• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/arm-smccc.h>
19 #include <linux/types.h>
20 #include <linux/jump_label.h>
21 #include <uapi/linux/psci.h>
22 
23 #include <kvm/arm_psci.h>
24 
25 #include <asm/cpufeature.h>
26 #include <asm/extable.h>
27 #include <asm/kprobes.h>
28 #include <asm/kvm_asm.h>
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_host.h>
31 #include <asm/kvm_hyp.h>
32 #include <asm/kvm_mmu.h>
33 #include <asm/fpsimd.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/processor.h>
36 #include <asm/thread_info.h>
37 
38 extern struct exception_table_entry __start___kvm_ex_table;
39 extern struct exception_table_entry __stop___kvm_ex_table;
40 
41 /* Check whether the FP regs were dirtied while in the host-side run loop: */
update_fp_enabled(struct kvm_vcpu * vcpu)42 static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
43 {
44 	/*
45 	 * When the system doesn't support FP/SIMD, we cannot rely on
46 	 * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
47 	 * abort on the very first access to FP and thus we should never
48 	 * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
49 	 * trap the accesses.
50 	 */
51 	if (!system_supports_fpsimd() ||
52 	    vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
53 		vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
54 				      KVM_ARM64_FP_HOST);
55 
56 	return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
57 }
58 
59 /* Save the 32-bit only FPSIMD system register state */
__fpsimd_save_fpexc32(struct kvm_vcpu * vcpu)60 static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
61 {
62 	if (!vcpu_el1_is_32bit(vcpu))
63 		return;
64 
65 	vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
66 }
67 
__activate_traps_fpsimd32(struct kvm_vcpu * vcpu)68 static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
69 {
70 	/*
71 	 * We are about to set CPTR_EL2.TFP to trap all floating point
72 	 * register accesses to EL2, however, the ARM ARM clearly states that
73 	 * traps are only taken to EL2 if the operation would not otherwise
74 	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
75 	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
76 	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
77 	 * it will cause an exception.
78 	 */
79 	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
80 		write_sysreg(1 << 30, fpexc32_el2);
81 		isb();
82 	}
83 }
84 
__activate_traps_common(struct kvm_vcpu * vcpu)85 static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
86 {
87 	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
88 	write_sysreg(1 << 15, hstr_el2);
89 
90 	/*
91 	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
92 	 * PMSELR_EL0 to make sure it never contains the cycle
93 	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
94 	 * EL1 instead of being trapped to EL2.
95 	 */
96 	write_sysreg(0, pmselr_el0);
97 	write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
98 	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
99 }
100 
__deactivate_traps_common(void)101 static void __hyp_text __deactivate_traps_common(void)
102 {
103 	write_sysreg(0, hstr_el2);
104 	write_sysreg(0, pmuserenr_el0);
105 }
106 
activate_traps_vhe(struct kvm_vcpu * vcpu)107 static void activate_traps_vhe(struct kvm_vcpu *vcpu)
108 {
109 	u64 val;
110 
111 	val = read_sysreg(cpacr_el1);
112 	val |= CPACR_EL1_TTA;
113 	val &= ~CPACR_EL1_ZEN;
114 	if (!update_fp_enabled(vcpu)) {
115 		val &= ~CPACR_EL1_FPEN;
116 		__activate_traps_fpsimd32(vcpu);
117 	}
118 
119 	write_sysreg(val, cpacr_el1);
120 
121 	write_sysreg(kvm_get_hyp_vector(), vbar_el1);
122 }
123 NOKPROBE_SYMBOL(activate_traps_vhe);
124 
__activate_traps_nvhe(struct kvm_vcpu * vcpu)125 static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
126 {
127 	u64 val;
128 
129 	__activate_traps_common(vcpu);
130 
131 	val = CPTR_EL2_DEFAULT;
132 	val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
133 	if (!update_fp_enabled(vcpu)) {
134 		val |= CPTR_EL2_TFP;
135 		__activate_traps_fpsimd32(vcpu);
136 	}
137 
138 	write_sysreg(val, cptr_el2);
139 }
140 
__activate_traps(struct kvm_vcpu * vcpu)141 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
142 {
143 	u64 hcr = vcpu->arch.hcr_el2;
144 
145 	write_sysreg(hcr, hcr_el2);
146 
147 	if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
148 		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
149 
150 	if (has_vhe())
151 		activate_traps_vhe(vcpu);
152 	else
153 		__activate_traps_nvhe(vcpu);
154 }
155 
deactivate_traps_vhe(void)156 static void deactivate_traps_vhe(void)
157 {
158 	extern char vectors[];	/* kernel exception vectors */
159 	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
160 	write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
161 	write_sysreg(vectors, vbar_el1);
162 }
163 NOKPROBE_SYMBOL(deactivate_traps_vhe);
164 
__deactivate_traps_nvhe(void)165 static void __hyp_text __deactivate_traps_nvhe(void)
166 {
167 	u64 mdcr_el2 = read_sysreg(mdcr_el2);
168 
169 	__deactivate_traps_common();
170 
171 	mdcr_el2 &= MDCR_EL2_HPMN_MASK;
172 	mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
173 
174 	write_sysreg(mdcr_el2, mdcr_el2);
175 	write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
176 	write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
177 }
178 
__deactivate_traps(struct kvm_vcpu * vcpu)179 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
180 {
181 	/*
182 	 * If we pended a virtual abort, preserve it until it gets
183 	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
184 	 * the crucial bit is "On taking a vSError interrupt,
185 	 * HCR_EL2.VSE is cleared to 0."
