1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include <asm/switch_to.h>
40 #include <asm/xive.h>
41 #ifdef CONFIG_PPC_PSERIES
42 #include <asm/hvcall.h>
43 #include <asm/plpar_wrappers.h>
44 #endif
45
46 #include "timing.h"
47 #include "irq.h"
48 #include "../mm/mmu_decl.h"
49
50 #define CREATE_TRACE_POINTS
51 #include "trace.h"
52
53 struct kvmppc_ops *kvmppc_hv_ops;
54 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
55 struct kvmppc_ops *kvmppc_pr_ops;
56 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
57
58
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)59 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
60 {
61 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
62 }
63
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)64 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
65 {
66 return kvm_arch_vcpu_runnable(vcpu);
67 }
68
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)69 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
70 {
71 return false;
72 }
73
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)74 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
75 {
76 return 1;
77 }
78
79 /*
80 * Common checks before entering the guest world. Call with interrupts
81 * disabled.
82 *
83 * returns:
84 *
85 * == 1 if we're ready to go into guest state
86 * <= 0 if we need to go back to the host with return value
87 */
kvmppc_prepare_to_enter(struct kvm_vcpu * vcpu)88 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
89 {
90 int r;
91
92 WARN_ON(irqs_disabled());
93 hard_irq_disable();
94
95 while (true) {
96 if (need_resched()) {
97 local_irq_enable();
98 cond_resched();
99 hard_irq_disable();
100 continue;
101 }
102
103 if (signal_pending(current)) {
104 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
105 vcpu->run->exit_reason = KVM_EXIT_INTR;
106 r = -EINTR;
107 break;
108 }
109
110 vcpu->mode = IN_GUEST_MODE;
111
112 /*
113 * Reading vcpu->requests must happen after setting vcpu->mode,
114 * so we don't miss a request because the requester sees
115 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
116 * before next entering the guest (and thus doesn't IPI).
117 * This also orders the write to mode from any reads
118 * to the page tables done while the VCPU is running.
119 * Please see the comment in kvm_flush_remote_tlbs.
120 */
121 smp_mb();
122
123 if (kvm_request_pending(vcpu)) {
124 /* Make sure we process requests preemptable */
125 local_irq_enable();
126 trace_kvm_check_requests(vcpu);
127 r = kvmppc_core_check_requests(vcpu);
128 hard_irq_disable();
129 if (r > 0)
130 continue;
131 break;
132 }
133
134 if (kvmppc_core_prepare_to_enter(vcpu)) {
135 /* interrupts got enabled in between, so we
136 are back at square 1 */
137 continue;
138 }
139
140 guest_enter_irqoff();
141 return 1;
142 }
143
144 /* return to host */
145 local_irq_enable();
146 return r;
147 }
148 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
149
150 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
kvmppc_swab_shared(struct kvm_vcpu * vcpu)151 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
152 {
153 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
154 int i;
155
156 shared->sprg0 = swab64(shared->sprg0);
157 shared->sprg1 = swab64(shared->sprg1);
158 shared->sprg2 = swab64(shared->sprg2);
159 shared->sprg3 = swab64(shared->sprg3);
160 shared->srr0 = swab64(shared->srr0);
161 shared->srr1 = swab64(shared->srr1);
162 shared->dar = swab64(shared->dar);
163 shared->msr = swab64(shared->msr);
164 shared->dsisr = swab32(shared->dsisr);
165 shared->int_pending = swab32(shared->int_pending);
166 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
167 shared->sr[i] = swab32(shared->sr[i]);
168 }
169 #endif
170
kvmppc_kvm_pv(struct kvm_vcpu * vcpu)171 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
172 {
173 int nr = kvmppc_get_gpr(vcpu, 11);
174 int r;
175 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
176 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
177 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
178 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
179 unsigned long r2 = 0;
180
181 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
182 /* 32 bit mode */
183 param1 &= 0xffffffff;
184 param2 &= 0xffffffff;
185 param3 &= 0xffffffff;
186 param4 &= 0xffffffff;
187 }
188
189 switch (nr) {
190 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
191 {
192 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
193 /* Book3S can be little endian, find it out here */
194 int shared_big_endian = true;
195 if (vcpu->arch.intr_msr & MSR_LE)
196 shared_big_endian = false;
197 if (shared_big_endian != vcpu->arch.shared_big_endian)
198 kvmppc_swab_shared(vcpu);
199 vcpu->arch.shared_big_endian = shared_big_endian;
200 #endif
201
202 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
203 /*
204 * Older versions of the Linux magic page code had
205 * a bug where they would map their trampoline code
206 * NX. If that's the case, remove !PR NX capability.
207 */
208 vcpu->arch.disable_kernel_nx = true;
209 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
210 }
211
212 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
213 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
214
215 #ifdef CONFIG_PPC_64K_PAGES
216 /*
217 * Make sure our 4k magic page is in the same window of a 64k
218 * page within the guest and within the host's page.
219 */
220 if ((vcpu->arch.magic_page_pa & 0xf000) !=
221 ((ulong)vcpu->arch.shared & 0xf000)) {
222 void *old_shared = vcpu->arch.shared;
223 ulong shared = (ulong)vcpu->arch.shared;
224 void *new_shared;
225
226 shared &= PAGE_MASK;
227 shared |= vcpu->arch.magic_page_pa & 0xf000;
228 new_shared = (void*)shared;
229 memcpy(new_shared, old_shared, 0x1000);
230 vcpu->arch.shared = new_shared;
231 }
232 #endif
233
234 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
235
236 r = EV_SUCCESS;
237 break;
238 }
239 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
240 r = EV_SUCCESS;
241 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
242 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
243 #endif
244
245 /* Second return value is in r4 */
246 break;
247 case EV_HCALL_TOKEN(EV_IDLE):
248 r = EV_SUCCESS;
249 kvm_vcpu_block(vcpu);
250 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
251 break;
252 default:
253 r = EV_UNIMPLEMENTED;
254 break;
255 }
256
257 kvmppc_set_gpr(vcpu, 4, r2);
258
259 return r;
260 }
261 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
262
kvmppc_sanity_check(struct kvm_vcpu * vcpu)263 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
264 {
265 int r = false;
266
267 /* We have to know what CPU to virtualize */
268 if (!vcpu->arch.pvr)
269 goto out;
270
271 /* PAPR only works with book3s_64 */
272 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
273 goto out;
274
275 /* HV KVM can only do PAPR mode for now */
276 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
277 goto out;
278
279 #ifdef CONFIG_KVM_BOOKE_HV
280 if (!cpu_has_feature(CPU_FTR_EMB_HV))
281 goto out;
282 #endif
283
284 r = true;
285
286 out:
287 vcpu->arch.sane = r;
288 return r ? 0 : -EINVAL;
289 }
290 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
291
kvmppc_emulate_mmio(struct kvm_run * run,struct kvm_vcpu * vcpu)292 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
293 {
294 enum emulation_result er;
295 int r;
296
297 er = kvmppc_emulate_loadstore(vcpu);
298 switch (er) {
299 case EMULATE_DONE:
300 /* Future optimization: only reload non-volatiles if they were
301 * actually modified. */
302 r = RESUME_GUEST_NV;
303 break;
304 case EMULATE_AGAIN:
305 r = RESUME_GUEST;
306 break;
307 case EMULATE_DO_MMIO:
308 run->exit_reason = KVM_EXIT_MMIO;
309 /* We must reload nonvolatiles because "update" load/store
310 * instructions modify register state. */
311 /* Future optimization: only reload non-volatiles if they were
312 * actually modified. */
313 r = RESUME_HOST_NV;
