• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * In-Memory Collection (IMC) Performance Monitor counter support.
3  *
4  * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
5  *           (C) 2017 Anju T Sudhakar, IBM Corporation.
6  *           (C) 2017 Hemant K Shaw, IBM Corporation.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or later version.
12  */
13 #include <linux/perf_event.h>
14 #include <linux/slab.h>
15 #include <asm/opal.h>
16 #include <asm/imc-pmu.h>
17 #include <asm/cputhreads.h>
18 #include <asm/smp.h>
19 #include <linux/string.h>
20 
21 /* Nest IMC data structures and variables */
22 
23 /*
24  * Used to avoid races in counting the nest-pmu units during hotplug
25  * register and unregister
26  */
27 static DEFINE_MUTEX(nest_init_lock);
28 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
29 static struct imc_pmu **per_nest_pmu_arr;
30 static cpumask_t nest_imc_cpumask;
31 struct imc_pmu_ref *nest_imc_refc;
32 static int nest_pmus;
33 
34 /* Core IMC data structures and variables */
35 
36 static cpumask_t core_imc_cpumask;
37 struct imc_pmu_ref *core_imc_refc;
38 static struct imc_pmu *core_imc_pmu;
39 
40 /* Thread IMC data structures and variables */
41 
42 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
43 static struct imc_pmu *thread_imc_pmu;
44 static int thread_imc_mem_size;
45 
imc_event_to_pmu(struct perf_event * event)46 struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
47 {
48 	return container_of(event->pmu, struct imc_pmu, pmu);
49 }
50 
51 PMU_FORMAT_ATTR(event, "config:0-40");
52 PMU_FORMAT_ATTR(offset, "config:0-31");
53 PMU_FORMAT_ATTR(rvalue, "config:32");
54 PMU_FORMAT_ATTR(mode, "config:33-40");
55 static struct attribute *imc_format_attrs[] = {
56 	&format_attr_event.attr,
57 	&format_attr_offset.attr,
58 	&format_attr_rvalue.attr,
59 	&format_attr_mode.attr,
60 	NULL,
61 };
62 
63 static struct attribute_group imc_format_group = {
64 	.name = "format",
65 	.attrs = imc_format_attrs,
66 };
67 
68 /* Get the cpumask printed to a buffer "buf" */
imc_pmu_cpumask_get_attr(struct device * dev,struct device_attribute * attr,char * buf)69 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
70 					struct device_attribute *attr,
71 					char *buf)
72 {
73 	struct pmu *pmu = dev_get_drvdata(dev);
74 	struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
75 	cpumask_t *active_mask;
76 
77 	switch(imc_pmu->domain){
78 	case IMC_DOMAIN_NEST:
79 		active_mask = &nest_imc_cpumask;
80 		break;
81 	case IMC_DOMAIN_CORE:
82 		active_mask = &core_imc_cpumask;
83 		break;
84 	default:
85 		return 0;
86 	}
87 
88 	return cpumap_print_to_pagebuf(true, buf, active_mask);
89 }
90 
91 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
92 
93 static struct attribute *imc_pmu_cpumask_attrs[] = {
94 	&dev_attr_cpumask.attr,
95 	NULL,
96 };
97 
98 static struct attribute_group imc_pmu_cpumask_attr_group = {
99 	.attrs = imc_pmu_cpumask_attrs,
100 };
101 
102 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
device_str_attr_create(const char * name,const char * str)103 static struct attribute *device_str_attr_create(const char *name, const char *str)
104 {
105 	struct perf_pmu_events_attr *attr;
106 
107 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
108 	if (!attr)
109 		return NULL;
110 	sysfs_attr_init(&attr->attr.attr);
111 
112 	attr->event_str = str;
113 	attr->attr.attr.name = name;
114 	attr->attr.attr.mode = 0444;
115 	attr->attr.show = perf_event_sysfs_show;
116 
117 	return &attr->attr.attr;
118 }
119 
imc_parse_event(struct device_node * np,const char * scale,const char * unit,const char * prefix,u32 base,struct imc_events * event)120 static int imc_parse_event(struct device_node *np, const char *scale,
121 				  const char *unit, const char *prefix,
122 				  u32 base, struct imc_events *event)
123 {
124 	const char *s;
125 	u32 reg;
126 
127 	if (of_property_read_u32(np, "reg", &reg))
128 		goto error;
129 	/* Add the base_reg value to the "reg" */
130 	event->value = base + reg;
131 
132 	if (of_property_read_string(np, "event-name", &s))
133 		goto error;
134 
135 	event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
136 	if (!event->name)
137 		goto error;
138 
139 	if (of_property_read_string(np, "scale", &s))
140 		s = scale;
141 
142 	if (s) {
143 		event->scale = kstrdup(s, GFP_KERNEL);
144 		if (!event->scale)
145 			goto error;
146 	}
147 
148 	if (of_property_read_string(np, "unit", &s))
149 		s = unit;
150 
151 	if (s) {
152 		event->unit = kstrdup(s, GFP_KERNEL);
153 		if (!event->unit)
154 			goto error;
155 	}
156 
157 	return 0;
158 error:
159 	kfree(event->unit);
160 	kfree(event->scale);
161 	kfree(event->name);
162 	return -EINVAL;
163 }
164 
165 /*
166  * imc_free_events: Function to cleanup the events list, having
167  * 		    "nr_entries".
168  */
imc_free_events(struct imc_events * events,int nr_entries)169 static void imc_free_events(struct imc_events *events, int nr_entries)
170 {
171 	int i;
172 
173 	/* Nothing to clean, return */
174 	if (!events)
175 		return;
176 	for (i = 0; i < nr_entries; i++) {
177 		kfree(events[i].unit);
178 		kfree(events[i].scale);
179 		kfree(events[i].name);
180 	}
181 
182 	kfree(events);
183 }
184 
185 /*
186  * update_events_in_group: Update the "events" information in an attr_group
187  *                         and assign the attr_group to the pmu "pmu".
