• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 # Event
2 
3 ## Basic Concepts<a name="section122115620816"></a>
4 
5 An event is a mechanism for communication between tasks. It can be used to synchronize tasks.
6 
7 In multi-task environment, synchronization is required between tasks. Events can be used for synchronization in the following cases:
8 
9 -   One-to-many synchronization: A task waits for the triggering of multiple events. A task is woken up by one or multiple events.
10 -   Many-to-many synchronization: Multiple tasks wait for the triggering of multiple events.
11 
12 The event mechanism provided by the OpenHarmony LiteOS-A event module has the following features:
13 
14 -   A task triggers or waits for an event by creating an event control block.
15 -   Events are independent of each other. The internal implementation is a 32-bit unsigned integer, and each bit indicates an event type. The 25th bit is unavailable. Therefore, a maximum of 31 event types are supported.
16 -   Events are used only for synchronization between tasks, but not for data transmission.
17 -   Writing the same event type to the event control block for multiple times is equivalent to writing the event type only once before the event control block is cleared.
18 -   Multiple tasks can read and write the same event.
19 -   The event read/write timeout mechanism is supported.
20 
21 ## Working Principles<a name="section94611116593"></a>
22 
23 ### Event Control Block<a name="section1161415384467"></a>
24 
25 ```
26 /**
27 * Event control block data structure
28   */
29 typedef struct tagEvent {
30     UINT32 uwEventID;        /* Event set, which is a collection of events processed (written and cleared). */
31     LOS_DL_LIST stEventList; /* List of tasks waiting for specific events */
32 } EVENT_CB_S, *PEVENT_CB_S;
33 ```
34 
35 ### Working Principles<a name="section187761153144617"></a>
36 
37 **Initializing an event**: An event control block is created to maintain a collection of processed events and a linked list of tasks waiting for specific events.
38 
39 **Writing an event**: When a specified event is written to the event control block, the event control block updates the event set, traverses the task linked list, and determines whether to wake up related task based on the task conditions.
40 
41 **Reading an event**: If the read event already exists, it is returned synchronously. In other cases, the return time is determined based on the timeout period and event triggering status. If the wait event condition is met before the timeout period expires, the blocked task will be directly woken up. Otherwise, the blocked task will be woken up only after the timeout period has expired.
42 
43 The input parameters  **eventMask**  and  **mode**  determine whether the condition for reading an event is met.  **eventMask**  indicates the mask of the event.  **mode**  indicates the handling mode, which can be any of the following:
44 
45 -   **LOS\_WAITMODE\_AND**: Event reading is successful only when all the events corresponding to  **eventMask**  occur. Otherwise, the task will be blocked, or an error code will be returned.
46 -   **LOS\_WAITMODE\_OR**: Event reading is successful when any of the events corresponding to  **eventMask**  occurs. Otherwise, the task will be blocked, or an error code will be returned.
47 -   **LOS\_WAITMODE\_CLR**: This mode must be used with  **LOS\_WAITMODE\_AND**  or  **LOS\_WAITMODE\_OR**  \(LOS\_WAITMODE\_AND | LOS\_WAITMODE\_CLR or LOS\_WAITMODE\_OR | LOS\_WAITMODE\_CLR\). In this mode, if  **LOS\_WAITMODE\_AND**  or  **LOS\_WAITMODE\_OR**  is successful, the corresponding event type bit in the event control block will be automatically cleared.
48 
49 **Clearing events**: Clear the event set of the event control block based on the specified mask. If the mask is  **0**, the event set will be cleared. If the mask is  **0xffff**, no event will be cleared, and the event set remains unchanged.
50 
51 **Destroying an event**: Destroy the specified event control block.
52 
53 **Figure  1**  Event working mechanism for small systems<a name="fig17799175324612"></a>
54 ![](figures/event-working-mechanism-for-small-systems.png "event-working-mechanism-for-small-systems")