314 break;
315 case EMULATE_FAIL:
316 {
317 u32 last_inst;
318
319 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
320 /* XXX Deliver Program interrupt to guest. */
321 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
322 r = RESUME_HOST;
323 break;
324 }
325 default:
326 WARN_ON(1);
327 r = RESUME_GUEST;
328 }
329
330 return r;
331 }
332 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
333
kvmppc_st(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)334 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
335 bool data)
336 {
337 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
338 struct kvmppc_pte pte;
339 int r;
340
341 vcpu->stat.st++;
342
343 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
344 XLATE_WRITE, &pte);
345 if (r < 0)
346 return r;
347
348 *eaddr = pte.raddr;
349
350 if (!pte.may_write)
351 return -EPERM;
352
353 /* Magic page override */
354 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
355 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
356 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
357 void *magic = vcpu->arch.shared;
358 magic += pte.eaddr & 0xfff;
359 memcpy(magic, ptr, size);
360 return EMULATE_DONE;
361 }
362
363 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
364 return EMULATE_DO_MMIO;
365
366 return EMULATE_DONE;
367 }
368 EXPORT_SYMBOL_GPL(kvmppc_st);
369
kvmppc_ld(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)370 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
371 bool data)
372 {
373 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
374 struct kvmppc_pte pte;
375 int rc;
376
377 vcpu->stat.ld++;
378
379 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
380 XLATE_READ, &pte);
381 if (rc)
382 return rc;
383
384 *eaddr = pte.raddr;
385
386 if (!pte.may_read)
387 return -EPERM;
388
389 if (!data && !pte.may_execute)
390 return -ENOEXEC;
391
392 /* Magic page override */
393 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
394 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
395 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
396 void *magic = vcpu->arch.shared;
397 magic += pte.eaddr & 0xfff;
398 memcpy(ptr, magic, size);
399 return EMULATE_DONE;
400 }
401
402 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
403 return EMULATE_DO_MMIO;
404
405 return EMULATE_DONE;
406 }
407 EXPORT_SYMBOL_GPL(kvmppc_ld);
408
kvm_arch_hardware_enable(void)409 int kvm_arch_hardware_enable(void)
410 {
411 return 0;
412 }
413
kvm_arch_hardware_setup(void)414 int kvm_arch_hardware_setup(void)
415 {
416 return 0;
417 }
418
kvm_arch_check_processor_compat(void * rtn)419 void kvm_arch_check_processor_compat(void *rtn)
420 {
421 *(int *)rtn = kvmppc_core_check_processor_compat();
422 }
423
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)424 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
425 {
426 struct kvmppc_ops *kvm_ops = NULL;
427 /*
428 * if we have both HV and PR enabled, default is HV
429 */
430 if (type == 0) {
431 if (kvmppc_hv_ops)
432 kvm_ops = kvmppc_hv_ops;
433 else
434 kvm_ops = kvmppc_pr_ops;
435 if (!kvm_ops)
436 goto err_out;
437 } else if (type == KVM_VM_PPC_HV) {
438 if (!kvmppc_hv_ops)
439 goto err_out;
440 kvm_ops = kvmppc_hv_ops;
441 } else if (type == KVM_VM_PPC_PR) {
442 if (!kvmppc_pr_ops)
443 goto err_out;
444 kvm_ops = kvmppc_pr_ops;
445 } else
446 goto err_out;
447
448 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
449 return -ENOENT;
450
451 kvm->arch.kvm_ops = kvm_ops;
452 return kvmppc_core_init_vm(kvm);
453 err_out:
454 return -EINVAL;
455 }
456
kvm_arch_has_vcpu_debugfs(void)457 bool kvm_arch_has_vcpu_debugfs(void)
458 {
459 return false;
460 }
461
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu)462 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
463 {
464 return 0;
465 }
466
kvm_arch_destroy_vm(struct kvm * kvm)467 void kvm_arch_destroy_vm(struct kvm *kvm)
468 {
469 unsigned int i;
470 struct kvm_vcpu *vcpu;
471
472 #ifdef CONFIG_KVM_XICS
473 /*
474 * We call kick_all_cpus_sync() to ensure that all
475 * CPUs have executed any pending IPIs before we
476 * continue and free VCPUs structures below.
477 */
478 if (is_kvmppc_hv_enabled(kvm))
479 kick_all_cpus_sync();
480 #endif
481
482 kvm_for_each_vcpu(i, vcpu, kvm)
483 kvm_arch_vcpu_free(vcpu);
484
485 mutex_lock(&kvm->lock);
486 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
487 kvm->vcpus[i] = NULL;
488
489 atomic_set(&kvm->online_vcpus, 0);
490
491 kvmppc_core_destroy_vm(kvm);
492
493 mutex_unlock(&kvm->lock);
494
495 /* drop the module reference */
496 module_put(kvm->arch.kvm_ops->owner);
497 }
498
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)499 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
500 {
501 int r;
502 /* Assume we're using HV mode when the HV module is loaded */
503 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
504
505 if (kvm) {
506 /*
507 * Hooray - we know which VM type we're running on. Depend on
508 * that rather than the guess above.
509 */
510 hv_enabled = is_kvmppc_hv_enabled(kvm);
511 }
512
513 switch (ext) {
514 #ifdef CONFIG_BOOKE
515 case KVM_CAP_PPC_BOOKE_SREGS:
516 case KVM_CAP_PPC_BOOKE_WATCHDOG:
517 case KVM_CAP_PPC_EPR:
518 #else
519 case KVM_CAP_PPC_SEGSTATE:
520 case KVM_CAP_PPC_HIOR:
521 case KVM_CAP_PPC_PAPR:
522 #endif
523 case KVM_CAP_PPC_UNSET_IRQ:
524 case KVM_CAP_PPC_IRQ_LEVEL:
525 case KVM_CAP_ENABLE_CAP:
526 case KVM_CAP_ENABLE_CAP_VM:
527 case KVM_CAP_ONE_REG:
528 case KVM_CAP_IOEVENTFD:
529 case KVM_CAP_DEVICE_CTRL:
530 case KVM_CAP_IMMEDIATE_EXIT:
531 r = 1;
532 break;
533 case KVM_CAP_PPC_PAIRED_SINGLES:
534 case KVM_CAP_PPC_OSI:
535 case KVM_CAP_PPC_GET_PVINFO:
536 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
537 case KVM_CAP_SW_TLB:
538 #endif
539 /* We support this only for PR */
540 r = !hv_enabled;
541 break;
542 #ifdef CONFIG_KVM_MPIC
543 case KVM_CAP_IRQ_MPIC:
544 r = 1;
545 break;
546 #endif
547
548 #ifdef CONFIG_PPC_BOOK3S_64
549 case KVM_CAP_SPAPR_TCE:
550 case KVM_CAP_SPAPR_TCE_64:
551 r = 1;
552 break;
553 case KVM_CAP_SPAPR_TCE_VFIO:
554 r = !!cpu_has_feature(CPU_FTR_HVMODE);
555 break;
556 case KVM_CAP_PPC_RTAS:
557 case KVM_CAP_PPC_FIXUP_HCALL:
558 case KVM_CAP_PPC_ENABLE_HCALL:
559 #ifdef CONFIG_KVM_XICS
560 case KVM_CAP_IRQ_XICS:
561 #endif
562 case KVM_CAP_PPC_GET_CPU_CHAR:
563 r = 1;
564 break;
565
566 case KVM_CAP_PPC_ALLOC_HTAB:
567 r = hv_enabled;
568 break;
569 #endif /* CONFIG_PPC_BOOK3S_64 */
570 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
571 case KVM_CAP_PPC_SMT:
572 r = 0;
573 if (kvm) {
574 if (kvm->arch.emul_smt_mode > 1)
575 r = kvm->arch.emul_smt_mode;
576 else
577 r = kvm->arch.smt_mode;
578 } else if (hv_enabled) {
579 if (cpu_has_feature(CPU_FTR_ARCH_300))
580 r = 1;
581 else
582 r = threads_per_subcore;
583 }
584 break;
585 case KVM_CAP_PPC_SMT_POSSIBLE:
586 r = 1;
587 if (hv_enabled) {
588 if (!cpu_has_feature(CPU_FTR_ARCH_300))
589 r = ((threads_per_subcore << 1) - 1);
590 else
591 /* P9 can emulate dbells, so allow any mode */
592 r = 8 | 4 | 2 | 1;
593 }
594 break;
595 case KVM_CAP_PPC_RMA:
596 r = 0;
597 break;
598 case KVM_CAP_PPC_HWRNG:
599 r = kvmppc_hwrng_present();
600 break;
601 case KVM_CAP_PPC_MMU_RADIX:
602 r = !!(hv_enabled && radix_enabled());
603 break;
604 case KVM_CAP_PPC_MMU_HASH_V3:
605 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
606 break;
607 #endif
608 case KVM_CAP_SYNC_MMU:
609 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
610 r = hv_enabled;
611 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
612 r = 1;
613 #else
614 r = 0;
615 #endif
616 break;
617 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
618 case KVM_CAP_PPC_HTAB_FD:
619 r = hv_enabled;
620 break;
621 #endif
622 case KVM_CAP_NR_VCPUS:
623 /*
624 * Recommending a number of CPUs is somewhat arbitrary; we
625 * return the number of present CPUs for -HV (since a host
626 * will have secondary threads "offline"), and for other KVM
627 * implementations just count online CPUs.