186 	 */
187 	if (vcpu->arch.hcr_el2 & HCR_VSE)
188 		vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
189 
190 	if (has_vhe())
191 		deactivate_traps_vhe();
192 	else
193 		__deactivate_traps_nvhe();
194 }
195 
activate_traps_vhe_load(struct kvm_vcpu * vcpu)196 void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
197 {
198 	__activate_traps_common(vcpu);
199 }
200 
deactivate_traps_vhe_put(void)201 void deactivate_traps_vhe_put(void)
202 {
203 	u64 mdcr_el2 = read_sysreg(mdcr_el2);
204 
205 	mdcr_el2 &= MDCR_EL2_HPMN_MASK |
206 		    MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
207 		    MDCR_EL2_TPMS;
208 
209 	write_sysreg(mdcr_el2, mdcr_el2);
210 
211 	__deactivate_traps_common();
212 }
213 
__activate_vm(struct kvm * kvm)214 static void __hyp_text __activate_vm(struct kvm *kvm)
215 {
216 	write_sysreg(kvm->arch.vttbr, vttbr_el2);
217 }
218 
__deactivate_vm(struct kvm_vcpu * vcpu)219 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
220 {
221 	write_sysreg(0, vttbr_el2);
222 }
223 
224 /* Save VGICv3 state on non-VHE systems */
__hyp_vgic_save_state(struct kvm_vcpu * vcpu)225 static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
226 {
227 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
228 		__vgic_v3_save_state(vcpu);
229 		__vgic_v3_deactivate_traps(vcpu);
230 	}
231 }
232 
233 /* Restore VGICv3 state on non_VEH systems */
__hyp_vgic_restore_state(struct kvm_vcpu * vcpu)234 static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
235 {
236 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
237 		__vgic_v3_activate_traps(vcpu);
238 		__vgic_v3_restore_state(vcpu);
239 	}
240 }
241 
__true_value(void)242 static bool __hyp_text __true_value(void)
243 {
244 	return true;
245 }
246 
__false_value(void)247 static bool __hyp_text __false_value(void)
248 {
249 	return false;
250 }
251 
252 static hyp_alternate_select(__check_arm_834220,
253 			    __false_value, __true_value,
254 			    ARM64_WORKAROUND_834220);
255 
__translate_far_to_hpfar(u64 far,u64 * hpfar)256 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
257 {
258 	u64 par, tmp;
259 
260 	/*
261 	 * Resolve the IPA the hard way using the guest VA.
262 	 *
263 	 * Stage-1 translation already validated the memory access
264 	 * rights. As such, we can use the EL1 translation regime, and
265 	 * don't have to distinguish between EL0 and EL1 access.
266 	 *
267 	 * We do need to save/restore PAR_EL1 though, as we haven't
268 	 * saved the guest context yet, and we may return early...
269 	 */
270 	par = read_sysreg(par_el1);
271 	if (!__kvm_at("s1e1r", far))
272 		tmp = read_sysreg(par_el1);
273 	else
274 		tmp = 1; /* back to the guest */
275 	write_sysreg(par, par_el1);
276 
277 	if (unlikely(tmp & 1))
278 		return false; /* Translation failed, back to guest */
279 
280 	/* Convert PAR to HPFAR format */
281 	*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
282 	return true;
283 }
284 
__populate_fault_info(struct kvm_vcpu * vcpu)285 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
286 {
287 	u8 ec;
288 	u64 esr;
289 	u64 hpfar, far;
290 
291 	esr = vcpu->arch.fault.esr_el2;
292 	ec = ESR_ELx_EC(esr);
293 
294 	if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
295 		return true;
296 
297 	far = read_sysreg_el2(far);
298 
299 	/*
300 	 * The HPFAR can be invalid if the stage 2 fault did not
301 	 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
302 	 * bit is clear) and one of the two following cases are true:
303 	 *   1. The fault was due to a permission fault
304 	 *   2. The processor carries errata 834220
305 	 *
306 	 * Therefore, for all non S1PTW faults where we either have a
307 	 * permission fault or the errata workaround is enabled, we
308 	 * resolve the IPA using the AT instruction.
