• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994, 1995 Waldorf GmbH
7  * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
10  *	Author: Maciej W. Rozycki <macro@mips.com>
11  */
12 #ifndef _ASM_IO_H
13 #define _ASM_IO_H
14 
15 #define ARCH_HAS_IOREMAP_WC
16 
17 #include <linux/compiler.h>
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/irqflags.h>
21 
22 #include <asm/addrspace.h>
23 #include <asm/bug.h>
24 #include <asm/byteorder.h>
25 #include <asm/cpu.h>
26 #include <asm/cpu-features.h>
27 #include <asm-generic/iomap.h>
28 #include <asm/page.h>
29 #include <asm/pgtable-bits.h>
30 #include <asm/processor.h>
31 #include <asm/string.h>
32 
33 #include <ioremap.h>
34 #include <mangle-port.h>
35 
36 /*
37  * Slowdown I/O port space accesses for antique hardware.
38  */
39 #undef CONF_SLOWDOWN_IO
40 
41 /*
42  * Raw operations are never swapped in software.  OTOH values that raw
43  * operations are working on may or may not have been swapped by the bus
44  * hardware.  An example use would be for flash memory that's used for
45  * execute in place.
46  */
47 # define __raw_ioswabb(a, x)	(x)
48 # define __raw_ioswabw(a, x)	(x)
49 # define __raw_ioswabl(a, x)	(x)
50 # define __raw_ioswabq(a, x)	(x)
51 # define ____raw_ioswabq(a, x)	(x)
52 
53 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
54 
55 #define IO_SPACE_LIMIT 0xffff
56 
57 /*
58  * On MIPS I/O ports are memory mapped, so we access them using normal
59  * load/store instructions. mips_io_port_base is the virtual address to
60  * which all ports are being mapped.  For sake of efficiency some code
61  * assumes that this is an address that can be loaded with a single lui
62  * instruction, so the lower 16 bits must be zero.  Should be true on
63  * on any sane architecture; generic code does not use this assumption.
64  */
65 extern unsigned long mips_io_port_base;
66 
set_io_port_base(unsigned long base)67 static inline void set_io_port_base(unsigned long base)
68 {
69 	mips_io_port_base = base;
70 }
71 
72 /*
73  * Thanks to James van Artsdalen for a better timing-fix than
74  * the two short jumps: using outb's to a nonexistent port seems
75  * to guarantee better timings even on fast machines.
76  *
77  * On the other hand, I'd like to be sure of a non-existent port:
78  * I feel a bit unsafe about using 0x80 (should be safe, though)
79  *
80  *		Linus
81  *
82  */
83 
84 #define __SLOW_DOWN_IO \
85 	__asm__ __volatile__( \
86 		"sb\t$0,0x80(%0)" \
87 		: : "r" (mips_io_port_base));
88 
89 #ifdef CONF_SLOWDOWN_IO
90 #ifdef REALLY_SLOW_IO
91 #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
92 #else
93 #define SLOW_DOWN_IO __SLOW_DOWN_IO
94 #endif
95 #else
96 #define SLOW_DOWN_IO
97 #endif
98 
99 /*
100  *     virt_to_phys    -       map virtual addresses to physical
101  *     @address: address to remap
102  *
103  *     The returned physical address is the physical (CPU) mapping for
104  *     the memory address given. It is only valid to use this function on
105  *     addresses directly mapped or allocated via kmalloc.
106  *
107  *     This function does not give bus mappings for DMA transfers. In
108  *     almost all conceivable cases a device driver should not be using
109  *     this function
110  */
virt_to_phys(volatile const void * address)111 static inline unsigned long virt_to_phys(volatile const void *address)
112 {
113 	return __pa(address);
114 }
115 
116 /*
117  *     phys_to_virt    -       map physical address to virtual
118  *     @address: address to remap
119  *
120  *     The returned virtual address is a current CPU mapping for
121  *     the memory address given. It is only valid to use this function on
122  *     addresses that have a kernel mapping
123  *
124  *     This function does not handle bus mappings for DMA transfers. In
125  *     almost all conceivable cases a device driver should not be using
126  *     this function
127  */
phys_to_virt(unsigned long address)128 static inline void * phys_to_virt(unsigned long address)
129 {
130 	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
131 }
132 
133 /*
134  * ISA I/O bus memory addresses are 1:1 with the physical address.