628 */
629 if (hv_enabled)
630 r = num_present_cpus();
631 else
632 r = num_online_cpus();
633 break;
634 case KVM_CAP_NR_MEMSLOTS:
635 r = KVM_USER_MEM_SLOTS;
636 break;
637 case KVM_CAP_MAX_VCPUS:
638 r = KVM_MAX_VCPUS;
639 break;
640 case KVM_CAP_MAX_VCPU_ID:
641 r = KVM_MAX_VCPU_ID;
642 break;
643 #ifdef CONFIG_PPC_BOOK3S_64
644 case KVM_CAP_PPC_GET_SMMU_INFO:
645 r = 1;
646 break;
647 case KVM_CAP_SPAPR_MULTITCE:
648 r = 1;
649 break;
650 case KVM_CAP_SPAPR_RESIZE_HPT:
651 r = !!hv_enabled;
652 break;
653 #endif
654 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
655 case KVM_CAP_PPC_FWNMI:
656 r = hv_enabled;
657 break;
658 #endif
659 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
660 case KVM_CAP_PPC_HTM:
661 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
662 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
663 break;
664 #endif
665 default:
666 r = 0;
667 break;
668 }
669 return r;
670
671 }
672
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)673 long kvm_arch_dev_ioctl(struct file *filp,
674 unsigned int ioctl, unsigned long arg)
675 {
676 return -EINVAL;
677 }
678
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)679 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
680 struct kvm_memory_slot *dont)
681 {
682 kvmppc_core_free_memslot(kvm, free, dont);
683 }
684
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)685 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
686 unsigned long npages)
687 {
688 return kvmppc_core_create_memslot(kvm, slot, npages);
689 }
690
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)691 int kvm_arch_prepare_memory_region(struct kvm *kvm,
692 struct kvm_memory_slot *memslot,
693 const struct kvm_userspace_memory_region *mem,
694 enum kvm_mr_change change)
695 {
696 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
697 }
698
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)699 void kvm_arch_commit_memory_region(struct kvm *kvm,
700 const struct kvm_userspace_memory_region *mem,
701 const struct kvm_memory_slot *old,
702 const struct kvm_memory_slot *new,
703 enum kvm_mr_change change)
704 {
705 kvmppc_core_commit_memory_region(kvm, mem, old, new);
706 }
707
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)708 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
709 struct kvm_memory_slot *slot)
710 {
711 kvmppc_core_flush_memslot(kvm, slot);
712 }
713
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)714 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
715 {
716 struct kvm_vcpu *vcpu;
717 vcpu = kvmppc_core_vcpu_create(kvm, id);
718 if (!IS_ERR(vcpu)) {
719 vcpu->arch.wqp = &vcpu->wq;
720 kvmppc_create_vcpu_debugfs(vcpu, id);
721 }
722 return vcpu;
723 }
724
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)725 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
726 {
727 }
728
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)729 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
730 {
731 /* Make sure we're not using the vcpu anymore */
732 hrtimer_cancel(&vcpu->arch.dec_timer);
733
734 kvmppc_remove_vcpu_debugfs(vcpu);
735
736 switch (vcpu->arch.irq_type) {
737 case KVMPPC_IRQ_MPIC:
738 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
739 break;
740 case KVMPPC_IRQ_XICS:
741 if (xive_enabled())
742 kvmppc_xive_cleanup_vcpu(vcpu);
743 else
744 kvmppc_xics_free_icp(vcpu);
745 break;
746 }
747
748 kvmppc_core_vcpu_free(vcpu);
749 }
750
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)751 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
752 {
753 kvm_arch_vcpu_free(vcpu);
754 }
755
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)756 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
757 {
758 return kvmppc_core_pending_dec(vcpu);
759 }
760
kvmppc_decrementer_wakeup(struct hrtimer * timer)761 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
762 {
763 struct kvm_vcpu *vcpu;
764
765 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
766 kvmppc_decrementer_func(vcpu);
767
768 return HRTIMER_NORESTART;
769 }
770
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)771 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
772 {
773 int ret;
774
775 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
776 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
777 vcpu->arch.dec_expires = get_tb();
778
779 #ifdef CONFIG_KVM_EXIT_TIMING
780 mutex_init(&vcpu->arch.exit_timing_lock);
781 #endif
782 ret = kvmppc_subarch_vcpu_init(vcpu);
783 return ret;
784 }
785
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)786 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
787 {
788 kvmppc_mmu_destroy(vcpu);
789 kvmppc_subarch_vcpu_uninit(vcpu);
790 }
791
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)792 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
793 {
794 #ifdef CONFIG_BOOKE
795 /*
796 * vrsave (formerly usprg0) isn't used by Linux, but may
797 * be used by the guest.
798 *
799 * On non-booke this is associated with Altivec and
800 * is handled by code in book3s.c.
801 */
802 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
803 #endif
804 kvmppc_core_vcpu_load(vcpu, cpu);
805 }
806
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)807 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
808 {
809 kvmppc_core_vcpu_put(vcpu);
810 #ifdef CONFIG_BOOKE
811 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
812 #endif
813 }
814
815 /*
816 * irq_bypass_add_producer and irq_bypass_del_producer are only
817 * useful if the architecture supports PCI passthrough.
818 * irq_bypass_stop and irq_bypass_start are not needed and so
819 * kvm_ops are not defined for them.
820 */
kvm_arch_has_irq_bypass(void)821 bool kvm_arch_has_irq_bypass(void)
822 {
823 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
824 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
825 }
826
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)827 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
828 struct irq_bypass_producer *prod)
829 {
830 struct kvm_kernel_irqfd *irqfd =
831 container_of(cons, struct kvm_kernel_irqfd, consumer);
832 struct kvm *kvm = irqfd->kvm;
833
834 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
835 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
836
837 return 0;
838 }
839
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)840 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
841 struct irq_bypass_producer *prod)
842 {
843 struct kvm_kernel_irqfd *irqfd =
844 container_of(cons, struct kvm_kernel_irqfd, consumer);
845 struct kvm *kvm = irqfd->kvm;
846
847 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
848 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
849 }
850
851 #ifdef CONFIG_VSX
kvmppc_get_vsr_dword_offset(int index)852 static inline int kvmppc_get_vsr_dword_offset(int index)
853 {
854 int offset;
855
856 if ((index != 0) && (index != 1))
857 return -1;
858
859 #ifdef __BIG_ENDIAN
860 offset = index;
861 #else
862 offset = 1 - index;
863 #endif
864
865 return offset;
866 }
867
kvmppc_get_vsr_word_offset(int index)868 static inline int kvmppc_get_vsr_word_offset(int index)
869 {
870 int offset;
871
872 if ((index > 3) || (index < 0))
873 return -1;
874
875 #ifdef __BIG_ENDIAN
876 offset = index;
877 #else
878 offset = 3 - index;
879 #endif
880 return offset;
881 }
882
kvmppc_set_vsr_dword(struct kvm_vcpu * vcpu,u64 gpr)883 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
884 u64 gpr)
885 {
886 union kvmppc_one_reg val;
887 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
888 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
889
890 if (offset == -1)
891 return;
892
893 if (index >= 32) {
894 val.vval = VCPU_VSX_VR(vcpu, index - 32);
895 val.vsxval[offset] = gpr;
896 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
897 } else {
898 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
899 }
900 }
901
kvmppc_set_vsr_dword_dump(struct kvm_vcpu * vcpu,u64 gpr)902 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
903 u64 gpr)
904 {
905 union kvmppc_one_reg val;
906 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
907
908 if (index >= 32) {
909 val.vval = VCPU_VSX_VR(vcpu, index - 32);
910 val.vsxval[0] = gpr;
911 val.vsxval[1] = gpr;
912 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
913 } else {
914 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
915 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
916 }
917 }
918
kvmppc_set_vsr_word_dump(struct kvm_vcpu * vcpu,u32 gpr)919 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
920 u32 gpr)
921 {