309 	 */
310 	if (!(esr & ESR_ELx_S1PTW) &&
311 	    (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
312 		if (!__translate_far_to_hpfar(far, &hpfar))
313 			return false;
314 	} else {
315 		hpfar = read_sysreg(hpfar_el2);
316 	}
317 
318 	vcpu->arch.fault.far_el2 = far;
319 	vcpu->arch.fault.hpfar_el2 = hpfar;
320 	return true;
321 }
322 
323 /* Skip an instruction which has been emulated. Returns true if
324  * execution can continue or false if we need to exit hyp mode because
325  * single-step was in effect.
326  */
__skip_instr(struct kvm_vcpu * vcpu)327 static bool __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
328 {
329 	*vcpu_pc(vcpu) = read_sysreg_el2(elr);
330 
331 	if (vcpu_mode_is_32bit(vcpu)) {
332 		vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
333 		kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
334 		write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
335 	} else {
336 		*vcpu_pc(vcpu) += 4;
337 	}
338 
339 	write_sysreg_el2(*vcpu_pc(vcpu), elr);
340 
341 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
342 		vcpu->arch.fault.esr_el2 =
343 			(ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT) | 0x22;
344 		return false;
345 	} else {
346 		return true;
347 	}
348 }
349 
__hyp_switch_fpsimd(struct kvm_vcpu * vcpu)350 static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
351 {
352 	struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;
353 
354 	if (has_vhe())
355 		write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
356 			     cpacr_el1);
357 	else
358 		write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
359 			     cptr_el2);
360 
361 	isb();
362 
363 	if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
364 		/*
365 		 * In the SVE case, VHE is assumed: it is enforced by
366 		 * Kconfig and kvm_arch_init().
367 		 */
368 		if (system_supports_sve() &&
369 		    (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
370 			struct thread_struct *thread = container_of(
371 				host_fpsimd,
372 				struct thread_struct, uw.fpsimd_state);
373 
374 			sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
375 		} else {
376 			__fpsimd_save_state(host_fpsimd);
377 		}
378 
379 		vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
380 	}
381 
382 	__fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
383 
384 	/* Skip restoring fpexc32 for AArch64 guests */
385 	if (!(read_sysreg(hcr_el2) & HCR_RW))
386 		write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
387 			     fpexc32_el2);
388 
389 	vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
390 
391 	return true;
392 }
393 
394 /*
395  * Return true when we were able to fixup the guest exit and should return to
396  * the guest, false when we should restore the host state and return to the
397  * main run loop.
398  */
fixup_guest_exit(struct kvm_vcpu * vcpu,u64 * exit_code)399 static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
400 {
401 	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
402 		vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
403 
404 	/*
405 	 * We're using the raw exception code in order to only process
406 	 * the trap if no SError is pending. We will come back to the
407 	 * same PC once the SError has been injected, and replay the
408 	 * trapping instruction.
409 	 */
410 	if (*exit_code != ARM_EXCEPTION_TRAP)
411 		goto exit;
412 
413 	/*
414 	 * We trap the first access to the FP/SIMD to save the host context
415 	 * and restore the guest context lazily.
416 	 * If FP/SIMD is not implemented, handle the trap and inject an
417 	 * undefined instruction exception to the guest.
418 	 */
419 	if (system_supports_fpsimd() &&
420 	    kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
421 		return __hyp_switch_fpsimd(vcpu);
422 
423 	if (!__populate_fault_info(vcpu))
424 		return true;
425 
426 	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
427 		bool valid;
428 
429 		valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
430 			kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
431 			kvm_vcpu_dabt_isvalid(vcpu) &&
432 			!kvm_vcpu_dabt_isextabt(vcpu) &&
433 			!kvm_vcpu_abt_iss1tw(vcpu);
434 
435 		if (valid) {
436 			int ret = __vgic_v2_perform_cpuif_access(vcpu);
437 
438 			if (ret ==  1 && __skip_instr(vcpu))
439 				return true;
440 
441 			if (ret == -1) {
442 				/* Promote an illegal access to an
443 				 * SError. If we would be returning
444 				 * due to single-step clear the SS
445 				 * bit so handle_exit knows what to
446 				 * do after dealing with the error.