188  */
update_events_in_group(struct device_node * node,struct imc_pmu * pmu)189 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
190 {
191 	struct attribute_group *attr_group;
192 	struct attribute **attrs, *dev_str;
193 	struct device_node *np, *pmu_events;
194 	u32 handle, base_reg;
195 	int i = 0, j = 0, ct, ret;
196 	const char *prefix, *g_scale, *g_unit;
197 	const char *ev_val_str, *ev_scale_str, *ev_unit_str;
198 
199 	if (!of_property_read_u32(node, "events", &handle))
200 		pmu_events = of_find_node_by_phandle(handle);
201 	else
202 		return 0;
203 
204 	/* Did not find any node with a given phandle */
205 	if (!pmu_events)
206 		return 0;
207 
208 	/* Get a count of number of child nodes */
209 	ct = of_get_child_count(pmu_events);
210 
211 	/* Get the event prefix */
212 	if (of_property_read_string(node, "events-prefix", &prefix))
213 		return 0;
214 
215 	/* Get a global unit and scale data if available */
216 	if (of_property_read_string(node, "scale", &g_scale))
217 		g_scale = NULL;
218 
219 	if (of_property_read_string(node, "unit", &g_unit))
220 		g_unit = NULL;
221 
222 	/* "reg" property gives out the base offset of the counters data */
223 	of_property_read_u32(node, "reg", &base_reg);
224 
225 	/* Allocate memory for the events */
226 	pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
227 	if (!pmu->events)
228 		return -ENOMEM;
229 
230 	ct = 0;
231 	/* Parse the events and update the struct */
232 	for_each_child_of_node(pmu_events, np) {
233 		ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
234 		if (!ret)
235 			ct++;
236 	}
237 
238 	/* Allocate memory for attribute group */
239 	attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
240 	if (!attr_group) {
241 		imc_free_events(pmu->events, ct);
242 		return -ENOMEM;
243 	}
244 
245 	/*
246 	 * Allocate memory for attributes.
247 	 * Since we have count of events for this pmu, we also allocate
248 	 * memory for the scale and unit attribute for now.
249 	 * "ct" has the total event structs added from the events-parent node.
250 	 * So allocate three times the "ct" (this includes event, event_scale and
251 	 * event_unit).
252 	 */
253 	attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
254 	if (!attrs) {
255 		kfree(attr_group);
256 		imc_free_events(pmu->events, ct);
257 		return -ENOMEM;
258 	}
259 
260 	attr_group->name = "events";
261 	attr_group->attrs = attrs;
262 	do {
263 		ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
264 		dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
265 		if (!dev_str)
266 			continue;
267 
268 		attrs[j++] = dev_str;
269 		if (pmu->events[i].scale) {
270 			ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
271 			dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
272 			if (!dev_str)
273 				continue;
274 
275 			attrs[j++] = dev_str;
276 		}
277 
278 		if (pmu->events[i].unit) {
279 			ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
280 			dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
281 			if (!dev_str)
282 				continue;
283 
284 			attrs[j++] = dev_str;
285 		}
286 	} while (++i < ct);
287 
288 	/* Save the event attribute */
289 	pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
290 
291 	return 0;
292 }
293 
294 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
get_nest_pmu_ref(int cpu)295 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
296 {
297 	return per_cpu(local_nest_imc_refc, cpu);
298 }
299 
nest_change_cpu_context(int old_cpu,int new_cpu)300 static void nest_change_cpu_context(int old_cpu, int new_cpu)
301 {
302 	struct imc_pmu **pn = per_nest_pmu_arr;
303 
304 	if (old_cpu < 0 || new_cpu < 0)
305 		return;
306 
307 	while (*pn) {
308 		perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
309 		pn++;
310 	}
311 }
312 
ppc_nest_imc_cpu_offline(unsigned int cpu)313 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
314 {
315 	int nid, target = -1;
316 	const struct cpumask *l_cpumask;
317 	struct imc_pmu_ref *ref;
318 
319 	/*
320 	 * Check in the designated list for this cpu. Dont bother
321 	 * if not one of them.
322 	 */
323 	if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
324 		return 0;
325 
326 	/*
327 	 * Check whether nest_imc is registered. We could end up here if the
328 	 * cpuhotplug callback registration fails. i.e, callback invokes the
329 	 * offline path for all successfully registered nodes. At this stage,
330 	 * nest_imc pmu will not be registered and we should return here.
331 	 *
332 	 * We return with a zero since this is not an offline failure. And
333 	 * cpuhp_setup_state() returns the actual failure reason to the caller,
334 	 * which in turn will call the cleanup routine.
335 	 */
336 	if (!nest_pmus)
337 		return 0;
338 
339 	/*
340 	 * Now that this cpu is one of the designated,
341 	 * find a next cpu a) which is online and b) in same chip.
342 	 */
343 	nid = cpu_to_node(cpu);
344 	l_cpumask = cpumask_of_node(nid);
345 	target = cpumask_any_but(l_cpumask, cpu);
346 
347 	/*
348 	 * Update the cpumask with the target cpu and
349 	 * migrate the context if needed
350 	 */
351 	if (target >= 0 && target < nr_cpu_ids) {
352 		cpumask_set_cpu(target, &nest_imc_cpumask);
353 		nest_change_cpu_context(cpu, target);
354 	} else {
355 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
356 				       get_hard_smp_processor_id(cpu));
357 		/*
358 		 * If this is the last cpu in this chip then, skip the reference
359 		 * count mutex lock and make the reference count on this chip zero.
