• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018 Chen-Yu Tsai
4  *
5  * Chen-Yu Tsai <wens@csie.org>
6  *
7  * arch/arm/mach-sunxi/mc_smp.c
8  *
9  * Based on Allwinner code, arch/arm/mach-exynos/mcpm-exynos.c, and
10  * arch/arm/mach-hisi/platmcpm.c
11  * Cluster cache enable trampoline code adapted from MCPM framework
12  */
13 
14 #include <linux/arm-cci.h>
15 #include <linux/cpu_pm.h>
16 #include <linux/delay.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/irqchip/arm-gic.h>
20 #include <linux/of.h>
21 #include <linux/of_address.h>
22 #include <linux/of_device.h>
23 #include <linux/smp.h>
24 
25 #include <asm/cacheflush.h>
26 #include <asm/cp15.h>
27 #include <asm/cputype.h>
28 #include <asm/idmap.h>
29 #include <asm/smp_plat.h>
30 #include <asm/suspend.h>
31 
32 #define SUNXI_CPUS_PER_CLUSTER		4
33 #define SUNXI_NR_CLUSTERS		2
34 
35 #define POLL_USEC	100
36 #define TIMEOUT_USEC	100000
37 
38 #define CPUCFG_CX_CTRL_REG0(c)		(0x10 * (c))
39 #define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(n)	BIT(n)
40 #define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL	0xf
41 #define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7	BIT(4)
42 #define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15	BIT(0)
43 #define CPUCFG_CX_CTRL_REG1(c)		(0x10 * (c) + 0x4)
44 #define CPUCFG_CX_CTRL_REG1_ACINACTM	BIT(0)
45 #define CPUCFG_CX_STATUS(c)		(0x30 + 0x4 * (c))
46 #define CPUCFG_CX_STATUS_STANDBYWFI(n)	BIT(16 + (n))
47 #define CPUCFG_CX_STATUS_STANDBYWFIL2	BIT(0)
48 #define CPUCFG_CX_RST_CTRL(c)		(0x80 + 0x4 * (c))
49 #define CPUCFG_CX_RST_CTRL_DBG_SOC_RST	BIT(24)
50 #define CPUCFG_CX_RST_CTRL_ETM_RST(n)	BIT(20 + (n))
51 #define CPUCFG_CX_RST_CTRL_ETM_RST_ALL	(0xf << 20)
52 #define CPUCFG_CX_RST_CTRL_DBG_RST(n)	BIT(16 + (n))
53 #define CPUCFG_CX_RST_CTRL_DBG_RST_ALL	(0xf << 16)
54 #define CPUCFG_CX_RST_CTRL_H_RST	BIT(12)
55 #define CPUCFG_CX_RST_CTRL_L2_RST	BIT(8)
56 #define CPUCFG_CX_RST_CTRL_CX_RST(n)	BIT(4 + (n))
57 #define CPUCFG_CX_RST_CTRL_CORE_RST(n)	BIT(n)
58 #define CPUCFG_CX_RST_CTRL_CORE_RST_ALL	(0xf << 0)
59 
60 #define PRCM_CPU_PO_RST_CTRL(c)		(0x4 + 0x4 * (c))
61 #define PRCM_CPU_PO_RST_CTRL_CORE(n)	BIT(n)
62 #define PRCM_CPU_PO_RST_CTRL_CORE_ALL	0xf
63 #define PRCM_PWROFF_GATING_REG(c)	(0x100 + 0x4 * (c))
64 /* The power off register for clusters are different from a80 and a83t */
65 #define PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I	BIT(0)
66 #define PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I	BIT(4)
67 #define PRCM_PWROFF_GATING_REG_CORE(n)	BIT(n)
68 #define PRCM_PWR_SWITCH_REG(c, cpu)	(0x140 + 0x10 * (c) + 0x4 * (cpu))
69 #define PRCM_CPU_SOFT_ENTRY_REG		0x164
70 
71 /* R_CPUCFG registers, specific to sun8i-a83t */
72 #define R_CPUCFG_CLUSTER_PO_RST_CTRL(c)	(0x30 + (c) * 0x4)
73 #define R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(n)	BIT(n)
74 #define R_CPUCFG_CPU_SOFT_ENTRY_REG		0x01a4
75 
76 #define CPU0_SUPPORT_HOTPLUG_MAGIC0	0xFA50392F
77 #define CPU0_SUPPORT_HOTPLUG_MAGIC1	0x790DCA3A
78 
79 static void __iomem *cpucfg_base;
80 static void __iomem *prcm_base;
81 static void __iomem *sram_b_smp_base;
82 static void __iomem *r_cpucfg_base;
83 
84 extern void sunxi_mc_smp_secondary_startup(void);
85 extern void sunxi_mc_smp_resume(void);
86 static bool is_a83t;
87 
sunxi_core_is_cortex_a15(unsigned int core,unsigned int cluster)88 static bool sunxi_core_is_cortex_a15(unsigned int core, unsigned int cluster)
89 {
90 	struct device_node *node;
91 	int cpu = cluster * SUNXI_CPUS_PER_CLUSTER + core;
92 
93 	node = of_cpu_device_node_get(cpu);
94 
95 	/* In case of_cpu_device_node_get fails */
96 	if (!node)
97 		node = of_get_cpu_node(cpu, NULL);
98 
99 	if (!node) {
100 		/*
101 		 * There's no point in returning an error, since we
102 		 * would be mid way in a core or cluster power sequence.
