1# Regulator 2 3 4## Overview 5 6### Regulator 7 8The regulator module controls the voltage and current supplies of some devices in the system. 9 10### Basic Concepts 11 12The regulator module controls the voltage and current supplies of some devices in the system. In an embedded system (especially a mobile phone), it is important to control the power consumption, which directly affects the battery endurance. You can use a regulator to shut down the power supply to an idle module in the system or reduce the voltage and current for the module. 13 14### Working Principles 15 16In the Hardware Driver Foundation (HDF), the regulator module uses the unified service mode for API adaptation. In this mode, a device service is used as the regulator manager to handle external access requests in a unified manner, which is reflected in the configuration file. The unified service mode applies to the scenario where there are many device objects of the same type, for example, when the regulator has more than 10 controllers. If the independent service mode is used, more device nodes need to be configured and more memory resources will be consumed by services. 17 18The regulator module is divided into the following layers: 19 20- The interface layer provides APIs for opening or closing a device and writing data. 21- The core layer provides the capabilities of binding, initializing, and releasing devices. 22- The adaptation layer implements other functions. 23 24NOTE<br/>The core layer can call the functions of the interface layer and uses the hook to call functions of the adaptation layer. In this way, the adaptation layer can indirectly call the functions of the interface layer, but the interface layer cannot call the functions of the adaptation layer. 25 26**Figure 1** Unified service mode 27 28 29 30 31 32### Constraints 33 34Currently, the regulator module supports only the kernels (LiteOS) of mini and small systems. 35 36## Development Guidelines 37 38### When to Use 39 40The regulator module controls the voltage and current supplies of some devices in the system. 41 42### Available APIs 43 44The functions in **RegulatorMethod** are used to call the corresponding regulator driver functions: 45 46**RegulatorMethod** structure: 47 48``` 49struct RegulatorMethod { 50 int32_t (*open)(struct RegulatorNode *node); 51 int32_t (*close)(struct RegulatorNode *node); 52 int32_t (*release)(struct RegulatorNode *node); 53 int32_t (*enable)(struct RegulatorNode *node); 54 int32_t (*disable)(struct RegulatorNode *node); 55 int32_t (*forceDisable)(struct RegulatorNode *node); 56 int32_t (*setVoltage)(struct RegulatorNode *node, uint32_t minUv, uint32_t maxUv); 57 int32_t (*getVoltage)(struct RegulatorNode *node, uint32_t *voltage); 58 int32_t (*setCurrent)(struct RegulatorNode *node, uint32_t minUa, uint32_t maxUa); 59 int32_t (*getCurrent)(struct RegulatorNode *node, uint32_t *regCurrent); 60 int32_t (*getStatus)(struct RegulatorNode *node, uint32_t *status); 61}; 62``` 63 64**Table 1** Description of the RegulatorMethod structure 65 66 67| Method | Input Parameter | Return Value | Description | 68| ------------ | ------------------------------------------------------------ | ------------------ | ---------------- | 69| open | **node**: structure pointer to the regulator node at the core layer. | HDF_STATUS| Opens a device. | 70| close | **node**: structure pointer to the regulator node at the core layer. | HDF_STATUS| Closes a device. | 71| release | **node**: structure pointer to the regulator node at the core layer. | HDF_STATUS| Releases a device handle. | 72| enable | **node**: structure pointer to the regulator node at the core layer. | HDF_STATUS| Enabling a Regulator | 73| disable | **node**: structure pointer to the regulator node at the core layer. | HDF_STATUS| Disabling a Regulator | 74| forceDisable | **node**: structure pointer to the regulator node at the core layer. | HDF_STATUS| Forcibly Disabling a Regulator | 75| setVoltage | **node**: structure pointer to the regulator node at the core layer.