• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20 
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include <asm/switch_to.h>
40 #include <asm/xive.h>
41 #ifdef CONFIG_PPC_PSERIES
42 #include <asm/hvcall.h>
43 #include <asm/plpar_wrappers.h>
44 #endif
45 
46 #include "timing.h"
47 #include "irq.h"
48 #include "../mm/mmu_decl.h"
49 
50 #define CREATE_TRACE_POINTS
51 #include "trace.h"
52 
53 struct kvmppc_ops *kvmppc_hv_ops;
54 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
55 struct kvmppc_ops *kvmppc_pr_ops;
56 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
57 
58 
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)59 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
60 {
61 	return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
62 }
63 
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)64 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
65 {
66 	return kvm_arch_vcpu_runnable(vcpu);
67 }
68 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)69 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
70 {
71 	return false;
72 }
73 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)74 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
75 {
76 	return 1;
77 }
78 
79 /*
80  * Common checks before entering the guest world.  Call with interrupts
81  * disabled.
82  *
83  * returns:
84  *
85  * == 1 if we're ready to go into guest state
86  * <= 0 if we need to go back to the host with return value
87  */
kvmppc_prepare_to_enter(struct kvm_vcpu * vcpu)88 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
89 {
90 	int r;
91 
92 	WARN_ON(irqs_disabled());
93 	hard_irq_disable();
94 
95 	while (true) {
96 		if (need_resched()) {
97 			local_irq_enable();
98 			cond_resched();
99 			hard_irq_disable();
100 			continue;
101 		}
102 
103 		if (signal_pending(current)) {
104 			kvmppc_account_exit(vcpu, SIGNAL_EXITS);
105 			vcpu->run->exit_reason = KVM_EXIT_INTR;
106 			r = -EINTR;
107 			break;
108 		}
109 
110 		vcpu->mode = IN_GUEST_MODE;
111 
112 		/*
113 		 * Reading vcpu->requests must happen after setting vcpu->mode,
114 		 * so we don't miss a request because the requester sees
115 		 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
116 		 * before next entering the guest (and thus doesn't IPI).
117 		 * This also orders the write to mode from any reads
118 		 * to the page tables done while the VCPU is running.
119 		 * Please see the comment in kvm_flush_remote_tlbs.
120 		 */
121 		smp_mb();
122 
123 		if (kvm_request_pending(vcpu)) {
124 			/* Make sure we process requests preemptable */
125 			local_irq_enable();
126 			trace_kvm_check_requests(vcpu);
127 			r = kvmppc_core_check_requests(vcpu);
128 			hard_irq_disable();
129 			if (r > 0)
130 				continue;
131 			break;
132 		}
133 
134 		if (kvmppc_core_prepare_to_enter(vcpu)) {
135 			/* interrupts got enabled in between, so we
136 			   are back at square 1 */
137 			continue;
138 		}
139 
140 		guest_enter_irqoff();
141 		return 1;
142 	}
143 
144 	/* return to host */
145 	local_irq_enable();
146 	return r;
147 }
148 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
149 
150 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
kvmppc_swab_shared(struct kvm_vcpu * vcpu)151 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
152 {
153 	struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
154 	int i;
155 
156 	shared->sprg0 = swab64(shared->sprg0);
157 	shared->sprg1 = swab64(shared->sprg1);
158 	shared->sprg2 = swab64(shared->sprg2);
159 	shared->sprg3 = swab64(shared->sprg3);
160 	shared->srr0 = swab64(shared->srr0);
161 	shared->srr1 = swab64(shared->srr1);
162 	shared->dar = swab64(shared->dar);
163 	shared->msr = swab64(shared->msr);
164 	shared->dsisr = swab32(shared->dsisr);
165 	shared->int_pending = swab32(shared->int_pending);
166 	for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
167 		shared->sr[i] = swab32(shared->sr[i]);
168 }
169 #endif
170 
kvmppc_kvm_pv(struct kvm_vcpu * vcpu)171 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
172 {
173 	int nr = kvmppc_get_gpr(vcpu, 11);
174 	int r;
175 	unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
176 	unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
177 	unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
178 	unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
179 	unsigned long r2 = 0;
180 
181 	if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
182 		/* 32 bit mode */
183 		param1 &= 0xffffffff;
184 		param2 &= 0xffffffff;
185 		param3 &= 0xffffffff;
186 		param4 &= 0xffffffff;
187 	}
188 
189 	switch (nr) {
190 	case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
191 	{
192 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
193 		/* Book3S can be little endian, find it out here */
194 		int shared_big_endian = true;
195 		if (vcpu->arch.intr_msr & MSR_LE)
196 			shared_big_endian = false;
197 		if (shared_big_endian != vcpu->arch.shared_big_endian)
198 			kvmppc_swab_shared(vcpu);
199 		vcpu->arch.shared_big_endian = shared_big_endian;
200 #endif
201 
202 		if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
203 			/*
204 			 * Older versions of the Linux magic page code had
205 			 * a bug where they would map their trampoline code
206 			 * NX. If that's the case, remove !PR NX capability.
207 			 */
208 			vcpu->arch.disable_kernel_nx = true;
209 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
210 		}
211 
212 		vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
213 		vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
214 
215 #ifdef CONFIG_PPC_64K_PAGES
216 		/*
217 		 * Make sure our 4k magic page is in the same window of a 64k
218 		 * page within the guest and within the host's page.
219 		 */
220 		if ((vcpu->arch.magic_page_pa & 0xf000) !=
221 		    ((ulong)vcpu->arch.shared & 0xf000)) {
222 			void *old_shared = vcpu->arch.shared;
223 			ulong shared = (ulong)vcpu->arch.shared;
224 			void *new_shared;
225 
226 			shared &= PAGE_MASK;
227 			shared |= vcpu->arch.magic_page_pa & 0xf000;
228 			new_shared = (void*)shared;
229 			memcpy(new_shared, old_shared, 0x1000);
230 			vcpu->arch.shared = new_shared;
231 		}
232 #endif
233 
234 		r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
235 
236 		r = EV_SUCCESS;
237 		break;
238 	}
239 	case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
240 		r = EV_SUCCESS;
241 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
242 		r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
243 #endif
244 
245 		/* Second return value is in r4 */
246 		break;
247 	case EV_HCALL_TOKEN(EV_IDLE):
248 		r = EV_SUCCESS;
249 		kvm_vcpu_block(vcpu);
250 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
251 		break;
252 	default:
253 		r = EV_UNIMPLEMENTED;
254 		break;
255 	}
256 
257 	kvmppc_set_gpr(vcpu, 4, r2);
258 
259 	return r;
260 }
261 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
262 
kvmppc_sanity_check(struct kvm_vcpu * vcpu)263 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
264 {
265 	int r = false;
266 
267 	/* We have to know what CPU to virtualize */
268 	if (!vcpu->arch.pvr)
269 		goto out;
270 
271 	/* PAPR only works with book3s_64 */
272 	if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
273 		goto out;
274 
275 	/* HV KVM can only do PAPR mode for now */
276 	if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
277 		goto out;
278 
279 #ifdef CONFIG_KVM_BOOKE_HV
280 	if (!cpu_has_feature(CPU_FTR_EMB_HV))
281 		goto out;
282 #endif
283 
284 	r = true;
285 
286 out:
287 	vcpu->arch.sane = r;
288 	return r ? 0 : -EINVAL;
289 }
290 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
291 
kvmppc_emulate_mmio(struct kvm_run * run,struct kvm_vcpu * vcpu)292 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
293 {
294 	enum emulation_result er;
295 	int r;
296 
297 	er = kvmppc_emulate_loadstore(vcpu);
298 	switch (er) {
299 	case EMULATE_DONE:
300 		/* Future optimization: only reload non-volatiles if they were
301 		 * actually modified. */
302 		r = RESUME_GUEST_NV;
303 		break;
304 	case EMULATE_AGAIN:
305 		r = RESUME_GUEST;
306 		break;
307 	case EMULATE_DO_MMIO:
308 		run->exit_reason = KVM_EXIT_MMIO;
309 		/* We must reload nonvolatiles because "update" load/store
310 		 * instructions modify register state. */
311 		/* Future optimization: only reload non-volatiles if they were
312 		 * actually modified. */
313 		r = RESUME_HOST_NV;