55 
56 ## Development Guidelines<a name="section44744471891"></a>
57 
58 ### Available APIs<a name="section172373513919"></a>
59 
60 The following table describes APIs available for the OpenHarmony LiteOS-A event module.
61 
62 **Table  1**  Event module APIs
63 
64 <a name="table1415203765610"></a>
65 <table><thead align="left"><tr id="row134151837125611"><th class="cellrowborder" valign="top" width="12.85128512851285%" id="mcps1.2.4.1.1"><p id="p16415637105612"><a name="p16415637105612"></a><a name="p16415637105612"></a>Function</p>
66 </th>
67 <th class="cellrowborder" valign="top" width="29.8029802980298%" id="mcps1.2.4.1.2"><p id="p11415163718562"><a name="p11415163718562"></a><a name="p11415163718562"></a>API</p>
68 </th>
69 <th class="cellrowborder" valign="top" width="57.34573457345735%" id="mcps1.2.4.1.3"><p id="p1641533755612"><a name="p1641533755612"></a><a name="p1641533755612"></a>Description</p>
70 </th>
71 </tr>
72 </thead>
73 <tbody><tr id="row0415737175610"><td class="cellrowborder" valign="top" width="12.85128512851285%" headers="mcps1.2.4.1.1 "><p id="p9598124913544"><a name="p9598124913544"></a><a name="p9598124913544"></a>Initializing events</p>
74 </td>
75 <td class="cellrowborder" valign="top" width="29.8029802980298%" headers="mcps1.2.4.1.2 "><p id="p77891354175812"><a name="p77891354175812"></a><a name="p77891354175812"></a>LOS_EventInit</p>
76 </td>
77 <td class="cellrowborder" valign="top" width="57.34573457345735%" headers="mcps1.2.4.1.3 "><p id="p2334141425515"><a name="p2334141425515"></a><a name="p2334141425515"></a>Initializes an event control block.</p>
78 </td>
79 </tr>
80 <tr id="row421753455514"><td class="cellrowborder" rowspan="2" valign="top" width="12.85128512851285%" headers="mcps1.2.4.1.1 "><p id="p13441112105813"><a name="p13441112105813"></a><a name="p13441112105813"></a>Reading/Writing events</p>
81 </td>
82 <td class="cellrowborder" valign="top" width="29.8029802980298%" headers="mcps1.2.4.1.2 "><p id="p17234205011559"><a name="p17234205011559"></a><a name="p17234205011559"></a>LOS_EventRead</p>
83 </td>
84 <td class="cellrowborder" valign="top" width="57.34573457345735%" headers="mcps1.2.4.1.3 "><p id="p1621275475517"><a name="p1621275475517"></a><a name="p1621275475517"></a>Reads a specified type of event, with the timeout period of a relative time period in ticks.</p>
85 </td>
86 </tr>
87 <tr id="row13129193718555"><td class="cellrowborder" valign="top" headers="mcps1.2.4.1.1 "><p id="p17477615564"><a name="p17477615564"></a><a name="p17477615564"></a>LOS_EventWrite</p>
88 </td>
89 <td class="cellrowborder" valign="top" headers="mcps1.2.4.1.2 "><p id="p10271958567"><a name="p10271958567"></a><a name="p10271958567"></a>Writes a specified type of event.</p>
90 </td>
91 </tr>
92 <tr id="row1831124035511"><td class="cellrowborder" valign="top" width="12.85128512851285%" headers="mcps1.2.4.1.1 "><p id="p1313401559"><a name="p1313401559"></a><a name="p1313401559"></a>Clearing events</p>
93 </td>
94 <td class="cellrowborder" valign="top" width="29.8029802980298%" headers="mcps1.2.4.1.2 "><p id="p7788152419567"><a name="p7788152419567"></a><a name="p7788152419567"></a>LOS_EventClear</p>
95 </td>
96 <td class="cellrowborder" valign="top" width="57.34573457345735%" headers="mcps1.2.4.1.3 "><p id="p14862153525620"><a name="p14862153525620"></a><a name="p14862153525620"></a>Clears a specified type of event.</p>
97 </td>
98 </tr>
99 <tr id="row1525316428553"><td class="cellrowborder" valign="top" width="12.85128512851285%" headers="mcps1.2.4.1.1 "><p id="p4253144265519"><a name="p4253144265519"></a><a name="p4253144265519"></a>Checking the event mask</p>
100 </td>
101 <td class="cellrowborder" valign="top" width="29.8029802980298%" headers="mcps1.2.4.1.2 "><p id="p768611115563"><a name="p768611115563"></a><a name="p768611115563"></a>LOS_EventPoll</p>
102 </td>
103 <td class="cellrowborder" valign="top" width="57.34573457345735%" headers="mcps1.2.4.1.3 "><p id="p13998115465617"><a name="p13998115465617"></a><a name="p13998115465617"></a>Returns whether the event input by the user meets the expectation based on the event ID, event mask, and read mode passed by the user.</p>
104 </td>
105 </tr>
106 <tr id="row6447135825614"><td class="cellrowborder" valign="top" width="12.85128512851285%" headers="mcps1.2.4.1.1 "><p id="p104471658155615"><a name="p104471658155615"></a><a name="p104471658155615"></a>Destroying events</p>
107 </td>
108 <td class="cellrowborder" valign="top" width="29.8029802980298%" headers="mcps1.2.4.1.2 "><p id="p15259169573"><a name="p15259169573"></a><a name="p15259169573"></a>LOS_EventDestroy</p>
109 </td>
110 <td class="cellrowborder" valign="top" width="57.34573457345735%" headers="mcps1.2.4.1.3 "><p id="p32592615573"><a name="p32592615573"></a><a name="p32592615573"></a>Destroys a specified event control block.</p>
111 </td>
112 </tr>
113 </tbody>
114 </table>
115 
116 ### How to Develop<a name="section1118215161013"></a>
117 
118 The typical event development process is as follows:
119 
120 1.  Initialize an event control block.