<br>**minUv**: minimum voltage to set. It is a uint32_t variable.<br>**maxUv**: maximum voltage to set. It is a uint32_t variable.| HDF_STATUS| Sets the output voltage range.| 76| getVoltage | **node**: structure pointer to the regulator node at the core layer.<br>**voltage**: pointer to the output voltage value.| HDF_STATUS| Obtains the voltage. | 77| setCurrent | **node**: structure pointer to the regulator node at the core layer.<br>**minUa**: minimum current to set. It is a uint32_t variable.<br>**maxUa**: maximum current to set. It is a uint32_t variable.| HDF_STATUS| Sets the output current range.| 78| getCurrent | **node**: structure pointer to the regulator node at the core layer.<br>**regCurrent**: pointer to the output current, which is of the uint32_t type.| HDF_STATUS| Obtains the current. | 79| getStatus | **node**: structure pointer to the regulator node at the core layer.<br>**status**: pointer to the output status, which is of the uint32_t type.| HDF_STATUS| Obtains the device status. | 80 81### How to Develop 82 83The regulator module adaptation procedure is as follows: 84 85- Instantiate the driver entry. 86- Configure attribute files. 87- Instantiate the core layer APIs. 88- Debug the driver. 89 901. Instantiate the driver entry. 91 92 Instantiate the driver entry. The driver entry must be a global variable of the **HdfDriverEntry** type (defined in **hdf_device_desc.h**), and the value of **moduleName** must be the same as that in **device_info.hcs**. In the HDF, the start address of each **HdfDriverEntry** object of all loaded drivers are collected to form a segment address space similar to an array for the upper layer to invoke. 93 94 Generally, the HDF calls the **Init()** function to load the driver. If **Init()** fails to be called, the HDF calls **Release** to release driver resources and exit. 95 96 ``` 97 struct HdfDriverEntry g_regulatorDriverEntry = { 98 .moduleVersion = 1, 99 .moduleName = "virtual_regulator_driver",// (Mandatory) The value must be the same as that of moduleName in the .hcs file. 100 .Init = VirtualRegulatorInit, 101 .Release = VirtualRegulatorRelease, 102 }; 103 // Call HDF_INIT to register the driver entry with the HDF framework. 104 HDF_INIT(g_regulatorDriverEntry); 105 ``` 106 1072. Configure attribute files. 108 109 - Add the device node description to the **vendor/hisilicon/hispark_taurus/hdf_config/device_info/device_info.hcs** file. 110 111 The **deviceNode** information is related to registration of the driver entry. The device attribute values are closely related to the default values or value ranges of the **RegulatorNode** members at the core layer. 112 113 In the unified service mode, the first device node in the **device_info.hcs** file must be the regulator manager. The parameters must be set as follows: 114 115 | Member | Value | 116 | --------------- | ------------------------------------------------------------ | 117 | policy | **0**, which indicates that no service is published. | 118 | priority | Driver startup priority. The value range is 0 to 200. A larger value indicates a lower priority. If the priorities are the same, the device loading sequence is not ensured.| 119 | permission | Driver permission. | 120 | moduleName | The value is **HDF_PLATFORM_REGULATOR_MANAGER**. | 121 | serviceName | The value is **HDF_PLATFORM_REGULATOR_MANAGER**. | 122 | deviceMatchAttr | Reserved. | 123 124 Configure regulator controller information from the second node. This node specifies a type of regulator controllers rather than a specific regulator controller. In this example, there is only one regulator device. If there are multiple regulator devices, you need to add the **deviceNode** information to the **device_info** file and add the corresponding device attributes to the **regulator\_config** file. 125 126 - **device_info.hcs** configuration reference 127 128 ``` 129 root { 130 device_info { 131 platform :: host { 132 hostName = "platform_host"; 133 priority = 50; 134 device_regulator :: device { 135 device0 :: deviceNode { // Configure an HDF device node for each regulator controller. 