922 union kvmppc_one_reg val;
923 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
924
925 if (index >= 32) {
926 val.vsx32val[0] = gpr;
927 val.vsx32val[1] = gpr;
928 val.vsx32val[2] = gpr;
929 val.vsx32val[3] = gpr;
930 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
931 } else {
932 val.vsx32val[0] = gpr;
933 val.vsx32val[1] = gpr;
934 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
935 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
936 }
937 }
938
kvmppc_set_vsr_word(struct kvm_vcpu * vcpu,u32 gpr32)939 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
940 u32 gpr32)
941 {
942 union kvmppc_one_reg val;
943 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
944 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
945 int dword_offset, word_offset;
946
947 if (offset == -1)
948 return;
949
950 if (index >= 32) {
951 val.vval = VCPU_VSX_VR(vcpu, index - 32);
952 val.vsx32val[offset] = gpr32;
953 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
954 } else {
955 dword_offset = offset / 2;
956 word_offset = offset % 2;
957 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
958 val.vsx32val[word_offset] = gpr32;
959 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
960 }
961 }
962 #endif /* CONFIG_VSX */
963
964 #ifdef CONFIG_ALTIVEC
kvmppc_get_vmx_offset_generic(struct kvm_vcpu * vcpu,int index,int element_size)965 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
966 int index, int element_size)
967 {
968 int offset;
969 int elts = sizeof(vector128)/element_size;
970
971 if ((index < 0) || (index >= elts))
972 return -1;
973
974 if (kvmppc_need_byteswap(vcpu))
975 offset = elts - index - 1;
976 else
977 offset = index;
978
979 return offset;
980 }
981
kvmppc_get_vmx_dword_offset(struct kvm_vcpu * vcpu,int index)982 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
983 int index)
984 {
985 return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
986 }
987
kvmppc_get_vmx_word_offset(struct kvm_vcpu * vcpu,int index)988 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
989 int index)
990 {
991 return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
992 }
993
kvmppc_get_vmx_hword_offset(struct kvm_vcpu * vcpu,int index)994 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
995 int index)
996 {
997 return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
998 }
999
kvmppc_get_vmx_byte_offset(struct kvm_vcpu * vcpu,int index)1000 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1001 int index)
1002 {
1003 return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1004 }
1005
1006
kvmppc_set_vmx_dword(struct kvm_vcpu * vcpu,u64 gpr)1007 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1008 u64 gpr)
1009 {
1010 union kvmppc_one_reg val;
1011 int offset = kvmppc_get_vmx_dword_offset(vcpu,
1012 vcpu->arch.mmio_vmx_offset);
1013 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1014
1015 if (offset == -1)
1016 return;
1017
1018 val.vval = VCPU_VSX_VR(vcpu, index);
1019 val.vsxval[offset] = gpr;
1020 VCPU_VSX_VR(vcpu, index) = val.vval;
1021 }
1022
kvmppc_set_vmx_word(struct kvm_vcpu * vcpu,u32 gpr32)1023 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1024 u32 gpr32)
1025 {
1026 union kvmppc_one_reg val;
1027 int offset = kvmppc_get_vmx_word_offset(vcpu,
1028 vcpu->arch.mmio_vmx_offset);
1029 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1030
1031 if (offset == -1)
1032 return;
1033
1034 val.vval = VCPU_VSX_VR(vcpu, index);
1035 val.vsx32val[offset] = gpr32;
1036 VCPU_VSX_VR(vcpu, index) = val.vval;
1037 }
1038
kvmppc_set_vmx_hword(struct kvm_vcpu * vcpu,u16 gpr16)1039 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1040 u16 gpr16)
1041 {
1042 union kvmppc_one_reg val;
1043 int offset = kvmppc_get_vmx_hword_offset(vcpu,
1044 vcpu->arch.mmio_vmx_offset);
1045 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1046
1047 if (offset == -1)
1048 return;
1049
1050 val.vval = VCPU_VSX_VR(vcpu, index);
1051 val.vsx16val[offset] = gpr16;
1052 VCPU_VSX_VR(vcpu, index) = val.vval;
1053 }
1054
kvmppc_set_vmx_byte(struct kvm_vcpu * vcpu,u8 gpr8)1055 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1056 u8 gpr8)
1057 {
1058 union kvmppc_one_reg val;
1059 int offset = kvmppc_get_vmx_byte_offset(vcpu,
1060 vcpu->arch.mmio_vmx_offset);
1061 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1062
1063 if (offset == -1)
1064 return;
1065
1066 val.vval = VCPU_VSX_VR(vcpu, index);
1067 val.vsx8val[offset] = gpr8;
1068 VCPU_VSX_VR(vcpu, index) = val.vval;
1069 }
1070 #endif /* CONFIG_ALTIVEC */
1071
1072 #ifdef CONFIG_PPC_FPU
sp_to_dp(u32 fprs)1073 static inline u64 sp_to_dp(u32 fprs)
1074 {
1075 u64 fprd;
1076
1077 preempt_disable();
1078 enable_kernel_fp();
1079 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1080 : "fr0");
1081 preempt_enable();
1082 return fprd;
1083 }
1084
dp_to_sp(u64 fprd)1085 static inline u32 dp_to_sp(u64 fprd)
1086 {
1087 u32 fprs;
1088
1089 preempt_disable();
1090 enable_kernel_fp();
1091 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1092 : "fr0");
1093 preempt_enable();
1094 return fprs;
1095 }
1096
1097 #else
1098 #define sp_to_dp(x) (x)
1099 #define dp_to_sp(x) (x)
1100 #endif /* CONFIG_PPC_FPU */
1101
kvmppc_complete_mmio_load(struct kvm_vcpu * vcpu,struct kvm_run * run)1102 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1103 struct kvm_run *run)
1104 {
1105 u64 uninitialized_var(gpr);
1106
1107 if (run->mmio.len > sizeof(gpr)) {
1108 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1109 return;
1110 }
1111
1112 if (!vcpu->arch.mmio_host_swabbed) {
1113 switch (run->mmio.len) {
1114 case 8: gpr = *(u64 *)run->mmio.data; break;
1115 case 4: gpr = *(u32 *)run->mmio.data; break;
1116 case 2: gpr = *(u16 *)run->mmio.data; break;
1117 case 1: gpr = *(u8 *)run->mmio.data; break;
1118 }
1119 } else {
1120 switch (run->mmio.len) {
1121 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1122 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1123 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1124 case 1: gpr = *(u8 *)run->mmio.data; break;
1125 }
1126 }
1127
1128 /* conversion between single and double precision */
1129 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1130 gpr = sp_to_dp(gpr);
1131
1132 if (vcpu->arch.mmio_sign_extend) {
1133 switch (run->mmio.len) {
1134 #ifdef CONFIG_PPC64
1135 case 4:
1136 gpr = (s64)(s32)gpr;
1137 break;
1138 #endif
1139 case 2:
1140 gpr = (s64)(s16)gpr;
1141 break;
1142 case 1:
1143 gpr = (s64)(s8)gpr;
1144 break;
1145 }
1146 }
1147
1148 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1149 case KVM_MMIO_REG_GPR:
1150 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1151 break;
1152 case KVM_MMIO_REG_FPR:
1153 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1154 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1155
1156 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1157 break;
1158 #ifdef CONFIG_PPC_BOOK3S
1159 case KVM_MMIO_REG_QPR:
1160 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1161 break;
1162 case KVM_MMIO_REG_FQPR:
1163 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1164 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1165 break;
1166 #endif
1167 #ifdef CONFIG_VSX
1168 case KVM_MMIO_REG_VSX:
1169 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1170 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1171
1172 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1173 kvmppc_set_vsr_dword(vcpu, gpr);
1174 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1175 kvmppc_set_vsr_word(vcpu, gpr);
1176 else if (vcpu->arch.mmio_copy_type ==
1177 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1178 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1179 else if (vcpu->arch.mmio_copy_type ==
1180 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1181 kvmppc_set_vsr_word_dump(vcpu, gpr);
1182 break;
1183 #endif
1184 #ifdef CONFIG_ALTIVEC
1185 case KVM_MMIO_REG_VMX:
1186 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1187 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1188
1189 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1190 kvmppc_set_vmx_dword(vcpu, gpr);
1191 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1192 kvmppc_set_vmx_word(vcpu, gpr);
1193 else if (vcpu->arch.mmio_copy_type ==
1194 KVMPPC_VMX_COPY_HWORD)
1195 kvmppc_set_vmx_hword(vcpu, gpr);
1196 else if (vcpu->arch.mmio_copy_type ==
1197 KVMPPC_VMX_COPY_BYTE)
1198 kvmppc_set_vmx_byte(vcpu, gpr);
1199 break;
1200 #endif
1201 default:
1202 BUG();
1203 }
1204 }
1205