135  */
isa_virt_to_bus(volatile void * address)136 static inline unsigned long isa_virt_to_bus(volatile void *address)
137 {
138 	return virt_to_phys(address);
139 }
140 
isa_bus_to_virt(unsigned long address)141 static inline void *isa_bus_to_virt(unsigned long address)
142 {
143 	return phys_to_virt(address);
144 }
145 
146 #define isa_page_to_bus page_to_phys
147 
148 /*
149  * However PCI ones are not necessarily 1:1 and therefore these interfaces
150  * are forbidden in portable PCI drivers.
151  *
152  * Allow them for x86 for legacy drivers, though.
153  */
154 #define virt_to_bus virt_to_phys
155 #define bus_to_virt phys_to_virt
156 
157 /*
158  * Change "struct page" to physical address.
159  */
160 #define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
161 
162 extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
163 extern void __iounmap(const volatile void __iomem *addr);
164 
165 #ifndef CONFIG_PCI
166 struct pci_dev;
pci_iounmap(struct pci_dev * dev,void __iomem * addr)167 static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {}
168 #endif
169 
__ioremap_mode(phys_addr_t offset,unsigned long size,unsigned long flags)170 static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
171 	unsigned long flags)
172 {
173 	void __iomem *addr = plat_ioremap(offset, size, flags);
174 
175 	if (addr)
176 		return addr;
177 
178 #define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
179 
180 	if (cpu_has_64bit_addresses) {
181 		u64 base = UNCAC_BASE;
182 
183 		/*
184 		 * R10000 supports a 2 bit uncached attribute therefore
185 		 * UNCAC_BASE may not equal IO_BASE.
186 		 */
187 		if (flags == _CACHE_UNCACHED)
188 			base = (u64) IO_BASE;
189 		return (void __iomem *) (unsigned long) (base + offset);
190 	} else if (__builtin_constant_p(offset) &&
191 		   __builtin_constant_p(size) && __builtin_constant_p(flags)) {
192 		phys_addr_t phys_addr, last_addr;
193 
194 		phys_addr = fixup_bigphys_addr(offset, size);
195 
196 		/* Don't allow wraparound or zero size. */
197 		last_addr = phys_addr + size - 1;
198 		if (!size || last_addr < phys_addr)
199 			return NULL;
200 
201 		/*
202 		 * Map uncached objects in the low 512MB of address
203 		 * space using KSEG1.
204 		 */
205 		if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
206 		    flags == _CACHE_UNCACHED)
207 			return (void __iomem *)
208 				(unsigned long)CKSEG1ADDR(phys_addr);
209 	}
210 
211 	return __ioremap(offset, size, flags);
212 
213 #undef __IS_LOW512
214 }
215 
216 /*
217  * ioremap     -   map bus memory into CPU space
218  * @offset:    bus address of the memory
219  * @size:      size of the resource to map
220  *
221  * ioremap performs a platform specific sequence of operations to
222  * make bus memory CPU accessible via the readb/readw/readl/writeb/
223  * writew/writel functions and the other mmio helpers. The returned
224  * address is not guaranteed to be usable directly as a virtual
225  * address.
226  */
227 #define ioremap(offset, size)						\
228 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
229 
230 /*
231  * ioremap_nocache     -   map bus memory into CPU space
232  * @offset:    bus address of the memory
233  * @size:      size of the resource to map
234  *
235  * ioremap_nocache performs a platform specific sequence of operations to
236  * make bus memory CPU accessible via the readb/readw/readl/writeb/
237  * writew/writel functions and the other mmio helpers. The returned
238  * address is not guaranteed to be usable directly as a virtual
239  * address.
240  *
241  * This version of ioremap ensures that the memory is marked uncachable
242  * on the CPU as well as honouring existing caching rules from things like
243  * the PCI bus. Note that there are other caches and buffers on many
244  * busses. In particular driver authors should read up on PCI writes
245  *
246  * It's useful if some control registers are in such an area and
247  * write combining or read caching is not desirable:
248  */
249 #define ioremap_nocache(offset, size)					\
250 	__ioremap_mode((offset), (size), _CACHE_UNCACHED)
251 #define ioremap_uc ioremap_nocache
252 
253 /*
254  * ioremap_cachable -	map bus memory into CPU space
255  * @offset:	    bus address of the memory
256  * @size:	    size of the resource to map
257  *
258  * ioremap_nocache performs a platform specific sequence of operations to
259  * make bus memory CPU accessible via the readb/readw/readl/writeb/
260  * writew/writel functions and the other mmio helpers. The returned
261  * address is not guaranteed to be usable directly as a virtual
262  * address.
