1 /*
2 * Copyright (C) 2015 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/arm-smccc.h>
19 #include <linux/types.h>
20 #include <linux/jump_label.h>
21 #include <uapi/linux/psci.h>
22
23 #include <kvm/arm_psci.h>
24
25 #include <asm/cpufeature.h>
26 #include <asm/extable.h>
27 #include <asm/kprobes.h>
28 #include <asm/kvm_asm.h>
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_host.h>
31 #include <asm/kvm_hyp.h>
32 #include <asm/kvm_mmu.h>
33 #include <asm/fpsimd.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/processor.h>
36 #include <asm/thread_info.h>
37
38 extern struct exception_table_entry __start___kvm_ex_table;
39 extern struct exception_table_entry __stop___kvm_ex_table;
40
41 /* Check whether the FP regs were dirtied while in the host-side run loop: */
update_fp_enabled(struct kvm_vcpu * vcpu)42 static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
43 {
44 /*
45 * When the system doesn't support FP/SIMD, we cannot rely on
46 * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
47 * abort on the very first access to FP and thus we should never
48 * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
49 * trap the accesses.
50 */
51 if (!system_supports_fpsimd() ||
52 vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
53 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
54 KVM_ARM64_FP_HOST);
55
56 return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
57 }
58
59 /* Save the 32-bit only FPSIMD system register state */
__fpsimd_save_fpexc32(struct kvm_vcpu * vcpu)60 static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
61 {
62 if (!vcpu_el1_is_32bit(vcpu))
63 return;
64
65 vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
66 }
67
__activate_traps_fpsimd32(struct kvm_vcpu * vcpu)68 static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
69 {
70 /*
71 * We are about to set CPTR_EL2.TFP to trap all floating point
72 * register accesses to EL2, however, the ARM ARM clearly states that
73 * traps are only taken to EL2 if the operation would not otherwise
74 * trap to EL1. Therefore, always make sure that for 32-bit guests,
75 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
76 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
77 * it will cause an exception.
78 */
79 if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
80 write_sysreg(1 << 30, fpexc32_el2);
81 isb();
82 }
83 }
84
__activate_traps_common(struct kvm_vcpu * vcpu)85 static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
86 {
87 /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
88 write_sysreg(1 << 15, hstr_el2);
89
90 /*
91 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
92 * PMSELR_EL0 to make sure it never contains the cycle
93 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
94 * EL1 instead of being trapped to EL2.
95 */
96 write_sysreg(0, pmselr_el0);
97 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
98 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
99 }
100
__deactivate_traps_common(void)101 static void __hyp_text __deactivate_traps_common(void)
102 {
103 write_sysreg(0, hstr_el2);
104 write_sysreg(0, pmuserenr_el0);
105 }
106
activate_traps_vhe(struct kvm_vcpu * vcpu)107 static void activate_traps_vhe(struct kvm_vcpu *vcpu)
108 {
109 u64 val;
110
111 val = read_sysreg(cpacr_el1);
112 val |= CPACR_EL1_TTA;
113 val &= ~CPACR_EL1_ZEN;
114 if (!update_fp_enabled(vcpu)) {
115 val &= ~CPACR_EL1_FPEN;
116 __activate_traps_fpsimd32(vcpu);
117 }
118
119 write_sysreg(val, cpacr_el1);
120
121 write_sysreg(kvm_get_hyp_vector(), vbar_el1);
122 }
123 NOKPROBE_SYMBOL(activate_traps_vhe);
124
__activate_traps_nvhe(struct kvm_vcpu * vcpu)125 static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
126 {
127 u64 val;
128
129 __activate_traps_common(vcpu);
130
131 val = CPTR_EL2_DEFAULT;
132 val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
133 if (!update_fp_enabled(vcpu)) {
134 val |= CPTR_EL2_TFP;
135 __activate_traps_fpsimd32(vcpu);
136 }
137
138 write_sysreg(val, cptr_el2);
139 }
140
__activate_traps(struct kvm_vcpu * vcpu)141 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
142 {
143 u64 hcr = vcpu->arch.hcr_el2;
144
145 write_sysreg(hcr, hcr_el2);
146
147 if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
148 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
149
150 if (has_vhe())
151 activate_traps_vhe(vcpu);
152 else
153 __activate_traps_nvhe(vcpu);
154 }
155
deactivate_traps_vhe(void)156 static void deactivate_traps_vhe(void)
157 {
158 extern char vectors[]; /* kernel exception vectors */
159 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
160 write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
161 write_sysreg(vectors, vbar_el1);
162 }
163 NOKPROBE_SYMBOL(deactivate_traps_vhe);
164
__deactivate_traps_nvhe(void)165 static void __hyp_text __deactivate_traps_nvhe(void)
166 {
167 u64 mdcr_el2 = read_sysreg(mdcr_el2);
168
169 __deactivate_traps_common();
170
171 mdcr_el2 &= MDCR_EL2_HPMN_MASK;
172 mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
173
174 write_sysreg(mdcr_el2, mdcr_el2);
175 write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
176 write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
177 }
178
__deactivate_traps(struct kvm_vcpu * vcpu)179 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
180 {
181 /*
182 * If we pended a virtual abort, preserve it until it gets
183 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
184 * the crucial bit is "On taking a vSError interrupt,
185 * HCR_EL2.VSE is cleared to 0."