121 2.  Block a read event control block.
122 3.  Write related events.
123 4.  Wake up a blocked task, read the event, and check whether the event meets conditions.
124 5.  Handle the event control block.
125 6.  Destroy an event control block.
126 
127 >![](../public_sys-resources/icon-note.gif) **NOTE:**
128 >-   When an event is read or written, the 25th bit of the event is reserved and cannot be set.
129 >-   Repeated writes of the same event are treated as one write.
130 
131 ## Development Example<a name="section5837165132911"></a>
132 
133 ### Example Description<a name="section128221510145718"></a>
134 
135 In this example, run the  **Example\_TaskEntry**  task to create the  **Example\_Event**  task, run the  **Example\_Event**  task to read an event to trigger task switching, and run the  **Example\_TaskEntry**  task to write an event. You can understand the task switching during event operations based on the sequence in which logs are recorded.
136 
137 1.  Create the  **Example\_Event**  task in the  **Example\_TaskEntry**  task with a higher priority than the  **Example\_TaskEntry**  task.
138 2.  Run the  **Example\_Event**  task to read event  **0x00000001**. Task switching is triggered to execute the  **Example\_TaskEntry**  task.
139 3.  Run the  **Example\_TaskEntry**  task to write event  **0x00000001**. Task switching is triggered to execute the  **Example\_Event**  task.
140 4.  The  **Example\_Event**  task is executed.
141 5.  The  **Example\_TaskEntry**  task is executed.
142 
143 ### Sample Code<a name="section71507479577"></a>
144 
145 The sample code is as follows:
146 
147 ```
148 #include "los_event.h"
149 #include "los_task.h"
150 #include "securec.h"
151 
152 /* Task ID*/
153 UINT32 g_testTaskId;
154 
155 /* Event control structure*/
156 EVENT_CB_S g_exampleEvent;
157 
158 /* Type of the wait event*/
159 #define EVENT_WAIT 0x00000001
160 
161 /* Example task entry function*/
162 VOID Example_Event(VOID)
163 {
164      UINT32 event;
165 
166     /* Set a timeout period for event reading to 100 ticks. If the specified event is not read within 100 ticks, the read operation times out and the task is woken up.*/
167     printf("Example_Event wait event 0x%x \n", EVENT_WAIT);
168 
169     event = LOS_EventRead(&g_exampleEvent, EVENT_WAIT, LOS_WAITMODE_AND, 100);
170     if (event == EVENT_WAIT) {
171         printf("Example_Event,read event :0x%x\n", event);
172     } else {
173         printf("Example_Event,read event timeout\n");
174     }
175 }
176 
177 UINT32 Example_EventEntry(VOID)
178 {
179     UINT32 ret;
180     TSK_INIT_PARAM_S task1;
181 
182     /* Initialize the event.*/
183     ret = LOS_EventInit(&g_exampleEvent);
184     if (ret != LOS_OK) {
185         printf("init event failed .\n");
186         return -1;
187     }
188 
189     /* Create a task.*/
190     (VOID)memset_s(&task1, sizeof(TSK_INIT_PARAM_S), 0, sizeof(TSK_INIT_PARAM_S));
191     task1.pfnTaskEntry = (TSK_ENTRY_FUNC)Example_Event;
192     task1.pcName       = "EventTsk1";
193     task1.uwStackSize  = LOSCFG_BASE_CORE_TSK_DEFAULT_STACK_SIZE;
194     task1.usTaskPrio   = 5;
195     ret = LOS_TaskCreate(&g_testTaskId, &task1);
196     if (ret != LOS_OK) {
197         printf("task create failed.\n");
198         return LOS_NOK;
199     }
200 
201     /* Write the task wait event (g_testTaskId). */
202     printf("Example_TaskEntry write event.\n");
203 
204     ret = LOS_EventWrite(&g_exampleEvent, EVENT_WAIT);
205     if (ret != LOS_OK) {
206         printf("event write failed.\n");
207         return LOS_NOK;
208     }
209 
210     /* Clear the flag.*/
211     printf("EventMask:%d\n", g_exampleEvent.uwEventID);
212     LOS_EventClear(&g_exampleEvent, ~g_exampleEvent.uwEventID);
213     printf("EventMask:%d\n", g_exampleEvent.uwEventID);
214 
215     /* Delete the task.*/
216     ret = LOS_TaskDelete(g_testTaskId);
217     if (ret != LOS_OK) {
218         printf("task delete failed.\n");
219         return LOS_NOK;
220     }
221 
222     return LOS_OK;
223 }
224 ```
225 
226 ### Verification<a name="section16570171645813"></a>
227 
228 The development is successful if the return result is as follows:
229 
230 ```
231 Example_Event wait event 0x1
232 Example_TaskEntry write event.
233 Example_Event,read event :0x1
234 EventMask:1
235 EventMask:0
236 ```
237 
238