__kvmppc_handle_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int sign_extend)1206 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1207 unsigned int rt, unsigned int bytes,
1208 int is_default_endian, int sign_extend)
1209 {
1210 int idx, ret;
1211 bool host_swabbed;
1212
1213 /* Pity C doesn't have a logical XOR operator */
1214 if (kvmppc_need_byteswap(vcpu)) {
1215 host_swabbed = is_default_endian;
1216 } else {
1217 host_swabbed = !is_default_endian;
1218 }
1219
1220 if (bytes > sizeof(run->mmio.data)) {
1221 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1222 run->mmio.len);
1223 }
1224
1225 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1226 run->mmio.len = bytes;
1227 run->mmio.is_write = 0;
1228
1229 vcpu->arch.io_gpr = rt;
1230 vcpu->arch.mmio_host_swabbed = host_swabbed;
1231 vcpu->mmio_needed = 1;
1232 vcpu->mmio_is_write = 0;
1233 vcpu->arch.mmio_sign_extend = sign_extend;
1234
1235 idx = srcu_read_lock(&vcpu->kvm->srcu);
1236
1237 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1238 bytes, &run->mmio.data);
1239
1240 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1241
1242 if (!ret) {
1243 kvmppc_complete_mmio_load(vcpu, run);
1244 vcpu->mmio_needed = 0;
1245 return EMULATE_DONE;
1246 }
1247
1248 return EMULATE_DO_MMIO;
1249 }
1250
kvmppc_handle_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1251 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1252 unsigned int rt, unsigned int bytes,
1253 int is_default_endian)
1254 {
1255 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1256 }
1257 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1258
1259 /* Same as above, but sign extends */
kvmppc_handle_loads(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1260 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1261 unsigned int rt, unsigned int bytes,
1262 int is_default_endian)
1263 {
1264 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1265 }
1266
1267 #ifdef CONFIG_VSX
kvmppc_handle_vsx_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int mmio_sign_extend)1268 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1269 unsigned int rt, unsigned int bytes,
1270 int is_default_endian, int mmio_sign_extend)
1271 {
1272 enum emulation_result emulated = EMULATE_DONE;
1273
1274 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1275 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1276 return EMULATE_FAIL;
1277
1278 while (vcpu->arch.mmio_vsx_copy_nums) {
1279 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1280 is_default_endian, mmio_sign_extend);
1281
1282 if (emulated != EMULATE_DONE)
1283 break;
1284
1285 vcpu->arch.paddr_accessed += run->mmio.len;
1286
1287 vcpu->arch.mmio_vsx_copy_nums--;
1288 vcpu->arch.mmio_vsx_offset++;
1289 }
1290 return emulated;
1291 }
1292 #endif /* CONFIG_VSX */
1293
kvmppc_handle_store(struct kvm_run * run,struct kvm_vcpu * vcpu,u64 val,unsigned int bytes,int is_default_endian)1294 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1295 u64 val, unsigned int bytes, int is_default_endian)
1296 {
1297 void *data = run->mmio.data;
1298 int idx, ret;
1299 bool host_swabbed;
1300
1301 /* Pity C doesn't have a logical XOR operator */
1302 if (kvmppc_need_byteswap(vcpu)) {
1303 host_swabbed = is_default_endian;
1304 } else {
1305 host_swabbed = !is_default_endian;
1306 }
1307
1308 if (bytes > sizeof(run->mmio.data)) {
1309 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1310 run->mmio.len);
1311 }
1312
1313 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1314 run->mmio.len = bytes;
1315 run->mmio.is_write = 1;
1316 vcpu->mmio_needed = 1;
1317 vcpu->mmio_is_write = 1;
1318
1319 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1320 val = dp_to_sp(val);
1321
1322 /* Store the value at the lowest bytes in 'data'. */
1323 if (!host_swabbed) {
1324 switch (bytes) {
1325 case 8: *(u64 *)data = val; break;
1326 case 4: *(u32 *)data = val; break;
1327 case 2: *(u16 *)data = val; break;
1328 case 1: *(u8 *)data = val; break;
1329 }
1330 } else {
1331 switch (bytes) {
1332 case 8: *(u64 *)data = swab64(val); break;
1333 case 4: *(u32 *)data = swab32(val); break;
1334 case 2: *(u16 *)data = swab16(val); break;
1335 case 1: *(u8 *)data = val; break;
1336 }
1337 }
1338
1339 idx = srcu_read_lock(&vcpu->kvm->srcu);
1340
1341 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1342 bytes, &run->mmio.data);
1343
1344 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1345
1346 if (!ret) {
1347 vcpu->mmio_needed = 0;
1348 return EMULATE_DONE;
1349 }
1350
1351 return EMULATE_DO_MMIO;
1352 }
1353 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1354
1355 #ifdef CONFIG_VSX
kvmppc_get_vsr_data(struct kvm_vcpu * vcpu,int rs,u64 * val)1356 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1357 {
1358 u32 dword_offset, word_offset;
1359 union kvmppc_one_reg reg;
1360 int vsx_offset = 0;
1361 int copy_type = vcpu->arch.mmio_copy_type;
1362 int result = 0;
1363
1364 switch (copy_type) {
1365 case KVMPPC_VSX_COPY_DWORD:
1366 vsx_offset =
1367 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1368
1369 if (vsx_offset == -1) {
1370 result = -1;
1371 break;
1372 }
1373
1374 if (rs < 32) {
1375 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1376 } else {
1377 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1378 *val = reg.vsxval[vsx_offset];
1379 }
1380 break;
1381
1382 case KVMPPC_VSX_COPY_WORD:
1383 vsx_offset =
1384 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1385
1386 if (vsx_offset == -1) {
1387 result = -1;
1388 break;
1389 }
1390
1391 if (rs < 32) {
1392 dword_offset = vsx_offset / 2;
1393 word_offset = vsx_offset % 2;
1394 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1395 *val = reg.vsx32val[word_offset];
1396 } else {
1397 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1398 *val = reg.vsx32val[vsx_offset];
1399 }
1400 break;
1401
1402 default:
1403 result = -1;
1404 break;
1405 }
1406
1407 return result;
1408 }
1409
kvmppc_handle_vsx_store(struct kvm_run * run,struct kvm_vcpu * vcpu,int rs,unsigned int bytes,int is_default_endian)1410 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1411 int rs, unsigned int bytes, int is_default_endian)
1412 {
1413 u64 val;
1414 enum emulation_result emulated = EMULATE_DONE;
1415
1416 vcpu->arch.io_gpr = rs;
1417
1418 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1419 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1420 return EMULATE_FAIL;
1421
1422 while (vcpu->arch.mmio_vsx_copy_nums) {
1423 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1424 return EMULATE_FAIL;
1425
1426 emulated = kvmppc_handle_store(run, vcpu,
1427 val, bytes, is_default_endian);
1428
1429 if (emulated != EMULATE_DONE)
1430 break;
1431
1432 vcpu->arch.paddr_accessed += run->mmio.len;
1433
1434 vcpu->arch.mmio_vsx_copy_nums--;
1435 vcpu->arch.mmio_vsx_offset++;
1436 }
1437
1438 return emulated;
1439 }
1440
kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu * vcpu,struct kvm_run * run)1441 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1442 struct kvm_run *run)
1443 {
1444 enum emulation_result emulated = EMULATE_FAIL;
1445 int r;
1446
1447 vcpu->arch.paddr_accessed += run->mmio.len;
1448
1449 if (!vcpu->mmio_is_write) {
1450 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1451 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1452 } else {
1453 emulated = kvmppc_handle_vsx_store(run, vcpu,
1454 vcpu->arch.io_gpr, run->mmio.len, 1);
1455 }
1456
1457 switch (emulated) {
1458 case EMULATE_DO_MMIO:
1459 run->exit_reason = KVM_EXIT_MMIO;
1460 r = RESUME_HOST;
1461 break;
1462 case EMULATE_FAIL:
1463 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1464 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1465 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1466 r = RESUME_HOST;
1467 break;
1468 default:
1469 r = RESUME_GUEST;
1470 break;
1471 }
1472 return r;
1473 }
1474 #endif /* CONFIG_VSX */
1475
1476 #ifdef CONFIG_ALTIVEC
kvmppc_handle_vmx_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1477 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1478 unsigned int rt, unsigned int bytes, int is_default_endian)
1479 {
1480 enum emulation_result emulated = EMULATE_DONE;
1481
1482 if (vcpu->arch.mmio_vsx_copy_nums > 2)
1483 return EMULATE_FAIL;
1484
1485 while (vcpu->arch.mmio_vmx_copy_nums) {
1486 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1487 is_default_endian, 0);
1488
1489 if (emulated != EMULATE_DONE)
1490 break;
1491
1492 vcpu->arch.paddr_accessed += run->mmio.len;
1493 vcpu->arch.mmio_vmx_copy_nums--;
1494 vcpu->arch.mmio_vmx_offset++;