103 		 */
104 		pr_err("%s: Couldn't get CPU cluster %u core %u device node\n",
105 		       __func__, cluster, core);
106 
107 		return false;
108 	}
109 
110 	return of_device_is_compatible(node, "arm,cortex-a15");
111 }
112 
sunxi_cpu_power_switch_set(unsigned int cpu,unsigned int cluster,bool enable)113 static int sunxi_cpu_power_switch_set(unsigned int cpu, unsigned int cluster,
114 				      bool enable)
115 {
116 	u32 reg;
117 
118 	/* control sequence from Allwinner A80 user manual v1.2 PRCM section */
119 	reg = readl(prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
120 	if (enable) {
121 		if (reg == 0x00) {
122 			pr_debug("power clamp for cluster %u cpu %u already open\n",
123 				 cluster, cpu);
124 			return 0;
125 		}
126 
127 		writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
128 		udelay(10);
129 		writel(0xfe, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
130 		udelay(10);
131 		writel(0xf8, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
132 		udelay(10);
133 		writel(0xf0, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
134 		udelay(10);
135 		writel(0x00, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
136 		udelay(10);
137 	} else {
138 		writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
139 		udelay(10);
140 	}
141 
142 	return 0;
143 }
144 
sunxi_cpu0_hotplug_support_set(bool enable)145 static void sunxi_cpu0_hotplug_support_set(bool enable)
146 {
147 	if (enable) {
148 		writel(CPU0_SUPPORT_HOTPLUG_MAGIC0, sram_b_smp_base);
149 		writel(CPU0_SUPPORT_HOTPLUG_MAGIC1, sram_b_smp_base + 0x4);
150 	} else {
151 		writel(0x0, sram_b_smp_base);
152 		writel(0x0, sram_b_smp_base + 0x4);
153 	}
154 }
155 
sunxi_cpu_powerup(unsigned int cpu,unsigned int cluster)156 static int sunxi_cpu_powerup(unsigned int cpu, unsigned int cluster)
157 {
158 	u32 reg;
159 
160 	pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
161 	if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS)
162 		return -EINVAL;
163 
164 	/* Set hotplug support magic flags for cpu0 */
165 	if (cluster == 0 && cpu == 0)
166 		sunxi_cpu0_hotplug_support_set(true);
167 
168 	/* assert processor power-on reset */
169 	reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
170 	reg &= ~PRCM_CPU_PO_RST_CTRL_CORE(cpu);
171 	writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
172 
173 	if (is_a83t) {
174 		/* assert cpu power-on reset */
175 		reg  = readl(r_cpucfg_base +
176 			     R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
177 		reg &= ~(R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu));
178 		writel(reg, r_cpucfg_base +
179 		       R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
180 		udelay(10);
181 	}
182 
183 	/* Cortex-A7: hold L1 reset disable signal low */
184 	if (!sunxi_core_is_cortex_a15(cpu, cluster)) {
185 		reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
186 		reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(cpu);
187 		writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
188 	}
189 
190 	/* assert processor related resets */
191 	reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
192 	reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST(cpu);
193 
194 	/*
195 	 * Allwinner code also asserts resets for NEON on A15. According
196 	 * to ARM manuals, asserting power-on reset is sufficient.