360 		 */
361 		ref = get_nest_pmu_ref(cpu);
362 		if (!ref)
363 			return -EINVAL;
364 
365 		ref->refc = 0;
366 	}
367 	return 0;
368 }
369 
ppc_nest_imc_cpu_online(unsigned int cpu)370 static int ppc_nest_imc_cpu_online(unsigned int cpu)
371 {
372 	const struct cpumask *l_cpumask;
373 	static struct cpumask tmp_mask;
374 	int res;
375 
376 	/* Get the cpumask of this node */
377 	l_cpumask = cpumask_of_node(cpu_to_node(cpu));
378 
379 	/*
380 	 * If this is not the first online CPU on this node, then
381 	 * just return.
382 	 */
383 	if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
384 		return 0;
385 
386 	/*
387 	 * If this is the first online cpu on this node
388 	 * disable the nest counters by making an OPAL call.
389 	 */
390 	res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
391 				     get_hard_smp_processor_id(cpu));
392 	if (res)
393 		return res;
394 
395 	/* Make this CPU the designated target for counter collection */
396 	cpumask_set_cpu(cpu, &nest_imc_cpumask);
397 	return 0;
398 }
399 
nest_pmu_cpumask_init(void)400 static int nest_pmu_cpumask_init(void)
401 {
402 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
403 				 "perf/powerpc/imc:online",
404 				 ppc_nest_imc_cpu_online,
405 				 ppc_nest_imc_cpu_offline);
406 }
407 
nest_imc_counters_release(struct perf_event * event)408 static void nest_imc_counters_release(struct perf_event *event)
409 {
410 	int rc, node_id;
411 	struct imc_pmu_ref *ref;
412 
413 	if (event->cpu < 0)
414 		return;
415 
416 	node_id = cpu_to_node(event->cpu);
417 
418 	/*
419 	 * See if we need to disable the nest PMU.
420 	 * If no events are currently in use, then we have to take a
421 	 * mutex to ensure that we don't race with another task doing
422 	 * enable or disable the nest counters.
423 	 */
424 	ref = get_nest_pmu_ref(event->cpu);
425 	if (!ref)
426 		return;
427 
428 	/* Take the mutex lock for this node and then decrement the reference count */
429 	mutex_lock(&ref->lock);
430 	if (ref->refc == 0) {
431 		/*
432 		 * The scenario where this is true is, when perf session is
433 		 * started, followed by offlining of all cpus in a given node.
434 		 *
435 		 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
436 		 * function set the ref->count to zero, if the cpu which is
437 		 * about to offline is the last cpu in a given node and make
438 		 * an OPAL call to disable the engine in that node.
439 		 *
440 		 */
441 		mutex_unlock(&ref->lock);
442 		return;
443 	}
444 	ref->refc--;
445 	if (ref->refc == 0) {
446 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
447 					    get_hard_smp_processor_id(event->cpu));
448 		if (rc) {
449 			mutex_unlock(&ref->lock);
450 			pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
451 			return;
452 		}
453 	} else if (ref->refc < 0) {
454 		WARN(1, "nest-imc: Invalid event reference count\n");
455 		ref->refc = 0;
456 	}
457 	mutex_unlock(&ref->lock);
458 }
459 
nest_imc_event_init(struct perf_event * event)460 static int nest_imc_event_init(struct perf_event *event)
461 {
462 	int chip_id, rc, node_id;
463 	u32 l_config, config = event->attr.config;
464 	struct imc_mem_info *pcni;
465 	struct imc_pmu *pmu;
466 	struct imc_pmu_ref *ref;
467 	bool flag = false;
468 
469 	if (event->attr.type != event->pmu->type)
470 		return -ENOENT;
471 
472 	/* Sampling not supported */
473 	if (event->hw.sample_period)
474 		return -EINVAL;
475 
476 	/* unsupported modes and filters */
477 	if (event->attr.exclude_user   ||
478 	    event->attr.exclude_kernel ||
479 	    event->attr.exclude_hv     ||
480 	    event->attr.exclude_idle   ||
481 	    event->attr.exclude_host   ||
482 	    event->attr.exclude_guest)
483 		return -EINVAL;
484 
485 	if (event->cpu < 0)
486 		return -EINVAL;
487 
488 	pmu = imc_event_to_pmu(event);
489 
490 	/* Sanity check for config (event offset) */
491 	if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
492 		return -EINVAL;
493 
494 	/*
495 	 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
496 	 * Get the base memory addresss for this cpu.
497 	 */
498 	chip_id = cpu_to_chip_id(event->cpu);
499 
500 	/* Return, if chip_id is not valid */
501 	if (chip_id < 0)
502 		return -ENODEV;
503 
504 	pcni = pmu->mem_info;
505 	do {
506 		if (pcni->id == chip_id) {
507 			flag = true;
508 			break;
509 		}
510 		pcni++;
511 	} while (pcni->vbase != 0);
512 
513 	if (!flag)
514 		return -ENODEV;
515 
516 	/*
517 	 * Add the event offset to the base address.
518 	 */
519 	l_config = config & IMC_EVENT_OFFSET_MASK;
520 	event->hw.event_base = (u64)pcni->vbase + l_config;
521 	node_id = cpu_to_node(event->cpu);
522 
523 	/*
524 	 * Get the imc_pmu_ref struct for this node.
525 	 * Take the mutex lock and then increment the count of nest pmu events
526 	 * inited.
527 	 */
528 	ref = get_nest_pmu_ref(event->cpu);
529 	if (!ref)
530 		return -EINVAL;
531 
532 	mutex_lock(&ref->lock);
533 	if (ref->refc == 0) {
534 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
535 					     get_hard_smp_processor_id(event->cpu));
536 		if (rc) {
537 			mutex_unlock(&ref->lock);
538 			pr_err("nest-imc: Unable to start the counters for node %d\n",
539 									node_id);
540 			return rc;
541 		}
542 	}
543 	++ref->refc;
544 	mutex_unlock(&ref->lock);
545 
546 	event->destroy = nest_imc_counters_release;
547 	return 0;
548 }
549 
550 /*
551  * core_imc_mem_init : Initializes memory for the current core.