1495 }
1496
1497 return emulated;
1498 }
1499
kvmppc_get_vmx_dword(struct kvm_vcpu * vcpu,int index,u64 * val)1500 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1501 {
1502 union kvmppc_one_reg reg;
1503 int vmx_offset = 0;
1504 int result = 0;
1505
1506 vmx_offset =
1507 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1508
1509 if (vmx_offset == -1)
1510 return -1;
1511
1512 reg.vval = VCPU_VSX_VR(vcpu, index);
1513 *val = reg.vsxval[vmx_offset];
1514
1515 return result;
1516 }
1517
kvmppc_get_vmx_word(struct kvm_vcpu * vcpu,int index,u64 * val)1518 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1519 {
1520 union kvmppc_one_reg reg;
1521 int vmx_offset = 0;
1522 int result = 0;
1523
1524 vmx_offset =
1525 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1526
1527 if (vmx_offset == -1)
1528 return -1;
1529
1530 reg.vval = VCPU_VSX_VR(vcpu, index);
1531 *val = reg.vsx32val[vmx_offset];
1532
1533 return result;
1534 }
1535
kvmppc_get_vmx_hword(struct kvm_vcpu * vcpu,int index,u64 * val)1536 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1537 {
1538 union kvmppc_one_reg reg;
1539 int vmx_offset = 0;
1540 int result = 0;
1541
1542 vmx_offset =
1543 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1544
1545 if (vmx_offset == -1)
1546 return -1;
1547
1548 reg.vval = VCPU_VSX_VR(vcpu, index);
1549 *val = reg.vsx16val[vmx_offset];
1550
1551 return result;
1552 }
1553
kvmppc_get_vmx_byte(struct kvm_vcpu * vcpu,int index,u64 * val)1554 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1555 {
1556 union kvmppc_one_reg reg;
1557 int vmx_offset = 0;
1558 int result = 0;
1559
1560 vmx_offset =
1561 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1562
1563 if (vmx_offset == -1)
1564 return -1;
1565
1566 reg.vval = VCPU_VSX_VR(vcpu, index);
1567 *val = reg.vsx8val[vmx_offset];
1568
1569 return result;
1570 }
1571
kvmppc_handle_vmx_store(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rs,unsigned int bytes,int is_default_endian)1572 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1573 unsigned int rs, unsigned int bytes, int is_default_endian)
1574 {
1575 u64 val = 0;
1576 unsigned int index = rs & KVM_MMIO_REG_MASK;
1577 enum emulation_result emulated = EMULATE_DONE;
1578
1579 if (vcpu->arch.mmio_vsx_copy_nums > 2)
1580 return EMULATE_FAIL;
1581
1582 vcpu->arch.io_gpr = rs;
1583
1584 while (vcpu->arch.mmio_vmx_copy_nums) {
1585 switch (vcpu->arch.mmio_copy_type) {
1586 case KVMPPC_VMX_COPY_DWORD:
1587 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1588 return EMULATE_FAIL;
1589
1590 break;
1591 case KVMPPC_VMX_COPY_WORD:
1592 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1593 return EMULATE_FAIL;
1594 break;
1595 case KVMPPC_VMX_COPY_HWORD:
1596 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1597 return EMULATE_FAIL;
1598 break;
1599 case KVMPPC_VMX_COPY_BYTE:
1600 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1601 return EMULATE_FAIL;
1602 break;
1603 default:
1604 return EMULATE_FAIL;
1605 }
1606
1607 emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1608 is_default_endian);
1609 if (emulated != EMULATE_DONE)
1610 break;
1611
1612 vcpu->arch.paddr_accessed += run->mmio.len;
1613 vcpu->arch.mmio_vmx_copy_nums--;
1614 vcpu->arch.mmio_vmx_offset++;
1615 }
1616
1617 return emulated;
1618 }
1619
kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu * vcpu,struct kvm_run * run)1620 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1621 struct kvm_run *run)
1622 {
1623 enum emulation_result emulated = EMULATE_FAIL;
1624 int r;
1625
1626 vcpu->arch.paddr_accessed += run->mmio.len;
1627
1628 if (!vcpu->mmio_is_write) {
1629 emulated = kvmppc_handle_vmx_load(run, vcpu,
1630 vcpu->arch.io_gpr, run->mmio.len, 1);
1631 } else {
1632 emulated = kvmppc_handle_vmx_store(run, vcpu,
1633 vcpu->arch.io_gpr, run->mmio.len, 1);
1634 }
1635
1636 switch (emulated) {
1637 case EMULATE_DO_MMIO:
1638 run->exit_reason = KVM_EXIT_MMIO;
1639 r = RESUME_HOST;
1640 break;
1641 case EMULATE_FAIL:
1642 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1643 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1644 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1645 r = RESUME_HOST;
1646 break;
1647 default:
1648 r = RESUME_GUEST;
1649 break;
1650 }
1651 return r;
1652 }
1653 #endif /* CONFIG_ALTIVEC */
1654
kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1655 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1656 {
1657 int r = 0;
1658 union kvmppc_one_reg val;
1659 int size;
1660
1661 size = one_reg_size(reg->id);
1662 if (size > sizeof(val))
1663 return -EINVAL;
1664
1665 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1666 if (r == -EINVAL) {
1667 r = 0;
1668 switch (reg->id) {
1669 #ifdef CONFIG_ALTIVEC
1670 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1671 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1672 r = -ENXIO;
1673 break;
1674 }
1675 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1676 break;
1677 case KVM_REG_PPC_VSCR:
1678 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1679 r = -ENXIO;
1680 break;
1681 }
1682 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1683 break;
1684 case KVM_REG_PPC_VRSAVE:
1685 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1686 break;
1687 #endif /* CONFIG_ALTIVEC */
1688 default:
1689 r = -EINVAL;
1690 break;
1691 }
1692 }
1693
1694 if (r)
1695 return r;
1696
1697 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1698 r = -EFAULT;
1699
1700 return r;
1701 }
1702
kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1703 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1704 {
1705 int r;
1706 union kvmppc_one_reg val;
1707 int size;
1708
1709 size = one_reg_size(reg->id);
1710 if (size > sizeof(val))
1711 return -EINVAL;
1712
1713 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1714 return -EFAULT;
1715
1716 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1717 if (r == -EINVAL) {
1718 r = 0;
1719 switch (reg->id) {
1720 #ifdef CONFIG_ALTIVEC
1721 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1722 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1723 r = -ENXIO;
1724 break;
1725 }
1726 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1727 break;
1728 case KVM_REG_PPC_VSCR:
1729 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1730 r = -ENXIO;
1731 break;
1732 }
1733 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1734 break;
1735 case KVM_REG_PPC_VRSAVE:
1736 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1737 r = -ENXIO;
1738 break;
1739 }
1740 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1741 break;
1742 #endif /* CONFIG_ALTIVEC */
1743 default:
1744 r = -EINVAL;
1745 break;
1746 }
1747 }
1748
1749 return r;
1750 }
1751
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)1752 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1753 {
1754 int r;
1755
1756 vcpu_load(vcpu);
1757
1758 if (vcpu->mmio_needed) {
1759 vcpu->mmio_needed = 0;
1760 if (!vcpu->mmio_is_write)
1761 kvmppc_complete_mmio_load(vcpu, run);
1762 #ifdef CONFIG_VSX
1763 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1764 vcpu->arch.mmio_vsx_copy_nums--;
1765 vcpu->arch.mmio_vsx_offset++;
1766 }
1767
1768 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1769 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1770 if (r == RESUME_HOST) {
1771 vcpu->mmio_needed = 1;
1772 goto out;
1773 }
1774 }
1775 #endif
1776 #ifdef CONFIG_ALTIVEC
1777 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1778 vcpu->arch.mmio_vmx_copy_nums--;
1779 vcpu->arch.mmio_vmx_offset++;
1780 }
1781
1782 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1783 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1784 if (r == RESUME_HOST) {
1785 vcpu->mmio_needed = 1;
1786 goto out;
1787 }
1788 }
1789 #endif
1790 } else if (vcpu->arch.osi_needed) {
1791 u64 *gprs = run->osi.gprs;
1792 int i;
1793
1794 for (i = 0; i < 32; i++)
1795 kvmppc_set_gpr(vcpu, i, gprs[i]);
1796 vcpu->arch.osi_needed = 0;
1797 } else if (vcpu->arch.hcall_needed) {
1798 int i;
1799
1800 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1801 for (i = 0; i < 9; ++i)
1802 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1803 vcpu->arch.hcall_needed = 0;
1804 #ifdef CONFIG_BOOKE
1805 } else if (vcpu->arch.epr_needed) {
1806 kvmppc_set_epr(vcpu, run->epr.epr);
1807 vcpu->arch.epr_needed = 0;
1808 #endif
1809 }
1810
1811 kvm_sigset_activate(vcpu);
1812
1813 if (run->immediate_exit)
1814 r = -EINTR;
1815 else
1816 r = kvmppc_vcpu_run(run, vcpu);
1817
1818 kvm_sigset_deactivate(vcpu);