263  *
264  * This version of ioremap ensures that the memory is marked cachable by
265  * the CPU.  Also enables full write-combining.	 Useful for some
266  * memory-like regions on I/O busses.
267  */
268 #define ioremap_cachable(offset, size)					\
269 	__ioremap_mode((offset), (size), _page_cachable_default)
270 #define ioremap_cache ioremap_cachable
271 
272 /*
273  * ioremap_wc     -   map bus memory into CPU space
274  * @offset:    bus address of the memory
275  * @size:      size of the resource to map
276  *
277  * ioremap_wc performs a platform specific sequence of operations to
278  * make bus memory CPU accessible via the readb/readw/readl/writeb/
279  * writew/writel functions and the other mmio helpers. The returned
280  * address is not guaranteed to be usable directly as a virtual
281  * address.
282  *
283  * This version of ioremap ensures that the memory is marked uncachable
284  * but accelerated by means of write-combining feature. It is specifically
285  * useful for PCIe prefetchable windows, which may vastly improve a
286  * communications performance. If it was determined on boot stage, what
287  * CPU CCA doesn't support UCA, the method shall fall-back to the
288  * _CACHE_UNCACHED option (see cpu_probe() method).
289  */
290 #define ioremap_wc(offset, size)					\
291 	__ioremap_mode((offset), (size), boot_cpu_data.writecombine)
292 
iounmap(const volatile void __iomem * addr)293 static inline void iounmap(const volatile void __iomem *addr)
294 {
295 	if (plat_iounmap(addr))
296 		return;
297 
298 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
299 
300 	if (cpu_has_64bit_addresses ||
301 	    (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
302 		return;
303 
304 	__iounmap(addr);
305 
306 #undef __IS_KSEG1
307 }
308 
309 #if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_LOONGSON3_ENHANCEMENT)
310 #define war_io_reorder_wmb()		wmb()
311 #else
312 #define war_io_reorder_wmb()		barrier()
313 #endif
314 
315 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq)			\
316 									\
317 static inline void pfx##write##bwlq(type val,				\
318 				    volatile void __iomem *mem)		\
319 {									\
320 	volatile type *__mem;						\
321 	type __val;							\
322 									\
323 	war_io_reorder_wmb();					\
324 									\
325 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
326 									\
327 	__val = pfx##ioswab##bwlq(__mem, val);				\
328 									\
329 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
330 		*__mem = __val;						\
331 	else if (cpu_has_64bits) {					\
332 		unsigned long __flags;					\
333 		type __tmp;						\
334 									\
335 		if (irq)						\
336 			local_irq_save(__flags);			\
337 		__asm__ __volatile__(					\
338 			".set	arch=r4000"	"\t\t# __writeq""\n\t"	\
339 			"dsll32 %L0, %L0, 0"			"\n\t"	\
340 			"dsrl32 %L0, %L0, 0"			"\n\t"	\
341 			"dsll32 %M0, %M0, 0"			"\n\t"	\
342 			"or	%L0, %L0, %M0"			"\n\t"	\
343 			"sd	%L0, %2"			"\n\t"	\
344 			".set	mips0"				"\n"	\
345 			: "=r" (__tmp)					\
346 			: "0" (__val), "m" (*__mem));			\
347 		if (irq)						\
348 			local_irq_restore(__flags);			\
349 	} else								\
350 		BUG();							\
351 }									\
352 									\
353 static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
354 {									\
355 	volatile type *__mem;						\
356 	type __val;							\
357 									\
358 	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
359 									\
360 	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
361 		__val = *__mem;						\
362 	else if (cpu_has_64bits) {					\
363 		unsigned long __flags;					\
364 									\
365 		if (irq)						\
366 			local_irq_save(__flags);			\
367 		__asm__ __volatile__(					\
368 			".set	arch=r4000"	"\t\t# __readq" "\n\t"	\
369 			"ld	%L0, %1"			"\n\t"	\
370 			"dsra32 %M0, %L0, 0"			"\n\t"	\
371 			"sll	%L0, %L0, 0"			"\n\t"	\
372 			".set	mips0"				"\n"	\
373 			: "=r" (__val)					\
374 			: "m" (*__mem));				\
375 		if (irq)						\
376 			local_irq_restore(__flags);			\
377 	} else {							\
378 		__val = 0;						\
379 		BUG();							\
380 	}								\
381 									\
382 	/* prevent prefetching of coherent DMA data prematurely */	\
383 	rmb();								\
384 	return pfx##ioswab##bwlq(__mem, __val);				\
385 }
386 