552  *
553  * Uses alloc_pages_node() and uses the returned address as an argument to
554  * an opal call to configure the pdbar. The address sent as an argument is
555  * converted to physical address before the opal call is made. This is the
556  * base address at which the core imc counters are populated.
557  */
core_imc_mem_init(int cpu,int size)558 static int core_imc_mem_init(int cpu, int size)
559 {
560 	int nid, rc = 0, core_id = (cpu / threads_per_core);
561 	struct imc_mem_info *mem_info;
562 
563 	/*
564 	 * alloc_pages_node() will allocate memory for core in the
565 	 * local node only.
566 	 */
567 	nid = cpu_to_node(cpu);
568 	mem_info = &core_imc_pmu->mem_info[core_id];
569 	mem_info->id = core_id;
570 
571 	/* We need only vbase for core counters */
572 	mem_info->vbase = page_address(alloc_pages_node(nid,
573 					  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
574 					  __GFP_NOWARN, get_order(size)));
575 	if (!mem_info->vbase)
576 		return -ENOMEM;
577 
578 	/* Init the mutex */
579 	core_imc_refc[core_id].id = core_id;
580 	mutex_init(&core_imc_refc[core_id].lock);
581 
582 	rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
583 				__pa((void *)mem_info->vbase),
584 				get_hard_smp_processor_id(cpu));
585 	if (rc) {
586 		free_pages((u64)mem_info->vbase, get_order(size));
587 		mem_info->vbase = NULL;
588 	}
589 
590 	return rc;
591 }
592 
is_core_imc_mem_inited(int cpu)593 static bool is_core_imc_mem_inited(int cpu)
594 {
595 	struct imc_mem_info *mem_info;
596 	int core_id = (cpu / threads_per_core);
597 
598 	mem_info = &core_imc_pmu->mem_info[core_id];
599 	if (!mem_info->vbase)
600 		return false;
601 
602 	return true;
603 }
604 
ppc_core_imc_cpu_online(unsigned int cpu)605 static int ppc_core_imc_cpu_online(unsigned int cpu)
606 {
607 	const struct cpumask *l_cpumask;
608 	static struct cpumask tmp_mask;
609 	int ret = 0;
610 
611 	/* Get the cpumask for this core */
612 	l_cpumask = cpu_sibling_mask(cpu);
613 
614 	/* If a cpu for this core is already set, then, don't do anything */
615 	if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
616 		return 0;
617 
618 	if (!is_core_imc_mem_inited(cpu)) {
619 		ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
620 		if (ret) {
621 			pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
622 			return ret;
623 		}
624 	}
625 
626 	/* set the cpu in the mask */
627 	cpumask_set_cpu(cpu, &core_imc_cpumask);
628 	return 0;
629 }
630 
ppc_core_imc_cpu_offline(unsigned int cpu)631 static int ppc_core_imc_cpu_offline(unsigned int cpu)
632 {
633 	unsigned int core_id;
634 	int ncpu;
635 	struct imc_pmu_ref *ref;
636 
637 	/*
638 	 * clear this cpu out of the mask, if not present in the mask,
639 	 * don't bother doing anything.
640 	 */
641 	if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
642 		return 0;
643 
644 	/*
645 	 * Check whether core_imc is registered. We could end up here
646 	 * if the cpuhotplug callback registration fails. i.e, callback
647 	 * invokes the offline path for all sucessfully registered cpus.
648 	 * At this stage, core_imc pmu will not be registered and we
649 	 * should return here.
650 	 *
651 	 * We return with a zero since this is not an offline failure.
652 	 * And cpuhp_setup_state() returns the actual failure reason
653 	 * to the caller, which inturn will call the cleanup routine.
654 	 */
655 	if (!core_imc_pmu->pmu.event_init)
656 		return 0;
657 
658 	/* Find any online cpu in that core except the current "cpu" */
659 	ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
660 
661 	if (ncpu >= 0 && ncpu < nr_cpu_ids) {
662 		cpumask_set_cpu(ncpu, &core_imc_cpumask);
663 		perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
664 	} else {
665 		/*
666 		 * If this is the last cpu in this core then, skip taking refernce
667 		 * count mutex lock for this core and directly zero "refc" for
668 		 * this core.
669 		 */
670 		opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
671 				       get_hard_smp_processor_id(cpu));
672 		core_id = cpu / threads_per_core;
673 		ref = &core_imc_refc[core_id];
674 		if (!ref)
675 			return -EINVAL;
676 
677 		ref->refc = 0;
678 	}
679 	return 0;
680 }
681 
core_imc_pmu_cpumask_init(void)682 static int core_imc_pmu_cpumask_init(void)
683 {
684 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
685 				 "perf/powerpc/imc_core:online",
686 				 ppc_core_imc_cpu_online,
687 				 ppc_core_imc_cpu_offline);
688 }
689 
core_imc_counters_release(struct perf_event * event)690 static void core_imc_counters_release(struct perf_event *event)
691 {
692 	int rc, core_id;
693 	struct imc_pmu_ref *ref;
694 
695 	if (event->cpu < 0)
696 		return;
697 	/*
698 	 * See if we need to disable the IMC PMU.
699 	 * If no events are currently in use, then we have to take a
700 	 * mutex to ensure that we don't race with another task doing
701 	 * enable or disable the core counters.
702 	 */
703 	core_id = event->cpu / threads_per_core;
704 
705 	/* Take the mutex lock and decrement the refernce count for this core */
706 	ref = &core_imc_refc[core_id];
707 	if (!ref)
708 		return;
709 
710 	mutex_lock(&ref->lock);
711 	if (ref->refc == 0) {
712 		/*
713 		 * The scenario where this is true is, when perf session is
714 		 * started, followed by offlining of all cpus in a given core.
