• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright Joyent, Inc. and other Node contributors.
2 //
3 // Permission is hereby granted, free of charge, to any person obtaining a
4 // copy of this software and associated documentation files (the
5 // "Software"), to deal in the Software without restriction, including
6 // without limitation the rights to use, copy, modify, merge, publish,
7 // distribute, sublicense, and/or sell copies of the Software, and to permit
8 // persons to whom the Software is furnished to do so, subject to the
9 // following conditions:
10 //
11 // The above copyright notice and this permission notice shall be included
12 // in all copies or substantial portions of the Software.
13 //
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
16 // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
17 // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
18 // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
19 // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
20 // USE OR OTHER DEALINGS IN THE SOFTWARE.
21 
22 #ifndef SRC_UTIL_INL_H_
23 #define SRC_UTIL_INL_H_
24 
25 #if defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
26 
27 #include <cmath>
28 #include <cstring>
29 #include "util.h"
30 
31 // These are defined by <sys/byteorder.h> or <netinet/in.h> on some systems.
32 // To avoid warnings, undefine them before redefining them.
33 #ifdef BSWAP_2
34 # undef BSWAP_2
35 #endif
36 #ifdef BSWAP_4
37 # undef BSWAP_4
38 #endif
39 #ifdef BSWAP_8
40 # undef BSWAP_8
41 #endif
42 
43 #if defined(_MSC_VER)
44 #include <intrin.h>
45 #define BSWAP_2(x) _byteswap_ushort(x)
46 #define BSWAP_4(x) _byteswap_ulong(x)
47 #define BSWAP_8(x) _byteswap_uint64(x)
48 #else
49 #define BSWAP_2(x) ((x) << 8) | ((x) >> 8)
50 #define BSWAP_4(x)                                                            \
51   (((x) & 0xFF) << 24) |                                                      \
52   (((x) & 0xFF00) << 8) |                                                     \
53   (((x) >> 8) & 0xFF00) |                                                     \
54   (((x) >> 24) & 0xFF)
55 #define BSWAP_8(x)                                                            \
56   (((x) & 0xFF00000000000000ull) >> 56) |                                     \
57   (((x) & 0x00FF000000000000ull) >> 40) |                                     \
58   (((x) & 0x0000FF0000000000ull) >> 24) |                                     \
59   (((x) & 0x000000FF00000000ull) >> 8) |                                      \
60   (((x) & 0x00000000FF000000ull) << 8) |                                      \
61   (((x) & 0x0000000000FF0000ull) << 24) |                                     \
62   (((x) & 0x000000000000FF00ull) << 40) |                                     \
63   (((x) & 0x00000000000000FFull) << 56)
64 #endif
65 
66 namespace node {
67 
68 template <typename T>
ListNode()69 ListNode<T>::ListNode() : prev_(this), next_(this) {}
70 
71 template <typename T>
~ListNode()72 ListNode<T>::~ListNode() {
73   Remove();
74 }
75 
76 template <typename T>
Remove()77 void ListNode<T>::Remove() {
78   prev_->next_ = next_;
79   next_->prev_ = prev_;
80   prev_ = this;
81   next_ = this;
82 }
83 
84 template <typename T>
IsEmpty()85 bool ListNode<T>::IsEmpty() const {
86   return prev_ == this;
87 }
88 
89 template <typename T, ListNode<T> (T::*M)>
Iterator(ListNode<T> * node)90 ListHead<T, M>::Iterator::Iterator(ListNode<T>* node) : node_(node) {}
91 
92 template <typename T, ListNode<T> (T::*M)>
93 T* ListHead<T, M>::Iterator::operator*() const {
94   return ContainerOf(M, node_);
95 }
96 
97 template <typename T, ListNode<T> (T::*M)>
98 const typename ListHead<T, M>::Iterator&
99 ListHead<T, M>::Iterator::operator++() {
100   node_ = node_->next_;
101   return *this;
102 }
103 
104 template <typename T, ListNode<T> (T::*M)>
105 bool ListHead<T, M>::Iterator::operator!=(const Iterator& that) const {
106   return node_ != that.node_;
107 }
108 
109 template <typename T, ListNode<T> (T::*M)>
~ListHead()110 ListHead<T, M>::~ListHead() {
111   while (IsEmpty() == false)
112     head_.next_->Remove();
113 }
114 
115 template <typename T, ListNode<T> (T::*M)>