186 */
187 if (vcpu->arch.hcr_el2 & HCR_VSE)
188 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
189
190 if (has_vhe())
191 deactivate_traps_vhe();
192 else
193 __deactivate_traps_nvhe();
194 }
195
activate_traps_vhe_load(struct kvm_vcpu * vcpu)196 void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
197 {
198 __activate_traps_common(vcpu);
199 }
200
deactivate_traps_vhe_put(void)201 void deactivate_traps_vhe_put(void)
202 {
203 u64 mdcr_el2 = read_sysreg(mdcr_el2);
204
205 mdcr_el2 &= MDCR_EL2_HPMN_MASK |
206 MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
207 MDCR_EL2_TPMS;
208
209 write_sysreg(mdcr_el2, mdcr_el2);
210
211 __deactivate_traps_common();
212 }
213
__activate_vm(struct kvm * kvm)214 static void __hyp_text __activate_vm(struct kvm *kvm)
215 {
216 write_sysreg(kvm->arch.vttbr, vttbr_el2);
217 }
218
__deactivate_vm(struct kvm_vcpu * vcpu)219 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
220 {
221 write_sysreg(0, vttbr_el2);
222 }
223
224 /* Save VGICv3 state on non-VHE systems */
__hyp_vgic_save_state(struct kvm_vcpu * vcpu)225 static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
226 {
227 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
228 __vgic_v3_save_state(vcpu);
229 __vgic_v3_deactivate_traps(vcpu);
230 }
231 }
232
233 /* Restore VGICv3 state on non_VEH systems */
__hyp_vgic_restore_state(struct kvm_vcpu * vcpu)234 static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
235 {
236 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
237 __vgic_v3_activate_traps(vcpu);
238 __vgic_v3_restore_state(vcpu);
239 }
240 }
241
__true_value(void)242 static bool __hyp_text __true_value(void)
243 {
244 return true;
245 }
246
__false_value(void)247 static bool __hyp_text __false_value(void)
248 {
249 return false;
250 }
251
252 static hyp_alternate_select(__check_arm_834220,
253 __false_value, __true_value,
254 ARM64_WORKAROUND_834220);
255
__translate_far_to_hpfar(u64 far,u64 * hpfar)256 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
257 {
258 u64 par, tmp;
259
260 /*
261 * Resolve the IPA the hard way using the guest VA.
262 *
263 * Stage-1 translation already validated the memory access
264 * rights. As such, we can use the EL1 translation regime, and
265 * don't have to distinguish between EL0 and EL1 access.
266 *
267 * We do need to save/restore PAR_EL1 though, as we haven't
268 * saved the guest context yet, and we may return early...