314 		break;
315 	case EMULATE_FAIL:
316 	{
317 		u32 last_inst;
318 
319 		kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
320 		/* XXX Deliver Program interrupt to guest. */
321 		pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
322 		r = RESUME_HOST;
323 		break;
324 	}
325 	default:
326 		WARN_ON(1);
327 		r = RESUME_GUEST;
328 	}
329 
330 	return r;
331 }
332 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
333 
kvmppc_st(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)334 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
335 	      bool data)
336 {
337 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
338 	struct kvmppc_pte pte;
339 	int r;
340 
341 	vcpu->stat.st++;
342 
343 	r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
344 			 XLATE_WRITE, &pte);
345 	if (r < 0)
346 		return r;
347 
348 	*eaddr = pte.raddr;
349 
350 	if (!pte.may_write)
351 		return -EPERM;
352 
353 	/* Magic page override */
354 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
355 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
356 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
357 		void *magic = vcpu->arch.shared;
358 		magic += pte.eaddr & 0xfff;
359 		memcpy(magic, ptr, size);
360 		return EMULATE_DONE;
361 	}
362 
363 	if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
364 		return EMULATE_DO_MMIO;
365 
366 	return EMULATE_DONE;
367 }
368 EXPORT_SYMBOL_GPL(kvmppc_st);
369 
kvmppc_ld(struct kvm_vcpu * vcpu,ulong * eaddr,int size,void * ptr,bool data)370 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
371 		      bool data)
372 {
373 	ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
374 	struct kvmppc_pte pte;
375 	int rc;
376 
377 	vcpu->stat.ld++;
378 
379 	rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
380 			  XLATE_READ, &pte);
381 	if (rc)
382 		return rc;
383 
384 	*eaddr = pte.raddr;
385 
386 	if (!pte.may_read)
387 		return -EPERM;
388 
389 	if (!data && !pte.may_execute)
390 		return -ENOEXEC;
391 
392 	/* Magic page override */
393 	if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
394 	    ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
395 	    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
396 		void *magic = vcpu->arch.shared;
397 		magic += pte.eaddr & 0xfff;
398 		memcpy(ptr, magic, size);
399 		return EMULATE_DONE;
400 	}
401 
402 	if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
403 		return EMULATE_DO_MMIO;
404 
405 	return EMULATE_DONE;
406 }
407 EXPORT_SYMBOL_GPL(kvmppc_ld);
408 
kvm_arch_hardware_enable(void)409 int kvm_arch_hardware_enable(void)
410 {
411 	return 0;
412 }
413 
kvm_arch_hardware_setup(void)414 int kvm_arch_hardware_setup(void)
415 {
416 	return 0;
417 }
418 
kvm_arch_check_processor_compat(void * rtn)419 void kvm_arch_check_processor_compat(void *rtn)
420 {
421 	*(int *)rtn = kvmppc_core_check_processor_compat();
422 }
423 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)424 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
425 {
426 	struct kvmppc_ops *kvm_ops = NULL;
427 	/*
428 	 * if we have both HV and PR enabled, default is HV
429 	 */
430 	if (type == 0) {
431 		if (kvmppc_hv_ops)
432 			kvm_ops = kvmppc_hv_ops;
433 		else
434 			kvm_ops = kvmppc_pr_ops;
435 		if (!kvm_ops)
436 			goto err_out;
437 	} else	if (type == KVM_VM_PPC_HV) {
438 		if (!kvmppc_hv_ops)
439 			goto err_out;
440 		kvm_ops = kvmppc_hv_ops;
441 	} else if (type == KVM_VM_PPC_PR) {
442 		if (!kvmppc_pr_ops)
443 			goto err_out;
444 		kvm_ops = kvmppc_pr_ops;
445 	} else
446 		goto err_out;
447 
448 	if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
449 		return -ENOENT;
450 
451 	kvm->arch.kvm_ops = kvm_ops;
452 	return kvmppc_core_init_vm(kvm);
453 err_out:
454 	return -EINVAL;
455 }
456 
kvm_arch_has_vcpu_debugfs(void)457 bool kvm_arch_has_vcpu_debugfs(void)
458 {
459 	return false;
460 }
461 
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu)462 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
463 {
464 	return 0;
465 }
466 
kvm_arch_destroy_vm(struct kvm * kvm)467 void kvm_arch_destroy_vm(struct kvm *kvm)
468 {
469 	unsigned int i;
470 	struct kvm_vcpu *vcpu;
471 
472 #ifdef CONFIG_KVM_XICS
473 	/*
474 	 * We call kick_all_cpus_sync() to ensure that all
475 	 * CPUs have executed any pending IPIs before we
476 	 * continue and free VCPUs structures below.
477 	 */
478 	if (is_kvmppc_hv_enabled(kvm))
479 		kick_all_cpus_sync();
480 #endif
481 
482 	kvm_for_each_vcpu(i, vcpu, kvm)
483 		kvm_arch_vcpu_free(vcpu);
484 
485 	mutex_lock(&kvm->lock);
486 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
487 		kvm->vcpus[i] = NULL;
488 
489 	atomic_set(&kvm->online_vcpus, 0);
490 
491 	kvmppc_core_destroy_vm(kvm);
492 
493 	mutex_unlock(&kvm->lock);
494 
495 	/* drop the module reference */
496 	module_put(kvm->arch.kvm_ops->owner);
497 }
498 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)499 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
500 {
501 	int r;
502 	/* Assume we're using HV mode when the HV module is loaded */
503 	int hv_enabled = kvmppc_hv_ops ? 1 : 0;
504 
505 	if (kvm) {
506 		/*
507 		 * Hooray - we know which VM type we're running on. Depend on
508 		 * that rather than the guess above.
509 		 */
510 		hv_enabled = is_kvmppc_hv_enabled(kvm);
511 	}
512 
513 	switch (ext) {
514 #ifdef CONFIG_BOOKE
515 	case KVM_CAP_PPC_BOOKE_SREGS:
516 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
517 	case KVM_CAP_PPC_EPR:
518 #else
519 	case KVM_CAP_PPC_SEGSTATE:
520 	case KVM_CAP_PPC_HIOR:
521 	case KVM_CAP_PPC_PAPR:
522 #endif
523 	case KVM_CAP_PPC_UNSET_IRQ:
524 	case KVM_CAP_PPC_IRQ_LEVEL:
525 	case KVM_CAP_ENABLE_CAP:
526 	case KVM_CAP_ENABLE_CAP_VM:
527 	case KVM_CAP_ONE_REG:
528 	case KVM_CAP_IOEVENTFD:
529 	case KVM_CAP_DEVICE_CTRL:
530 	case KVM_CAP_IMMEDIATE_EXIT:
531 		r = 1;
532 		break;
533 	case KVM_CAP_PPC_PAIRED_SINGLES:
534 	case KVM_CAP_PPC_OSI:
535 	case KVM_CAP_PPC_GET_PVINFO:
536 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
537 	case KVM_CAP_SW_TLB:
538 #endif
539 		/* We support this only for PR */
540 		r = !hv_enabled;
541 		break;
542 #ifdef CONFIG_KVM_MPIC
543 	case KVM_CAP_IRQ_MPIC:
544 		r = 1;
545 		break;
546 #endif
547 
548 #ifdef CONFIG_PPC_BOOK3S_64
549 	case KVM_CAP_SPAPR_TCE:
550 	case KVM_CAP_SPAPR_TCE_64:
551 		r = 1;
552 		break;
553 	case KVM_CAP_SPAPR_TCE_VFIO:
554 		r = !!cpu_has_feature(CPU_FTR_HVMODE);
555 		break;
556 	case KVM_CAP_PPC_RTAS:
557 	case KVM_CAP_PPC_FIXUP_HCALL:
558 	case KVM_CAP_PPC_ENABLE_HCALL:
559 #ifdef CONFIG_KVM_XICS
560 	case KVM_CAP_IRQ_XICS:
561 #endif
562 	case KVM_CAP_PPC_GET_CPU_CHAR:
563 		r = 1;
564 		break;
565 
566 	case KVM_CAP_PPC_ALLOC_HTAB:
567 		r = hv_enabled;
568 		break;
569 #endif /* CONFIG_PPC_BOOK3S_64 */
570 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
571 	case KVM_CAP_PPC_SMT:
572 		r = 0;
573 		if (kvm) {
574 			if (kvm->arch.emul_smt_mode > 1)
575 				r = kvm->arch.emul_smt_mode;
576 			else
577 				r = kvm->arch.smt_mode;
578 		} else if (hv_enabled) {
579 			if (cpu_has_feature(CPU_FTR_ARCH_300))
580 				r = 1;
581 			else
582 				r = threads_per_subcore;
583 		}
584 		break;
585 	case KVM_CAP_PPC_SMT_POSSIBLE:
586 		r = 1;
587 		if (hv_enabled) {
588 			if (!cpu_has_feature(CPU_FTR_ARCH_300))
589 				r = ((threads_per_subcore << 1) - 1);
590 			else
591 				/* P9 can emulate dbells, so allow any mode */
592 				r = 8 | 4 | 2 | 1;
593 		}
594 		break;
595 	case KVM_CAP_PPC_RMA:
596 		r = 0;
597 		break;
598 	case KVM_CAP_PPC_HWRNG:
599 		r = kvmppc_hwrng_present();
600 		break;
601 	case KVM_CAP_PPC_MMU_RADIX:
602 		r = !!(hv_enabled && radix_enabled());
603 		break;
604 	case KVM_CAP_PPC_MMU_HASH_V3:
605 		r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
606 		break;
607 #endif
608 	case KVM_CAP_SYNC_MMU:
609 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
610 		r = hv_enabled;
611 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
612 		r = 1;
613 #else
614 		r = 0;
615 #endif
616 		break;
617 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
618 	case KVM_CAP_PPC_HTAB_FD:
619 		r = hv_enabled;
620 		break;
621 #endif
622 	case KVM_CAP_NR_VCPUS:
623 		/*
624 		 * Recommending a number of CPUs is somewhat arbitrary; we
625 		 * return the number of present CPUs for -HV (since a host
626 		 * will have secondary threads "offline"), and for other KVM
627 		 * implementations just count online CPUs.