136 policy = 1; // 2: visible in user mode; 1: visible in kernel mode; 0: no service required. 137 priority = 50; // Driver startup priority. 138 permission = 0644; // Permission to create device nodes of the driver. 139 /* (Mandatory) Driver name, which must be the same as the moduleName in the driver entry. */ 140 moduleName = "HDF_PLATFORM_REGULATOR_MANAGER"; 141 serviceName = "HDF_PLATFORM_REGULATOR_MANAGER"; // (Mandatory) Unique name of the service published by the driver. 142 /* (Mandatory) Set the controller private data, which must be same as that in regulator_config.hcs. */ 143 deviceMatchAttr = "hdf_platform_regulator_manager"; 144 } 145 device1 :: deviceNode { 146 policy = 0; 147 priority = 55; 148 permission = 0644; 149 moduleName = "linux_regulator_adapter"; 150 deviceMatchAttr = "linux_regulator_adapter"; 151 } 152 } 153 } 154 } 155 } 156 ``` 157 158 - **regulator\_config.hcs** reference: 159 160 ``` 161 root { 162 platform { 163 regulator_config { 164 match_attr = "linux_regulator_adapter"; 165 template regulator_controller { // (Mandatory) Template configuration. In the template, you can configure the common parameters shared by device nodes. 166 device_num = 1; 167 name = ""; 168 devName = "regulator_adapter_consumer01"; 169 supplyName = ""; 170 mode = 1; 171 minUv = 0; 172 maxUv = 20000; 173 minUa = 0; 174 maxUa = 0; 175 } 176 controller_0x130d0000 :: regulator_controller { 177 device_num = 1; 178 name = "regulator_adapter_1"; 179 devName = "regulator_adapter_consumer01"; 180 supplyName = "virtual-regulator-hdf-adapter"; 181 mode = 1; 182 minUv = 1000; 183 maxUv = 50000; 184 minUa = 0; 185 maxUa = 0; 186 } 187 /* Each regulator controller corresponds to a controller node. If there are multiple regulator controllers, add the corresponding controller nodes one by one.*/ 188 controller_0x130d0001 :: regulator_controller { 189 device_num = 1; 190 name = "regulator_adapter_2"; 191 devName = "regulator_adapter_consumer01"; 192 supplyName = "virtual2-regulator-hdf-adapter"; 193 mode = 2; 194 minUv = 0; 195 maxUv = 0; 196 minUa = 1000; 197 maxUa = 50000; 198 } 199 } 200 } 201 } 202 ``` 203 2043. Instantiate the APIs of the core layer. 205 206 - Initialize the **RegulatorNode** object at the core layer, including initializing the vendor custom structure (passing parameters and data), instantiating **RegulatorMethod** (used to call underlying functions of the driver) in **PinCntlr**, and implementing the **HdfDriverEntry** member functions (**Bind**, **Init**, and **Release**). 207 208 - Initializing the vendor custom structure 209 210 The **RegulatorNode** structure holds parameters and data for the driver. The HDF obtains the values in **regulator\_config.hcs** using **DeviceResourceIface**. 211 212 ``` 213 // RegulatorNode is the controller structure at the core layer. Its members are assigned with values by using the Init function. 214 struct RegulatorNode { 215 struct RegulatorDesc regulatorInfo; 216 struct DListHead node; 217 struct RegulatorMethod *ops; 218 void *priv; 219 struct OsalMutex lock; 220 }; 221 222 struct RegulatorDesc { 223 const char *name; /* Regulator name. */ 224 const char *parentName; /* Regulator parent node name. */ 225 struct RegulatorConstraints constraints; /* Regulator constraint information. */ 226 uint32_t minUv; /* Minimum output voltage. */ 227 uint32_t maxUv; /* Maximum output voltage. */ 228 uint32_t minUa; /* Minimum output current. */ 229 uint32_t maxUa; /* Maximum output current. */ 230 uint32_t status; /* Regulator status, which can be on or off. */ 231 int useCount; 232 int