447 				 */
448 				if (!__skip_instr(vcpu))
449 					*vcpu_cpsr(vcpu) &= ~DBG_SPSR_SS;
450 				*exit_code = ARM_EXCEPTION_EL1_SERROR;
451 			}
452 
453 			goto exit;
454 		}
455 	}
456 
457 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
458 	    (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
459 	     kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
460 		int ret = __vgic_v3_perform_cpuif_access(vcpu);
461 
462 		if (ret == 1 && __skip_instr(vcpu))
463 			return true;
464 	}
465 
466 exit:
467 	/* Return to the host kernel and handle the exit */
468 	return false;
469 }
470 
__needs_ssbd_off(struct kvm_vcpu * vcpu)471 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
472 {
473 	if (!cpus_have_const_cap(ARM64_SSBD))
474 		return false;
475 
476 	return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
477 }
478 
__set_guest_arch_workaround_state(struct kvm_vcpu * vcpu)479 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
480 {
481 #ifdef CONFIG_ARM64_SSBD
482 	/*
483 	 * The host runs with the workaround always present. If the
484 	 * guest wants it disabled, so be it...
485 	 */
486 	if (__needs_ssbd_off(vcpu) &&
487 	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
488 		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
489 #endif
490 }
491 
__set_host_arch_workaround_state(struct kvm_vcpu * vcpu)492 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
493 {
494 #ifdef CONFIG_ARM64_SSBD
495 	/*
496 	 * If the guest has disabled the workaround, bring it back on.
497 	 */
498 	if (__needs_ssbd_off(vcpu) &&
499 	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
500 		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
501 #endif
502 }
503 
504 /* Switch to the guest for VHE systems running in EL2 */
kvm_vcpu_run_vhe(struct kvm_vcpu * vcpu)505 int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
506 {
507 	struct kvm_cpu_context *host_ctxt;
508 	struct kvm_cpu_context *guest_ctxt;
509 	u64 exit_code;
510 
511 	host_ctxt = vcpu->arch.host_cpu_context;
512 	host_ctxt->__hyp_running_vcpu = vcpu;
513 	guest_ctxt = &vcpu->arch.ctxt;
514 
515 	sysreg_save_host_state_vhe(host_ctxt);
516 
517 	__activate_traps(vcpu);
518 	__activate_vm(vcpu->kvm);
519 
520 	sysreg_restore_guest_state_vhe(guest_ctxt);
521 	__debug_switch_to_guest(vcpu);
522 
523 	__set_guest_arch_workaround_state(vcpu);
524 
525 	do {
526 		/* Jump in the fire! */
527 		exit_code = __guest_enter(vcpu, host_ctxt);
528 
529 		/* And we're baaack! */
530 	} while (fixup_guest_exit(vcpu, &exit_code));
531 
532 	__set_host_arch_workaround_state(vcpu);
533 
534 	sysreg_save_guest_state_vhe(guest_ctxt);
535 
536 	__deactivate_traps(vcpu);
537 
538 	sysreg_restore_host_state_vhe(host_ctxt);
539 
540 	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
541 		__fpsimd_save_fpexc32(vcpu);
542 
543 	__debug_switch_to_host(vcpu);
544 
545 	return exit_code;
546 }
547 NOKPROBE_SYMBOL(kvm_vcpu_run_vhe);
548 
549 /* Switch to the guest for legacy non-VHE systems */
__kvm_vcpu_run_nvhe(struct kvm_vcpu * vcpu)550 int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
551 {
552 	struct kvm_cpu_context *host_ctxt;
553 	struct kvm_cpu_context *guest_ctxt;
554 	u64 exit_code;
555 
556 	vcpu = kern_hyp_va(vcpu);
557 
558 	host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
559 	host_ctxt->__hyp_running_vcpu = vcpu;
560 	guest_ctxt = &vcpu->arch.ctxt;
561 
562 	__sysreg_save_state_nvhe(host_ctxt);
563 
564 	__activate_traps(vcpu);
565 	__activate_vm(kern_hyp_va(vcpu->kvm));
566 
567 	__hyp_vgic_restore_state(vcpu);
568 	__timer_enable_traps(vcpu);
569 
570 	/*
571 	 * We must restore the 32-bit state before the sysregs, thanks
572 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
573 	 */
574 	__sysreg32_restore_state(vcpu);
575 	__sysreg_restore_state_nvhe(guest_ctxt);
576 	__debug_switch_to_guest(vcpu);
577 
578 	__set_guest_arch_workaround_state(vcpu);
579 
580 	do {
581 		/* Jump in the fire! */
582 		exit_code = __guest_enter(vcpu, host_ctxt);
583 
584 		/* And we're baaack! */
585 	} while (fixup_guest_exit(vcpu, &exit_code));
586 
587 	__set_host_arch_workaround_state(vcpu);
588 
589 	__sysreg_save_state_nvhe(guest_ctxt);
590 	__sysreg32_save_state(vcpu);
591 	__timer_disable_traps(vcpu);
592 	__hyp_vgic_save_state(vcpu);
593 
594 	__deactivate_traps(vcpu);
595 	__deactivate_vm(vcpu);
596 
597 	__sysreg_restore_state_nvhe(host_ctxt);
598 
599 	if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
600 		__fpsimd_save_fpexc32(vcpu);
601 
602 	/*
603 	 * This must come after restoring the host sysregs, since a non-VHE
604 	 * system may enable SPE here and make use of the TTBRs.