628 		 */
629 		if (hv_enabled)
630 			r = num_present_cpus();
631 		else
632 			r = num_online_cpus();
633 		break;
634 	case KVM_CAP_NR_MEMSLOTS:
635 		r = KVM_USER_MEM_SLOTS;
636 		break;
637 	case KVM_CAP_MAX_VCPUS:
638 		r = KVM_MAX_VCPUS;
639 		break;
640 	case KVM_CAP_MAX_VCPU_ID:
641 		r = KVM_MAX_VCPU_ID;
642 		break;
643 #ifdef CONFIG_PPC_BOOK3S_64
644 	case KVM_CAP_PPC_GET_SMMU_INFO:
645 		r = 1;
646 		break;
647 	case KVM_CAP_SPAPR_MULTITCE:
648 		r = 1;
649 		break;
650 	case KVM_CAP_SPAPR_RESIZE_HPT:
651 		r = !!hv_enabled;
652 		break;
653 #endif
654 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
655 	case KVM_CAP_PPC_FWNMI:
656 		r = hv_enabled;
657 		break;
658 #endif
659 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
660 	case KVM_CAP_PPC_HTM:
661 		r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
662 		     (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
663 		break;
664 #endif
665 	default:
666 		r = 0;
667 		break;
668 	}
669 	return r;
670 
671 }
672 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)673 long kvm_arch_dev_ioctl(struct file *filp,
674                         unsigned int ioctl, unsigned long arg)
675 {
676 	return -EINVAL;
677 }
678 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)679 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
680 			   struct kvm_memory_slot *dont)
681 {
682 	kvmppc_core_free_memslot(kvm, free, dont);
683 }
684 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)685 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
686 			    unsigned long npages)
687 {
688 	return kvmppc_core_create_memslot(kvm, slot, npages);
689 }
690 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)691 int kvm_arch_prepare_memory_region(struct kvm *kvm,
692 				   struct kvm_memory_slot *memslot,
693 				   const struct kvm_userspace_memory_region *mem,
694 				   enum kvm_mr_change change)
695 {
696 	return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
697 }
698 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)699 void kvm_arch_commit_memory_region(struct kvm *kvm,
700 				   const struct kvm_userspace_memory_region *mem,
701 				   const struct kvm_memory_slot *old,
702 				   const struct kvm_memory_slot *new,
703 				   enum kvm_mr_change change)
704 {
705 	kvmppc_core_commit_memory_region(kvm, mem, old, new);
706 }
707 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)708 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
709 				   struct kvm_memory_slot *slot)
710 {
711 	kvmppc_core_flush_memslot(kvm, slot);
712 }
713 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)714 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
715 {
716 	struct kvm_vcpu *vcpu;
717 	vcpu = kvmppc_core_vcpu_create(kvm, id);
718 	if (!IS_ERR(vcpu)) {
719 		vcpu->arch.wqp = &vcpu->wq;
720 		kvmppc_create_vcpu_debugfs(vcpu, id);
721 	}
722 	return vcpu;
723 }
724 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)725 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
726 {
727 }
728 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)729 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
730 {
731 	/* Make sure we're not using the vcpu anymore */
732 	hrtimer_cancel(&vcpu->arch.dec_timer);
733 
734 	kvmppc_remove_vcpu_debugfs(vcpu);
735 
736 	switch (vcpu->arch.irq_type) {
737 	case KVMPPC_IRQ_MPIC:
738 		kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
739 		break;
740 	case KVMPPC_IRQ_XICS:
741 		if (xive_enabled())
742 			kvmppc_xive_cleanup_vcpu(vcpu);
743 		else
744 			kvmppc_xics_free_icp(vcpu);
745 		break;
746 	}
747 
748 	kvmppc_core_vcpu_free(vcpu);
749 }
750 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)751 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
752 {
753 	kvm_arch_vcpu_free(vcpu);
754 }
755 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)756 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
757 {
758 	return kvmppc_core_pending_dec(vcpu);
759 }
760 
kvmppc_decrementer_wakeup(struct hrtimer * timer)761 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
762 {
763 	struct kvm_vcpu *vcpu;
764 
765 	vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
766 	kvmppc_decrementer_func(vcpu);
767 
768 	return HRTIMER_NORESTART;
769 }
770 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)771 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
772 {
773 	int ret;
774 
775 	hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
776 	vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
777 	vcpu->arch.dec_expires = get_tb();
778 
779 #ifdef CONFIG_KVM_EXIT_TIMING
780 	mutex_init(&vcpu->arch.exit_timing_lock);
781 #endif
782 	ret = kvmppc_subarch_vcpu_init(vcpu);
783 	return ret;
784 }
785 
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)786 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
787 {
788 	kvmppc_mmu_destroy(vcpu);
789 	kvmppc_subarch_vcpu_uninit(vcpu);
790 }
791 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)792 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
793 {
794 #ifdef CONFIG_BOOKE
795 	/*
796 	 * vrsave (formerly usprg0) isn't used by Linux, but may
797 	 * be used by the guest.
798 	 *
799 	 * On non-booke this is associated with Altivec and
800 	 * is handled by code in book3s.c.
801 	 */
802 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
803 #endif
804 	kvmppc_core_vcpu_load(vcpu, cpu);
805 }
806 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)807 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
808 {
809 	kvmppc_core_vcpu_put(vcpu);
810 #ifdef CONFIG_BOOKE
811 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
812 #endif
813 }
814 
815 /*
816  * irq_bypass_add_producer and irq_bypass_del_producer are only
817  * useful if the architecture supports PCI passthrough.
818  * irq_bypass_stop and irq_bypass_start are not needed and so
819  * kvm_ops are not defined for them.
820  */
kvm_arch_has_irq_bypass(void)821 bool kvm_arch_has_irq_bypass(void)
822 {
823 	return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
824 		(kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
825 }
826 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)827 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
828 				     struct irq_bypass_producer *prod)
829 {
830 	struct kvm_kernel_irqfd *irqfd =
831 		container_of(cons, struct kvm_kernel_irqfd, consumer);
832 	struct kvm *kvm = irqfd->kvm;
833 
834 	if (kvm->arch.kvm_ops->irq_bypass_add_producer)
835 		return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
836 
837 	return 0;
838 }
839 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)840 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
841 				      struct irq_bypass_producer *prod)
842 {
843 	struct kvm_kernel_irqfd *irqfd =
844 		container_of(cons, struct kvm_kernel_irqfd, consumer);
845 	struct kvm *kvm = irqfd->kvm;
846 
847 	if (kvm->arch.kvm_ops->irq_bypass_del_producer)
848 		kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
849 }
850 
851 #ifdef CONFIG_VSX
kvmppc_get_vsr_dword_offset(int index)852 static inline int kvmppc_get_vsr_dword_offset(int index)
853 {
854 	int offset;
855 
856 	if ((index != 0) && (index != 1))
857 		return -1;
858 
859 #ifdef __BIG_ENDIAN
860 	offset =  index;
861 #else
862 	offset = 1 - index;
863 #endif
864 
865 	return offset;
866 }
867 
kvmppc_get_vsr_word_offset(int index)868 static inline int kvmppc_get_vsr_word_offset(int index)
869 {
870 	int offset;
871 
872 	if ((index > 3) || (index < 0))
873 		return -1;
874 
875 #ifdef __BIG_ENDIAN
876 	offset = index;
877 #else
878 	offset = 3 - index;
879 #endif
880 	return offset;
881 }
882 
kvmppc_set_vsr_dword(struct kvm_vcpu * vcpu,u64 gpr)883 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
884 	u64 gpr)
885 {
886 	union kvmppc_one_reg val;
887 	int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
888 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
889 
890 	if (offset == -1)
891 		return;
892 
893 	if (index >= 32) {
894 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
895 		val.vsxval[offset] = gpr;
896 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
897 	} else {
898 		VCPU_VSX_FPR(vcpu, index, offset) = gpr;
899 	}
900 }
901 
kvmppc_set_vsr_dword_dump(struct kvm_vcpu * vcpu,u64 gpr)902 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
903 	u64 gpr)
904 {
905 	union kvmppc_one_reg val;
906 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
907 
908 	if (index >= 32) {
909 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
910 		val.vsxval[0] = gpr;
911 		val.vsxval[1] = gpr;
912 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
913 	} else {
914 		VCPU_VSX_FPR(vcpu, index, 0) = gpr;
915 		VCPU_VSX_FPR(vcpu, index, 1) = gpr;
916 	}
917 }
918 
kvmppc_set_vsr_word_dump(struct kvm_vcpu * vcpu,u32 gpr)919 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
920 	u32 gpr)
921 {
922 	union kvmppc_one_reg val;
923 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
924 
925 	if (index >= 32) {
926 		val.vsx32val[0] = gpr;