197 	 */
198 	if (!sunxi_core_is_cortex_a15(cpu, cluster))
199 		reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST(cpu);
200 
201 	writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
202 
203 	/* open power switch */
204 	sunxi_cpu_power_switch_set(cpu, cluster, true);
205 
206 	/* Handle A83T bit swap */
207 	if (is_a83t) {
208 		if (cpu == 0)
209 			cpu = 4;
210 	}
211 
212 	/* clear processor power gate */
213 	reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
214 	reg &= ~PRCM_PWROFF_GATING_REG_CORE(cpu);
215 	writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
216 	udelay(20);
217 
218 	/* Handle A83T bit swap */
219 	if (is_a83t) {
220 		if (cpu == 4)
221 			cpu = 0;
222 	}
223 
224 	/* de-assert processor power-on reset */
225 	reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
226 	reg |= PRCM_CPU_PO_RST_CTRL_CORE(cpu);
227 	writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
228 
229 	if (is_a83t) {
230 		reg  = readl(r_cpucfg_base +
231 			     R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
232 		reg |= R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu);
233 		writel(reg, r_cpucfg_base +
234 		       R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
235 		udelay(10);
236 	}
237 
238 	/* de-assert all processor resets */
239 	reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
240 	reg |= CPUCFG_CX_RST_CTRL_DBG_RST(cpu);
241 	reg |= CPUCFG_CX_RST_CTRL_CORE_RST(cpu);
242 	if (!sunxi_core_is_cortex_a15(cpu, cluster))
243 		reg |= CPUCFG_CX_RST_CTRL_ETM_RST(cpu);
244 	else
245 		reg |= CPUCFG_CX_RST_CTRL_CX_RST(cpu); /* NEON */
246 	writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
247 
248 	return 0;
249 }
250 
sunxi_cluster_powerup(unsigned int cluster)251 static int sunxi_cluster_powerup(unsigned int cluster)
252 {
253 	u32 reg;
254 
255 	pr_debug("%s: cluster %u\n", __func__, cluster);
256 	if (cluster >= SUNXI_NR_CLUSTERS)
257 		return -EINVAL;
258 
259 	/* For A83T, assert cluster cores resets */
260 	if (is_a83t) {
261 		reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
262 		reg &= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL;   /* Core Reset    */
263 		writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
264 		udelay(10);
265 	}
266 
267 	/* assert ACINACTM */
268 	reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
269 	reg |= CPUCFG_CX_CTRL_REG1_ACINACTM;
270 	writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
271 
272 	/* assert cluster processor power-on resets */
273 	reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
274 	reg &= ~PRCM_CPU_PO_RST_CTRL_CORE_ALL;
275 	writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
276 
277 	/* assert cluster cores resets */
278 	if (is_a83t) {
279 		reg  = readl(r_cpucfg_base +
280 			     R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
281 		reg &= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL;
282 		writel(reg, r_cpucfg_base +
283 		       R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
284 		udelay(10);
285 	}
286 
287 	/* assert cluster resets */
288 	reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
289 	reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
290 	reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST_ALL;
291 	reg &= ~CPUCFG_CX_RST_CTRL_H_RST;
292 	reg &= ~CPUCFG_CX_RST_CTRL_L2_RST;
293 
294 	/*
295 	 * Allwinner code also asserts resets for NEON on A15. According
296 	 * to ARM manuals, asserting power-on reset is sufficient.
297 	 */
298 	if (!sunxi_core_is_cortex_a15(0, cluster))
299 		reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST_ALL;
300 
301 	writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
302 
303 	/* hold L1/L2 reset disable signals low */
304 	reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
305 	if (sunxi_core_is_cortex_a15(0, cluster)) {
306 		/* Cortex-A15: hold L2RSTDISABLE low */
307 		reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15;
308 	} else {
309 		/* Cortex-A7: hold L1RSTDISABLE and L2RSTDISABLE low */
310 		reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL;
311 		reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7;
312 	}
313 	writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
314 
315 	/* clear cluster power gate */
316 	reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
317 	if (is_a83t)
318 		reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I;
319 	else
320 		reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I;
321 	writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
322 	udelay(20);
323 
324 	/* de-assert cluster resets */
325 	reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
326 	reg |= CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
327 	reg |= CPUCFG_CX_RST_CTRL_H_RST;
328 	reg |= CPUCFG_CX_RST_CTRL_L2_RST;
329 	writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
330 
331 	/* de-assert ACINACTM */
332 	reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
333 	reg &= ~CPUCFG_CX_CTRL_REG1_ACINACTM;
334 	writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
335 
336 	return 0;
337 }
338 
339 /*
340  * This bit is shared between the initial nocache_trampoline call to
341  * enable CCI-400 and proper cluster cache disable before power down.