605 	 */
606 	__debug_switch_to_host(vcpu);
607 
608 	return exit_code;
609 }
610 
611 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
612 
__hyp_call_panic_nvhe(u64 spsr,u64 elr,u64 par,struct kvm_cpu_context * __host_ctxt)613 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
614 					     struct kvm_cpu_context *__host_ctxt)
615 {
616 	struct kvm_vcpu *vcpu;
617 	unsigned long str_va;
618 
619 	vcpu = __host_ctxt->__hyp_running_vcpu;
620 
621 	if (read_sysreg(vttbr_el2)) {
622 		__timer_disable_traps(vcpu);
623 		__deactivate_traps(vcpu);
624 		__deactivate_vm(vcpu);
625 		__sysreg_restore_state_nvhe(__host_ctxt);
626 	}
627 
628 	/*
629 	 * Force the panic string to be loaded from the literal pool,
630 	 * making sure it is a kernel address and not a PC-relative
631 	 * reference.
632 	 */
633 	asm volatile("ldr %0, =%1" : "=r" (str_va) : "S" (__hyp_panic_string));
634 
635 	__hyp_do_panic(str_va,
636 		       spsr,  elr,
637 		       read_sysreg(esr_el2),   read_sysreg_el2(far),
638 		       read_sysreg(hpfar_el2), par, vcpu);
639 }
640 
__hyp_call_panic_vhe(u64 spsr,u64 elr,u64 par,struct kvm_cpu_context * host_ctxt)641 static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
642 				 struct kvm_cpu_context *host_ctxt)
643 {
644 	struct kvm_vcpu *vcpu;
645 	vcpu = host_ctxt->__hyp_running_vcpu;
646 
647 	__deactivate_traps(vcpu);
648 	sysreg_restore_host_state_vhe(host_ctxt);
649 
650 	panic(__hyp_panic_string,
651 	      spsr,  elr,
652 	      read_sysreg_el2(esr),   read_sysreg_el2(far),
653 	      read_sysreg(hpfar_el2), par, vcpu);
654 }
655 NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
656 
hyp_panic(struct kvm_cpu_context * host_ctxt)657 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
658 {
659 	u64 spsr = read_sysreg_el2(spsr);
660 	u64 elr = read_sysreg_el2(elr);
661 	u64 par = read_sysreg(par_el1);
662 
663 	if (!has_vhe())
664 		__hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
665 	else
666 		__hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
667 
668 	unreachable();
669 }
670 
kvm_unexpected_el2_exception(void)671 asmlinkage void __hyp_text kvm_unexpected_el2_exception(void)
672 {
673 	unsigned long addr, fixup;
674 	struct kvm_cpu_context *host_ctxt;
675 	struct exception_table_entry *entry, *end;
676 	unsigned long elr_el2 = read_sysreg(elr_el2);
677 
678 	entry = hyp_symbol_addr(__start___kvm_ex_table);
679 	end = hyp_symbol_addr(__stop___kvm_ex_table);
680 	host_ctxt = __hyp_this_cpu_ptr(kvm_host_cpu_state);
681 
682 	while (entry < end) {
683 		addr = (unsigned long)&entry->insn + entry->insn;
684 		fixup = (unsigned long)&entry->fixup + entry->fixup;
685 
686 		if (addr != elr_el2) {
687 			entry++;
688 			continue;
689 		}
690 
691 		write_sysreg(fixup, elr_el2);
692 		return;
693 	}
694 
695 	hyp_panic(host_ctxt);
696 }
697