269 */
270 par = read_sysreg(par_el1);
271 if (!__kvm_at("s1e1r", far))
272 tmp = read_sysreg(par_el1);
273 else
274 tmp = 1; /* back to the guest */
275 write_sysreg(par, par_el1);
276
277 if (unlikely(tmp & 1))
278 return false; /* Translation failed, back to guest */
279
280 /* Convert PAR to HPFAR format */
281 *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
282 return true;
283 }
284
__populate_fault_info(struct kvm_vcpu * vcpu)285 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
286 {
287 u8 ec;
288 u64 esr;
289 u64 hpfar, far;
290
291 esr = vcpu->arch.fault.esr_el2;
292 ec = ESR_ELx_EC(esr);
293
294 if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
295 return true;
296
297 far = read_sysreg_el2(far);
298
299 /*
300 * The HPFAR can be invalid if the stage 2 fault did not
301 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
302 * bit is clear) and one of the two following cases are true:
303 * 1. The fault was due to a permission fault
304 * 2. The processor carries errata 834220
305 *
306 * Therefore, for all non S1PTW faults where we either have a
307 * permission fault or the errata workaround is enabled, we
308 * resolve the IPA using the AT instruction.
309 */
310 if (!(esr & ESR_ELx_S1PTW) &&
311 (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
312 if (!__translate_far_to_hpfar(far, &hpfar))
313 return false;
314 } else {
315 hpfar = read_sysreg(hpfar_el2);
316 }
317
318 vcpu->arch.fault.far_el2 = far;
319 vcpu->arch.fault.hpfar_el2 = hpfar;
320 return true;
321 }
322
323 /* Skip an instruction which has been emulated. Returns true if
324 * execution can continue or false if we need to exit hyp mode because
325 * single-step was in effect.
326 */
__skip_instr(struct kvm_vcpu * vcpu)327 static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
328 {
329 *vcpu_pc(vcpu) = read_sysreg_el2(elr);
330
331 if (vcpu_mode_is_32bit(vcpu)) {
332 vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
333 kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
334 write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
335 } else {
336 *vcpu_pc(vcpu) += 4;
337 }
338
339 write_sysreg_el2(*vcpu_pc(vcpu), elr);
340
341 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
342 vcpu->arch.fault.esr_el2 =
343 (ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
344 return false;
345 } else {
346 return true;
347 }
348 }
349
__hyp_switch_fpsimd(struct kvm_vcpu * vcpu)350 static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
351 {
352 struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;
353
354 if (has_vhe())
355 write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
356 cpacr_el1);
357 else
358 write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
359 cptr_el2);
360
361 isb();
362
363 if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
364 /*
365 * In the SVE case, VHE is assumed: it is enforced by
366 * Kconfig and kvm_arch_init().
367 */
368 if (system_supports_sve() &&
369 (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
370 struct thread_struct *thread = container_of(
371 host_fpsimd,
372 struct thread_struct, uw.fpsimd_state);
373
374 sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
375 } else {
376 __fpsimd_save_state(host_fpsimd);
377 }
378
379 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
380 }
381
382 __fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
383
384 /* Skip restoring fpexc32 for AArch64 guests */
385 if (!(read_sysreg(hcr_el2) & HCR_RW))
386 write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
387 fpexc32_el2);
388
389 vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
390
391 return true;
392 }
393
394 /*
395 * Return true when we were able to fixup the guest exit and should return to
396 * the guest, false when we should restore the host state and return to the
397 * main run loop.
398 */
fixup_guest_exit(struct kvm_vcpu * vcpu,u64 * exit_code)399 static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
400 {
401 if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
402 vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
403
404 /*
405 * We're using the raw exception code in order to only process
406 * the trap if no SError is pending. We will come back to the
407 * same PC once the SError has been injected, and replay the
408 * trapping instruction.
409 */
410 if (*exit_code != ARM_EXCEPTION_TRAP)
411 goto exit;
412
413 /*
414 * We trap the first access to the FP/SIMD to save the host context
415 * and restore the guest context lazily.
416 * If FP/SIMD is not implemented, handle the trap and inject an
417 * undefined instruction exception to the guest.
418 */
419 if (system_supports_fpsimd() &&
420 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
421 return __hyp_switch_fpsimd(vcpu);
422
423 if (!__populate_fault_info(vcpu))
424 return true;
425
426 if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
427 bool valid;
428
429 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
430 kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
431 kvm_vcpu_dabt_isvalid(vcpu) &&
432 !kvm_vcpu_dabt_isextabt(vcpu) &&
433 !kvm_vcpu_abt_iss1tw(vcpu);
434
435 if (valid) {
436 int ret = __vgic_v2_perform_cpuif_access(vcpu);
437
438 if (ret == 1 && __skip_instr(vcpu))
439 return true;
440
441 if (ret == -1) {
442 /* Promote an illegal access to an
443 * SError. If we would be returning
444 * due to single-step clear the SS
445 * bit so handle_exit knows what to
446 * do after dealing with the error.