387 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow)			\
388 									\
389 static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
390 {									\
391 	volatile type *__addr;						\
392 	type __val;							\
393 									\
394 	war_io_reorder_wmb();					\
395 									\
396 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
397 									\
398 	__val = pfx##ioswab##bwlq(__addr, val);				\
399 									\
400 	/* Really, we want this to be atomic */				\
401 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
402 									\
403 	*__addr = __val;						\
404 	slow;								\
405 }									\
406 									\
407 static inline type pfx##in##bwlq##p(unsigned long port)			\
408 {									\
409 	volatile type *__addr;						\
410 	type __val;							\
411 									\
412 	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
413 									\
414 	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
415 									\
416 	__val = *__addr;						\
417 	slow;								\
418 									\
419 	/* prevent prefetching of coherent DMA data prematurely */	\
420 	rmb();								\
421 	return pfx##ioswab##bwlq(__addr, __val);			\
422 }
423 
424 #define __BUILD_MEMORY_PFX(bus, bwlq, type)				\
425 									\
426 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
427 
428 #define BUILDIO_MEM(bwlq, type)						\
429 									\
430 __BUILD_MEMORY_PFX(__raw_, bwlq, type)					\
431 __BUILD_MEMORY_PFX(, bwlq, type)					\
432 __BUILD_MEMORY_PFX(__mem_, bwlq, type)					\
433 
BUILDIO_MEM(b,u8)434 BUILDIO_MEM(b, u8)
435 BUILDIO_MEM(w, u16)
436 BUILDIO_MEM(l, u32)
437 BUILDIO_MEM(q, u64)
438 
439 #define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
440 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, ,)			\
441 	__BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
442 
443 #define BUILDIO_IOPORT(bwlq, type)					\
444 	__BUILD_IOPORT_PFX(, bwlq, type)				\
445 	__BUILD_IOPORT_PFX(__mem_, bwlq, type)
446 
447 BUILDIO_IOPORT(b, u8)
448 BUILDIO_IOPORT(w, u16)
449 BUILDIO_IOPORT(l, u32)
450 #ifdef CONFIG_64BIT
451 BUILDIO_IOPORT(q, u64)
452 #endif
453 
454 #define __BUILDIO(bwlq, type)						\
455 									\
456 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
457 
458 __BUILDIO(q, u64)
459 
460 #define readb_relaxed			readb
461 #define readw_relaxed			readw
462 #define readl_relaxed			readl
463 #define readq_relaxed			readq
464 
465 #define writeb_relaxed			writeb
466 #define writew_relaxed			writew
467 #define writel_relaxed			writel
468 #define writeq_relaxed			writeq
469 
470 #define readb_be(addr)							\
471 	__raw_readb((__force unsigned *)(addr))
472 #define readw_be(addr)							\
473 	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
474 #define readl_be(addr)							\
475 	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
476 #define readq_be(addr)							\
477 	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
478 
479 #define writeb_be(val, addr)						\
480 	__raw_writeb((val), (__force unsigned *)(addr))
481 #define writew_be(val, addr)						\
482 	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
483 #define writel_be(val, addr)						\
484 	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
485 #define writeq_be(val, addr)						\
486 	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
487 
488 /*
489  * Some code tests for these symbols
490  */
491 #define readq				readq
492 #define writeq				writeq
493 
494 #define __BUILD_MEMORY_STRING(bwlq, type)				\
495 									\
496 static inline void writes##bwlq(volatile void __iomem *mem,		\
497 				const void *addr, unsigned int count)	\
498 {									\
499 	const volatile type *__addr = addr;				\
500 									\
501 	while (count--) {						\
502 		__mem_write##bwlq(*__addr, mem);			\
503 		__addr++;						\
504 	}								\
505 }									\
506 									\
507 static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
508 			       unsigned int count)			\
509 {									\
510 	volatile type *__addr = addr;					\
511 									\
512 	while (count--) {						\
513 		*__addr = __mem_read##bwlq(mem);			\
514 		__addr++;						\
515 	}								\
516 }
517 
518 #define __BUILD_IOPORT_STRING(bwlq, type)				\
519 									\
520 static inline void outs##bwlq(unsigned long port, const void *addr,	\
521 			      unsigned int count)			\