1819
1820 #ifdef CONFIG_ALTIVEC
1821 out:
1822 #endif
1823 vcpu_put(vcpu);
1824 return r;
1825 }
1826
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)1827 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1828 {
1829 if (irq->irq == KVM_INTERRUPT_UNSET) {
1830 kvmppc_core_dequeue_external(vcpu);
1831 return 0;
1832 }
1833
1834 kvmppc_core_queue_external(vcpu, irq);
1835
1836 kvm_vcpu_kick(vcpu);
1837
1838 return 0;
1839 }
1840
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)1841 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1842 struct kvm_enable_cap *cap)
1843 {
1844 int r;
1845
1846 if (cap->flags)
1847 return -EINVAL;
1848
1849 switch (cap->cap) {
1850 case KVM_CAP_PPC_OSI:
1851 r = 0;
1852 vcpu->arch.osi_enabled = true;
1853 break;
1854 case KVM_CAP_PPC_PAPR:
1855 r = 0;
1856 vcpu->arch.papr_enabled = true;
1857 break;
1858 case KVM_CAP_PPC_EPR:
1859 r = 0;
1860 if (cap->args[0])
1861 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1862 else
1863 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1864 break;
1865 #ifdef CONFIG_BOOKE
1866 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1867 r = 0;
1868 vcpu->arch.watchdog_enabled = true;
1869 break;
1870 #endif
1871 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1872 case KVM_CAP_SW_TLB: {
1873 struct kvm_config_tlb cfg;
1874 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1875
1876 r = -EFAULT;
1877 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1878 break;
1879
1880 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1881 break;
1882 }
1883 #endif
1884 #ifdef CONFIG_KVM_MPIC
1885 case KVM_CAP_IRQ_MPIC: {
1886 struct fd f;
1887 struct kvm_device *dev;
1888
1889 r = -EBADF;
1890 f = fdget(cap->args[0]);
1891 if (!f.file)
1892 break;
1893
1894 r = -EPERM;
1895 dev = kvm_device_from_filp(f.file);
1896 if (dev)
1897 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1898
1899 fdput(f);
1900 break;
1901 }
1902 #endif
1903 #ifdef CONFIG_KVM_XICS
1904 case KVM_CAP_IRQ_XICS: {
1905 struct fd f;
1906 struct kvm_device *dev;
1907
1908 r = -EBADF;
1909 f = fdget(cap->args[0]);
1910 if (!f.file)
1911 break;
1912
1913 r = -EPERM;
1914 dev = kvm_device_from_filp(f.file);
1915 if (dev) {
1916 if (xive_enabled())
1917 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1918 else
1919 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1920 }
1921
1922 fdput(f);
1923 break;
1924 }
1925 #endif /* CONFIG_KVM_XICS */
1926 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1927 case KVM_CAP_PPC_FWNMI:
1928 r = -EINVAL;
1929 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1930 break;
1931 r = 0;
1932 vcpu->kvm->arch.fwnmi_enabled = true;
1933 break;
1934 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1935 default:
1936 r = -EINVAL;
1937 break;
1938 }
1939
1940 if (!r)
1941 r = kvmppc_sanity_check(vcpu);
1942
1943 return r;
1944 }
1945
kvm_arch_intc_initialized(struct kvm * kvm)1946 bool kvm_arch_intc_initialized(struct kvm *kvm)
1947 {
1948 #ifdef CONFIG_KVM_MPIC
1949 if (kvm->arch.mpic)
1950 return true;
1951 #endif
1952 #ifdef CONFIG_KVM_XICS
1953 if (kvm->arch.xics || kvm->arch.xive)
1954 return true;
1955 #endif
1956 return false;
1957 }
1958
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)1959 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1960 struct kvm_mp_state *mp_state)
1961 {
1962 return -EINVAL;
1963 }
1964
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)1965 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1966 struct kvm_mp_state *mp_state)
1967 {
1968 return -EINVAL;
1969 }
1970
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1971 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1972 unsigned int ioctl, unsigned long arg)
1973 {
1974 struct kvm_vcpu *vcpu = filp->private_data;
1975 void __user *argp = (void __user *)arg;
1976
1977 if (ioctl == KVM_INTERRUPT) {
1978 struct kvm_interrupt irq;
1979 if (copy_from_user(&irq, argp, sizeof(irq)))
1980 return -EFAULT;
1981 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1982 }
1983 return -ENOIOCTLCMD;
1984 }
1985
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1986 long kvm_arch_vcpu_ioctl(struct file *filp,
1987 unsigned int ioctl, unsigned long arg)
1988 {
1989 struct kvm_vcpu *vcpu = filp->private_data;
1990 void __user *argp = (void __user *)arg;
1991 long r;
1992
1993 switch (ioctl) {
1994 case KVM_ENABLE_CAP:
1995 {
1996 struct kvm_enable_cap cap;
1997 r = -EFAULT;
1998 vcpu_load(vcpu);
1999 if (copy_from_user(&cap, argp, sizeof(cap)))
2000 goto out;
2001 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2002 vcpu_put(vcpu);
2003 break;
2004 }
2005
2006 case KVM_SET_ONE_REG:
2007 case KVM_GET_ONE_REG:
2008 {
2009 struct kvm_one_reg reg;
2010 r = -EFAULT;
2011 if (copy_from_user(®, argp, sizeof(reg)))
2012 goto out;
2013 if (ioctl == KVM_SET_ONE_REG)
2014 r = kvm_vcpu_ioctl_set_one_reg(vcpu, ®);
2015 else
2016 r = kvm_vcpu_ioctl_get_one_reg(vcpu, ®);
2017 break;
2018 }
2019
2020 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2021 case KVM_DIRTY_TLB: {
2022 struct kvm_dirty_tlb dirty;
2023 r = -EFAULT;
2024 vcpu_load(vcpu);
2025 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2026 goto out;
2027 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2028 vcpu_put(vcpu);
2029 break;
2030 }
2031 #endif
2032 default:
2033 r = -EINVAL;
2034 }
2035
2036 out:
2037 return r;
2038 }
2039
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)2040 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2041 {
2042 return VM_FAULT_SIGBUS;
2043 }
2044
kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo * pvinfo)2045 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2046 {
2047 u32 inst_nop = 0x60000000;
2048 #ifdef CONFIG_KVM_BOOKE_HV
2049 u32 inst_sc1 = 0x44000022;
2050 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2051 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2052 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2053 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2054 #else
2055 u32 inst_lis = 0x3c000000;
2056 u32 inst_ori = 0x60000000;
2057 u32 inst_sc = 0x44000002;
2058 u32 inst_imm_mask = 0xffff;
2059
2060 /*
2061 * The hypercall to get into KVM from within guest context is as
2062 * follows:
2063 *
2064 * lis r0, r0, KVM_SC_MAGIC_R0@h
2065 * ori r0, KVM_SC_MAGIC_R0@l
2066 * sc
2067 * nop
2068 */
2069 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2070 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2071 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2072 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2073 #endif
2074
2075 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2076
2077 return 0;
2078 }
2079
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)2080 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2081 bool line_status)
2082 {
2083 if (!irqchip_in_kernel(kvm))
2084 return -ENXIO;
2085
2086 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2087 irq_event->irq, irq_event->level,
2088 line_status);
2089 return 0;
2090 }
2091
2092
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)2093 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2094 struct kvm_enable_cap *cap)
2095 {
2096 int r;
2097
2098 if (cap->flags)
2099 return -EINVAL;
2100
2101 switch (cap->cap) {
2102 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2103 case KVM_CAP_PPC_ENABLE_HCALL: {
2104 unsigned long hcall = cap->args[0];
2105
2106 r = -EINVAL;
2107 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2108 cap->args[1] > 1)
2109 break;
2110 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2111 break;
2112 if (cap->args[1])
2113 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2114 else
2115 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2116 r = 0;
2117 break;
2118 }
2119 case KVM_CAP_PPC_SMT: {
2120 unsigned long mode = cap->args[0];
2121 unsigned long flags = cap->args[1];
2122
2123 r = -EINVAL;
2124 if (kvm->arch.kvm_ops->set_smt_mode)
2125 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2126 break;
2127 }
2128 #endif
2129 default:
2130 r = -EINVAL;
2131 break;
2132 }
2133
2134 return r;
2135 }
2136
2137 #ifdef CONFIG_PPC_BOOK3S_64
2138 /*
2139 * These functions check whether the underlying hardware is safe
2140 * against attacks based on observing the effects of speculatively
2141 * executed instructions, and whether it supplies instructions for
2142 * use in workarounds. The information comes from firmware, either
2143 * via the device tree on powernv platforms or from an hcall on
2144 * pseries platforms.