715 		 *
716 		 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
717 		 * function set the ref->count to zero, if the cpu which is
718 		 * about to offline is the last cpu in a given core and make
719 		 * an OPAL call to disable the engine in that core.
720 		 *
721 		 */
722 		mutex_unlock(&ref->lock);
723 		return;
724 	}
725 	ref->refc--;
726 	if (ref->refc == 0) {
727 		rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
728 					    get_hard_smp_processor_id(event->cpu));
729 		if (rc) {
730 			mutex_unlock(&ref->lock);
731 			pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
732 			return;
733 		}
734 	} else if (ref->refc < 0) {
735 		WARN(1, "core-imc: Invalid event reference count\n");
736 		ref->refc = 0;
737 	}
738 	mutex_unlock(&ref->lock);
739 }
740 
core_imc_event_init(struct perf_event * event)741 static int core_imc_event_init(struct perf_event *event)
742 {
743 	int core_id, rc;
744 	u64 config = event->attr.config;
745 	struct imc_mem_info *pcmi;
746 	struct imc_pmu *pmu;
747 	struct imc_pmu_ref *ref;
748 
749 	if (event->attr.type != event->pmu->type)
750 		return -ENOENT;
751 
752 	/* Sampling not supported */
753 	if (event->hw.sample_period)
754 		return -EINVAL;
755 
756 	/* unsupported modes and filters */
757 	if (event->attr.exclude_user   ||
758 	    event->attr.exclude_kernel ||
759 	    event->attr.exclude_hv     ||
760 	    event->attr.exclude_idle   ||
761 	    event->attr.exclude_host   ||
762 	    event->attr.exclude_guest)
763 		return -EINVAL;
764 
765 	if (event->cpu < 0)
766 		return -EINVAL;
767 
768 	event->hw.idx = -1;
769 	pmu = imc_event_to_pmu(event);
770 
771 	/* Sanity check for config (event offset) */
772 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
773 		return -EINVAL;
774 
775 	if (!is_core_imc_mem_inited(event->cpu))
776 		return -ENODEV;
777 
778 	core_id = event->cpu / threads_per_core;
779 	pcmi = &core_imc_pmu->mem_info[core_id];
780 	if ((!pcmi->vbase))
781 		return -ENODEV;
782 
783 	/* Get the core_imc mutex for this core */
784 	ref = &core_imc_refc[core_id];
785 	if (!ref)
786 		return -EINVAL;
787 
788 	/*
789 	 * Core pmu units are enabled only when it is used.
790 	 * See if this is triggered for the first time.
791 	 * If yes, take the mutex lock and enable the core counters.
792 	 * If not, just increment the count in core_imc_refc struct.
793 	 */
794 	mutex_lock(&ref->lock);
795 	if (ref->refc == 0) {
796 		rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
797 					     get_hard_smp_processor_id(event->cpu));
798 		if (rc) {
799 			mutex_unlock(&ref->lock);
800 			pr_err("core-imc: Unable to start the counters for core %d\n",
801 									core_id);
802 			return rc;
803 		}
804 	}
805 	++ref->refc;
806 	mutex_unlock(&ref->lock);
807 
808 	event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
809 	event->destroy = core_imc_counters_release;
810 	return 0;
811 }
812 
813 /*
814  * Allocates a page of memory for each of the online cpus, and write the
815  * physical base address of that page to the LDBAR for that cpu.
816  *
817  * LDBAR Register Layout:
818  *
819  *  0          4         8         12        16        20        24        28
820  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
821  *   | |       [   ]    [                   Counter Address [8:50]
822  *   | * Mode    |
823  *   |           * PB Scope
824  *   * Enable/Disable
825  *
826  *  32        36        40        44        48        52        56        60
827  * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
828  *           Counter Address [8:50]              ]
829  *
830  */
thread_imc_mem_alloc(int cpu_id,int size)831 static int thread_imc_mem_alloc(int cpu_id, int size)
832 {
833 	u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id);
834 	int nid = cpu_to_node(cpu_id);
835 
836 	if (!local_mem) {
837 		/*
838 		 * This case could happen only once at start, since we dont
839 		 * free the memory in cpu offline path.