PushBack(T * element)116 void ListHead<T, M>::PushBack(T* element) {
117   ListNode<T>* that = &(element->*M);
118   head_.prev_->next_ = that;
119   that->prev_ = head_.prev_;
120   that->next_ = &head_;
121   head_.prev_ = that;
122 }
123 
124 template <typename T, ListNode<T> (T::*M)>
PushFront(T * element)125 void ListHead<T, M>::PushFront(T* element) {
126   ListNode<T>* that = &(element->*M);
127   head_.next_->prev_ = that;
128   that->prev_ = &head_;
129   that->next_ = head_.next_;
130   head_.next_ = that;
131 }
132 
133 template <typename T, ListNode<T> (T::*M)>
IsEmpty()134 bool ListHead<T, M>::IsEmpty() const {
135   return head_.IsEmpty();
136 }
137 
138 template <typename T, ListNode<T> (T::*M)>
PopFront()139 T* ListHead<T, M>::PopFront() {
140   if (IsEmpty())
141     return nullptr;
142   ListNode<T>* node = head_.next_;
143   node->Remove();
144   return ContainerOf(M, node);
145 }
146 
147 template <typename T, ListNode<T> (T::*M)>
begin()148 typename ListHead<T, M>::Iterator ListHead<T, M>::begin() const {
149   return Iterator(head_.next_);
150 }
151 
152 template <typename T, ListNode<T> (T::*M)>
end()153 typename ListHead<T, M>::Iterator ListHead<T, M>::end() const {
154   return Iterator(const_cast<ListNode<T>*>(&head_));
155 }
156 
157 template <typename Inner, typename Outer>
OffsetOf(Inner Outer::* field)158 constexpr uintptr_t OffsetOf(Inner Outer::*field) {
159   return reinterpret_cast<uintptr_t>(&(static_cast<Outer*>(nullptr)->*field));
160 }
161 
162 template <typename Inner, typename Outer>
ContainerOfHelper(Inner Outer::* field,Inner * pointer)163 ContainerOfHelper<Inner, Outer>::ContainerOfHelper(Inner Outer::*field,
164                                                    Inner* pointer)
165     : pointer_(
166         reinterpret_cast<Outer*>(
167             reinterpret_cast<uintptr_t>(pointer) - OffsetOf(field))) {}
168 
169 template <typename Inner, typename Outer>
170 template <typename TypeName>
171 ContainerOfHelper<Inner, Outer>::operator TypeName*() const {
172   return static_cast<TypeName*>(pointer_);
173 }
174 
175 template <typename Inner, typename Outer>
ContainerOf(Inner Outer::* field,Inner * pointer)176 constexpr ContainerOfHelper<Inner, Outer> ContainerOf(Inner Outer::*field,
177                                                       Inner* pointer) {
178   return ContainerOfHelper<Inner, Outer>(field, pointer);
179 }
180 
OneByteString(v8::Isolate * isolate,const char * data,int length)181 inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
182                                            const char* data,
183                                            int length) {
184   return v8::String::NewFromOneByte(isolate,
185                                     reinterpret_cast<const uint8_t*>(data),
186                                     v8::NewStringType::kNormal,
187                                     length).ToLocalChecked();
188 }
189 
OneByteString(v8::Isolate * isolate,const signed char * data,int length)190 inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
191                                            const signed char* data,
192                                            int length) {
193   return v8::String::NewFromOneByte(isolate,
194                                     reinterpret_cast<const uint8_t*>(data),
195                                     v8::NewStringType::kNormal,
196                                     length).ToLocalChecked();
197 }
198 
OneByteString(v8::Isolate * isolate,const unsigned char * data,int length)199 inline v8::Local<v8::String> OneByteString(v8::Isolate* isolate,
200                                            const unsigned char* data,
201                                            int length) {
202   return v8::String::NewFromOneByte(
203              isolate, data, v8::NewStringType::kNormal, length)
204       .ToLocalChecked();
205 }
206 
SwapBytes16(char * data,size_t nbytes)207 void SwapBytes16(char* data, size_t nbytes) {
208   CHECK_EQ(nbytes % 2, 0);
209 
210 #if defined(_MSC_VER)
211   int align = reinterpret_cast<uintptr_t>(data) % sizeof(uint16_t);
212   if (align == 0) {
213     // MSVC has no strict aliasing, and is able to highly optimize this case.