2145 */
2146 #ifdef CONFIG_PPC_PSERIES
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2147 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2148 {
2149 struct h_cpu_char_result c;
2150 unsigned long rc;
2151
2152 if (!machine_is(pseries))
2153 return -ENOTTY;
2154
2155 rc = plpar_get_cpu_characteristics(&c);
2156 if (rc == H_SUCCESS) {
2157 cp->character = c.character;
2158 cp->behaviour = c.behaviour;
2159 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2160 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2161 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2162 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2163 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2164 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2165 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2166 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2167 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2168 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2169 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2170 }
2171 return 0;
2172 }
2173 #else
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2174 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2175 {
2176 return -ENOTTY;
2177 }
2178 #endif
2179
have_fw_feat(struct device_node * fw_features,const char * state,const char * name)2180 static inline bool have_fw_feat(struct device_node *fw_features,
2181 const char *state, const char *name)
2182 {
2183 struct device_node *np;
2184 bool r = false;
2185
2186 np = of_get_child_by_name(fw_features, name);
2187 if (np) {
2188 r = of_property_read_bool(np, state);
2189 of_node_put(np);
2190 }
2191 return r;
2192 }
2193
kvmppc_get_cpu_char(struct kvm_ppc_cpu_char * cp)2194 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2195 {
2196 struct device_node *np, *fw_features;
2197 int r;
2198
2199 memset(cp, 0, sizeof(*cp));
2200 r = pseries_get_cpu_char(cp);
2201 if (r != -ENOTTY)
2202 return r;
2203
2204 np = of_find_node_by_name(NULL, "ibm,opal");
2205 if (np) {
2206 fw_features = of_get_child_by_name(np, "fw-features");
2207 of_node_put(np);
2208 if (!fw_features)
2209 return 0;
2210 if (have_fw_feat(fw_features, "enabled",
2211 "inst-spec-barrier-ori31,31,0"))
2212 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2213 if (have_fw_feat(fw_features, "enabled",
2214 "fw-bcctrl-serialized"))
2215 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2216 if (have_fw_feat(fw_features, "enabled",
2217 "inst-l1d-flush-ori30,30,0"))
2218 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2219 if (have_fw_feat(fw_features, "enabled",
2220 "inst-l1d-flush-trig2"))
2221 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2222 if (have_fw_feat(fw_features, "enabled",
2223 "fw-l1d-thread-split"))
2224 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2225 if (have_fw_feat(fw_features, "enabled",
2226 "fw-count-cache-disabled"))
2227 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2228 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2229 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2230 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2231 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2232 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2233 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2234
2235 if (have_fw_feat(fw_features, "enabled",
2236 "speculation-policy-favor-security"))
2237 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2238 if (!have_fw_feat(fw_features, "disabled",
2239 "needs-l1d-flush-msr-pr-0-to-1"))
2240 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2241 if (!have_fw_feat(fw_features, "disabled",
2242 "needs-spec-barrier-for-bound-checks"))
2243 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2244 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2245 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2246 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2247
2248 of_node_put(fw_features);
2249 }
2250
2251 return 0;
2252 }
2253 #endif
2254
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2255 long kvm_arch_vm_ioctl(struct file *filp,
2256 unsigned int ioctl, unsigned long arg)
2257 {
2258 struct kvm *kvm __maybe_unused = filp->private_data;
2259 void __user *argp = (void __user *)arg;
2260 long r;
2261
2262 switch (ioctl) {
2263 case KVM_PPC_GET_PVINFO: {
2264 struct kvm_ppc_pvinfo pvinfo;
2265 memset(&pvinfo, 0, sizeof(pvinfo));
2266 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2267 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2268 r = -EFAULT;
2269 goto out;
2270 }
2271
2272 break;
2273 }
2274 case KVM_ENABLE_CAP:
2275 {
2276 struct kvm_enable_cap cap;
2277 r = -EFAULT;
2278 if (copy_from_user(&cap, argp, sizeof(cap)))
2279 goto out;
2280 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
2281 break;
2282 }
2283 #ifdef CONFIG_SPAPR_TCE_IOMMU
2284 case KVM_CREATE_SPAPR_TCE_64: {
2285 struct kvm_create_spapr_tce_64 create_tce_64;
2286
2287 r = -EFAULT;
2288 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2289 goto out;
2290 if (create_tce_64.flags) {
2291 r = -EINVAL;
2292 goto out;
2293 }
2294 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2295 goto out;
2296 }
2297 case KVM_CREATE_SPAPR_TCE: {
2298 struct kvm_create_spapr_tce create_tce;
2299 struct kvm_create_spapr_tce_64 create_tce_64;
2300
2301 r = -EFAULT;
2302 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2303 goto out;
2304
2305 create_tce_64.liobn = create_tce.liobn;
2306 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2307 create_tce_64.offset = 0;
2308 create_tce_64.size = create_tce.window_size >>
2309 IOMMU_PAGE_SHIFT_4K;
2310 create_tce_64.flags = 0;
2311 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2312 goto out;
2313 }
2314 #endif
2315 #ifdef CONFIG_PPC_BOOK3S_64
2316 case KVM_PPC_GET_SMMU_INFO: {
2317 struct kvm_ppc_smmu_info info;
2318 struct kvm *kvm = filp->private_data;
2319
2320 memset(&info, 0, sizeof(info));
2321 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2322 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2323 r = -EFAULT;
2324 break;
2325 }
2326 case KVM_PPC_RTAS_DEFINE_TOKEN: {
2327 struct kvm *kvm = filp->private_data;
2328
2329 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2330 break;
2331 }
2332 case KVM_PPC_CONFIGURE_V3_MMU: {
2333 struct kvm *kvm = filp->private_data;
2334 struct kvm_ppc_mmuv3_cfg cfg;
2335
2336 r = -EINVAL;
2337 if (!kvm->arch.kvm_ops->configure_mmu)
2338 goto out;
2339 r = -EFAULT;
2340 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2341 goto out;
2342 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2343 break;
2344 }
2345 case KVM_PPC_GET_RMMU_INFO: {
2346 struct kvm *kvm = filp->private_data;
2347 struct kvm_ppc_rmmu_info info;
2348
2349 r = -EINVAL;
2350 if (!kvm->arch.kvm_ops->get_rmmu_info)
2351 goto out;
2352 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2353 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2354 r = -EFAULT;
2355 break;
2356 }
2357 case KVM_PPC_GET_CPU_CHAR: {
2358 struct kvm_ppc_cpu_char cpuchar;
2359
2360 r = kvmppc_get_cpu_char(&cpuchar);
2361 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2362 r = -EFAULT;
2363 break;
2364 }
2365 default: {
2366 struct kvm *kvm = filp->private_data;
2367 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2368 }
2369 #else /* CONFIG_PPC_BOOK3S_64 */
2370 default:
2371 r = -ENOTTY;
2372 #endif
2373 }
2374 out:
2375 return r;
2376 }
2377
2378 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2379 static unsigned long nr_lpids;
2380
kvmppc_alloc_lpid(void)2381 long kvmppc_alloc_lpid(void)
2382 {
2383 long lpid;
2384
2385 do {
2386 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2387 if (lpid >= nr_lpids) {
2388 pr_err("%s: No LPIDs free\n", __func__);
2389 return -ENOMEM;
2390 }
2391 } while (test_and_set_bit(lpid, lpid_inuse));
2392
2393 return lpid;
2394 }
2395 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2396
kvmppc_claim_lpid(long lpid)2397 void kvmppc_claim_lpid(long lpid)
2398 {
2399 set_bit(lpid, lpid_inuse);
2400 }
2401 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2402
kvmppc_free_lpid(long lpid)2403 void kvmppc_free_lpid(long lpid)
2404 {
2405 clear_bit(lpid, lpid_inuse);
2406 }
2407 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2408
kvmppc_init_lpid(unsigned long nr_lpids_param)2409 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2410 {
2411 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2412 memset(lpid_inuse, 0, sizeof(lpid_inuse));
2413 }
2414 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2415
kvm_arch_init(void * opaque)2416 int kvm_arch_init(void *opaque)
2417 {
2418 return 0;
2419 }
2420
2421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2422