840 		 */
841 		local_mem = page_address(alloc_pages_node(nid,
842 				  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
843 				  __GFP_NOWARN, get_order(size)));
844 		if (!local_mem)
845 			return -ENOMEM;
846 
847 		per_cpu(thread_imc_mem, cpu_id) = local_mem;
848 	}
849 
850 	ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
851 
852 	mtspr(SPRN_LDBAR, ldbar_value);
853 	return 0;
854 }
855 
ppc_thread_imc_cpu_online(unsigned int cpu)856 static int ppc_thread_imc_cpu_online(unsigned int cpu)
857 {
858 	return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
859 }
860 
ppc_thread_imc_cpu_offline(unsigned int cpu)861 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
862 {
863 	mtspr(SPRN_LDBAR, 0);
864 	return 0;
865 }
866 
thread_imc_cpu_init(void)867 static int thread_imc_cpu_init(void)
868 {
869 	return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
870 			  "perf/powerpc/imc_thread:online",
871 			  ppc_thread_imc_cpu_online,
872 			  ppc_thread_imc_cpu_offline);
873 }
874 
thread_imc_event_init(struct perf_event * event)875 static int thread_imc_event_init(struct perf_event *event)
876 {
877 	u32 config = event->attr.config;
878 	struct task_struct *target;
879 	struct imc_pmu *pmu;
880 
881 	if (event->attr.type != event->pmu->type)
882 		return -ENOENT;
883 
884 	/* Sampling not supported */
885 	if (event->hw.sample_period)
886 		return -EINVAL;
887 
888 	event->hw.idx = -1;
889 	pmu = imc_event_to_pmu(event);
890 
891 	/* Sanity check for config offset */
892 	if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
893 		return -EINVAL;
894 
895 	target = event->hw.target;
896 	if (!target)
897 		return -EINVAL;
898 
899 	event->pmu->task_ctx_nr = perf_sw_context;
900 	return 0;
901 }
902 
is_thread_imc_pmu(struct perf_event * event)903 static bool is_thread_imc_pmu(struct perf_event *event)
904 {
905 	if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
906 		return true;
907 
908 	return false;
909 }
910 
get_event_base_addr(struct perf_event * event)911 static u64 * get_event_base_addr(struct perf_event *event)
912 {
913 	u64 addr;
914 
915 	if (is_thread_imc_pmu(event)) {
916 		addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
917 		return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
918 	}
919 
920 	return (u64 *)event->hw.event_base;
921 }
922 
thread_imc_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)923 static void thread_imc_pmu_start_txn(struct pmu *pmu,
924 				     unsigned int txn_flags)
925 {
926 	if (txn_flags & ~PERF_PMU_TXN_ADD)
927 		return;
928 	perf_pmu_disable(pmu);
929 }
930 
thread_imc_pmu_cancel_txn(struct pmu * pmu)931 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
932 {
933 	perf_pmu_enable(pmu);
934 }
935 
thread_imc_pmu_commit_txn(struct pmu * pmu)936 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
937 {
938 	perf_pmu_enable(pmu);
939 	return 0;
940 }
941 
imc_read_counter(struct perf_event * event)942 static u64 imc_read_counter(struct perf_event *event)
943 {
944 	u64 *addr, data;
945 
946 	/*
947 	 * In-Memory Collection (IMC) counters are free flowing counters.
948 	 * So we take a snapshot of the counter value on enable and save it
949 	 * to calculate the delta at later stage to present the event counter
950 	 * value.
951 	 */
952 	addr = get_event_base_addr(event);
953 	data = be64_to_cpu(READ_ONCE(*addr));
954 	local64_set(&event->hw.prev_count, data);
955 
956 	return data;
957 }
958 
imc_event_update(struct perf_event * event)959 static void imc_event_update(struct perf_event *event)
960 {
961 	u64 counter_prev, counter_new, final_count;
962 
963 	counter_prev = local64_read(&event->hw.prev_count);
964 	counter_new = imc_read_counter(event);
965 	final_count = counter_new - counter_prev;
966 
967 	/* Update the delta to the event count */
968 	local64_add(final_count, &event->count);
969 }
970 
imc_event_start(struct perf_event * event,int flags)971 static void imc_event_start(struct perf_event *event, int flags)
972 {
973 	/*
974 	 * In Memory Counters are free flowing counters. HW or the microcode
975 	 * keeps adding to the counter offset in memory. To get event
976 	 * counter value, we snapshot the value here and we calculate
977 	 * delta at later point.
978 	 */
979 	imc_read_counter(event);
980 }
981 
imc_event_stop(struct perf_event * event,int flags)982 static void imc_event_stop(struct perf_event *event, int flags)
983 {
984 	/*
985 	 * Take a snapshot and calculate the delta and update
986 	 * the event counter values.
987 	 */
988 	imc_event_update(event);
989 }
990 
imc_event_add(struct perf_event * event,int flags)991 static int imc_event_add(struct perf_event *event, int flags)
992 {
993 	if (flags & PERF_EF_START)
994 		imc_event_start(event, flags);
995 
996 	return 0;
997 }
998 
thread_imc_event_add(struct perf_event * event,int flags)999 static int thread_imc_event_add(struct perf_event *event, int flags)
1000 {
1001 	int core_id;
1002 	struct imc_pmu_ref *ref;
1003 
1004 	if (flags & PERF_EF_START)
1005 		imc_event_start(event, flags);
1006 
1007 	if (!is_core_imc_mem_inited(smp_processor_id()))
1008 		return -EINVAL;
1009 
1010 	core_id = smp_processor_id() / threads_per_core;
1011 	/*
1012 	 * imc pmus are enabled only when it is used.
1013 	 * See if this is triggered for the first time.
1014 	 * If yes, take the mutex lock and enable the counters.
1015 	 * If not, just increment the count in ref count struct.
1016 	 */
1017 	ref = &core_imc_refc[core_id];
1018 	if (!ref)
1019 		return -EINVAL;
1020 
1021 	mutex_lock(&ref->lock);
1022 	if (ref->refc == 0) {
1023 		if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1024 		    get_hard_smp_processor_id(smp_processor_id()))) {
1025 			mutex_unlock(&ref->lock);
1026 			pr_err("thread-imc: Unable to start the counter\
1027 				for core %d\n", core_id);
1028 			return -EINVAL;
1029 		}
1030 	}
1031 	++ref->refc;
1032 	mutex_unlock(&ref->lock);
1033 	return 0;
1034 }
1035 
thread_imc_event_del(struct perf_event * event,int flags)1036 static void thread_imc_event_del(struct perf_event *event, int flags)
1037 {
1038 
1039 	int core_id;
1040 	struct imc_pmu_ref *ref;
1041 
1042 	/*
1043 	 * Take a snapshot and calculate the delta and update
1044 	 * the event counter values.