342  */
sunxi_cluster_cache_disable_without_axi(void)343 static void sunxi_cluster_cache_disable_without_axi(void)
344 {
345 	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) {
346 		/*
347 		 * On the Cortex-A15 we need to disable
348 		 * L2 prefetching before flushing the cache.
349 		 */
350 		asm volatile(
351 		"mcr	p15, 1, %0, c15, c0, 3\n"
352 		"isb\n"
353 		"dsb"
354 		: : "r" (0x400));
355 	}
356 
357 	/* Flush all cache levels for this cluster. */
358 	v7_exit_coherency_flush(all);
359 
360 	/*
361 	 * Disable cluster-level coherency by masking
362 	 * incoming snoops and DVM messages:
363 	 */
364 	cci_disable_port_by_cpu(read_cpuid_mpidr());
365 }
366 
367 static int sunxi_mc_smp_cpu_table[SUNXI_NR_CLUSTERS][SUNXI_CPUS_PER_CLUSTER];
368 int sunxi_mc_smp_first_comer;
369 
370 static DEFINE_SPINLOCK(boot_lock);
371 
sunxi_mc_smp_cluster_is_down(unsigned int cluster)372 static bool sunxi_mc_smp_cluster_is_down(unsigned int cluster)
373 {
374 	int i;
375 
376 	for (i = 0; i < SUNXI_CPUS_PER_CLUSTER; i++)
377 		if (sunxi_mc_smp_cpu_table[cluster][i])
378 			return false;
379 	return true;
380 }
381 
sunxi_mc_smp_secondary_init(unsigned int cpu)382 static void sunxi_mc_smp_secondary_init(unsigned int cpu)
383 {
384 	/* Clear hotplug support magic flags for cpu0 */
385 	if (cpu == 0)
386 		sunxi_cpu0_hotplug_support_set(false);
387 }
388 
sunxi_mc_smp_boot_secondary(unsigned int l_cpu,struct task_struct * idle)389 static int sunxi_mc_smp_boot_secondary(unsigned int l_cpu, struct task_struct *idle)
390 {
391 	unsigned int mpidr, cpu, cluster;
392 
393 	mpidr = cpu_logical_map(l_cpu);
394 	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
395 	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
396 
397 	if (!cpucfg_base)
398 		return -ENODEV;
399 	if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER)
400 		return -EINVAL;
401 
402 	spin_lock_irq(&boot_lock);
403 
404 	if (sunxi_mc_smp_cpu_table[cluster][cpu])
405 		goto out;
406 
407 	if (sunxi_mc_smp_cluster_is_down(cluster)) {
408 		sunxi_mc_smp_first_comer = true;
409 		sunxi_cluster_powerup(cluster);
410 	} else {
411 		sunxi_mc_smp_first_comer = false;
412 	}
413 
414 	/* This is read by incoming CPUs with their cache and MMU disabled */
415 	sync_cache_w(&sunxi_mc_smp_first_comer);
416 	sunxi_cpu_powerup(cpu, cluster);
417 
418 out:
419 	sunxi_mc_smp_cpu_table[cluster][cpu]++;
420 	spin_unlock_irq(&boot_lock);
421 
422 	return 0;
423 }
424 
425 #ifdef CONFIG_HOTPLUG_CPU
sunxi_cluster_cache_disable(void)426 static void sunxi_cluster_cache_disable(void)
427 {
428 	unsigned int cluster = MPIDR_AFFINITY_LEVEL(read_cpuid_mpidr(), 1);
429 	u32 reg;
430 
431 	pr_debug("%s: cluster %u\n", __func__, cluster);
432 
433 	sunxi_cluster_cache_disable_without_axi();
434 
435 	/* last man standing, assert ACINACTM */
436 	reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
437 	reg |= CPUCFG_CX_CTRL_REG1_ACINACTM;
438 	writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
439 }
440 
sunxi_mc_smp_cpu_die(unsigned int l_cpu)441 static void sunxi_mc_smp_cpu_die(unsigned int l_cpu)
442 {
443 	unsigned int mpidr, cpu, cluster;
444 	bool last_man;
445 
446 	mpidr = cpu_logical_map(l_cpu);
447 	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
448 	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
449 	pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
450 
451 	spin_lock(&boot_lock);
452 	sunxi_mc_smp_cpu_table[cluster][cpu]--;
453 	if (sunxi_mc_smp_cpu_table[cluster][cpu] == 1) {
454 		/* A power_up request went ahead of us. */
455 		pr_debug("%s: aborting due to a power up request\n",
456 			 __func__);
457 		spin_unlock(&boot_lock);
458 		return;
459 	} else if (sunxi_mc_smp_cpu_table[cluster][cpu] > 1) {
460 		pr_err("Cluster %d CPU%d boots multiple times\n",
461 		       cluster, cpu);
462 		BUG();
463 	}
464 
465 	last_man = sunxi_mc_smp_cluster_is_down(cluster);
466 	spin_unlock(&boot_lock);
467 
468 	gic_cpu_if_down(0);