927 		val.vsx32val[1] = gpr;
928 		val.vsx32val[2] = gpr;
929 		val.vsx32val[3] = gpr;
930 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
931 	} else {
932 		val.vsx32val[0] = gpr;
933 		val.vsx32val[1] = gpr;
934 		VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
935 		VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
936 	}
937 }
938 
kvmppc_set_vsr_word(struct kvm_vcpu * vcpu,u32 gpr32)939 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
940 	u32 gpr32)
941 {
942 	union kvmppc_one_reg val;
943 	int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
944 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
945 	int dword_offset, word_offset;
946 
947 	if (offset == -1)
948 		return;
949 
950 	if (index >= 32) {
951 		val.vval = VCPU_VSX_VR(vcpu, index - 32);
952 		val.vsx32val[offset] = gpr32;
953 		VCPU_VSX_VR(vcpu, index - 32) = val.vval;
954 	} else {
955 		dword_offset = offset / 2;
956 		word_offset = offset % 2;
957 		val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
958 		val.vsx32val[word_offset] = gpr32;
959 		VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
960 	}
961 }
962 #endif /* CONFIG_VSX */
963 
964 #ifdef CONFIG_ALTIVEC
kvmppc_get_vmx_offset_generic(struct kvm_vcpu * vcpu,int index,int element_size)965 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
966 		int index, int element_size)
967 {
968 	int offset;
969 	int elts = sizeof(vector128)/element_size;
970 
971 	if ((index < 0) || (index >= elts))
972 		return -1;
973 
974 	if (kvmppc_need_byteswap(vcpu))
975 		offset = elts - index - 1;
976 	else
977 		offset = index;
978 
979 	return offset;
980 }
981 
kvmppc_get_vmx_dword_offset(struct kvm_vcpu * vcpu,int index)982 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
983 		int index)
984 {
985 	return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
986 }
987 
kvmppc_get_vmx_word_offset(struct kvm_vcpu * vcpu,int index)988 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
989 		int index)
990 {
991 	return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
992 }
993 
kvmppc_get_vmx_hword_offset(struct kvm_vcpu * vcpu,int index)994 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
995 		int index)
996 {
997 	return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
998 }
999 
kvmppc_get_vmx_byte_offset(struct kvm_vcpu * vcpu,int index)1000 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1001 		int index)
1002 {
1003 	return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1004 }
1005 
1006 
kvmppc_set_vmx_dword(struct kvm_vcpu * vcpu,u64 gpr)1007 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1008 	u64 gpr)
1009 {
1010 	union kvmppc_one_reg val;
1011 	int offset = kvmppc_get_vmx_dword_offset(vcpu,
1012 			vcpu->arch.mmio_vmx_offset);
1013 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1014 
1015 	if (offset == -1)
1016 		return;
1017 
1018 	val.vval = VCPU_VSX_VR(vcpu, index);
1019 	val.vsxval[offset] = gpr;
1020 	VCPU_VSX_VR(vcpu, index) = val.vval;
1021 }
1022 
kvmppc_set_vmx_word(struct kvm_vcpu * vcpu,u32 gpr32)1023 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1024 	u32 gpr32)
1025 {
1026 	union kvmppc_one_reg val;
1027 	int offset = kvmppc_get_vmx_word_offset(vcpu,
1028 			vcpu->arch.mmio_vmx_offset);
1029 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1030 
1031 	if (offset == -1)
1032 		return;
1033 
1034 	val.vval = VCPU_VSX_VR(vcpu, index);
1035 	val.vsx32val[offset] = gpr32;
1036 	VCPU_VSX_VR(vcpu, index) = val.vval;
1037 }
1038 
kvmppc_set_vmx_hword(struct kvm_vcpu * vcpu,u16 gpr16)1039 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1040 	u16 gpr16)
1041 {
1042 	union kvmppc_one_reg val;
1043 	int offset = kvmppc_get_vmx_hword_offset(vcpu,
1044 			vcpu->arch.mmio_vmx_offset);
1045 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1046 
1047 	if (offset == -1)
1048 		return;
1049 
1050 	val.vval = VCPU_VSX_VR(vcpu, index);
1051 	val.vsx16val[offset] = gpr16;
1052 	VCPU_VSX_VR(vcpu, index) = val.vval;
1053 }
1054 
kvmppc_set_vmx_byte(struct kvm_vcpu * vcpu,u8 gpr8)1055 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1056 	u8 gpr8)
1057 {
1058 	union kvmppc_one_reg val;
1059 	int offset = kvmppc_get_vmx_byte_offset(vcpu,
1060 			vcpu->arch.mmio_vmx_offset);
1061 	int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1062 
1063 	if (offset == -1)
1064 		return;
1065 
1066 	val.vval = VCPU_VSX_VR(vcpu, index);
1067 	val.vsx8val[offset] = gpr8;
1068 	VCPU_VSX_VR(vcpu, index) = val.vval;
1069 }
1070 #endif /* CONFIG_ALTIVEC */
1071 
1072 #ifdef CONFIG_PPC_FPU
sp_to_dp(u32 fprs)1073 static inline u64 sp_to_dp(u32 fprs)
1074 {
1075 	u64 fprd;
1076 
1077 	preempt_disable();
1078 	enable_kernel_fp();
1079 	asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1080 	     : "fr0");
1081 	preempt_enable();
1082 	return fprd;
1083 }
1084 
dp_to_sp(u64 fprd)1085 static inline u32 dp_to_sp(u64 fprd)
1086 {
1087 	u32 fprs;
1088 
1089 	preempt_disable();
1090 	enable_kernel_fp();
1091 	asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1092 	     : "fr0");
1093 	preempt_enable();
1094 	return fprs;
1095 }
1096 
1097 #else
1098 #define sp_to_dp(x)	(x)
1099 #define dp_to_sp(x)	(x)
1100 #endif /* CONFIG_PPC_FPU */
1101 
kvmppc_complete_mmio_load(struct kvm_vcpu * vcpu,struct kvm_run * run)1102 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1103                                       struct kvm_run *run)
1104 {
1105 	u64 uninitialized_var(gpr);
1106 
1107 	if (run->mmio.len > sizeof(gpr)) {
1108 		printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1109 		return;
1110 	}
1111 
1112 	if (!vcpu->arch.mmio_host_swabbed) {
1113 		switch (run->mmio.len) {
1114 		case 8: gpr = *(u64 *)run->mmio.data; break;
1115 		case 4: gpr = *(u32 *)run->mmio.data; break;
1116 		case 2: gpr = *(u16 *)run->mmio.data; break;
1117 		case 1: gpr = *(u8 *)run->mmio.data; break;
1118 		}
1119 	} else {
1120 		switch (run->mmio.len) {
1121 		case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1122 		case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1123 		case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1124 		case 1: gpr = *(u8 *)run->mmio.data; break;
1125 		}
1126 	}
1127 
1128 	/* conversion between single and double precision */
1129 	if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1130 		gpr = sp_to_dp(gpr);
1131 
1132 	if (vcpu->arch.mmio_sign_extend) {
1133 		switch (run->mmio.len) {
1134 #ifdef CONFIG_PPC64
1135 		case 4:
1136 			gpr = (s64)(s32)gpr;
1137 			break;
1138 #endif
1139 		case 2:
1140 			gpr = (s64)(s16)gpr;
1141 			break;
1142 		case 1:
1143 			gpr = (s64)(s8)gpr;
1144 			break;
1145 		}
1146 	}
1147 
1148 	switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1149 	case KVM_MMIO_REG_GPR:
1150 		kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1151 		break;
1152 	case KVM_MMIO_REG_FPR:
1153 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1154 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1155 
1156 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1157 		break;
1158 #ifdef CONFIG_PPC_BOOK3S
1159 	case KVM_MMIO_REG_QPR:
1160 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1161 		break;
1162 	case KVM_MMIO_REG_FQPR:
1163 		VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1164 		vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1165 		break;
1166 #endif
1167 #ifdef CONFIG_VSX
1168 	case KVM_MMIO_REG_VSX:
1169 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1170 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1171 
1172 		if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1173 			kvmppc_set_vsr_dword(vcpu, gpr);
1174 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1175 			kvmppc_set_vsr_word(vcpu, gpr);
1176 		else if (vcpu->arch.mmio_copy_type ==
1177 				KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1178 			kvmppc_set_vsr_dword_dump(vcpu, gpr);
1179 		else if (vcpu->arch.mmio_copy_type ==
1180 				KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1181 			kvmppc_set_vsr_word_dump(vcpu, gpr);
1182 		break;
1183 #endif
1184 #ifdef CONFIG_ALTIVEC
1185 	case KVM_MMIO_REG_VMX:
1186 		if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1187 			vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1188 
1189 		if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1190 			kvmppc_set_vmx_dword(vcpu, gpr);
1191 		else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1192 			kvmppc_set_vmx_word(vcpu, gpr);
1193 		else if (vcpu->arch.mmio_copy_type ==
1194 				KVMPPC_VMX_COPY_HWORD)
1195 			kvmppc_set_vmx_hword(vcpu, gpr);
1196 		else if (vcpu->arch.mmio_copy_type ==
1197 				KVMPPC_VMX_COPY_BYTE)
1198 			kvmppc_set_vmx_byte(vcpu, gpr);
1199 		break;
1200 #endif
1201 	default:
1202 		BUG();
1203 	}
1204 }
1205 
__kvmppc_handle_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int sign_extend)1206 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1207 				unsigned int rt, unsigned int bytes,
1208 				int is_default_endian, int sign_extend)
1209 {
1210 	int idx, ret;