consumerRegNums; /* Number of regulator consumers. */ 233 RegulatorStatusChangecb cb; /* Variable used to notify the regulator status changes. */ 234 }; 235 236 struct RegulatorConstraints { 237 uint8_t alwaysOn; /* Whether the regulator is always on. */ 238 uint8_t mode; /* Voltage or current. */ 239 uint32_t minUv; /* Minimum output voltage allowed. */ 240 uint32_t maxUv; /* Maximum output voltage allowed. */ 241 uint32_t minUa; /* Minimum output current allowed. */ 242 uint32_t maxUa; /* Maximum output current allowed. */ 243 }; 244 ``` 245 246 247 248 - Instantiating **RegulatorMethod** (other members are initialized by **Init**) 249 250 ```c 251 // Example of regulator_virtual.c: Instantiate the hook. 252 static struct RegulatorMethod g_method = { 253 .enable = VirtualRegulatorEnable, 254 .disable = VirtualRegulatorDisable, 255 .setVoltage = VirtualRegulatorSetVoltage, 256 .getVoltage = VirtualRegulatorGetVoltage, 257 .setCurrent = VirtualRegulatorSetCurrent, 258 .getCurrent = VirtualRegulatorGetCurrent, 259 .getStatus = VirtualRegulatorGetStatus, 260 }; 261 ``` 262 263 264 265 - **Init** function 266 267 Input parameters: 268 269 **HdfDeviceObject**, an interface parameter exposed by the driver, contains the .hcs configuration. 270 271 Return value: 272 273 **HDF\_STATUS** (The following table lists some states. For more details, see **HDF\_STATUS** in **/drivers/framework/include/utils/hdf\_base.h**.) 274 275 **Table 2** HDF\_STATUS 276 277 | State | Description | 278 | ---------------------- | -------------- | 279 | HDF_ERR_INVALID_OBJECT | Invalid controller object.| 280 | HDF_ERR_MALLOC_FAIL | Failed to allocate memory. | 281 | HDF_ERR_INVALID_PARAM | Invalid parameter. | 282 | HDF_ERR_IO | I/O error. | 283 | HDF_SUCCESS | Initialization successful. | 284 | HDF_FAILURE | Initialization failed. | 285 286 Function description: 287 288 Initializes the custom structure and **RegulatorNode** members, and adds the regulator controller by calling the **RegulatorNodeAdd** function at the core layer. 289 290 291 ```c 292 static int32_t VirtualRegulatorInit(struct HdfDeviceObject *device) 293 { 294 int32_t ret; 295 const struct DeviceResourceNode *childNode = NULL; 296 ... 297 DEV_RES_NODE_FOR_EACH_CHILD_NODE(device->property, childNode) { 298 ret = VirtualRegulatorParseAndInit(device, childNode);// (Mandatory) The implementation is as follows: 299 ... 300 } 301 ... 302 } 303 304 static int32_t VirtualRegulatorParseAndInit(struct HdfDeviceObject *device, const struct DeviceResourceNode *node) 305 { 306 int32_t ret; 307 struct RegulatorNode *regNode = NULL; 308 (void)device; 309 310 regNode = (struct RegulatorNode *)OsalMemCalloc(sizeof(*regNode));// Load the .hcs file. 311 ... 312 ret = VirtualRegulatorReadHcs(regNode, node);// Read .hcs information. 313 ... 314 regNode->priv = (void *)node; // Instantiate the node. 315 regNode->ops = &g_method; // Instantiate OPS. 316 317 ret = RegulatorNodeAdd(regNode); // Add the node. 318 ... 319 } 320 ``` 321 322 - **Release** function 323 324 Input parameters: 325 326 **HdfDeviceObject**, an interface parameter exposed by the driver, contains the .hcs configuration. 327 328 Return value: 329 330 – 331 332 Function description: 333 334 Releases memory and deletes the controller. This function assigns a value to the **Release** API in the driver entry structure. If the HDF fails to call the **Init()** function to initialize the driver, the **Release()** function can be called to release driver resources. 335 336 ```c 337 static void VirtualRegulatorRelease(struct HdfDeviceObject *device) 338 { 339 ... 340 RegulatorNodeRemoveAll();// (Mandatory) Call the function at the core layer to release regulator controller devices and services. 341 } 342 ``` 343 3444. Debug the driver. 345 346 (Optional) Verify the basic functions of the new driver, for example, whether the test cases are successful after the driver is loaded. 347 348 349