469 	if (last_man)
470 		sunxi_cluster_cache_disable();
471 	else
472 		v7_exit_coherency_flush(louis);
473 
474 	for (;;)
475 		wfi();
476 }
477 
sunxi_cpu_powerdown(unsigned int cpu,unsigned int cluster)478 static int sunxi_cpu_powerdown(unsigned int cpu, unsigned int cluster)
479 {
480 	u32 reg;
481 	int gating_bit = cpu;
482 
483 	pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
484 	if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS)
485 		return -EINVAL;
486 
487 	if (is_a83t && cpu == 0)
488 		gating_bit = 4;
489 
490 	/* gate processor power */
491 	reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
492 	reg |= PRCM_PWROFF_GATING_REG_CORE(gating_bit);
493 	writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
494 	udelay(20);
495 
496 	/* close power switch */
497 	sunxi_cpu_power_switch_set(cpu, cluster, false);
498 
499 	return 0;
500 }
501 
sunxi_cluster_powerdown(unsigned int cluster)502 static int sunxi_cluster_powerdown(unsigned int cluster)
503 {
504 	u32 reg;
505 
506 	pr_debug("%s: cluster %u\n", __func__, cluster);
507 	if (cluster >= SUNXI_NR_CLUSTERS)
508 		return -EINVAL;
509 
510 	/* assert cluster resets or system will hang */
511 	pr_debug("%s: assert cluster reset\n", __func__);
512 	reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
513 	reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
514 	reg &= ~CPUCFG_CX_RST_CTRL_H_RST;
515 	reg &= ~CPUCFG_CX_RST_CTRL_L2_RST;
516 	writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
517 
518 	/* gate cluster power */
519 	pr_debug("%s: gate cluster power\n", __func__);
520 	reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
521 	if (is_a83t)
522 		reg |= PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I;
523 	else
524 		reg |= PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I;
525 	writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
526 	udelay(20);
527 
528 	return 0;
529 }
530 
sunxi_mc_smp_cpu_kill(unsigned int l_cpu)531 static int sunxi_mc_smp_cpu_kill(unsigned int l_cpu)
532 {
533 	unsigned int mpidr, cpu, cluster;
534 	unsigned int tries, count;
535 	int ret = 0;
536 	u32 reg;
537 
538 	mpidr = cpu_logical_map(l_cpu);
539 	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
540 	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
541 
542 	/* This should never happen */
543 	if (WARN_ON(cluster >= SUNXI_NR_CLUSTERS ||
544 		    cpu >= SUNXI_CPUS_PER_CLUSTER))
545 		return 0;
546 
547 	/* wait for CPU core to die and enter WFI */
548 	count = TIMEOUT_USEC / POLL_USEC;
549 	spin_lock_irq(&boot_lock);
550 	for (tries = 0; tries < count; tries++) {
551 		spin_unlock_irq(&boot_lock);
552 		usleep_range(POLL_USEC / 2, POLL_USEC);
553 		spin_lock_irq(&boot_lock);
554 
555 		/*
556 		 * If the user turns off a bunch of cores at the same
557 		 * time, the kernel might call cpu_kill before some of
558 		 * them are ready. This is because boot_lock serializes
559 		 * both cpu_die and cpu_kill callbacks. Either one could
560 		 * run first. We should wait for cpu_die to complete.
561 		 */
562 		if (sunxi_mc_smp_cpu_table[cluster][cpu])
563 			continue;
564 
565 		reg = readl(cpucfg_base + CPUCFG_CX_STATUS(cluster));
566 		if (reg & CPUCFG_CX_STATUS_STANDBYWFI(cpu))
567 			break;
568 	}
569 
570 	if (tries >= count) {
571 		ret = ETIMEDOUT;
572 		goto out;
573 	}
574 
575 	/* power down CPU core */
576 	sunxi_cpu_powerdown(cpu, cluster);
577 
578 	if (!sunxi_mc_smp_cluster_is_down(cluster))
579 		goto out;
580 
581 	/* wait for cluster L2 WFI */
582 	ret = readl_poll_timeout(cpucfg_base + CPUCFG_CX_STATUS(cluster), reg,
583 				 reg & CPUCFG_CX_STATUS_STANDBYWFIL2,
584 				 POLL_USEC, TIMEOUT_USEC);
585 	if (ret) {
586 		/*
587 		 * Ignore timeout on the cluster. Leaving the cluster on
588 		 * will not affect system execution, just use a bit more
589 		 * power. But returning an error here will only confuse
590 		 * the user as the CPU has already been shutdown.