214     uint16_t* data16 = reinterpret_cast<uint16_t*>(data);
215     size_t len16 = nbytes / sizeof(*data16);
216     for (size_t i = 0; i < len16; i++) {
217       data16[i] = BSWAP_2(data16[i]);
218     }
219     return;
220   }
221 #endif
222 
223   uint16_t temp;
224   for (size_t i = 0; i < nbytes; i += sizeof(temp)) {
225     memcpy(&temp, &data[i], sizeof(temp));
226     temp = BSWAP_2(temp);
227     memcpy(&data[i], &temp, sizeof(temp));
228   }
229 }
230 
SwapBytes32(char * data,size_t nbytes)231 void SwapBytes32(char* data, size_t nbytes) {
232   CHECK_EQ(nbytes % 4, 0);
233 
234 #if defined(_MSC_VER)
235   int align = reinterpret_cast<uintptr_t>(data) % sizeof(uint32_t);
236   // MSVC has no strict aliasing, and is able to highly optimize this case.
237   if (align == 0) {
238     uint32_t* data32 = reinterpret_cast<uint32_t*>(data);
239     size_t len32 = nbytes / sizeof(*data32);
240     for (size_t i = 0; i < len32; i++) {
241       data32[i] = BSWAP_4(data32[i]);
242     }
243     return;
244   }
245 #endif
246 
247   uint32_t temp;
248   for (size_t i = 0; i < nbytes; i += sizeof(temp)) {
249     memcpy(&temp, &data[i], sizeof(temp));
250     temp = BSWAP_4(temp);
251     memcpy(&data[i], &temp, sizeof(temp));
252   }
253 }
254 
SwapBytes64(char * data,size_t nbytes)255 void SwapBytes64(char* data, size_t nbytes) {
256   CHECK_EQ(nbytes % 8, 0);
257 
258 #if defined(_MSC_VER)
259   int align = reinterpret_cast<uintptr_t>(data) % sizeof(uint64_t);
260   if (align == 0) {
261     // MSVC has no strict aliasing, and is able to highly optimize this case.
262     uint64_t* data64 = reinterpret_cast<uint64_t*>(data);
263     size_t len64 = nbytes / sizeof(*data64);
264     for (size_t i = 0; i < len64; i++) {
265       data64[i] = BSWAP_8(data64[i]);
266     }
267     return;
268   }
269 #endif
270 
271   uint64_t temp;
272   for (size_t i = 0; i < nbytes; i += sizeof(temp)) {
273     memcpy(&temp, &data[i], sizeof(temp));
274     temp = BSWAP_8(temp);
275     memcpy(&data[i], &temp, sizeof(temp));
276   }
277 }
278 
ToLower(char c)279 char ToLower(char c) {
280   return c >= 'A' && c <= 'Z' ? c + ('a' - 'A') : c;
281 }
282 
ToLower(const std::string & in)283 std::string ToLower(const std::string& in) {
284   std::string out(in.size(), 0);
285   for (size_t i = 0; i < in.size(); ++i)
286     out[i] = ToLower(in[i]);
287   return out;
288 }
289 
ToUpper(char c)290 char ToUpper(char c) {
291   return c >= 'a' && c <= 'z' ? (c - 'a') + 'A' : c;
292 }
293 
ToUpper(const std::string & in)294 std::string ToUpper(const std::string& in) {
295   std::string out(in.size(), 0);
296   for (size_t i = 0; i < in.size(); ++i)
297     out[i] = ToUpper(in[i]);
298   return out;
299 }
300 
StringEqualNoCase(const char * a,const char * b)301 bool StringEqualNoCase(const char* a, const char* b) {
302   while (ToLower(*a) == ToLower(*b++)) {
303     if (*a++ == '\0')
304       return true;
305   }
306   return false;
307 }
308 
StringEqualNoCaseN(const char * a,const char * b,size_t length)309 bool StringEqualNoCaseN(const char* a, const char* b, size_t length) {
310   for (size_t i = 0; i < length; i++) {
311     if (ToLower(a[i]) != ToLower(b[i]))
312       return false;
313     if (a[i] == '\0')
314       return true;
315   }
316   return true;
317 }
318 
319 template <typename T>
MultiplyWithOverflowCheck(T a,T b)320 inline T MultiplyWithOverflowCheck(T a, T b) {
321   auto ret = a * b;
322   if (a != 0)
323     CHECK_EQ(b, ret / a);
324 
325   return ret;
326 }
327 
328 // These should be used in our code as opposed to the native
329 // versions as they abstract out some platform and or
330 // compiler version specific functionality.
331 // malloc(0) and realloc(ptr, 0) have implementation-defined behavior in
332 // that the standard allows them to either return a unique pointer or a
333 // nullptr for zero-sized allocation requests.  Normalize by always using
334 // a nullptr.