1211 	bool host_swabbed;
1212 
1213 	/* Pity C doesn't have a logical XOR operator */
1214 	if (kvmppc_need_byteswap(vcpu)) {
1215 		host_swabbed = is_default_endian;
1216 	} else {
1217 		host_swabbed = !is_default_endian;
1218 	}
1219 
1220 	if (bytes > sizeof(run->mmio.data)) {
1221 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1222 		       run->mmio.len);
1223 	}
1224 
1225 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1226 	run->mmio.len = bytes;
1227 	run->mmio.is_write = 0;
1228 
1229 	vcpu->arch.io_gpr = rt;
1230 	vcpu->arch.mmio_host_swabbed = host_swabbed;
1231 	vcpu->mmio_needed = 1;
1232 	vcpu->mmio_is_write = 0;
1233 	vcpu->arch.mmio_sign_extend = sign_extend;
1234 
1235 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1236 
1237 	ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1238 			      bytes, &run->mmio.data);
1239 
1240 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1241 
1242 	if (!ret) {
1243 		kvmppc_complete_mmio_load(vcpu, run);
1244 		vcpu->mmio_needed = 0;
1245 		return EMULATE_DONE;
1246 	}
1247 
1248 	return EMULATE_DO_MMIO;
1249 }
1250 
kvmppc_handle_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1251 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1252 		       unsigned int rt, unsigned int bytes,
1253 		       int is_default_endian)
1254 {
1255 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1256 }
1257 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1258 
1259 /* Same as above, but sign extends */
kvmppc_handle_loads(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1260 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1261 			unsigned int rt, unsigned int bytes,
1262 			int is_default_endian)
1263 {
1264 	return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1265 }
1266 
1267 #ifdef CONFIG_VSX
kvmppc_handle_vsx_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian,int mmio_sign_extend)1268 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1269 			unsigned int rt, unsigned int bytes,
1270 			int is_default_endian, int mmio_sign_extend)
1271 {
1272 	enum emulation_result emulated = EMULATE_DONE;
1273 
1274 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1275 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1276 		return EMULATE_FAIL;
1277 
1278 	while (vcpu->arch.mmio_vsx_copy_nums) {
1279 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1280 			is_default_endian, mmio_sign_extend);
1281 
1282 		if (emulated != EMULATE_DONE)
1283 			break;
1284 
1285 		vcpu->arch.paddr_accessed += run->mmio.len;
1286 
1287 		vcpu->arch.mmio_vsx_copy_nums--;
1288 		vcpu->arch.mmio_vsx_offset++;
1289 	}
1290 	return emulated;
1291 }
1292 #endif /* CONFIG_VSX */
1293 
kvmppc_handle_store(struct kvm_run * run,struct kvm_vcpu * vcpu,u64 val,unsigned int bytes,int is_default_endian)1294 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1295 			u64 val, unsigned int bytes, int is_default_endian)
1296 {
1297 	void *data = run->mmio.data;
1298 	int idx, ret;
1299 	bool host_swabbed;
1300 
1301 	/* Pity C doesn't have a logical XOR operator */
1302 	if (kvmppc_need_byteswap(vcpu)) {
1303 		host_swabbed = is_default_endian;
1304 	} else {
1305 		host_swabbed = !is_default_endian;
1306 	}
1307 
1308 	if (bytes > sizeof(run->mmio.data)) {
1309 		printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1310 		       run->mmio.len);
1311 	}
1312 
1313 	run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1314 	run->mmio.len = bytes;
1315 	run->mmio.is_write = 1;
1316 	vcpu->mmio_needed = 1;
1317 	vcpu->mmio_is_write = 1;
1318 
1319 	if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1320 		val = dp_to_sp(val);
1321 
1322 	/* Store the value at the lowest bytes in 'data'. */
1323 	if (!host_swabbed) {
1324 		switch (bytes) {
1325 		case 8: *(u64 *)data = val; break;
1326 		case 4: *(u32 *)data = val; break;
1327 		case 2: *(u16 *)data = val; break;
1328 		case 1: *(u8  *)data = val; break;
1329 		}
1330 	} else {
1331 		switch (bytes) {
1332 		case 8: *(u64 *)data = swab64(val); break;
1333 		case 4: *(u32 *)data = swab32(val); break;
1334 		case 2: *(u16 *)data = swab16(val); break;
1335 		case 1: *(u8  *)data = val; break;
1336 		}
1337 	}
1338 
1339 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1340 
1341 	ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1342 			       bytes, &run->mmio.data);
1343 
1344 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1345 
1346 	if (!ret) {
1347 		vcpu->mmio_needed = 0;
1348 		return EMULATE_DONE;
1349 	}
1350 
1351 	return EMULATE_DO_MMIO;
1352 }
1353 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1354 
1355 #ifdef CONFIG_VSX
kvmppc_get_vsr_data(struct kvm_vcpu * vcpu,int rs,u64 * val)1356 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1357 {
1358 	u32 dword_offset, word_offset;
1359 	union kvmppc_one_reg reg;
1360 	int vsx_offset = 0;
1361 	int copy_type = vcpu->arch.mmio_copy_type;
1362 	int result = 0;
1363 
1364 	switch (copy_type) {
1365 	case KVMPPC_VSX_COPY_DWORD:
1366 		vsx_offset =
1367 			kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1368 
1369 		if (vsx_offset == -1) {
1370 			result = -1;
1371 			break;
1372 		}
1373 
1374 		if (rs < 32) {
1375 			*val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1376 		} else {
1377 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1378 			*val = reg.vsxval[vsx_offset];
1379 		}
1380 		break;
1381 
1382 	case KVMPPC_VSX_COPY_WORD:
1383 		vsx_offset =
1384 			kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1385 
1386 		if (vsx_offset == -1) {
1387 			result = -1;
1388 			break;
1389 		}
1390 
1391 		if (rs < 32) {
1392 			dword_offset = vsx_offset / 2;
1393 			word_offset = vsx_offset % 2;
1394 			reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1395 			*val = reg.vsx32val[word_offset];
1396 		} else {
1397 			reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1398 			*val = reg.vsx32val[vsx_offset];
1399 		}
1400 		break;
1401 
1402 	default:
1403 		result = -1;
1404 		break;
1405 	}
1406 
1407 	return result;
1408 }
1409 
kvmppc_handle_vsx_store(struct kvm_run * run,struct kvm_vcpu * vcpu,int rs,unsigned int bytes,int is_default_endian)1410 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1411 			int rs, unsigned int bytes, int is_default_endian)
1412 {
1413 	u64 val;
1414 	enum emulation_result emulated = EMULATE_DONE;
1415 
1416 	vcpu->arch.io_gpr = rs;
1417 
1418 	/* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1419 	if (vcpu->arch.mmio_vsx_copy_nums > 4)
1420 		return EMULATE_FAIL;
1421 
1422 	while (vcpu->arch.mmio_vsx_copy_nums) {
1423 		if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1424 			return EMULATE_FAIL;
1425 
1426 		emulated = kvmppc_handle_store(run, vcpu,
1427 			 val, bytes, is_default_endian);
1428 
1429 		if (emulated != EMULATE_DONE)
1430 			break;
1431 
1432 		vcpu->arch.paddr_accessed += run->mmio.len;
1433 
1434 		vcpu->arch.mmio_vsx_copy_nums--;
1435 		vcpu->arch.mmio_vsx_offset++;
1436 	}
1437 
1438 	return emulated;
1439 }
1440 
kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu * vcpu,struct kvm_run * run)1441 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1442 			struct kvm_run *run)
1443 {
1444 	enum emulation_result emulated = EMULATE_FAIL;
1445 	int r;
1446 
1447 	vcpu->arch.paddr_accessed += run->mmio.len;
1448 
1449 	if (!vcpu->mmio_is_write) {
1450 		emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1451 			 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1452 	} else {
1453 		emulated = kvmppc_handle_vsx_store(run, vcpu,
1454 			 vcpu->arch.io_gpr, run->mmio.len, 1);
1455 	}
1456 
1457 	switch (emulated) {
1458 	case EMULATE_DO_MMIO:
1459 		run->exit_reason = KVM_EXIT_MMIO;
1460 		r = RESUME_HOST;
1461 		break;
1462 	case EMULATE_FAIL:
1463 		pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1464 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1465 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1466 		r = RESUME_HOST;
1467 		break;
1468 	default:
1469 		r = RESUME_GUEST;
1470 		break;
1471 	}
1472 	return r;
1473 }
1474 #endif /* CONFIG_VSX */
1475 
1476 #ifdef CONFIG_ALTIVEC
kvmppc_handle_vmx_load(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rt,unsigned int bytes,int is_default_endian)1477 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1478 		unsigned int rt, unsigned int bytes, int is_default_endian)
1479 {
1480 	enum emulation_result emulated = EMULATE_DONE;
1481 
1482 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1483 		return EMULATE_FAIL;
1484 
1485 	while (vcpu->arch.mmio_vmx_copy_nums) {
1486 		emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1487 				is_default_endian, 0);
1488 
1489 		if (emulated != EMULATE_DONE)
1490 			break;
1491 
1492 		vcpu->arch.paddr_accessed += run->mmio.len;
1493 		vcpu->arch.mmio_vmx_copy_nums--;
1494 		vcpu->arch.mmio_vmx_offset++;
1495 	}
1496 
1497 	return emulated;
1498 }
1499 
kvmppc_get_vmx_dword(struct kvm_vcpu * vcpu,int index,u64 * val)1500 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1501 {