1045 	 */
1046 	imc_event_update(event);
1047 
1048 	core_id = smp_processor_id() / threads_per_core;
1049 	ref = &core_imc_refc[core_id];
1050 
1051 	mutex_lock(&ref->lock);
1052 	ref->refc--;
1053 	if (ref->refc == 0) {
1054 		if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1055 		    get_hard_smp_processor_id(smp_processor_id()))) {
1056 			mutex_unlock(&ref->lock);
1057 			pr_err("thread-imc: Unable to stop the counters\
1058 				for core %d\n", core_id);
1059 			return;
1060 		}
1061 	} else if (ref->refc < 0) {
1062 		ref->refc = 0;
1063 	}
1064 	mutex_unlock(&ref->lock);
1065 }
1066 
1067 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
update_pmu_ops(struct imc_pmu * pmu)1068 static int update_pmu_ops(struct imc_pmu *pmu)
1069 {
1070 	pmu->pmu.task_ctx_nr = perf_invalid_context;
1071 	pmu->pmu.add = imc_event_add;
1072 	pmu->pmu.del = imc_event_stop;
1073 	pmu->pmu.start = imc_event_start;
1074 	pmu->pmu.stop = imc_event_stop;
1075 	pmu->pmu.read = imc_event_update;
1076 	pmu->pmu.attr_groups = pmu->attr_groups;
1077 	pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1078 
1079 	switch (pmu->domain) {
1080 	case IMC_DOMAIN_NEST:
1081 		pmu->pmu.event_init = nest_imc_event_init;
1082 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1083 		break;
1084 	case IMC_DOMAIN_CORE:
1085 		pmu->pmu.event_init = core_imc_event_init;
1086 		pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1087 		break;
1088 	case IMC_DOMAIN_THREAD:
1089 		pmu->pmu.event_init = thread_imc_event_init;
1090 		pmu->pmu.add = thread_imc_event_add;
1091 		pmu->pmu.del = thread_imc_event_del;
1092 		pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1093 		pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1094 		pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1095 		break;
1096 	default:
1097 		break;
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
init_nest_pmu_ref(void)1104 static int init_nest_pmu_ref(void)
1105 {
1106 	int nid, i, cpu;
1107 
1108 	nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1109 								GFP_KERNEL);
1110 
1111 	if (!nest_imc_refc)
1112 		return -ENOMEM;
1113 
1114 	i = 0;
1115 	for_each_node(nid) {
1116 		/*
1117 		 * Mutex lock to avoid races while tracking the number of
1118 		 * sessions using the chip's nest pmu units.
1119 		 */
1120 		mutex_init(&nest_imc_refc[i].lock);
1121 
1122 		/*
1123 		 * Loop to init the "id" with the node_id. Variable "i" initialized to
1124 		 * 0 and will be used as index to the array. "i" will not go off the
1125 		 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1126 		 * nodes only.
1127 		 */
1128 		nest_imc_refc[i++].id = nid;
1129 	}
1130 
1131 	/*
1132 	 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1133 	 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1134 	 */
1135 	for_each_possible_cpu(cpu) {
1136 		nid = cpu_to_node(cpu);
1137 		for (i = 0; i < num_possible_nodes(); i++) {
1138 			if (nest_imc_refc[i].id == nid) {
1139 				per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1140 				break;
1141 			}
1142 		}
1143 	}
1144 	return 0;
1145 }
1146 
cleanup_all_core_imc_memory(void)1147 static void cleanup_all_core_imc_memory(void)
1148 {
1149 	int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1150 	struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1151 	int size = core_imc_pmu->counter_mem_size;
1152 
1153 	/* mem_info will never be NULL */
1154 	for (i = 0; i < nr_cores; i++) {
1155 		if (ptr[i].vbase)
1156 			free_pages((u64)ptr[i].vbase, get_order(size));
1157 	}
1158 
1159 	kfree(ptr);
1160 	kfree(core_imc_refc);
1161 }
1162 
thread_imc_ldbar_disable(void * dummy)1163 static void thread_imc_ldbar_disable(void *dummy)
1164 {
1165 	/*
1166 	 * By Zeroing LDBAR, we disable thread-imc
1167 	 * updates.
1168 	 */
1169 	mtspr(SPRN_LDBAR, 0);
1170 }
1171 
thread_imc_disable(void)1172 void thread_imc_disable(void)
1173 {
1174 	on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1175 }
1176 
cleanup_all_thread_imc_memory(void)1177 static void cleanup_all_thread_imc_memory(void)
1178 {
1179 	int i, order = get_order(thread_imc_mem_size);
1180 
1181 	for_each_online_cpu(i) {
1182 		if (per_cpu(thread_imc_mem, i))
1183 			free_pages((u64)per_cpu(thread_imc_mem, i), order);
1184 
1185 	}
1186 }
1187 
1188 /* Function to free the attr_groups which are dynamically allocated */
imc_common_mem_free(struct imc_pmu * pmu_ptr)1189 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1190 {
1191 	if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1192 		kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1193 	kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1194 }
1195 
1196 /*
1197  * Common function to unregister cpu hotplug callback and
1198  * free the memory.
1199  * TODO: Need to handle pmu unregistering, which will be
1200  * done in followup series.
1201  */
imc_common_cpuhp_mem_free(struct imc_pmu * pmu_ptr)1202 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1203 {
1204 	if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1205 		mutex_lock(&nest_init_lock);
1206 		if (nest_pmus == 1) {
1207 			cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1208 			kfree(nest_imc_refc);
1209 			kfree(per_nest_pmu_arr);
1210 			per_nest_pmu_arr = NULL;
1211 		}
1212 
1213 		if (nest_pmus > 0)
1214 			nest_pmus--;
1215 		mutex_unlock(&nest_init_lock);
1216 	}
1217 
1218 	/* Free core_imc memory */
1219 	if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1220 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1221 		cleanup_all_core_imc_memory();
1222 	}
1223 
1224 	/* Free thread_imc memory */
1225 	if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1226 		cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1227 		cleanup_all_thread_imc_memory();
1228 	}
1229 }
1230 
1231 /*
1232  * Function to unregister thread-imc if core-imc
1233  * is not registered.
1234  */
unregister_thread_imc(void)1235 void unregister_thread_imc(void)
1236 {
1237 	imc_common_cpuhp_mem_free(thread_imc_pmu);
1238 	imc_common_mem_free(thread_imc_pmu);
1239 	perf_pmu_unregister(&thread_imc_pmu->pmu);
1240 }
1241 
1242 /*
1243  * imc_mem_init : Function to support memory allocation for core imc.