335 template <typename T>
UncheckedRealloc(T * pointer,size_t n)336 T* UncheckedRealloc(T* pointer, size_t n) {
337   size_t full_size = MultiplyWithOverflowCheck(sizeof(T), n);
338 
339   if (full_size == 0) {
340     free(pointer);
341     return nullptr;
342   }
343 
344   void* allocated = realloc(pointer, full_size);
345 
346   if (UNLIKELY(allocated == nullptr)) {
347     // Tell V8 that memory is low and retry.
348     LowMemoryNotification();
349     allocated = realloc(pointer, full_size);
350   }
351 
352   return static_cast<T*>(allocated);
353 }
354 
355 // As per spec realloc behaves like malloc if passed nullptr.
356 template <typename T>
UncheckedMalloc(size_t n)357 inline T* UncheckedMalloc(size_t n) {
358   if (n == 0) n = 1;
359   return UncheckedRealloc<T>(nullptr, n);
360 }
361 
362 template <typename T>
UncheckedCalloc(size_t n)363 inline T* UncheckedCalloc(size_t n) {
364   if (n == 0) n = 1;
365   MultiplyWithOverflowCheck(sizeof(T), n);
366   return static_cast<T*>(calloc(n, sizeof(T)));
367 }
368 
369 template <typename T>
Realloc(T * pointer,size_t n)370 inline T* Realloc(T* pointer, size_t n) {
371   T* ret = UncheckedRealloc(pointer, n);
372   CHECK_IMPLIES(n > 0, ret != nullptr);
373   return ret;
374 }
375 
376 template <typename T>
Malloc(size_t n)377 inline T* Malloc(size_t n) {
378   T* ret = UncheckedMalloc<T>(n);
379   CHECK_IMPLIES(n > 0, ret != nullptr);
380   return ret;
381 }
382 
383 template <typename T>
Calloc(size_t n)384 inline T* Calloc(size_t n) {
385   T* ret = UncheckedCalloc<T>(n);
386   CHECK_IMPLIES(n > 0, ret != nullptr);
387   return ret;
388 }
389 
390 // Shortcuts for char*.
Malloc(size_t n)391 inline char* Malloc(size_t n) { return Malloc<char>(n); }
Calloc(size_t n)392 inline char* Calloc(size_t n) { return Calloc<char>(n); }
UncheckedMalloc(size_t n)393 inline char* UncheckedMalloc(size_t n) { return UncheckedMalloc<char>(n); }
UncheckedCalloc(size_t n)394 inline char* UncheckedCalloc(size_t n) { return UncheckedCalloc<char>(n); }
395 
396 // This is a helper in the .cc file so including util-inl.h doesn't include more
397 // headers than we really need to.
398 void ThrowErrStringTooLong(v8::Isolate* isolate);
399 
ToV8Value(v8::Local<v8::Context> context,const std::string & str,v8::Isolate * isolate)400 v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
401                                     const std::string& str,
402                                     v8::Isolate* isolate) {
403   if (isolate == nullptr) isolate = context->GetIsolate();
404   if (UNLIKELY(str.size() >= static_cast<size_t>(v8::String::kMaxLength))) {
405     // V8 only has a TODO comment about adding an exception when the maximum
406     // string size is exceeded.
407     ThrowErrStringTooLong(isolate);
408     return v8::MaybeLocal<v8::Value>();
409   }
410 
411   return v8::String::NewFromUtf8(
412              isolate, str.data(), v8::NewStringType::kNormal, str.size())
413       .FromMaybe(v8::Local<v8::String>());
414 }
415 
416 template <typename T>
ToV8Value(v8::Local<v8::Context> context,const std::vector<T> & vec,v8::Isolate * isolate)417 v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
418                                     const std::vector<T>& vec,
419                                     v8::Isolate* isolate) {
420   if (isolate == nullptr) isolate = context->GetIsolate();
421   v8::EscapableHandleScope handle_scope(isolate);
422 
423   MaybeStackBuffer<v8::Local<v8::Value>, 128> arr(vec.size());
424   arr.SetLength(vec.size());
425   for (size_t i = 0; i < vec.size(); ++i) {
426     if (!ToV8Value(context, vec[i], isolate).ToLocal(&arr[i]))
427       return v8::MaybeLocal<v8::Value>();
428   }
429 
430   return handle_scope.Escape(v8::Array::New(isolate, arr.out(), arr.length()));
431 }
432 
433 template <typename T, typename U>
ToV8Value(v8::Local<v8::Context> context,const std::unordered_map<T,U> & map,v8::Isolate * isolate)434 v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
435                                     const std::unordered_map<T, U>& map,
436                                     v8::Isolate* isolate) {
437   if (isolate == nullptr) isolate = context->GetIsolate();
438   v8::EscapableHandleScope handle_scope(isolate);
439 
440   v8::Local<v8::Map> ret = v8::Map::New(isolate);
441   for (const auto& item : map) {
442     v8::Local<v8::Value> first, second;
443     if (!ToV8Value(context, item.first, isolate).ToLocal(&first) ||
444         !ToV8Value(context, item.second, isolate).ToLocal(&second) ||
445         ret->Set(context, first, second).IsEmpty()) {
446       return v8::MaybeLocal<v8::Value>();
447     }
448   }
449 
450   return handle_scope.Escape(ret);
451 }
452 
453 template <typename T, typename >
ToV8Value(v8::Local<v8::Context> context,const T & number,v8::Isolate * isolate)454 v8::MaybeLocal<v8::Value> ToV8Value(v8::Local<v8::Context> context,
455                                     const T& number,
456                                     v8::Isolate* isolate) {
457   if (isolate == nullptr) isolate = context->GetIsolate();
458 
459   using Limits = std::numeric_limits<T>;
460   // Choose Uint32, Int32, or Double depending on range checks.