447 */
448 if (!__skip_instr(vcpu))
449 *vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
450 *exit_code = ARM_EXCEPTION_EL1_SERROR;
451 }
452
453 goto exit;
454 }
455 }
456
457 if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
458 (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
459 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
460 int ret = __vgic_v3_perform_cpuif_access(vcpu);
461
462 if (ret == 1 && __skip_instr(vcpu))
463 return true;
464 }
465
466 exit:
467 /* Return to the host kernel and handle the exit */
468 return false;
469 }
470
__needs_ssbd_off(struct kvm_vcpu * vcpu)471 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
472 {
473 if (!cpus_have_const_cap(ARM64_SSBD))
474 return false;
475
476 return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
477 }
478
__set_guest_arch_workaround_state(struct kvm_vcpu * vcpu)479 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
480 {
481 #ifdef CONFIG_ARM64_SSBD
482 /*
483 * The host runs with the workaround always present. If the
484 * guest wants it disabled, so be it...
485 */
486 if (__needs_ssbd_off(vcpu) &&
487 __hyp_this_cpu_read(arm64_ssbd_callback_required))
488 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
489 #endif
490 }
491
__set_host_arch_workaround_state(struct kvm_vcpu * vcpu)492 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
493 {
494 #ifdef CONFIG_ARM64_SSBD
495 /*
496 * If the guest has disabled the workaround, bring it back on.
497 */
498 if (__needs_ssbd_off(vcpu) &&
499 __hyp_this_cpu_read(arm64_ssbd_callback_required))
500 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
501 #endif
502 }
503
504 /* Switch to the guest for VHE systems running in EL2 */
kvm_vcpu_run_vhe(struct kvm_vcpu * vcpu)505 int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
506 {
507 struct kvm_cpu_context *host_ctxt;
508 struct kvm_cpu_context *guest_ctxt;
509 u64 exit_code;
510
511 host_ctxt = vcpu->arch.host_cpu_context;
512 host_ctxt->__hyp_running_vcpu = vcpu;
513 guest_ctxt = &vcpu->arch.ctxt;
514
515 sysreg_save_host_state_vhe(host_ctxt);
516
517 __activate_traps(vcpu);
518 __activate_vm(vcpu->kvm);
519
520 sysreg_restore_guest_state_vhe(guest_ctxt);
521 __debug_switch_to_guest(vcpu);
522
523 __set_guest_arch_workaround_state(vcpu);
524
525 do {
526 /* Jump in the fire! */
527 exit_code = __guest_enter(vcpu, host_ctxt);
528
529 /* And we're baaack! */
530 } while (fixup_guest_exit(vcpu, &exit_code));
531
532 __set_host_arch_workaround_state(vcpu);
533
534 sysreg_save_guest_state_vhe(guest_ctxt);
535
536 __deactivate_traps(vcpu);
537
538 sysreg_restore_host_state_vhe(host_ctxt);
539
540 if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
541 __fpsimd_save_fpexc32(vcpu);
542
543 __debug_switch_to_host(vcpu);
544
545 return exit_code;
546 }
547 NOKPROBE_SYMBOL(kvm_vcpu_run_vhe);
548
549 /* Switch to the guest for legacy non-VHE systems */
__kvm_vcpu_run_nvhe(struct kvm_vcpu * vcpu)550 int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
551 {
552 struct kvm_cpu_context *host_ctxt;
553 struct kvm_cpu_context *guest_ctxt;
554 u64 exit_code;
555
556 vcpu = kern_hyp_va(vcpu);
557
558 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
559 host_ctxt->__hyp_running_vcpu = vcpu;
560 guest_ctxt = &vcpu->arch.ctxt;
561
562 __sysreg_save_state_nvhe(host_ctxt);
563
564 __activate_traps(vcpu);
565 __activate_vm(kern_hyp_va(vcpu->kvm));
566
567 __hyp_vgic_restore_state(vcpu);
568 __timer_enable_traps(vcpu);
569
570 /*
571 * We must restore the 32-bit state before the sysregs, thanks
572 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
573 */
574 __sysreg32_restore_state(vcpu);
575 __sysreg_restore_state_nvhe(guest_ctxt);
576 __debug_switch_to_guest(vcpu);
577
578 __set_guest_arch_workaround_state(vcpu);
579
580 do {
581 /* Jump in the fire! */
582 exit_code = __guest_enter(vcpu, host_ctxt);
583
584 /* And we're baaack! */
585 } while (fixup_guest_exit(vcpu, &exit_code));
586
587 __set_host_arch_workaround_state(vcpu);
588
589 __sysreg_save_state_nvhe(guest_ctxt);
590 __sysreg32_save_state(vcpu);
591 __timer_disable_traps(vcpu);
592 __hyp_vgic_save_state(vcpu);
593
594 __deactivate_traps(vcpu);
595 __deactivate_vm(vcpu);
596
597 __sysreg_restore_state_nvhe(host_ctxt);
598
599 if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
600 __fpsimd_save_fpexc32(vcpu);
601
602 /*
603 * This must come after restoring the host sysregs, since a non-VHE
604 * system may enable SPE here and make use of the TTBRs.