1244  */
imc_mem_init(struct imc_pmu * pmu_ptr,struct device_node * parent,int pmu_index)1245 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1246 								int pmu_index)
1247 {
1248 	const char *s;
1249 	int nr_cores, cpu, res = -ENOMEM;
1250 
1251 	if (of_property_read_string(parent, "name", &s))
1252 		return -ENODEV;
1253 
1254 	switch (pmu_ptr->domain) {
1255 	case IMC_DOMAIN_NEST:
1256 		/* Update the pmu name */
1257 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1258 		if (!pmu_ptr->pmu.name)
1259 			goto err;
1260 
1261 		/* Needed for hotplug/migration */
1262 		if (!per_nest_pmu_arr) {
1263 			per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1264 						sizeof(struct imc_pmu *),
1265 						GFP_KERNEL);
1266 			if (!per_nest_pmu_arr)
1267 				goto err;
1268 		}
1269 		per_nest_pmu_arr[pmu_index] = pmu_ptr;
1270 		break;
1271 	case IMC_DOMAIN_CORE:
1272 		/* Update the pmu name */
1273 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1274 		if (!pmu_ptr->pmu.name)
1275 			goto err;
1276 
1277 		nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1278 		pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1279 								GFP_KERNEL);
1280 
1281 		if (!pmu_ptr->mem_info)
1282 			goto err;
1283 
1284 		core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1285 								GFP_KERNEL);
1286 
1287 		if (!core_imc_refc) {
1288 			kfree(pmu_ptr->mem_info);
1289 			goto err;
1290 		}
1291 
1292 		core_imc_pmu = pmu_ptr;
1293 		break;
1294 	case IMC_DOMAIN_THREAD:
1295 		/* Update the pmu name */
1296 		pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1297 		if (!pmu_ptr->pmu.name)
1298 			goto err;
1299 
1300 		thread_imc_mem_size = pmu_ptr->counter_mem_size;
1301 		for_each_online_cpu(cpu) {
1302 			res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1303 			if (res) {
1304 				cleanup_all_thread_imc_memory();
1305 				goto err;
1306 			}
1307 		}
1308 
1309 		thread_imc_pmu = pmu_ptr;
1310 		break;
1311 	default:
1312 		return -EINVAL;
1313 	}
1314 
1315 	return 0;
1316 err:
1317 	return res;
1318 }
1319 
1320 /*
1321  * init_imc_pmu : Setup and register the IMC pmu device.
1322  *
1323  * @parent:	Device tree unit node
1324  * @pmu_ptr:	memory allocated for this pmu
1325  * @pmu_idx:	Count of nest pmc registered
1326  *
1327  * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1328  * Handles failure cases and accordingly frees memory.
1329  */
init_imc_pmu(struct device_node * parent,struct imc_pmu * pmu_ptr,int pmu_idx)1330 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1331 {
1332 	int ret;
1333 
1334 	ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1335 	if (ret)
1336 		goto err_free_mem;
1337 
1338 	switch (pmu_ptr->domain) {
1339 	case IMC_DOMAIN_NEST:
1340 		/*
1341 		* Nest imc pmu need only one cpu per chip, we initialize the
1342 		* cpumask for the first nest imc pmu and use the same for the
1343 		* rest. To handle the cpuhotplug callback unregister, we track
1344 		* the number of nest pmus in "nest_pmus".
1345 		*/
1346 		mutex_lock(&nest_init_lock);
1347 		if (nest_pmus == 0) {
1348 			ret = init_nest_pmu_ref();
1349 			if (ret) {
1350 				mutex_unlock(&nest_init_lock);
1351 				kfree(per_nest_pmu_arr);
1352 				per_nest_pmu_arr = NULL;
1353 				goto err_free_mem;
1354 			}
1355 			/* Register for cpu hotplug notification. */
1356 			ret = nest_pmu_cpumask_init();
1357 			if (ret) {
1358 				mutex_unlock(&nest_init_lock);
1359 				kfree(nest_imc_refc);
1360 				kfree(per_nest_pmu_arr);
1361 				per_nest_pmu_arr = NULL;
1362 				goto err_free_mem;
1363 			}
1364 		}
1365 		nest_pmus++;
1366 		mutex_unlock(&nest_init_lock);
1367 		break;
1368 	case IMC_DOMAIN_CORE:
1369 		ret = core_imc_pmu_cpumask_init();
1370 		if (ret) {
1371 			cleanup_all_core_imc_memory();
1372 			goto err_free_mem;
1373 		}
1374 
1375 		break;
1376 	case IMC_DOMAIN_THREAD:
1377 		ret = thread_imc_cpu_init();
1378 		if (ret) {
1379 			cleanup_all_thread_imc_memory();
1380 			goto err_free_mem;
1381 		}
1382 
1383 		break;
1384 	default:
1385 		return  -EINVAL;	/* Unknown domain */
1386 	}
1387 
1388 	ret = update_events_in_group(parent, pmu_ptr);
1389 	if (ret)
1390 		goto err_free_cpuhp_mem;
1391 
1392 	ret = update_pmu_ops(pmu_ptr);
1393 	if (ret)
1394 		goto err_free_cpuhp_mem;
1395 
1396 	ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1397 	if (ret)
1398 		goto err_free_cpuhp_mem;
1399 
1400 	pr_info("%s performance monitor hardware support registered\n",
1401 							pmu_ptr->pmu.name);
1402 
1403 	return 0;
1404 
1405 err_free_cpuhp_mem:
1406 	imc_common_cpuhp_mem_free(pmu_ptr);
1407 err_free_mem:
1408 	imc_common_mem_free(pmu_ptr);
1409 	return ret;
1410 }
1411