1502 	union kvmppc_one_reg reg;
1503 	int vmx_offset = 0;
1504 	int result = 0;
1505 
1506 	vmx_offset =
1507 		kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1508 
1509 	if (vmx_offset == -1)
1510 		return -1;
1511 
1512 	reg.vval = VCPU_VSX_VR(vcpu, index);
1513 	*val = reg.vsxval[vmx_offset];
1514 
1515 	return result;
1516 }
1517 
kvmppc_get_vmx_word(struct kvm_vcpu * vcpu,int index,u64 * val)1518 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1519 {
1520 	union kvmppc_one_reg reg;
1521 	int vmx_offset = 0;
1522 	int result = 0;
1523 
1524 	vmx_offset =
1525 		kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1526 
1527 	if (vmx_offset == -1)
1528 		return -1;
1529 
1530 	reg.vval = VCPU_VSX_VR(vcpu, index);
1531 	*val = reg.vsx32val[vmx_offset];
1532 
1533 	return result;
1534 }
1535 
kvmppc_get_vmx_hword(struct kvm_vcpu * vcpu,int index,u64 * val)1536 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1537 {
1538 	union kvmppc_one_reg reg;
1539 	int vmx_offset = 0;
1540 	int result = 0;
1541 
1542 	vmx_offset =
1543 		kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1544 
1545 	if (vmx_offset == -1)
1546 		return -1;
1547 
1548 	reg.vval = VCPU_VSX_VR(vcpu, index);
1549 	*val = reg.vsx16val[vmx_offset];
1550 
1551 	return result;
1552 }
1553 
kvmppc_get_vmx_byte(struct kvm_vcpu * vcpu,int index,u64 * val)1554 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1555 {
1556 	union kvmppc_one_reg reg;
1557 	int vmx_offset = 0;
1558 	int result = 0;
1559 
1560 	vmx_offset =
1561 		kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1562 
1563 	if (vmx_offset == -1)
1564 		return -1;
1565 
1566 	reg.vval = VCPU_VSX_VR(vcpu, index);
1567 	*val = reg.vsx8val[vmx_offset];
1568 
1569 	return result;
1570 }
1571 
kvmppc_handle_vmx_store(struct kvm_run * run,struct kvm_vcpu * vcpu,unsigned int rs,unsigned int bytes,int is_default_endian)1572 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1573 		unsigned int rs, unsigned int bytes, int is_default_endian)
1574 {
1575 	u64 val = 0;
1576 	unsigned int index = rs & KVM_MMIO_REG_MASK;
1577 	enum emulation_result emulated = EMULATE_DONE;
1578 
1579 	if (vcpu->arch.mmio_vsx_copy_nums > 2)
1580 		return EMULATE_FAIL;
1581 
1582 	vcpu->arch.io_gpr = rs;
1583 
1584 	while (vcpu->arch.mmio_vmx_copy_nums) {
1585 		switch (vcpu->arch.mmio_copy_type) {
1586 		case KVMPPC_VMX_COPY_DWORD:
1587 			if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1588 				return EMULATE_FAIL;
1589 
1590 			break;
1591 		case KVMPPC_VMX_COPY_WORD:
1592 			if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1593 				return EMULATE_FAIL;
1594 			break;
1595 		case KVMPPC_VMX_COPY_HWORD:
1596 			if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1597 				return EMULATE_FAIL;
1598 			break;
1599 		case KVMPPC_VMX_COPY_BYTE:
1600 			if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1601 				return EMULATE_FAIL;
1602 			break;
1603 		default:
1604 			return EMULATE_FAIL;
1605 		}
1606 
1607 		emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1608 				is_default_endian);
1609 		if (emulated != EMULATE_DONE)
1610 			break;
1611 
1612 		vcpu->arch.paddr_accessed += run->mmio.len;
1613 		vcpu->arch.mmio_vmx_copy_nums--;
1614 		vcpu->arch.mmio_vmx_offset++;
1615 	}
1616 
1617 	return emulated;
1618 }
1619 
kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu * vcpu,struct kvm_run * run)1620 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1621 		struct kvm_run *run)
1622 {
1623 	enum emulation_result emulated = EMULATE_FAIL;
1624 	int r;
1625 
1626 	vcpu->arch.paddr_accessed += run->mmio.len;
1627 
1628 	if (!vcpu->mmio_is_write) {
1629 		emulated = kvmppc_handle_vmx_load(run, vcpu,
1630 				vcpu->arch.io_gpr, run->mmio.len, 1);
1631 	} else {
1632 		emulated = kvmppc_handle_vmx_store(run, vcpu,
1633 				vcpu->arch.io_gpr, run->mmio.len, 1);
1634 	}
1635 
1636 	switch (emulated) {
1637 	case EMULATE_DO_MMIO:
1638 		run->exit_reason = KVM_EXIT_MMIO;
1639 		r = RESUME_HOST;
1640 		break;
1641 	case EMULATE_FAIL:
1642 		pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1643 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1644 		run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1645 		r = RESUME_HOST;
1646 		break;
1647 	default:
1648 		r = RESUME_GUEST;
1649 		break;
1650 	}
1651 	return r;
1652 }
1653 #endif /* CONFIG_ALTIVEC */
1654 
kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1655 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1656 {
1657 	int r = 0;
1658 	union kvmppc_one_reg val;
1659 	int size;
1660 
1661 	size = one_reg_size(reg->id);
1662 	if (size > sizeof(val))
1663 		return -EINVAL;
1664 
1665 	r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1666 	if (r == -EINVAL) {
1667 		r = 0;
1668 		switch (reg->id) {
1669 #ifdef CONFIG_ALTIVEC
1670 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1671 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1672 				r = -ENXIO;
1673 				break;
1674 			}
1675 			val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1676 			break;
1677 		case KVM_REG_PPC_VSCR:
1678 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1679 				r = -ENXIO;
1680 				break;
1681 			}
1682 			val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1683 			break;
1684 		case KVM_REG_PPC_VRSAVE:
1685 			val = get_reg_val(reg->id, vcpu->arch.vrsave);
1686 			break;
1687 #endif /* CONFIG_ALTIVEC */
1688 		default:
1689 			r = -EINVAL;
1690 			break;
1691 		}
1692 	}
1693 
1694 	if (r)
1695 		return r;
1696 
1697 	if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1698 		r = -EFAULT;
1699 
1700 	return r;
1701 }
1702 
kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu * vcpu,struct kvm_one_reg * reg)1703 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1704 {
1705 	int r;
1706 	union kvmppc_one_reg val;
1707 	int size;
1708 
1709 	size = one_reg_size(reg->id);
1710 	if (size > sizeof(val))
1711 		return -EINVAL;
1712 
1713 	if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1714 		return -EFAULT;
1715 
1716 	r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1717 	if (r == -EINVAL) {
1718 		r = 0;
1719 		switch (reg->id) {
1720 #ifdef CONFIG_ALTIVEC
1721 		case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1722 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1723 				r = -ENXIO;
1724 				break;
1725 			}
1726 			vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1727 			break;
1728 		case KVM_REG_PPC_VSCR:
1729 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1730 				r = -ENXIO;
1731 				break;
1732 			}
1733 			vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1734 			break;
1735 		case KVM_REG_PPC_VRSAVE:
1736 			if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1737 				r = -ENXIO;
1738 				break;
1739 			}
1740 			vcpu->arch.vrsave = set_reg_val(reg->id, val);
1741 			break;
1742 #endif /* CONFIG_ALTIVEC */
1743 		default:
1744 			r = -EINVAL;
1745 			break;
1746 		}
1747 	}
1748 
1749 	return r;
1750 }
1751 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)1752 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1753 {
1754 	int r;
1755 
1756 	vcpu_load(vcpu);
1757 
1758 	if (vcpu->mmio_needed) {
1759 		vcpu->mmio_needed = 0;
1760 		if (!vcpu->mmio_is_write)
1761 			kvmppc_complete_mmio_load(vcpu, run);
1762 #ifdef CONFIG_VSX
1763 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1764 			vcpu->arch.mmio_vsx_copy_nums--;
1765 			vcpu->arch.mmio_vsx_offset++;
1766 		}
1767 
1768 		if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1769 			r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1770 			if (r == RESUME_HOST) {
1771 				vcpu->mmio_needed = 1;
1772 				goto out;
1773 			}
1774 		}
1775 #endif
1776 #ifdef CONFIG_ALTIVEC
1777 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1778 			vcpu->arch.mmio_vmx_copy_nums--;
1779 			vcpu->arch.mmio_vmx_offset++;
1780 		}
1781 
1782 		if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1783 			r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1784 			if (r == RESUME_HOST) {
1785 				vcpu->mmio_needed = 1;
1786 				goto out;
1787 			}
1788 		}
1789 #endif
1790 	} else if (vcpu->arch.osi_needed) {
1791 		u64 *gprs = run->osi.gprs;
1792 		int i;
1793 
1794 		for (i = 0; i < 32; i++)
1795 			kvmppc_set_gpr(vcpu, i, gprs[i]);
1796 		vcpu->arch.osi_needed = 0;
1797 	} else if (vcpu->arch.hcall_needed) {
1798 		int i;
1799 
1800 		kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1801 		for (i = 0; i < 9; ++i)
1802 			kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1803 		vcpu->arch.hcall_needed = 0;
1804 #ifdef CONFIG_BOOKE
1805 	} else if (vcpu->arch.epr_needed) {
1806 		kvmppc_set_epr(vcpu, run->epr.epr);
1807 		vcpu->arch.epr_needed = 0;
1808 #endif
1809 	}
1810 
1811 	kvm_sigset_activate(vcpu);
1812 
1813 	if (run->immediate_exit)
1814 		r = -EINTR;
1815 	else
1816 		r = kvmppc_vcpu_run(run, vcpu);
1817 
1818 	kvm_sigset_deactivate(vcpu);
1819 
1820 #ifdef CONFIG_ALTIVEC
1821 out:
1822 #endif
1823 	vcpu_put(vcpu);