605 */
606 __debug_switch_to_host(vcpu);
607
608 return exit_code;
609 }
610
611 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
612
__hyp_call_panic_nvhe(u64 spsr,u64 elr,u64 par,struct kvm_cpu_context * __host_ctxt)613 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
614 struct kvm_cpu_context *__host_ctxt)
615 {
616 struct kvm_vcpu *vcpu;
617 unsigned long str_va;
618
619 vcpu = __host_ctxt->__hyp_running_vcpu;
620
621 if (read_sysreg(vttbr_el2)) {
622 __timer_disable_traps(vcpu);
623 __deactivate_traps(vcpu);
624 __deactivate_vm(vcpu);
625 __sysreg_restore_state_nvhe(__host_ctxt);
626 }
627
628 /*
629 * Force the panic string to be loaded from the literal pool,
630 * making sure it is a kernel address and not a PC-relative
631 * reference.
632 */
633 asm volatile("ldr %0, =%1" : "=r" (str_va) : "S" (__hyp_panic_string));
634
635 __hyp_do_panic(str_va,
636 spsr, elr,
637 read_sysreg(esr_el2), read_sysreg_el2(far),
638 read_sysreg(hpfar_el2), par, vcpu);
639 }
640
__hyp_call_panic_vhe(u64 spsr,u64 elr,u64 par,struct kvm_cpu_context * host_ctxt)641 static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
642 struct kvm_cpu_context *host_ctxt)
643 {
644 struct kvm_vcpu *vcpu;
645 vcpu = host_ctxt->__hyp_running_vcpu;
646
647 __deactivate_traps(vcpu);
648 sysreg_restore_host_state_vhe(host_ctxt);
649
650 panic(__hyp_panic_string,
651 spsr, elr,
652 read_sysreg_el2(esr), read_sysreg_el2(far),
653 read_sysreg(hpfar_el2), par, vcpu);
654 }
655 NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
656
hyp_panic(struct kvm_cpu_context * host_ctxt)657 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
658 {
659 u64 spsr = read_sysreg_el2(spsr);
660 u64 elr = read_sysreg_el2(elr);
661 u64 par = read_sysreg(par_el1);
662
663 if (!has_vhe())
664 __hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
665 else
666 __hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
667
668 unreachable();
669 }
670
kvm_unexpected_el2_exception(void)671 asmlinkage void __hyp_text kvm_unexpected_el2_exception(void)
672 {
673 unsigned long addr, fixup;
674 struct kvm_cpu_context *host_ctxt;
675 struct exception_table_entry *entry, *end;
676 unsigned long elr_el2 = read_sysreg(elr_el2);
677
678 entry = hyp_symbol_addr(__start___kvm_ex_table);
679 end = hyp_symbol_addr(__stop___kvm_ex_table);
680 host_ctxt = __hyp_this_cpu_ptr(kvm_host_cpu_state);
681
682 while (entry < end) {
683 addr = (unsigned long)&entry->insn + entry->insn;
684 fixup = (unsigned long)&entry->fixup + entry->fixup;
685
686 if (addr != elr_el2) {
687 entry++;
688 continue;
689 }
690
691 write_sysreg(fixup, elr_el2);
692 return;
693 }
694
695 hyp_panic(host_ctxt);
696 }
697