591 		 */
592 		ret = 0;
593 		goto out;
594 	}
595 
596 	/* Power down cluster */
597 	sunxi_cluster_powerdown(cluster);
598 
599 out:
600 	spin_unlock_irq(&boot_lock);
601 	pr_debug("%s: cluster %u cpu %u powerdown: %d\n",
602 		 __func__, cluster, cpu, ret);
603 	return !ret;
604 }
605 
sunxi_mc_smp_cpu_can_disable(unsigned int cpu)606 static bool sunxi_mc_smp_cpu_can_disable(unsigned int cpu)
607 {
608 	/* CPU0 hotplug not handled for sun8i-a83t */
609 	if (is_a83t)
610 		if (cpu == 0)
611 			return false;
612 	return true;
613 }
614 #endif
615 
616 static const struct smp_operations sunxi_mc_smp_smp_ops __initconst = {
617 	.smp_secondary_init	= sunxi_mc_smp_secondary_init,
618 	.smp_boot_secondary	= sunxi_mc_smp_boot_secondary,
619 #ifdef CONFIG_HOTPLUG_CPU
620 	.cpu_die		= sunxi_mc_smp_cpu_die,
621 	.cpu_kill		= sunxi_mc_smp_cpu_kill,
622 	.cpu_can_disable	= sunxi_mc_smp_cpu_can_disable,
623 #endif
624 };
625 
sunxi_mc_smp_cpu_table_init(void)626 static bool __init sunxi_mc_smp_cpu_table_init(void)
627 {
628 	unsigned int mpidr, cpu, cluster;
629 
630 	mpidr = read_cpuid_mpidr();
631 	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
632 	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
633 
634 	if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER) {
635 		pr_err("%s: boot CPU is out of bounds!\n", __func__);
636 		return false;
637 	}
638 	sunxi_mc_smp_cpu_table[cluster][cpu] = 1;
639 	return true;
640 }
641 
642 /*
643  * Adapted from arch/arm/common/mc_smp_entry.c
644  *
645  * We need the trampoline code to enable CCI-400 on the first cluster
646  */
647 typedef typeof(cpu_reset) phys_reset_t;
648 
nocache_trampoline(unsigned long __unused)649 static int __init nocache_trampoline(unsigned long __unused)
650 {
651 	phys_reset_t phys_reset;
652 
653 	setup_mm_for_reboot();
654 	sunxi_cluster_cache_disable_without_axi();
655 
656 	phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
657 	phys_reset(__pa_symbol(sunxi_mc_smp_resume), false);
658 	BUG();
659 }
660 
sunxi_mc_smp_loopback(void)661 static int __init sunxi_mc_smp_loopback(void)
662 {
663 	int ret;
664 
665 	/*
666 	 * We're going to soft-restart the current CPU through the
667 	 * low-level MCPM code by leveraging the suspend/resume
668 	 * infrastructure. Let's play it safe by using cpu_pm_enter()
669 	 * in case the CPU init code path resets the VFP or similar.
670 	 */
671 	sunxi_mc_smp_first_comer = true;
672 	local_irq_disable();
673 	local_fiq_disable();
674 	ret = cpu_pm_enter();
675 	if (!ret) {
676 		ret = cpu_suspend(0, nocache_trampoline);
677 		cpu_pm_exit();
678 	}
679 	local_fiq_enable();
680 	local_irq_enable();
681 	sunxi_mc_smp_first_comer = false;
682 
683 	return ret;
684 }
685 
686 /*
687  * This holds any device nodes that we requested resources for,
688  * so that we may easily release resources in the error path.