461   // These checks should all collapse at compile time.
462   if (static_cast<uint32_t>(Limits::max()) <=
463           std::numeric_limits<uint32_t>::max() &&
464       static_cast<uint32_t>(Limits::min()) >=
465           std::numeric_limits<uint32_t>::min() && Limits::is_exact) {
466     return v8::Integer::NewFromUnsigned(isolate, static_cast<uint32_t>(number));
467   }
468 
469   if (static_cast<int32_t>(Limits::max()) <=
470           std::numeric_limits<int32_t>::max() &&
471       static_cast<int32_t>(Limits::min()) >=
472           std::numeric_limits<int32_t>::min() && Limits::is_exact) {
473     return v8::Integer::New(isolate, static_cast<int32_t>(number));
474   }
475 
476   return v8::Number::New(isolate, static_cast<double>(number));
477 }
478 
SlicedArguments(const v8::FunctionCallbackInfo<v8::Value> & args,size_t start)479 SlicedArguments::SlicedArguments(
480     const v8::FunctionCallbackInfo<v8::Value>& args, size_t start) {
481   const size_t length = static_cast<size_t>(args.Length());
482   if (start >= length) return;
483   const size_t size = length - start;
484 
485   AllocateSufficientStorage(size);
486   for (size_t i = 0; i < size; ++i)
487     (*this)[i] = args[i + start];
488 }
489 
490 template <typename T, size_t S>
ArrayBufferViewContents(v8::Local<v8::Value> value)491 ArrayBufferViewContents<T, S>::ArrayBufferViewContents(
492     v8::Local<v8::Value> value) {
493   CHECK(value->IsArrayBufferView());
494   Read(value.As<v8::ArrayBufferView>());
495 }
496 
497 template <typename T, size_t S>
ArrayBufferViewContents(v8::Local<v8::Object> value)498 ArrayBufferViewContents<T, S>::ArrayBufferViewContents(
499     v8::Local<v8::Object> value) {
500   CHECK(value->IsArrayBufferView());
501   Read(value.As<v8::ArrayBufferView>());
502 }
503 
504 template <typename T, size_t S>
ArrayBufferViewContents(v8::Local<v8::ArrayBufferView> abv)505 ArrayBufferViewContents<T, S>::ArrayBufferViewContents(
506     v8::Local<v8::ArrayBufferView> abv) {
507   Read(abv);
508 }
509 
510 template <typename T, size_t S>
Read(v8::Local<v8::ArrayBufferView> abv)511 void ArrayBufferViewContents<T, S>::Read(v8::Local<v8::ArrayBufferView> abv) {
512   static_assert(sizeof(T) == 1, "Only supports one-byte data at the moment");
513   length_ = abv->ByteLength();
514   if (length_ > sizeof(stack_storage_) || abv->HasBuffer()) {
515     data_ = static_cast<T*>(abv->Buffer()->GetContents().Data()) +
516         abv->ByteOffset();
517   } else {
518     abv->CopyContents(stack_storage_, sizeof(stack_storage_));
519     data_ = stack_storage_;
520   }
521 }
522 
523 }  // namespace node
524 
525 #endif  // defined(NODE_WANT_INTERNALS) && NODE_WANT_INTERNALS
526 
527 #endif  // SRC_UTIL_INL_H_
528