1824 	return r;
1825 }
1826 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)1827 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1828 {
1829 	if (irq->irq == KVM_INTERRUPT_UNSET) {
1830 		kvmppc_core_dequeue_external(vcpu);
1831 		return 0;
1832 	}
1833 
1834 	kvmppc_core_queue_external(vcpu, irq);
1835 
1836 	kvm_vcpu_kick(vcpu);
1837 
1838 	return 0;
1839 }
1840 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)1841 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1842 				     struct kvm_enable_cap *cap)
1843 {
1844 	int r;
1845 
1846 	if (cap->flags)
1847 		return -EINVAL;
1848 
1849 	switch (cap->cap) {
1850 	case KVM_CAP_PPC_OSI:
1851 		r = 0;
1852 		vcpu->arch.osi_enabled = true;
1853 		break;
1854 	case KVM_CAP_PPC_PAPR:
1855 		r = 0;
1856 		vcpu->arch.papr_enabled = true;
1857 		break;
1858 	case KVM_CAP_PPC_EPR:
1859 		r = 0;
1860 		if (cap->args[0])
1861 			vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1862 		else
1863 			vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1864 		break;
1865 #ifdef CONFIG_BOOKE
1866 	case KVM_CAP_PPC_BOOKE_WATCHDOG:
1867 		r = 0;
1868 		vcpu->arch.watchdog_enabled = true;
1869 		break;
1870 #endif
1871 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1872 	case KVM_CAP_SW_TLB: {
1873 		struct kvm_config_tlb cfg;
1874 		void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1875 
1876 		r = -EFAULT;
1877 		if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1878 			break;
1879 
1880 		r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1881 		break;
1882 	}
1883 #endif
1884 #ifdef CONFIG_KVM_MPIC
1885 	case KVM_CAP_IRQ_MPIC: {
1886 		struct fd f;
1887 		struct kvm_device *dev;
1888 
1889 		r = -EBADF;
1890 		f = fdget(cap->args[0]);
1891 		if (!f.file)
1892 			break;
1893 
1894 		r = -EPERM;
1895 		dev = kvm_device_from_filp(f.file);
1896 		if (dev)
1897 			r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1898 
1899 		fdput(f);
1900 		break;
1901 	}
1902 #endif
1903 #ifdef CONFIG_KVM_XICS
1904 	case KVM_CAP_IRQ_XICS: {
1905 		struct fd f;
1906 		struct kvm_device *dev;
1907 
1908 		r = -EBADF;
1909 		f = fdget(cap->args[0]);
1910 		if (!f.file)
1911 			break;
1912 
1913 		r = -EPERM;
1914 		dev = kvm_device_from_filp(f.file);
1915 		if (dev) {
1916 			if (xive_enabled())
1917 				r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1918 			else
1919 				r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1920 		}
1921 
1922 		fdput(f);
1923 		break;
1924 	}
1925 #endif /* CONFIG_KVM_XICS */
1926 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1927 	case KVM_CAP_PPC_FWNMI:
1928 		r = -EINVAL;
1929 		if (!is_kvmppc_hv_enabled(vcpu->kvm))
1930 			break;
1931 		r = 0;
1932 		vcpu->kvm->arch.fwnmi_enabled = true;
1933 		break;
1934 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1935 	default:
1936 		r = -EINVAL;
1937 		break;
1938 	}
1939 
1940 	if (!r)
1941 		r = kvmppc_sanity_check(vcpu);
1942 
1943 	return r;
1944 }
1945 
kvm_arch_intc_initialized(struct kvm * kvm)1946 bool kvm_arch_intc_initialized(struct kvm *kvm)
1947 {
1948 #ifdef CONFIG_KVM_MPIC
1949 	if (kvm->arch.mpic)
1950 		return true;
1951 #endif
1952 #ifdef CONFIG_KVM_XICS
1953 	if (kvm->arch.xics || kvm->arch.xive)
1954 		return true;
1955 #endif
1956 	return false;
1957 }
1958 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)1959 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1960                                     struct kvm_mp_state *mp_state)
1961 {
1962 	return -EINVAL;
1963 }
1964 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)1965 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1966                                     struct kvm_mp_state *mp_state)
1967 {
1968 	return -EINVAL;
1969 }
1970 
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1971 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1972 			       unsigned int ioctl, unsigned long arg)
1973 {
1974 	struct kvm_vcpu *vcpu = filp->private_data;
1975 	void __user *argp = (void __user *)arg;
1976 
1977 	if (ioctl == KVM_INTERRUPT) {
1978 		struct kvm_interrupt irq;
1979 		if (copy_from_user(&irq, argp, sizeof(irq)))
1980 			return -EFAULT;
1981 		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1982 	}
1983 	return -ENOIOCTLCMD;
1984 }
1985 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1986 long kvm_arch_vcpu_ioctl(struct file *filp,
1987                          unsigned int ioctl, unsigned long arg)
1988 {
1989 	struct kvm_vcpu *vcpu = filp->private_data;
1990 	void __user *argp = (void __user *)arg;
1991 	long r;
1992 
1993 	switch (ioctl) {
1994 	case KVM_ENABLE_CAP:
1995 	{
1996 		struct kvm_enable_cap cap;
1997 		r = -EFAULT;
1998 		vcpu_load(vcpu);
1999 		if (copy_from_user(&cap, argp, sizeof(cap)))
2000 			goto out;
2001 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2002 		vcpu_put(vcpu);
2003 		break;
2004 	}
2005 
2006 	case KVM_SET_ONE_REG:
2007 	case KVM_GET_ONE_REG:
2008 	{
2009 		struct kvm_one_reg reg;
2010 		r = -EFAULT;
2011 		if (copy_from_user(&reg, argp, sizeof(reg)))
2012 			goto out;
2013 		if (ioctl == KVM_SET_ONE_REG)
2014 			r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2015 		else
2016 			r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2017 		break;
2018 	}
2019 
2020 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2021 	case KVM_DIRTY_TLB: {
2022 		struct kvm_dirty_tlb dirty;
2023 		r = -EFAULT;
2024 		vcpu_load(vcpu);
2025 		if (copy_from_user(&dirty, argp, sizeof(dirty)))
2026 			goto out;
2027 		r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2028 		vcpu_put(vcpu);
2029 		break;
2030 	}
2031 #endif
2032 	default:
2033 		r = -EINVAL;
2034 	}
2035 
2036 out:
2037 	return r;
2038 }
2039 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)2040 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2041 {
2042 	return VM_FAULT_SIGBUS;
2043 }
2044 
kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo * pvinfo)2045 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2046 {
2047 	u32 inst_nop = 0x60000000;
2048 #ifdef CONFIG_KVM_BOOKE_HV
2049 	u32 inst_sc1 = 0x44000022;
2050 	pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2051 	pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2052 	pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2053 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2054 #else
2055 	u32 inst_lis = 0x3c000000;
2056 	u32 inst_ori = 0x60000000;
2057 	u32 inst_sc = 0x44000002;
2058 	u32 inst_imm_mask = 0xffff;
2059 
2060 	/*
2061 	 * The hypercall to get into KVM from within guest context is as
2062 	 * follows:
2063 	 *
2064 	 *    lis r0, r0, KVM_SC_MAGIC_R0@h
2065 	 *    ori r0, KVM_SC_MAGIC_R0@l
2066 	 *    sc
2067 	 *    nop
2068 	 */
2069 	pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2070 	pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2071 	pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2072 	pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2073 #endif
2074 
2075 	pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2076 
2077 	return 0;
2078 }
2079 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)2080 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2081 			  bool line_status)
2082 {
2083 	if (!irqchip_in_kernel(kvm))
2084 		return -ENXIO;
2085 
2086 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2087 					irq_event->irq, irq_event->level,
2088 					line_status);
2089 	return 0;
2090 }
2091 
2092 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)2093 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2094 				   struct kvm_enable_cap *cap)
2095 {
2096 	int r;
2097 
2098 	if (cap->flags)
2099 		return -EINVAL;
2100 
2101 	switch (cap->cap) {
2102 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2103 	case KVM_CAP_PPC_ENABLE_HCALL: {
2104 		unsigned long hcall = cap->args[0];
2105 
2106 		r = -EINVAL;
2107 		if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2108 		    cap->args[1] > 1)
2109 			break;
2110 		if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2111 			break;
2112 		if (cap->args[1])
2113 			set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2114 		else
2115 			clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2116 		r = 0;
2117 		break;
2118 	}
2119 	case KVM_CAP_PPC_SMT: {
2120 		unsigned long mode = cap->args[0];
2121 		unsigned long flags = cap->args[1];
2122 
2123 		r = -EINVAL;
2124 		if (kvm->arch.kvm_ops->set_smt_mode)
2125 			r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2126 		break;
2127 	}
2128 #endif
2129 	default:
2130 		r = -EINVAL;
2131 		break;
2132 	}
2133 
2134 	return r;
2135 }
2136 
2137 #ifdef CONFIG_PPC_BOOK3S_64
2138 /*
2139  * These functions check whether the underlying hardware is safe
2140  * against attacks based on observing the effects of speculatively
2141  * executed instructions, and whether it supplies instructions for
2142  * use in workarounds.  The information comes from firmware, either
2143  * via the device tree on powernv platforms or from an hcall on
2144  * pseries platforms.