522 {									\
523 	const volatile type *__addr = addr;				\
524 									\
525 	while (count--) {						\
526 		__mem_out##bwlq(*__addr, port);				\
527 		__addr++;						\
528 	}								\
529 }									\
530 									\
531 static inline void ins##bwlq(unsigned long port, void *addr,		\
532 			     unsigned int count)			\
533 {									\
534 	volatile type *__addr = addr;					\
535 									\
536 	while (count--) {						\
537 		*__addr = __mem_in##bwlq(port);				\
538 		__addr++;						\
539 	}								\
540 }
541 
542 #define BUILDSTRING(bwlq, type)						\
543 									\
544 __BUILD_MEMORY_STRING(bwlq, type)					\
545 __BUILD_IOPORT_STRING(bwlq, type)
546 
547 BUILDSTRING(b, u8)
548 BUILDSTRING(w, u16)
549 BUILDSTRING(l, u32)
550 #ifdef CONFIG_64BIT
551 BUILDSTRING(q, u64)
552 #endif
553 
554 
555 #ifdef CONFIG_CPU_CAVIUM_OCTEON
556 #define mmiowb() wmb()
557 #else
558 /* Depends on MIPS II instruction set */
559 #define mmiowb() asm volatile ("sync" ::: "memory")
560 #endif
561 
562 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
563 {
564 	memset((void __force *) addr, val, count);
565 }
memcpy_fromio(void * dst,const volatile void __iomem * src,int count)566 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
567 {
568 	memcpy(dst, (void __force *) src, count);
569 }
memcpy_toio(volatile void __iomem * dst,const void * src,int count)570 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
571 {
572 	memcpy((void __force *) dst, src, count);
573 }
574 
575 /*
576  * The caches on some architectures aren't dma-coherent and have need to
577  * handle this in software.  There are three types of operations that
578  * can be applied to dma buffers.
579  *
580  *  - dma_cache_wback_inv(start, size) makes caches and coherent by
581  *    writing the content of the caches back to memory, if necessary.
582  *    The function also invalidates the affected part of the caches as
583  *    necessary before DMA transfers from outside to memory.
584  *  - dma_cache_wback(start, size) makes caches and coherent by
585  *    writing the content of the caches back to memory, if necessary.
586  *    The function also invalidates the affected part of the caches as
587  *    necessary before DMA transfers from outside to memory.
588  *  - dma_cache_inv(start, size) invalidates the affected parts of the
589  *    caches.  Dirty lines of the caches may be written back or simply
590  *    be discarded.  This operation is necessary before dma operations
591  *    to the memory.
592  *
593  * This API used to be exported; it now is for arch code internal use only.
594  */
595 #ifdef CONFIG_DMA_NONCOHERENT
596 
597 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
598 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
599 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
600 
601 #define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
602 #define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
603 #define dma_cache_inv(start, size)		_dma_cache_inv(start, size)
604 
605 #else /* Sane hardware */
606 
607 #define dma_cache_wback_inv(start,size) \
608 	do { (void) (start); (void) (size); } while (0)
609 #define dma_cache_wback(start,size)	\
610 	do { (void) (start); (void) (size); } while (0)
611 #define dma_cache_inv(start,size)	\
612 	do { (void) (start); (void) (size); } while (0)
613 
614 #endif /* CONFIG_DMA_NONCOHERENT */
615 
616 /*
617  * Read a 32-bit register that requires a 64-bit read cycle on the bus.
618  * Avoid interrupt mucking, just adjust the address for 4-byte access.
619  * Assume the addresses are 8-byte aligned.
620  */
621 #ifdef __MIPSEB__
622 #define __CSR_32_ADJUST 4
623 #else
624 #define __CSR_32_ADJUST 0
625 #endif
626 
627 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
628 #define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
629 
630 /*
631  * Convert a physical pointer to a virtual kernel pointer for /dev/mem
632  * access
633  */
634 #define xlate_dev_mem_ptr(p)	__va(p)
635 
636 /*
637  * Convert a virtual cached pointer to an uncached pointer
638  */
639 #define xlate_dev_kmem_ptr(p)	p
640 
641 void __ioread64_copy(void *to, const void __iomem *from, size_t count);
642 
643 #endif /* _ASM_IO_H */
644