size_t start) {
481 const size_t length = static_cast<size_t>(args.Length());
482 if (start >= length) return;
483 const size_t size = length - start;
484
485 AllocateSufficientStorage(size);
486 for (size_t i = 0; i < size; ++i)
487 (*this)[i] = args[i + start];
488 }
489
490 template <typename T, size_t S>
ArrayBufferViewContents(v8::Local<v8::Value> value)491 ArrayBufferViewContents<T, S>::ArrayBufferViewContents(
492 v8::Local<v8::Value> value) {
493 CHECK(value->IsArrayBufferView());
494 Read(value.As<v8::ArrayBufferView>());
495 }
496
497 template <typename T, size_t S>
ArrayBufferViewContents(v8::Local<v8::Object> value)498 ArrayBufferViewContents<T, S>::ArrayBufferViewContents(
499 v8::Local<v8::Object> value) {
500 CHECK(value->IsArrayBufferView());
501 Read(value.As<v8::ArrayBufferView>());
502 }
503
504 template <typename T, size_t S>
ArrayBufferViewContents(v8::Local<v8::ArrayBufferView> abv)505 ArrayBufferViewContents<T, S>::ArrayBufferViewContents(
506 v8::Local<v8::ArrayBufferView> abv) {
507 Read(abv);
508 }
509
510 template <typename T, size_t S>
Read(v8::Local<v8::ArrayBufferView> abv)511 void ArrayBufferViewContents<T, S>::Read(v8::Local<v8::ArrayBufferView> abv) {
512 static_assert(sizeof(T) == 1, "Only supports one-byte data at the moment");
513 length_ = abv->ByteLength();
514 if (length_ > sizeof(stack_storage_) || abv->HasBuffer()) {
515 data_ = static_cast<T*>(abv->Buffer()->GetContents().Data()) +
516 abv->ByteOffset();
517 } else {
518 abv->CopyContents(stack_storage_, sizeof(stack_storage_));
519 data_ = stack_storage_;
520 }
521 }
522
523 } // namespace node
524
525 #endif // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
526
527 #endif // SRC_UTIL_INL_H_
528