689  */
690 struct sunxi_mc_smp_nodes {
691 	struct device_node *prcm_node;
692 	struct device_node *cpucfg_node;
693 	struct device_node *sram_node;
694 	struct device_node *r_cpucfg_node;
695 };
696 
697 /* This structure holds SoC-specific bits tied to an enable-method string. */
698 struct sunxi_mc_smp_data {
699 	const char *enable_method;
700 	int (*get_smp_nodes)(struct sunxi_mc_smp_nodes *nodes);
701 	bool is_a83t;
702 };
703 
sunxi_mc_smp_put_nodes(struct sunxi_mc_smp_nodes * nodes)704 static void __init sunxi_mc_smp_put_nodes(struct sunxi_mc_smp_nodes *nodes)
705 {
706 	of_node_put(nodes->prcm_node);
707 	of_node_put(nodes->cpucfg_node);
708 	of_node_put(nodes->sram_node);
709 	of_node_put(nodes->r_cpucfg_node);
710 	memset(nodes, 0, sizeof(*nodes));
711 }
712 
sun9i_a80_get_smp_nodes(struct sunxi_mc_smp_nodes * nodes)713 static int __init sun9i_a80_get_smp_nodes(struct sunxi_mc_smp_nodes *nodes)
714 {
715 	nodes->prcm_node = of_find_compatible_node(NULL, NULL,
716 						   "allwinner,sun9i-a80-prcm");
717 	if (!nodes->prcm_node) {
718 		pr_err("%s: PRCM not available\n", __func__);
719 		return -ENODEV;
720 	}
721 
722 	nodes->cpucfg_node = of_find_compatible_node(NULL, NULL,
723 						     "allwinner,sun9i-a80-cpucfg");
724 	if (!nodes->cpucfg_node) {
725 		pr_err("%s: CPUCFG not available\n", __func__);
726 		return -ENODEV;
727 	}
728 
729 	nodes->sram_node = of_find_compatible_node(NULL, NULL,
730 						   "allwinner,sun9i-a80-smp-sram");
731 	if (!nodes->sram_node) {
732 		pr_err("%s: Secure SRAM not available\n", __func__);
733 		return -ENODEV;
734 	}
735 
736 	return 0;
737 }
738 
sun8i_a83t_get_smp_nodes(struct sunxi_mc_smp_nodes * nodes)739 static int __init sun8i_a83t_get_smp_nodes(struct sunxi_mc_smp_nodes *nodes)
740 {
741 	nodes->prcm_node = of_find_compatible_node(NULL, NULL,
742 						   "allwinner,sun8i-a83t-r-ccu");
743 	if (!nodes->prcm_node) {
744 		pr_err("%s: PRCM not available\n", __func__);
745 		return -ENODEV;
746 	}
747 
748 	nodes->cpucfg_node = of_find_compatible_node(NULL, NULL,
749 						     "allwinner,sun8i-a83t-cpucfg");
750 	if (!nodes->cpucfg_node) {
751 		pr_err("%s: CPUCFG not available\n", __func__);
752 		return -ENODEV;
753 	}
754 
755 	nodes->r_cpucfg_node = of_find_compatible_node(NULL, NULL,
756 						       "allwinner,sun8i-a83t-r-cpucfg");
757 	if (!nodes->r_cpucfg_node) {
758 		pr_err("%s: RCPUCFG not available\n", __func__);
759 		return -ENODEV;
760 	}
761 
762 	return 0;
763 }
764 
765 static const struct sunxi_mc_smp_data sunxi_mc_smp_data[] __initconst = {
766 	{
767 		.enable_method	= "allwinner,sun9i-a80-smp",
768 		.get_smp_nodes	= sun9i_a80_get_smp_nodes,
769 	},
770 	{
771 		.enable_method	= "allwinner,sun8i-a83t-smp",
772 		.get_smp_nodes	= sun8i_a83t_get_smp_nodes,
773 		.is_a83t	= true,
774 	},
775 };
776 
sunxi_mc_smp_init(void)777 static int __init sunxi_mc_smp_init(void)
778 {
779 	struct sunxi_mc_smp_nodes nodes = { 0 };
780 	struct device_node *node;
781 	struct resource res;
782 	void __iomem *addr;
783 	int i, ret;
784 
785 	/*
786 	 * Don't bother checking the "cpus" node, as an enable-method
787 	 * property in that node is undocumented.
788 	 */
789 	node = of_cpu_device_node_get(0);
790 	if (!node)
791 		return -ENODEV;
792 
793 	/*
794 	 * We can't actually use the enable-method magic in the kernel.