2145  */
2146 #ifdef CONFIG_PPC_PSERIES
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2147 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2148 {
2149 	struct h_cpu_char_result c;
2150 	unsigned long rc;
2151 
2152 	if (!machine_is(pseries))
2153 		return -ENOTTY;
2154 
2155 	rc = plpar_get_cpu_characteristics(&c);
2156 	if (rc == H_SUCCESS) {
2157 		cp->character = c.character;
2158 		cp->behaviour = c.behaviour;
2159 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2160 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2161 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2162 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2163 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2164 			KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2165 			KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2166 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2167 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2168 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2169 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2170 	}
2171 	return 0;
2172 }
2173 #else
pseries_get_cpu_char(struct kvm_ppc_cpu_char * cp)2174 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2175 {
2176 	return -ENOTTY;
2177 }
2178 #endif
2179 
have_fw_feat(struct device_node * fw_features,const char * state,const char * name)2180 static inline bool have_fw_feat(struct device_node *fw_features,
2181 				const char *state, const char *name)
2182 {
2183 	struct device_node *np;
2184 	bool r = false;
2185 
2186 	np = of_get_child_by_name(fw_features, name);
2187 	if (np) {
2188 		r = of_property_read_bool(np, state);
2189 		of_node_put(np);
2190 	}
2191 	return r;
2192 }
2193 
kvmppc_get_cpu_char(struct kvm_ppc_cpu_char * cp)2194 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2195 {
2196 	struct device_node *np, *fw_features;
2197 	int r;
2198 
2199 	memset(cp, 0, sizeof(*cp));
2200 	r = pseries_get_cpu_char(cp);
2201 	if (r != -ENOTTY)
2202 		return r;
2203 
2204 	np = of_find_node_by_name(NULL, "ibm,opal");
2205 	if (np) {
2206 		fw_features = of_get_child_by_name(np, "fw-features");
2207 		of_node_put(np);
2208 		if (!fw_features)
2209 			return 0;
2210 		if (have_fw_feat(fw_features, "enabled",
2211 				 "inst-spec-barrier-ori31,31,0"))
2212 			cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2213 		if (have_fw_feat(fw_features, "enabled",
2214 				 "fw-bcctrl-serialized"))
2215 			cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2216 		if (have_fw_feat(fw_features, "enabled",
2217 				 "inst-l1d-flush-ori30,30,0"))
2218 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2219 		if (have_fw_feat(fw_features, "enabled",
2220 				 "inst-l1d-flush-trig2"))
2221 			cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2222 		if (have_fw_feat(fw_features, "enabled",
2223 				 "fw-l1d-thread-split"))
2224 			cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2225 		if (have_fw_feat(fw_features, "enabled",
2226 				 "fw-count-cache-disabled"))
2227 			cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2228 		cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2229 			KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2230 			KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2231 			KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2232 			KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2233 			KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2234 
2235 		if (have_fw_feat(fw_features, "enabled",
2236 				 "speculation-policy-favor-security"))
2237 			cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2238 		if (!have_fw_feat(fw_features, "disabled",
2239 				  "needs-l1d-flush-msr-pr-0-to-1"))
2240 			cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2241 		if (!have_fw_feat(fw_features, "disabled",
2242 				  "needs-spec-barrier-for-bound-checks"))
2243 			cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2244 		cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2245 			KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2246 			KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2247 
2248 		of_node_put(fw_features);
2249 	}
2250 
2251 	return 0;
2252 }
2253 #endif
2254 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2255 long kvm_arch_vm_ioctl(struct file *filp,
2256                        unsigned int ioctl, unsigned long arg)
2257 {
2258 	struct kvm *kvm __maybe_unused = filp->private_data;
2259 	void __user *argp = (void __user *)arg;
2260 	long r;
2261 
2262 	switch (ioctl) {
2263 	case KVM_PPC_GET_PVINFO: {
2264 		struct kvm_ppc_pvinfo pvinfo;
2265 		memset(&pvinfo, 0, sizeof(pvinfo));
2266 		r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2267 		if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2268 			r = -EFAULT;
2269 			goto out;
2270 		}
2271 
2272 		break;
2273 	}
2274 	case KVM_ENABLE_CAP:
2275 	{
2276 		struct kvm_enable_cap cap;
2277 		r = -EFAULT;
2278 		if (copy_from_user(&cap, argp, sizeof(cap)))
2279 			goto out;
2280 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
2281 		break;
2282 	}
2283 #ifdef CONFIG_SPAPR_TCE_IOMMU
2284 	case KVM_CREATE_SPAPR_TCE_64: {
2285 		struct kvm_create_spapr_tce_64 create_tce_64;
2286 
2287 		r = -EFAULT;
2288 		if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2289 			goto out;
2290 		if (create_tce_64.flags) {
2291 			r = -EINVAL;
2292 			goto out;
2293 		}
2294 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2295 		goto out;
2296 	}
2297 	case KVM_CREATE_SPAPR_TCE: {
2298 		struct kvm_create_spapr_tce create_tce;
2299 		struct kvm_create_spapr_tce_64 create_tce_64;
2300 
2301 		r = -EFAULT;
2302 		if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2303 			goto out;
2304 
2305 		create_tce_64.liobn = create_tce.liobn;
2306 		create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2307 		create_tce_64.offset = 0;
2308 		create_tce_64.size = create_tce.window_size >>
2309 				IOMMU_PAGE_SHIFT_4K;
2310 		create_tce_64.flags = 0;
2311 		r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2312 		goto out;
2313 	}
2314 #endif
2315 #ifdef CONFIG_PPC_BOOK3S_64
2316 	case KVM_PPC_GET_SMMU_INFO: {
2317 		struct kvm_ppc_smmu_info info;
2318 		struct kvm *kvm = filp->private_data;
2319 
2320 		memset(&info, 0, sizeof(info));
2321 		r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2322 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2323 			r = -EFAULT;
2324 		break;
2325 	}
2326 	case KVM_PPC_RTAS_DEFINE_TOKEN: {
2327 		struct kvm *kvm = filp->private_data;
2328 
2329 		r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2330 		break;
2331 	}
2332 	case KVM_PPC_CONFIGURE_V3_MMU: {
2333 		struct kvm *kvm = filp->private_data;
2334 		struct kvm_ppc_mmuv3_cfg cfg;
2335 
2336 		r = -EINVAL;
2337 		if (!kvm->arch.kvm_ops->configure_mmu)
2338 			goto out;
2339 		r = -EFAULT;
2340 		if (copy_from_user(&cfg, argp, sizeof(cfg)))
2341 			goto out;
2342 		r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2343 		break;
2344 	}
2345 	case KVM_PPC_GET_RMMU_INFO: {
2346 		struct kvm *kvm = filp->private_data;
2347 		struct kvm_ppc_rmmu_info info;
2348 
2349 		r = -EINVAL;
2350 		if (!kvm->arch.kvm_ops->get_rmmu_info)
2351 			goto out;
2352 		r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2353 		if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2354 			r = -EFAULT;
2355 		break;
2356 	}
2357 	case KVM_PPC_GET_CPU_CHAR: {
2358 		struct kvm_ppc_cpu_char cpuchar;
2359 
2360 		r = kvmppc_get_cpu_char(&cpuchar);
2361 		if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2362 			r = -EFAULT;
2363 		break;
2364 	}
2365 	default: {
2366 		struct kvm *kvm = filp->private_data;
2367 		r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2368 	}
2369 #else /* CONFIG_PPC_BOOK3S_64 */
2370 	default:
2371 		r = -ENOTTY;
2372 #endif
2373 	}
2374 out:
2375 	return r;
2376 }
2377 
2378 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2379 static unsigned long nr_lpids;
2380 
kvmppc_alloc_lpid(void)2381 long kvmppc_alloc_lpid(void)
2382 {
2383 	long lpid;
2384 
2385 	do {
2386 		lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2387 		if (lpid >= nr_lpids) {
2388 			pr_err("%s: No LPIDs free\n", __func__);
2389 			return -ENOMEM;
2390 		}
2391 	} while (test_and_set_bit(lpid, lpid_inuse));
2392 
2393 	return lpid;
2394 }
2395 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2396 
kvmppc_claim_lpid(long lpid)2397 void kvmppc_claim_lpid(long lpid)
2398 {
2399 	set_bit(lpid, lpid_inuse);
2400 }
2401 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2402 
kvmppc_free_lpid(long lpid)2403 void kvmppc_free_lpid(long lpid)
2404 {
2405 	clear_bit(lpid, lpid_inuse);
2406 }
2407 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2408 
kvmppc_init_lpid(unsigned long nr_lpids_param)2409 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2410 {
2411 	nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2412 	memset(lpid_inuse, 0, sizeof(lpid_inuse));
2413 }
2414 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2415 
kvm_arch_init(void * opaque)2416 int kvm_arch_init(void *opaque)
2417 {
2418 	return 0;
2419 }
2420 
2421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);
2422