795 	 * Our loopback / trampoline code uses the CPU suspend framework,
796 	 * which requires the identity mapping be available. It would not
797 	 * yet be available if we used the .init_cpus or .prepare_cpus
798 	 * callbacks in smp_operations, which we would use if we were to
799 	 * use CPU_METHOD_OF_DECLARE
800 	 */
801 	for (i = 0; i < ARRAY_SIZE(sunxi_mc_smp_data); i++) {
802 		ret = of_property_match_string(node, "enable-method",
803 					       sunxi_mc_smp_data[i].enable_method);
804 		if (!ret)
805 			break;
806 	}
807 
808 	is_a83t = sunxi_mc_smp_data[i].is_a83t;
809 
810 	of_node_put(node);
811 	if (ret)
812 		return -ENODEV;
813 
814 	if (!sunxi_mc_smp_cpu_table_init())
815 		return -EINVAL;
816 
817 	if (!cci_probed()) {
818 		pr_err("%s: CCI-400 not available\n", __func__);
819 		return -ENODEV;
820 	}
821 
822 	/* Get needed device tree nodes */
823 	ret = sunxi_mc_smp_data[i].get_smp_nodes(&nodes);
824 	if (ret)
825 		goto err_put_nodes;
826 
827 	/*
828 	 * Unfortunately we can not request the I/O region for the PRCM.
829 	 * It is shared with the PRCM clock.
830 	 */
831 	prcm_base = of_iomap(nodes.prcm_node, 0);
832 	if (!prcm_base) {
833 		pr_err("%s: failed to map PRCM registers\n", __func__);
834 		ret = -ENOMEM;
835 		goto err_put_nodes;
836 	}
837 
838 	cpucfg_base = of_io_request_and_map(nodes.cpucfg_node, 0,
839 					    "sunxi-mc-smp");
840 	if (IS_ERR(cpucfg_base)) {
841 		ret = PTR_ERR(cpucfg_base);
842 		pr_err("%s: failed to map CPUCFG registers: %d\n",
843 		       __func__, ret);
844 		goto err_unmap_prcm;
845 	}
846 
847 	if (is_a83t) {
848 		r_cpucfg_base = of_io_request_and_map(nodes.r_cpucfg_node,
849 						      0, "sunxi-mc-smp");
850 		if (IS_ERR(r_cpucfg_base)) {
851 			ret = PTR_ERR(r_cpucfg_base);
852 			pr_err("%s: failed to map R-CPUCFG registers\n",
853 			       __func__);
854 			goto err_unmap_release_cpucfg;
855 		}
856 	} else {
857 		sram_b_smp_base = of_io_request_and_map(nodes.sram_node, 0,
858 							"sunxi-mc-smp");
859 		if (IS_ERR(sram_b_smp_base)) {
860 			ret = PTR_ERR(sram_b_smp_base);
861 			pr_err("%s: failed to map secure SRAM\n", __func__);
862 			goto err_unmap_release_cpucfg;
863 		}
864 	}
865 
866 	/* Configure CCI-400 for boot cluster */
867 	ret = sunxi_mc_smp_loopback();
868 	if (ret) {
869 		pr_err("%s: failed to configure boot cluster: %d\n",
870 		       __func__, ret);
871 		goto err_unmap_release_sram_rcpucfg;
872 	}
873 
874 	/* We don't need the device nodes anymore */
875 	sunxi_mc_smp_put_nodes(&nodes);
876 
877 	/* Set the hardware entry point address */
878 	if (is_a83t)
879 		addr = r_cpucfg_base + R_CPUCFG_CPU_SOFT_ENTRY_REG;
880 	else
881 		addr = prcm_base + PRCM_CPU_SOFT_ENTRY_REG;
882 	writel(__pa_symbol(sunxi_mc_smp_secondary_startup), addr);
883 
884 	/* Actually enable multi cluster SMP */
885 	smp_set_ops(&sunxi_mc_smp_smp_ops);
886 
887 	pr_info("sunxi multi cluster SMP support installed\n");
888 
889 	return 0;
890 
891 err_unmap_release_sram_rcpucfg:
892 	if (is_a83t) {
893 		iounmap(r_cpucfg_base);
894 		of_address_to_resource(nodes.r_cpucfg_node, 0, &res);
895 	} else {
896 		iounmap(sram_b_smp_base);
897 		of_address_to_resource(nodes.sram_node, 0, &res);
898 	}
899 	release_mem_region(res.start, resource_size(&res));
900 err_unmap_release_cpucfg:
901 	iounmap(cpucfg_base);
902 	of_address_to_resource(nodes.cpucfg_node, 0, &res);
903 	release_mem_region(res.start, resource_size(&res));
904 err_unmap_prcm:
905 	iounmap(prcm_base);
906 err_put_nodes:
907 	sunxi_mc_smp_put_nodes(&nodes);
908 	return ret;
909 }
910 
911 early_initcall(sunxi_mc_smp_init);
912